

ASX ANNOUNCEMENT 1 6 May 2025

TECHNICAL REVIEW DELINEATES FURTHER HIGH-GRADE TIN AND TANTALUM MINERALISATION AT UIS PROJECT, NAMIBIA

HIGHLIGHTS

- Askari has continued to review the historical exploration database for the Uis Project in Namibia, focused on evaluating the significant tin and tantalum mineralisation that exists
- Current data review focused on EPL 7345, strategically located contiguous to the operating Uis Tin Mine, owned by Andrada Mining (LSE: ATM) hosting a JORC (2012) MRE of 77.51Mt @ 0.79% Li₂O, 0.15% Sn and 82 ppm Ta*
- Historical exploration comprising 1,163 rock chip samples has highlighted exceptionally high-grade tin, tantalum and rubidium mineralisation with assay results including 4.05% SnO₂, 1,121ppm Ta₂O₅ and 0.83% Rb₂O
- The OP Pegmatite Target, which is up to 26m wide and has a mapped strike length of more than 2km, displays high grade mineralisation with values up to 1.64% SnO₂, 392ppm Ta₂O₅ and 0.22% Rb₂O
- Mapping and rock chip sampling at the PS Pegmatite Target has demonstrated high grade mineralisation with values up to 1.63% SnO₂, 639ppm Ta₂O₅ and 0.27% Rb₂O
- Fieldwork at the DP Pegmatite Target has also revealed high grade mineralisation with values up to $0.89\%~SnO_2$, $635ppm~Ta_2O_5$ and $0.29\%~Rb_2O$ with proximal pegmatites returning higher grades reaching up to $4.05\%~SnO_2$, $1,121ppm~Ta_2O_5$ and $0.44\%~Rb_2O$
- The K9 Pegmatite Target also displays high grade mineralisation with values up to 0.27% SnO₂, 216ppm Ta₂O₅ and 0.49% Rb₂O
- Historical drilling returned high-grade intercepts including 4m @ 0.16% SnO $_2$ (incl. 1m @ 0.26%), 4m @ 314 ppm Ta $_2$ O $_5$ (incl. 1m @ 695 ppm), and 2m @ 0.30% Rb (incl. 1m @ 0.38%).
- The Uis Project is fast emerging as a strategic asset offering polymetallic mineralisation including tin, tantalum, lithium and rubidium and with its strategic location next door to the operating Uis Tin Mine highlighting the significant value-add opportunity that exists

^{*} For further details refer to: <u>Uis-V1V2-Mineral-Resource-Update.pdf</u>

Askari Metals Limited (ASX: AS2) ("**Askari Metals**" or "**Company**") is pleased to announce that the Company has progressed with its technical review of the historical exploration database covering the Uis Project in Namibia, focused on evaluating the significant tin, tantalum and rubidium potential that exists.

The data review initially focused on EPL 8535 and has been expanded to include EPL 7345, the central tenement held by Askari Metals, located contiguous to the southwestern boundary of the operating Uis Tin Mine (Andrada Mining Limited, LOM: ATM) which boasts a globally important JORC (2012) MRE of 77.51Mt @0.79% Li₂O, 0.15% Sn and 82 ppm Ta.

Historical exploration across EPL 7345 has returned exceptionally high grades of tin, tantalum, and rubidium mineralisation, based on results from surface mapping, rock chip sampling, and two phases of reverse circulation (RC) drilling. The key pegmatite targets OP, PS, DP and K9 have already been delineated and explored in detail whilst newly identified pegmatite zones have been mapped but remain untested to date.

Commenting on the exploration potential of the Uis Project, Director Mr Gino D'Anna stated:

"Our team continues to review the mineralisation potential of the Uis Project having identified extensive high-grade mineralisation for tin, tantalum and rubidium. It is important to recognise that the Uis Project lies contiguous with and directly along strike of the operating Uis Tin Mine which is owned by Andrada Mining Limited (LOM: ATM), however despite sharing the same geology as the nearby Uis Tin Mine, the potential of the Uis Project to host significant tin and tantalum mineralisation was never a focus in previous exploration or analysis. The contribution of these metals significantly enhance the economic attractiveness of the Uis Project and will be an area of close focus for the Company going forward. The Uis Project is shaping up to be a valuable polymetallic project offering significant economic upside and is fast emerging as a major strategic asset for the Company which remains underexplored highlighting the significance of the upside potential.

The Uis Project represents a heavily underexplored opportunity and includes some spectacular historical exploration results which identified high-grade tin and tantalum mineralisation. These results demonstrate the significant exploration potential of the project area.

The Company is excited to begin further exploration of these targets and we look forward to keeping shareholders informed."

Uis Project – EPL 7345 – Tin, Tantalum and Rubidium Mineralisation Potential Detailed Rock Chip Sampling Program

A review of the geological database for EPL 7345 confirms that a total of 1,163 rock chip samples were collected across multiple phases of exploration, including initial due diligence activities. Sampling focused on exposed pegmatites and included areas of historical artisanal workings previously mined for tin and semi-precious stones.

The results from these campaigns were highly encouraging, particularly for tin mineralisation, with assays up to 4.05% SnO₂ and 66 samples reporting values exceeding 1,900 ppm Sn (equivalent to 0.25% SnO₂).

Tantalum mineralisation was also significant, with 268 samples assaying above 100 ppm Ta205, including result as high as 1,121 ppm Ta205. Strong rubidium values were likewise recorded, with assays returning up to 0.83% Rb₂O.

In addition to the Company's known pegmatite targets—PS, OP, DP, and K9—the assay results indicate an anomalous tantalum and rubidium trend extending northwest, following the same lithological and structural trends as the established targets.

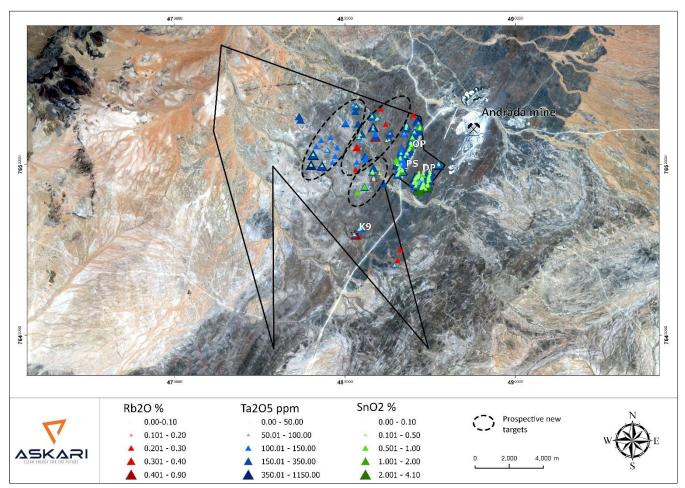


Figure 1: All Rock chip assays received from EPL 7345 to date with the prospective pegmatite target areas clearly shown.

Tin Results

The highest tin grade returned from EPL 7345 to date is 4.05% SnO₂, with a selection of the most significant results presented in Table 1 (below). In total, 66 samples returned grades exceeding 0.25% SnO₂.

Numerous high-grade tin assays were recorded at the OP target with 175 samples collected and returning an average grade of 0.11% SnO₂. At the DP target, 174 samples were collected, yielding an average grade of 0.19% SnO₂. These results, illustrated in Figure 2, underscore the strong potential for tin mineralisation across EPL 7345.

Table 1:The most significant SnO₂ grades returned from EPL 7345 rock chips.

Sample ID	Tenement	Easting	Northing	SnO ₂ %
Y0402	EPL7345	484361	7648509	4.05
Y0444	EPL7345	484834	7648769	2.69
B2510	EPL7345	483874	7651152	1.64
K2221	EPL7345	483314	7649670	1.63
Y0466	EPL7345	484380	7652260	1.22
K1054	EPL7345	481143	7648724	0.97
K3061	EPL7345	483023	7650174	0.92
Y0449	EPL7345	484920	7649161	0.92
K1063	EPL7345	481604	7649614	0.91
Y0436	EPL7345	484207	7649330	0.89
K2220	EPL7345	483009	7650312	0.81
K3137	EPL7345	484198	7649003	0.71
K3140	EPL7345	484603	7648921	0.66
Y0445	EPL7345	484843	7648867	0.61
Y0413	EPL7345	484590	7649399	0.61
K1061	EPL7345	481607	7649619	0.56
Y0462	EPL7345	483947	7651624	0.56
B2524	EPL7345	480709	7648386	0.56
Y0437	EPL7345	484156	7649280	0.54
K1097	EPL7345	483140	7649771	0.5
Y0425	EPL7345	484548	7649168	0.5
Y0476	EPL7345	483177	7649652	0.49
Y0454	EPL7345	484938	7649425	0.49
Y0453	EPL7345	484911	7649358	0.48
U4616	EPL7345	481599	7649623	0.47
Y0407	EPL7345	484531	7648739	0.45
Y0426	EPL7345	484550	7649230	0.43
K1006	EPL7345	481492	7652893	0.42
K3104	EPL7345	484128	7649220	0.41
K3048	EPL7345	483079	7650049	0.4
K1062	EPL7345	481608	7649618	0.39
Y0433	EPL7345	484311	7649339	0.39
K2227	EPL7345	484576	7648761	0.38
K3152	EPL7345	484461	7648633	0.37
K1017	EPL7345	480820	7651629	0.37
K1050	EPL7345	481667	7649217	0.36
K1051	EPL7345	481667	7649217	0.35
Y0415	EPL7345	484613	7649695	0.35

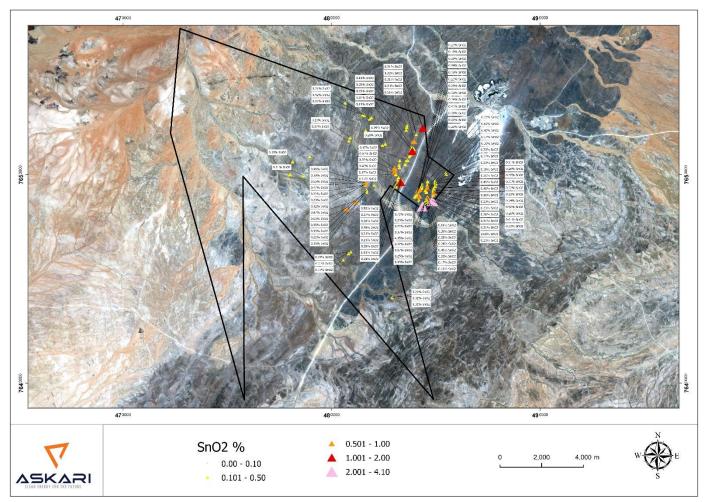


Figure 2: Map showing the SnO₂ assays from EPL 7345 from the rock sampling campaigns.

Tantalum Results

The highest tantalum grades returned from within EPL 7345 include 1,121 ppm, 803 ppm, and 639 ppm Ta_2O_5 , with the highest grades listed in Table 2. In total, 268 samples returned values exceeding 100 ppm Ta_2O_5 , highlighting exceptional tantalum prospectivity across the licence, as is depicted in Figure 3.

At the OP target, 175 samples were collected, returning an average grade of 129 ppm Ta_2O_5 , whilst at the DP target and proximal pegmatites, 174 samples returned a higher average of 154 ppm Ta_2O_5 .

These consistent elevated grades over substantial sample populations are particularly compelling when compared to Andrada's adjacent operational mine, where the current tantalum resource grade averages just 82 ppm Ta. The significantly higher values reported within EPL 7345 highlights the project areas strong potential for polymetallic tin and tantalum mineralisation.

Table 2 : The most significant Ta₂O₅ grades returned from EPL 7345 rock chips.

Sample ID	Tenement	Easting	Northing	Ta ₂ O ₅ ppm
K3169	EPL7345	484930.6	7649165	1121
B2595	EPL7345	478131	7650617	803
K3085	EPL7345	483366.9	7649732	639

K3147	EPL7345	484107.2	7649243	635
B2588	EPL7345	478126	7650635	608
K2221	EPL7345	483314.4	7649670	552
K3143	EPL7345	484576.8	7648767	529
K1037	EPL7345	484977	7649686	528
K1067	EPL7345	478001	7650020	460
Y0409	EPL7345	484599.8	7648914	428
B2506	EPL7345	481642	7652243	421
Y0470	EPL7345	484268.3	7652627	420
U4624	EPL7345	478643	7649963	409

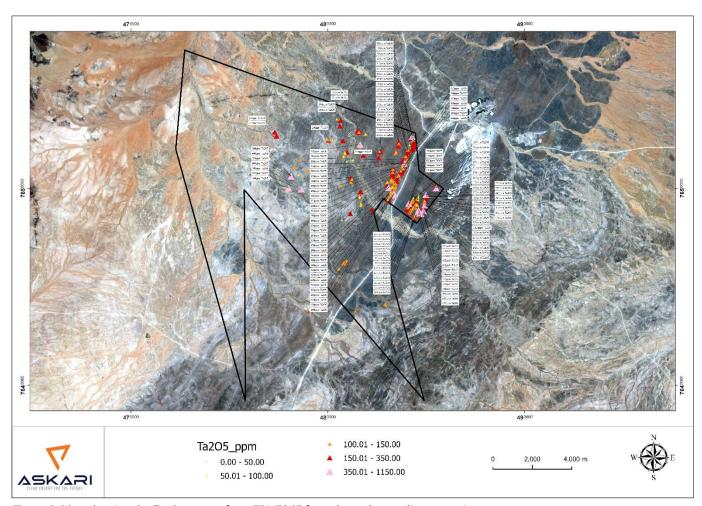


Figure 3: Map showing the Ta_2O_5 assays from EPL 7345 from the rock sampling campaigns.

Rubidium Results

The maximum rubidium result from the rock sampling campaigns was 0.83% Rb₂O with 61 samples returning results greater than 0.2% Rb₂O and the DP pegmatite target averaging 0.14% Rb₂O over 174 samples collected. This indicates excellent rubidium prospectivity, adding additional potential economic extraction value on top of the significantly positive tin and tantalum results.

Table 3: The most significant Rb₂O grades returned from EPL 7345 rock chips.

Sample ID	Tenement	Easting	Northing	Rb2O %
N2559	EPL7345	481787	7651679	0.83
N2607	EPL7345	480633	7645945	0.49
B2546	EPL7345	484925	7649157	0.44
Y0454	EPL7345	484938	7649425	0.37
B2544	EPL7345	484912	7649357	0.34
K1061	EPL7345	481607	7649619	0.33
K1049	EPL7345	481682	7649249	0.32
K1123	EPL7345	484836	7648781	0.32
U4640	EPL7345	485492	7650047	0.32
K1121	EPL7345	484834	7648750	0.31
N2192	EPL7345	480682	7651052	0.31
K1030	EPL7345	485510	7650043	0.31
N2406	EPL7345	483227	7645044	0.30

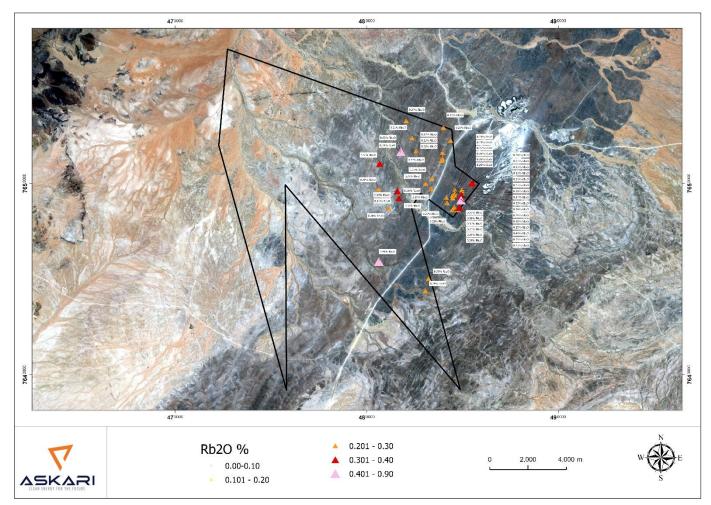


Figure 4: Rb₂O rock chip results from EPL 7345 from the rock sampling campaigns.

RC Drilling Results

On EPL 7345 a total of 114 RC holes totaling 6,384m and generating 2,411 samples was completed over two drilling campaigns.

Several notable Ta_2O_5 , SnO_2 and Rb_2O intercepts were delivered including $4m @ 0.16\% SnO_2$, including $1m @ 0.26\% SnO_2$, $4m @ 314ppm Ta_2O_5$ including $1m @ 695ppm Ta_2O_5$, and $2m @ 0.30\% Rb_2O$, from 10m, including $1m @ 0.38\% Rb_2O$.

Table 4: The most significant SnO_2 grades returned from EPL 7345 drilling.

Hole ID	Easting	Northing	Drill Phase	Summary
A7BRC002	481675	7649177	EPL7345 Phase 2	1m @ 0.08% SnO ₂ , from 7m
A7BRC005	481386	7648692	EPL7345 Phase 2	4m @ 0.09% SnO ₂ , from 23m
A7BRC008	481705	7648898	EPL7345 Phase 2	2m @ 0.10% SnO ₂ , from 32m
A7BRC009	481999	7649528	EPL7345 Phase 2	3m @ 0.10% SnO ₂ , from 21m
A7BRC011	482004	7649506	EPL7345 Phase 2	6m @ 0.09% SnO ₂ , from 20m
A7BRC019	478949	7651782	EPL7345 Phase 2	2m @ 0.14% SnO ₂ , from 24m, including 1m @ 0.20% SnO ₂
A7BRC020	480793	7649943	EPL7345 Phase 2	2m @ 0.08% SnO ₂ , from 24m
A7BRC023	480641	7650762	EPL7345 Phase 2	2m @ 0.10% SnO ₂ , from 17m
A7BRC024	480700	7651023	EPL7345 Phase 2	5m @ 0.11% SnO ₂ , from 21m
A7BRC025	480717	7651015	EPL7345 Phase 2	3m @ 0.09% SnO ₂ , from 37m
A7BRC026	480962	7650962	EPL7345 Phase 2	4m @ 0.16% SnO ₂ , from 48m, including 1m @ 0.26% SnO ₂
A7BRC026	480962	7650962	EPL7345 Phase 2	1m @ 0.12% SnO ₂ , from 58m

Table 5: The most significant Ta_2O_5 grades returned from EPL 7345 drilling.

Hole ID	Easting	Northing	Drill Phase	Summary
A7BRC005	481386	7648692	EPL7345 Phase 2	4m @ 314ppm Ta_2O_5 , from 26m, including: 1m @ 695ppm Ta_2O_5
A7BRC009	481999	7649528	EPL7345 Phase 2	2m @ 178ppm Ta ₂ O₅, from 24m
A7BRC011	482004	7649506	EPL7345 Phase 2	6m @ 101ppm Ta ₂ O₅, from 21m
A7BRC017	480149	7649529	EPL7345 Phase 2	1m @ 192ppm Ta ₂ O ₅ , from 25m
A7BRC019	478949	7651702	EPL7345 Phase 2	4m @ 283ppm Ta ₂ O ₅ , from 25m, including 1m @ 578ppm Ta ₂ O ₅ and
A/BRC019	478949 7651782	7031762	EPL/545 Pliase 2	1m @ 437ppm Ta ₂ O ₅
A7BRC020	480793	7649943	EPL7345 Phase 2	2m @ 154ppm Ta ₂ O ₅ , from 24m
A7BRC021	480812	7649937	EPL7345 Phase 2	4m @ 97ppm Ta ₂ O₅, from 56m
A7BRC024	480700	7651023	EPL7345 Phase 2	3m @ 117ppm Ta ₂ O ₅ , from 25m
A7BRC036	482388	7644680	EPL7345 Phase 2	2m @ 182ppm Ta ₂ O ₅ , from 11m
A7BRC039	482971	7642477	EPL7345 Phase 2	2m @ 180ppm Ta ₂ O ₅ , from 19
AMURC0009	478050	7650624	EPL7345 Phase 1	4m @ 179ppm Ta ₂ O ₅ , from 80m
AMURC0050	484143	7649361	EPL7345 Phase 1	2m @ 138ppm Ta ₂ O ₅ , from 42m
AMURC0062	483530	7652133	EPL7345 Phase 1	2m @ 143ppm Ta₂O₅, from 37m

Table 6: The most significant Rb₂O grades returned from EPL 7345 drilling.

Hole ID	Easting	Northing	Drill Phase	Summary		
A7BRC017	480149	7649529	EPL7345 Phase 2	7m @ 0.16% Rb ₂ O, from 24m, including: 1m @ 0.23% Rb ₂ O		
A7BRC036	482388	7644680	EPL7345 Phase 2	3m @ 0.24% Rb $_2$ O, from 11m, including: 1m @ 0.36% Rb $_2$ O		
AMURC0022	483353	7649742	EPL7345 Phase 1	2m @ 0.16% Rb₂O, from 17m		
AMURC0031	485468	7650126	EPL7345 Phase 1	3m @ 0.28% Rb_2O , from 10m, including: 1m @ 0.27% Rb_2O , 1m @ 0.32% Rb_2O , 1m @ 0.23% Rb_2O		
AMURC0034	485489	7650087	EPL7345 Phase 1	4m @ 0.21% Rb $_2$ O, from 7m, including: 1m @ 0.31% Rb $_2$ O, 1m @ 0.26% Rb $_2$ O		
AMURC0035	485476	7650101	EPL7345 Phase 1	3m @ 0.18% Rb ₂ O, from 10m, including: 1m @ 0.21% Rb ₂ O		
AMURC0041	484057	7649067	EPL7345 Phase 1	3m @ 0.23% Rb $_2$ O, from 8m, including: 1m @ 0.28% Rb $_2$ O, 1m @ 0.24% Rb $_2$ O		
AMURC0044	484074	7649132	EPL7345 Phase 1	3m @ 0.15% Rb ₂ O, from 8m		
AMURC0048	484171	7649333	EPL7345 Phase 1	1m @ 0.11% Rb_2O , from 17m		
AMURC0049	484159	7649346	EPL7345 Phase 1	5m @ 0.15% Rb ₂ O, from 23m, including: 1m @ 0.24% Rb ₂ O		
AMURC0050	484143	7649361	EPL7345 Phase 1	$2m \ @ \ 0.17\% \ Rb_2O$, from $41m$		
AMURC0052	484560	7648772	EPL7345 Phase 1	3m @ 0.16% Rb ₂ O, from 11m		
AMURC0053	484519	7648700	EPL7345 Phase 1	4m @ 0.16% Rb₂O, from 15m		
AMURC0055	484539	7648780	EPL7345 Phase 1	2m @ 0.30% Rb $_2$ O, from 10m, including: 1m @ 0.23% Rb $_2$ O, 1m @ 0.38% Rb $_2$ O		
AMURC0060	483446	7651917	EPL7345 Phase 1	3m @ 0.17% Rb ₂ O, from 24m, including: 1m @ 0.21% Rb ₂ O		
AMURC0063	483517	7652061	652061 EPL7345 Phase 1 3m @ 0.15% Rb ₂ O, from 4m, including: 1m @ 0.22% Rb ₂ O			

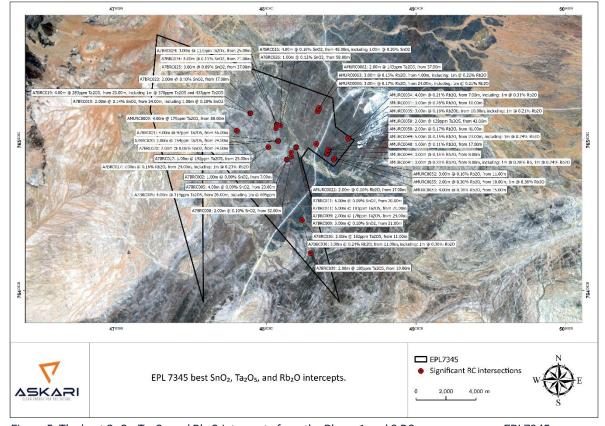


Figure 5: The best SnO_2 , Ta_2O_5 and Rb_2O intercepts from the Phase 1 and 2 RC programmes on EPL7345.

Future Work

The Company is planning to conduct further exploration aimed at further developing and expanding the known tin and tantalum mineralisation at EPL 7345. This work will consist of:

- An assessment of the Phase 1 trenching campaign assays from EPL 7345 once these are received
- Detailed mapping and rock chip sampling of new targets on EPL 7345
- Pending successful results, mobilizing an excavator to site for EPL 7345 Phase 2 trenching program

Figure 6 (below) outlines the tin and tantalum targets across EPL 7345, including extensions of the current OP and DP targets previously identified by the Company. These areas will form the focus of upcoming follow-up exploration programs, aimed at delineating additional zones of high-grade tin and tantalum mineralisation. The planned low-cost fieldwork is designed to refine and prioritise high-confidence drill targets within EPL 7345, advancing the broader objective of testing and defining the polymetallic mineralisation associated with the Uis Project.

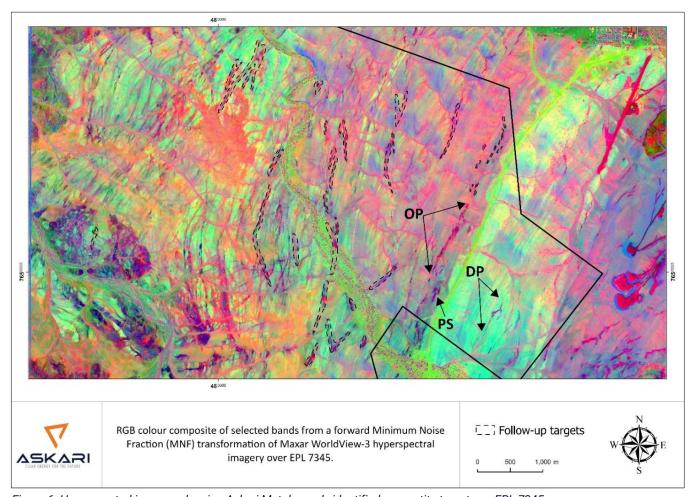


Figure 6: Hyperspectral imagery showing Askari Metals newly identified pegmatite targets on EPL 7345.

The Company looks forward to keeping its shareholders and investors updated as exploration activities continue to advance at the Uis project and as exploration results are received.

- ENDS -

This announcement is authorised for release by the Board of Askari Metals Limited.

FOR FURTHER INFORMATION PLEASE CONTACT

INVESTORS

Gino D'Anna

DIRECTOR

M. +61 400 408 878

E. gino@askarimetals.com

Cliff Fitzhenry

CHIEF PROJECT AND EXPLORATION MANAGER (AFRICA)

M. +61 482 384 048

E. cliff@askarimetals.com

ABOUT ASKARI METALS

Askari Metals is a focused Southern African exploration company. The Company is actively exploring and developing its Uis Lithium Project in Namibia located along the Cape-Cross – Uis Pegmatite Belt of Central Western Namibia. The Uis project is located within 2.5 km from the operating Uis Tin-Tantalum-Lithium Mine which is currently operated by Andrada Mining Ltd and is favourably located with the deep water port of Walvis Bay being less than 230 km away from the Uis project, serviced by all-weather sealed roads. In March 2023, the Company welcomed Lithium industry giant Huayou Cobalt onto the register who remains supportive of the Company's ongoing exploration initiatives.

The Company has also recently acquired the Matemanga Uranium Project in Southern Tanzania which is strategically located less than 70km south of the world-class Nyota Uranium Mine. Askari Metals is actively engaged in due diligence to acquire further uranium projects in this emerging tier-1 uranium province.

The Company is currently assessing its options for a suitable value-accretive divestment strategy of the Australian projects which includes highly prospective gold, copper and REE projects.

For more information please visit: www.askarimetals.com

CAUTION REGARDING FORWARD-LOOKING INFORMATION

This document contains forward-looking statements concerning Askari Metals Limited. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based on the Company's beliefs, opinions and estimates of Askari Metals Limited as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

CAUTIONARY STATEMENT

Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets, Exploration Results or Mineral Resources is based on information compiled by Clifford Fitzhenry, a Competent Person who is a Registered Professional Natural Scientist with the South African Council for Natural Scientific Professions (SACNASP) as well as a Member of the Geological Society of South Africa (GSSA) and a Member of the Society of Economic Geologists (SEG).

Mr. Fitzhenry is the Chief Project and Exploration Manager (Africa) for Askari Metals Limited, who has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Fitzhenry consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 – Re-interpreted RC results on EPL 7345. Refer to ASX release:

Askari intersects broad lithium bearing pegmatites at flagship Namibian project – 17 May 2023 Final assay results received from Uis RC drilling campaigns – 29 December 2023

SnO₂ %

Hole ID	Easting	Northing	Drill Phase	Sample Type	Summary
A7BRC002	481675	7649177	EPL7345 Phase 2	RC chips	A7BRC002: 1.00m @ 0.08% SnO2, from 7.00m
A7BRC005	481386	7648692	EPL7345 Phase 2	RC chips	A7BRC005: 4.00m @ 0.09% SnO2, from 23.00m
A7BRC008	481705	7648898	EPL7345 Phase 2	RC chips	A7BRC008: 2.00m @ 0.10% SnO2, from 32.00m
A7BRC009	481999	7649528	EPL7345 Phase 2	RC chips	A7BRC009: 3.00m @ 0.10% SnO2, from 21.00m
A7BRC011	482004	7649506	EPL7345 Phase 2	RC chips	A7BRC011: 6.00m @ 0.09% SnO2, from 20.00m
A7BRC019	478949	7651782	EPL7345 Phase 2	RC chips	A7BRC019: 2.00m @ 0.14% SnO2, from
					24.00m, including 1.00m @ 0.20% SnO2
A7BRC020	480793	7649943	EPL7345 Phase 2	RC chips	A7BRC020: 2.00m @ 0.08% SnO2, from 24.00m
A7BRC023	480641	7650762	EPL7345 Phase 2	RC chips	A7BRC023: 2.00m @ 0.10% SnO2, from 17.00m
A7BRC024	480700	7651023	EPL7345 Phase 2	RC chips	A7BRC024: 5.00m @ 0.11% SnO2, from 21.00m
A7BRC025	480717	7651015	EPL7345 Phase 2	RC chips	A7BRC025: 3.00m @ 0.09% SnO2, from 37.00m
A7BRC026	480962	7650962	EPL7345 Phase 2	RC chips	A7BRC026: 4.00m @ 0.16% SnO2, from
					48.00m, including 1.00m @ 0.26% SnO2
A7BRC026	480962	7650962	EPL7345 Phase 2	RC chips	A7BRC026: 1.00m @ 0.12% SnO2, from 58.00m

Ta_2O_5 ppm

Hole ID	Easting	Northing	Drill Phase	Sample	Summary
				Туре	
A7BRC002	481675	7649177	EPL7345 Phase 2	RC Chips	A7BRC002: 2.00m @ 87ppm Ta2O5, from
					8.00m
A7BRC002	481675	7649177	EPL7345 Phase 2	RC Chips	A7BRC003: 1.00m @ 117ppm Ta2O5, from
					3.00m
A7BRC005	481386	7648692	EPL7345 Phase 2	RC Chips	A7BRC005: 4.00m @ 314ppm Ta2O5, from
					26.00m, including 1m @ 695ppm
A7BRC008	481705	7648898	EPL7345 Phase 2	RC Chips	A7BRC008: 1.00m @ 87ppm Ta2O5, from
					33.00m
A7BRC009	481999	7649528	EPL7345 Phase 2	RC Chips	A7BRC009: 2.00m @ 178ppm Ta2O5, from
					24.00m
A7BRC011	482004	7649506	EPL7345 Phase 2	RC Chips	A7BRC011: 6.00m @ 101ppm Ta2O5, from
					21.00m
A7BRC017	480149	7649529	EPL7345 Phase 2	RC Chips	A7BRC017: 1.00m @ 192ppm Ta2O5, from
					25.00m
A7BRC017	480149	7649529	EPL7345 Phase 2	RC Chips	A7BRC017: 1.00m @ 85ppm Ta2O5, from
					27.00m
A7BRC019	478949	7651782	EPL7345 Phase 2	RC Chips	A7BRC019: 4.00m @ 283ppm Ta2O5, from
					25.00m, including 1m @ 578ppm Ta2O5 and
					1m @ 437ppm Ta2O5
A7BRC020	480793	7649943	EPL7345 Phase 2	RC Chips	A7BRC020: 2.00m @ 154ppm Ta2O5, from
					24.00m
A7BRC020	480793	7649943	EPL7345 Phase 2	RC Chips	A7BRC020: 2.00m @ 103ppm Ta2O5, from
					46.00m

A7BRC020	480793	7649943	EPL7345 Phase 2	RC Chips	A7BRC020: 1.00m @ 92ppm Ta2O5, from 50.00m
A7BRC021	480812	7649937	EPL7345 Phase 2	RC Chips	A7BRC021: 4.00m @ 97ppm Ta2O5, from 56.00m
A7BRC021	480812	7649937	EPL7345 Phase 2	RC Chips	A7BRC021: 1.00m @ 86ppm Ta2O5, from 61.00m
A7BRC023	480641	7650762	EPL7345 Phase 2	RC Chips	A7BRC023: 2.00m @ 107ppm Ta2O5, from 17.00m
A7BRC024	480700	7651023	EPL7345 Phase 2	RC Chips	A7BRC024: 3.00m @ 117ppm Ta2O5, from 25.00m
A7BRC025	480717	7651015	EPL7345 Phase 2	RC Chips	A7BRC025: 1.00m @ 87ppm Ta2O5, from 37.00m
A7BRC025	480717	7651015	EPL7345 Phase 2	RC Chips	A7BRC025: 2.00m @ 117ppm Ta2O5, from 40.00m
A7BRC026	480962	7650962	EPL7345 Phase 2	RC Chips	A7BRC026: 1.00m @ 189ppm Ta2O5, from 48.00m
A7BRC026	480962	7650962	EPL7345 Phase 2	RC Chips	A7BRC026: 2.00m @ 114ppm Ta2O5, from 50.00m
A7BRC026	480962	7650962	EPL7345 Phase 2	RC Chips	A7BRC026: 2.00m @ 111ppm Ta2O5, from 59.00m
A7BRC027	480087	7652534	EPL7345 Phase 2	RC Chips	A7BRC027: 1.00m @ 92ppm Ta2O5, from 16.00m
A7BRC036	482388	7644680	EPL7345 Phase 2	RC Chips	A7BRC036: 2.00m @ 182ppm Ta2O5, from 11.00m
A7BRC039	482971	7642477	EPL7345 Phase 2	RC Chips	A7BRC039: 2.00m @ 180ppm Ta2O5, from 19.00m
A7BRC040	483458	7642558	EPL7345 Phase 2	RC Chips	A7BRC040: 1.00m @ 101ppm Ta2O5, from 81.00m
A7BRC041	483502	7642558	EPL7345 Phase 2	RC Chips	A7BRC041: 1.00m @ 107ppm Ta2O5, from 14.00m
A7BRC041	483502	7642558	EPL7345 Phase 2	RC Chips	A7BRC041: 1.00m @ 118ppm Ta2O5, from 17.00m
A7BRC043	483369	7642370	EPL7345 Phase 2	RC Chips	A7BRC043: 1.00m @ 94ppm Ta2O5, from 67.00m
A7BRC053	483659	7640948	EPL7345 Phase 2	RC Chips	A7BRC053: 1.00m @ 178ppm Ta2O5, from 63.00m
A7BRC054	483472	7642469	EPL7345 Phase 2	RC Chips	A7BRC054: 2.00m @ 101ppm Ta2O5, from 65.00m
AMURC0005	478544	7649946	EPL7345 Phase 1	RC Chips	AMURC0005: 1.00m @ 113ppm Ta2O5, from 46.00m
AMURC0007	478103	7650649	EPL7345 Phase 1	RC Chips	AMURC0007: 2.00m @ 135ppm Ta2O5, from 43.00m
AMURC0008	478087	7650604	EPL7345 Phase 1	RC Chips	AMURC0008: 1.00m @ 92ppm Ta2O5, from 29.00m
AMURC0009	478050	7650624	EPL7345 Phase 1	RC Chips	AMURC0009: 1.00m @ 140ppm Ta2O5, from 67.00m
AMURC0009	478050	7650624	EPL7345 Phase 1	RC Chips	AMURC0009: 4.00m @ 179ppm Ta2O5, from 80.00m
AMURC0016	483270.97	7649594	EPL7345 Phase 1	RC Chips	AMURC0016: 1.00m @ 121ppm Ta2O5, from 7.00m
AMURC0020	483290.47	7649667.19	EPL7345 Phase 1	RC Chips	AMURC0020: 1.00m @ 89ppm Ta2O5, from 9.00m

AMURC0025	483700.42	7650900.9	EPL7345 Phase 1	RC Chips	AMURC0025: 1.00m @ 84ppm Ta2O5, from 49.00m
AMURC0029	483856.92	7651161.6	EPL7345 Phase 1	RC Chips	AMURC0029: 1.00m @ 119ppm Ta2O5, from 3.00m
AMURC0029	483856.92	7651161.6	EPL7345 Phase 1	RC Chips	AMURC0029: 1.00m @ 80ppm Ta2O5, from 24.00m
AMURC0029	483856.92	7651161.6	EPL7345 Phase 1	RC Chips	AMURC0029: 1.00m @ 93ppm Ta2O5, from 29.00m
AMURC0029	483856.92	7651161.6	EPL7345 Phase 1	RC Chips	AMURC0029: 2.00m @ 98ppm Ta2O5, from 33.00m
AMURC0030	483841.36	7651166.6	EPL7345 Phase 1	RC Chips	AMURC0030: 1.00m @ 106ppm Ta2O5, from 16.00m
AMURC0031	485468.45	7650126	EPL7345 Phase 1	RC Chips	AMURC0031: 1.00m @ 89ppm Ta2O5, from 12.00m
AMURC0033	485482.72	7650034.54	EPL7345 Phase 1	RC Chips	AMURC0033: 1.00m @ 98ppm Ta2O5, from 19.00m
AMURC0034	485488.66	7650086.85	EPL7345 Phase 1	RC Chips	AMURC0034: 2.00m @ 87ppm Ta2O5, from 8.00m
AMURC0043	484019.3	7649088.97	EPL7345 Phase 1	RC Chips	AMURC0043: 1.00m @ 87ppm Ta2O5, from 50.00m
AMURC0045	484140.78	7649285.31	EPL7345 Phase 1	RC Chips	AMURC0045: 1.00m @ 85ppm Ta2O5, from 8.00m
AMURC0045	484140.78	7649285.31	EPL7345 Phase 1	RC Chips	AMURC0045: 1.00m @ 85ppm Ta2O5, from 15.00m
AMURC0047	484104.8	7649305.4	EPL7345 Phase 1	RC Chips	AMURC0047: 2.00m @ 97ppm Ta2O5, from 49.00m
AMURC0048	484171.48	7649333	EPL7345 Phase 1	RC Chips	AMURC0048: 1.00m @ 117ppm Ta2O5, from 11.00m
AMURC0049	484158.81	7649345.63	EPL7345 Phase 1	RC Chips	AMURC0049: 1.00m @ 110ppm Ta2O5, from 24.00m
AMURC0049	484158.81	7649345.63	EPL7345 Phase 1	RC Chips	AMURC0049: 1.00m @ 98ppm Ta2O5, from 27.00m
AMURC0050	484142.95	7649361.43	EPL7345 Phase 1	RC Chips	AMURC0050: 2.00m @ 138ppm Ta2O5, from 42.00m
AMURC0051	484211.06	7649400.87	EPL7345 Phase 1	RC Chips	AMURC0051: 1.00m @ 89ppm Ta2O5, from 21.00m
AMURC0053	484518.65	7648699.74	EPL7345 Phase 1	RC Chips	AMURC0053: 2.00m @ 95ppm Ta2O5, from 15.00m
AMURC0054	484499.89	7648708.62	EPL7345 Phase 1	RC Chips	AMURC0054: 3.00m @ 89ppm Ta2O5, from 34.00m
AMURC0056	484508.07	7648756.88	EPL7345 Phase 1	RC Chips	AMURC0056: 1.00m @ 100ppm Ta2O5, from 11.00m
AMURC0057	483411	7651828	EPL7345 Phase 1	RC Chips	AMURC0057: 1.00m @ 104ppm Ta2O5, from 16.00m
AMURC0058	483444	7651865	EPL7345 Phase 1	RC Chips	AMURC0058: 1.00m @ 88ppm Ta2O5, from 13.00m
AMURC0059	483422	7651880	EPL7345 Phase 1	RC Chips	AMURC0059: 1.00m @ 134ppm Ta2O5, from 25.00m
AMURC0061	483428	7651923	EPL7345 Phase 1	RC Chips	AMURC0061: 2.00m @ 103ppm Ta2O5, from 41.00m
AMURC0062	483530	7652133	EPL7345 Phase 1	RC Chips	AMURC0062: 2.00m @ 143ppm Ta2O5, from 37.00m

AMURC0063	483517	7652061	EPL7345 Phase 1	RC Chips	AMURC0063: 1.00m @ 95ppm Ta2O5, from
					6.00m
AMURC0063	483517	7652061	EPL7345 Phase 1	RC Chips	AMURC0063: 1.00m @ 115ppm Ta2O5, from
					8.00m

Rb₂O %

Hole ID	Easting	Northing	Drill Phase	Sample Type	Summary
A7BRC017	480149	7649529	EPL7345 Phase 2	RC Chips	A7BRC017: 7.00m @ 0.16% Rb ₂ O, from 24.00m,
					including: 1m @ 0.23% Rb ₂ O
A7BRC036	482388	7644680	EPL7345 Phase 2	RC Chips	A7BRC036: 3.00m @ 0.24% Rb ₂ O, from 11.00m,
					including: 1m @ 0.36% Rb ₂ O
AMURC0022	483352.69	7649741.83	EPL7345 Phase 1	RC Chips	AMURC0022: 2.00m @ 0.16% Rb ₂ O, from
					17.00m
AMURC0031	485468.45	7650126	EPL7345 Phase 1	RC Chips	AMURC0031: 3.00m @ 0.28% Rb ₂ O, from
					10.00m, including: 1m @ 0.27% Rb ₂ O, 1m @
					0.32% Rb ₂ O, 1m @ 0.23% Rb ₂ O
AMURC0034	485488.66	7650086.85	EPL7345 Phase 1	RC Chips	AMURC0034: 4.00m @ 0.21% Rb ₂ O, from
					7.00m, including: 1m @ 0.31% Rb ₂ O, 1m @
					0.26% Rb ₂ O
AMURC0035	485476.36	7650100.78	EPL7345 Phase 1	RC Chips	AMURC0035: 3.00m @ 0.18% Rb ₂ O, from
					10.00m, including: 1m @ 0.21% Rb ₂ O
AMURC0041	484057.39	7649067.09	EPL7345 Phase 1	RC Chips	AMURC0041: 3.00m @ 0.23% Rb ₂ O, from
					8.00m, including: 1m @ 0.28% Rb ₂ O, 1m @
					0.24% Rb ₂ O
AMURC0044	484074.35	7649132.32	EPL7345 Phase 1	RC Chips	AMURC0044: 3.00m @ 0.15% Rb ₂ O, from
					8.00m
AMURC0048	484171.48	7649333	EPL7345 Phase 1	RC Chips	AMURC0048: 1.00m @ 0.11% Rb ₂ O, from
					17.00m
AMURC0049	484158.81	7649345.63	EPL7345 Phase 1	RC Chips	AMURC0049: 5.00m @ 0.15% Rb ₂ O, from
					23.00m, including: 1m @ 0.24% Rb ₂ O
AMURC0050	484142.95	7649361.43	EPL7345 Phase 1	RC Chips	AMURC0050: 2.00m @ 0.17% Rb ₂ O, from
					41.00m
AMURC0052	484559.52	7648771.89	EPL7345 Phase 1	RC Chips	AMURC0052: 3.00m @ 0.16% Rb ₂ O, from
					11.00m
AMURC0053	484518.65	7648699.74	EPL7345 Phase 1	RC Chips	AMURC0053: 4.00m @ 0.16% Rb ₂ O, from
					15.00m
AMURC0055	484538.88	7648780.06	EPL7345 Phase 1	RC Chips	AMURC0055: 2.00m @ 0.30% Rb ₂ O, from
					10.00m, including: 1m @ 0.23% Rb ₂ O, 1m @
					0.38% Rb₂O
AMURC0060	483446	7651917	EPL7345 Phase 1	RC Chips	AMURC0060: 3.00m @ 0.17% Rb ₂ O, from
					24.00m, including: 1m @ 0.21% Rb ₂ O
AMURC0063	483517	7652061	EPL7345 Phase 1	RC Chips	AMURC0063: 3.00m @ 0.15% Rb ₂ O, from
					4.00m, including: 1m @ 0.22% Rb ₂ O

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	Information can be reviewed from the ASX releases below: NO NEW DATA HAS BEEN RELEASED IN THIS ASX RELEASE. Only historical reinterpretation of Sn, Ta and Rb₂O Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling Rock Chip Sampling Hithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024 High Resolution Data Information can be reviewed from the ASX release below: ASKARI ACCELERATES EXPLORATION ONSEVEN NEW LITHIUM PEGMATITE TARGETS AT UIS LITHIUM PROJECT, NAMIBIA, 6 June 2024 High resolution WorldView-3 multi-spectral satellite imagery was obtained from Woolpert, Inc. The data was obtained from WorldView-3 (WV-3) imaging and environmentmonitoring satellite located at an altitude of 617km in a sun-synchronous oRb2Oit. The data package consists of 16 bands ranging from visible light through nearinfrared (8x VNIR bands at -1.24m resolution) to 8 short-wave infra-red bands (SWIR - 3.7m resolution). A panchromatic sensor with a 30cm resolution is used to pansharpen the visible and NIR bands. In house processing was conducted on the bands to produce high res multispectral (false colour RGB band composite) and ortho-images (RGB true colour composites). The SWIR bands from the WV-3 scenes were primarily select for band math and RGB composite image creation. Decorrelation stretch and Saturation stretch image transformations were applied on SWIR RGB image composites.

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, bangka, sonic, etc) and details.	Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource Estimation, mining studies and metallurgical studies.	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Sub-sampling techniques and sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling Lithium Project, Namibia 16 November 2022

Criteria	JORC Code explanation	Commentary
		ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Information can be reviewed from the ASX release below: • Information can be reviewed from the ASX release below: • High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 • RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling • Lithium Project, Namibia 16 November 2022 • ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 • MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
Sample security	The measures taken to ensure sample security.	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024

Criteria	JORC Code explanation	Commentary
		MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Audits or reviews	The results of any audits or reviews of sampling techniques	Information can be reviewed from the ASX release below:
	and data.	Drilling
		Information can be reviewed from the ASX release below:
		 High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022
		 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
		Rock Chip Sampling
		Lithium Project, Namibia 16 November 2022
		ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND
		TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024
		MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE
		MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	The Uis Lithium-Tantalum-Tin Project (Uis Project – EPL7345) is located less than 5km from the township of Uis and less than 2.5km from the operating Uis Tin-Tantalum-Lithium Mine, owned and operated by Andrada Mining plc (LSE. ATM), within the Erongo Region of west-central Namibia. Swakopmund, the capital city of the Erongo Region and Namibia's fourth largest settlement is located approximately 165km south of the Uis Project, while the Namibian capital city of Windhoek is located approximately 270km southeast of the Uis Project. The Uis Project boasts more than 80 mapped pegmatites across the project area, with many of the pegmatites having been mined historically for tin and semi-precious stones.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023

Criteria	JORC Code explanation	Commentary
Coology	Deposit type goals give lootting and style of mineralization	Rock Chip Sampling Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024 The rocks of the Erange Region, and appositically the Pâures Constituency, are represented by
Geology	Deposit type, geological setting and style of mineralisation.	The rocks of the Erongo Region, and specifically the Dâures Constituency, are represented by rocks of the Khomas Subgroup, a division of the Swakop Group of the Damara Sequence, which have been intruded by numerous zones and unzoned mineralised pegmatites rich in cassiterite, lepidolite, petalite, amblygonite, spodumene, tantalite, columbite, beryl, gem tourmaline, and rare to sparse sulphides, wolframite, scheelite, pollucite or rare earth metals. The Uis and Nainais-Kohero swarm of pegmatites represents the fillings of en-echelon tension gashes that formed as a result of shearing of a regional nature, which evolved slowly over considerable geological time. These pegmatites are pervasively altered or extensively albitised, with only relics of the original potassium feldspars left after their widespread replacement by albite. They are remarkably similar in composition, except for the varying intensity of pneumatolytic effects, and the introduction or concentration of trace elements during the final stages of crystallisation has resulted in complex pegmatite mineralogies. These pegmatites are found within schistose and quartzose rocks of the Khomas Subgroup, a division of the Swakop Group, which have been subjected to intense tectonic deformation and regional metamorphism. Detailed geological mapping within the Uis area suggests that the Uis swarm of pegmatites consists of over 100 individual pegmatite bodies. Shearing opened spaces within the Khomas Subgroup country rocks, spaces in which pegmatite or quartz veins were subsequently intruded. Within the Nainais pegmatites, high tin values are found in smaller altered mica-rich pegmatites near the pegmatite edges. The pegmatite mineralisation composition changes in the distance from the granitic contacts with a mineral crystallisation sequence having been mapped, which indicates garnet and schorl occurring closest to the granitic contacts, the cassiterite and lithium-tourmaline occurring further away therefrom, and the tantalite being associated with lithium-tou

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Information can be reviewed from the ASX release below: • Information can be reviewed from the ASX release below: • High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 • RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling • Lithium Project, Namibia 16 November 2022 • ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 • MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 No Mineral Resource has been estimated for the project at this stage. The results presented are based on a reinterpretation of assay data previously released to the market (refer to ASX announcements listed section 1 of this JORC table). Tin (SnO₂): Intervals with continuous 1-metre samples each grading ≥0.07% SnO₂ were averaged and included if the resulting average was ≥0.08%. Tantalum (Ta₂O₅): Intervals with continuous 1-metre samples each grading ≥80 ppm Ta₂O₅ were averaged. Rubidium (Rb₂O): Intervals with continuous 1-metre samples each grading ≥0.10% Rb₂O were averaged and included if the resulting average was ≥0.15%. Elemental assay results for rubidium (Rb₂O), lithium (Li), tantalum (Ta), and tin (Sn) have been converted to their respective oxide forms (Rb₂O, Li₂O, Ta₂O₅, SnO₂) using standard industry conversion factors. These are: Rb₂O = Rb2O × 1.0925 ÷ 10,000 Li₂O = Li × 2.153 ÷ 10,000 Ta₂O₅ = Ta × 1.2211 ÷ 10,000 SnO₂ = Sn × 1.2696 ÷ 10,000 All available assay data for Ta₂O₅, SnO₂, and Rb₂O were used to calculate average grades, with no cut-off grades or overlimit exclusions applied. These averages were calculated per target area using the full dataset of received results.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams are included in the body of the document.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of results.	Information can be reviewed from the ASX release below: • Information can be reviewed from the ASX release below: • High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 • RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling • Lithium Project, Namibia 16 November 2022 • ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 • MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Information can be reviewed from the ASX release below: Drilling Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling Lithium Project, Namibia 16 November 2022

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling).	ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALSVISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024 Project wide soil geochemical sample programmes across the "Corridor of Interest" with an aim to delineate further anomalous areas (targeting buried / blind pegmatites) Detailed mapping and rock chip sampling of new targets on EPL 7345 EPL 7345 Phase 2 trenching program Further RC drilling

