

ASX ANNOUNCEMENT

8 May 2025

MORE SIGNIFICANT GOLD RESULTS FROM INDOMITABLE CAMP AT SANDSTONE

HIGHLIGHTS

- Brightstar has received further results from Reverse Circulation (RC) drilling programs targeting extensional and infill resource drilling at the Indomitable East and Cork Tree Well deposits, located respectively within the 1.5Moz @ 1.5g/t Au Sandstone Hub, and the 0.9Moz @ 1.8g/t Au Laverton Hub.
- The drilling programs were completed concurrently with Brightstar's operational and development activities underway which include:
 - Current mining operations at the underground Second Fortune and Fish Mines in Laverton, with the next processing campaign under the Ore Purchase Agreement to occur in May
 - The imminent completion of the Definitive Feasibility Study on our Laverton and Menzies Gold Projects to underpin a material, near-term increase to our gold production profile
- **Drilling pace to increase materially** with an additional three rigs, including an additional RC rig, a surface diamond drill rig and an underground diamond rig mobilising to site in the coming weeks for **extensional drilling** across Menzies, Laverton and Sandstone Hubs.
- Assay results from the **Indomitable East deposit** at Sandstone include:
 - o INRC25012:
 - 14m @ 2.46 g/t Au from 34m, including 2m @ 9.29 g/t Au from 34m
 - o INRC25023:
 - **25m @ 1.67 g/t Au from 90m**, including 4m @ 5.93 g/t Au from 108m
 - o INRC25010:
 - 7m @ 2.76 g/t Au from 6m, including 1m @ 9.58 g/t Au from 6m
 - o INRC25025:
 - 4m @ 4.96 g/t Au from 69m, including 1m @ 8.20 g/t Au from 71m
 - o INRC25029:
 - 3m @ 6.50 g/t Au from 118m, including 1m @ 13.5 g/t Au from 118m
 - o INRC25039:
 - 12m @ 2.14 g/t Au from 78m
 - o INRC25022:
 - 7m @ 3.42 g/t Au from 1m

- Results from Indomitable East highlight that mineralisation remains open along strike and at depth, providing opportunity for future resource growth and targeted deeper drilling
- Assay results from the **Cork Tree Well deposit** in Laverton include:
 - CTRC25008A:
 - 3m @ 4.53 g/t Au from 80m
 - 4m @ 7.84 g/t Au from 101m, including 1m @ 14.7 g/t Au from 103m
 - o CTRC25010:
 - 6m @ 4.37 g/t Au from 92m, including 2m @ 8.34 g/t Au from 93m
 - 4m @ 2.59 g/t Au from 109m, including 1m @ 7.30 g/t Au from 110m
 - o CTRC25028:
 - 5m @ 2.64 g/t Au from 114m
- Assay results within the optimised pit shells reinforce Brightstar's confidence in the geological models and support the Company advancing development studies

Brightstar Resources Limited (ASX: BTR) (**Brightstar**) is pleased to announce results from a further ~7,320m of RC drilling programs completed at the Indomitable East deposit, located within Brightstar's Sandstone Hub, which hosts a current Mineral Resource Estimate (**MRE**) of **1.5Moz @ 1.5g/t Au**, and the Cork Tree Well deposit, located within the Laverton Hub, which hosts a current MRE of **862koz @ 1.8g/t Au**.

The Indomitable East deposit forms part of the Indomitable Camp, which has a total MRE of **8.1Mt at 0.9g/t Au for 288koz Au.** The RC drilling program aimed to infill the drilling inside the conceptual pit shell (optimised at a conservative gold price of \$2,500 AUD/oz), in order to upgrade the MRE classification to Indicated status to support being assessed for future mining operations under the Pre-Feasibility Study currently underway. Several drill holes in this program also targeted extensions to the deposit along strike.

The **Cork Tree Well deposit** has a total resource of **6.5Mt at 1.4g/t Au for 303koz**. The RC drill program aimed to infill the drilling inside a portion of the conceptual pit shell (optimised at a gold price of \$2,750 AUD/oz), ensuring sufficient drill spacing for future MRE updates to support Indicated resource classification and de-risk future mining operations.

Brightstar's fully funded +130,000m CY25 drilling program continues, with the RC rig currently drilling at the Musketeer deposit within the Indomitable Camp in Sandstone. Additional rigs will be deployed to site shortly, with drilling to re-commence at Yunndaga (Menzies Hub) and underground drilling at Fish and Second Fortune (Laverton Hub) for mine life extensions at depth.

In April, a second RC rig completed a \sim 6,000m program at the Yunndaga deposit, with results to be reported once received and analysed.

Brightstar's Managing Director, Alex Rovira, commented:

"On-going drilling results from Sandstone continue to illustrate excellent continuity with our infill drilling programs focused on drilling within A\$2,500/oz optimised pit shells. The consistency of the mineralisation bodes well for our current mining studies and expected eventual development, with the Indomitable East deposit still open at depth and along strike which will be drill tested to support Mineral Resource growth.

Drilling located north of the historically mined Cork Tree Well deposit and within our 303koz @ 1.4g/t Au Mineral Resource has improved our geological understanding and interpretation of the mineralised zones and intersected high-grade gold within the optimised pit shell. This drilling was completed to de-risk future mining operations on this part of the Cork Tree Well system.

Pleasingly, we are mobilising an additional three drilling rigs to our project areas in the coming weeks to increase the pace of our exploration activities. This includes continued infill and extensional drilling at Menzies and at our operating Second Fortune and Fish underground mines to support mine life extensions.

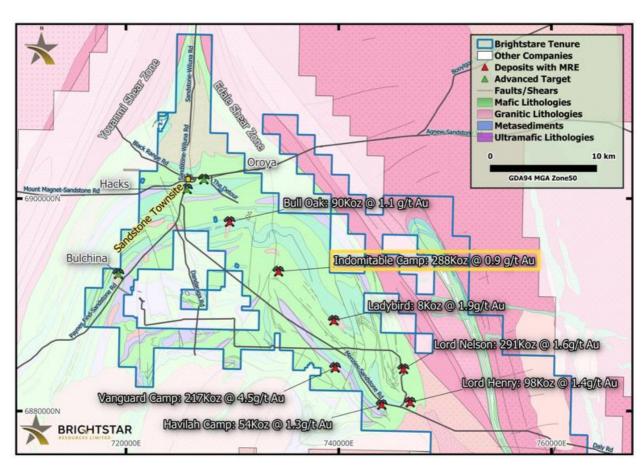


Figure 1- Location of Indomitable Camp within Brightstar's Sandstone Gold Project

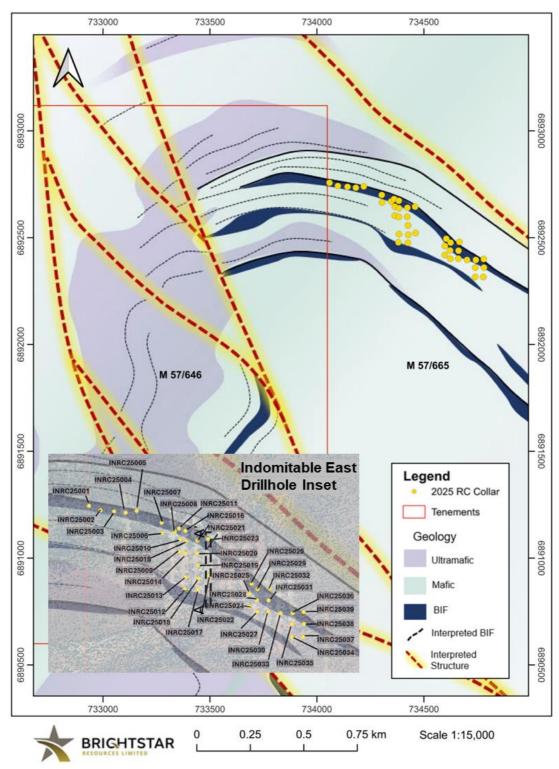


Figure 2 – Plan view map of Indomitable East drill collar locations

TECHNICAL DISCUSSION

Indomitable East

The gold mineralisation at Indomitable East is hosted within a north-northwest to south-southeast trending sequence of jaspilitic banded iron formation (BIF) intercalated with deeply weathered ultramafic rocks. The BIF outcrops at surface in the area and dips steeply to the north. Mineralisation is typically characterised by a visible zone of pyrite+/-quartz veining associated with the band iron formation units and appears to increase in tenor in proximity to two interpreted cross cutting structures.

The current program of **thirty-nine drill holes for 3,390m** was designed to target extensions to mineralisation along strike and infill mineralisation within a portion of the current Mineral Resource, ensuring sufficient drill spacing for future MRE updates to support Indicated resource classification.

Significant results from the current RC drilling program include;

- **25m @ 1.67g/t Au** from 90m, including **4m @ 5.93g/t Au** from 108m in INRC25023, highlighting the high-grade component to mineralisation at depth
- **3m** @ **6.50g/t Au** from 118m, including **1m** @ **13.5g/t Au** from 118m in INRC25029, highlighting the high-grade component to mineralisation at depth
- 14m @ 2.46g/t Au from 34m, including 2m @ 9.29g/t Au from 34m in INRC25012, with mineralisation open up-dip
- **7m** @ **3.42g/t Au** from 1m in INRC25022, drilled up-dip of mineralisation, and not within current block model and resource
- **12m @ 2.14 g/t Au** from 78m in INRC25039, drilled along strike to the east, outside the current mineral resource
- 7m @ 2.76g/t Au from 6m, including 1m @ 9.58 g/t Au from 6m in INRC25010
- 4m @ 4.96 g/t Au from 69m, including 1m @ 8.20 g/t Au from 71m in INRC25025

INRC25001 and INRC25039, drilled at the western and eastern end of the deposit have confirmed that mineralisation remains open along strike and that there is opportunity to further grow the current mineral resource with additional drilling.

Significant gold mineralisation intersected at depth in INRC25023, INRC25029 and previous drilling suggests a high-grade component continues at depth across multiple zones below the conceptual pit shell optimised at \$2,500AUD/oz. As part of the PFS, Brightstar is undertaking re-optimisations of the deposits at Sandstone to assess the potential for economic pit shells at higher gold prices.

These high-grade zones are priority areas for future targeted deeper RC drilling.

Significant results are included in Table 1, and refer to Figure 3 for results for INRC25022 and INRC25023.

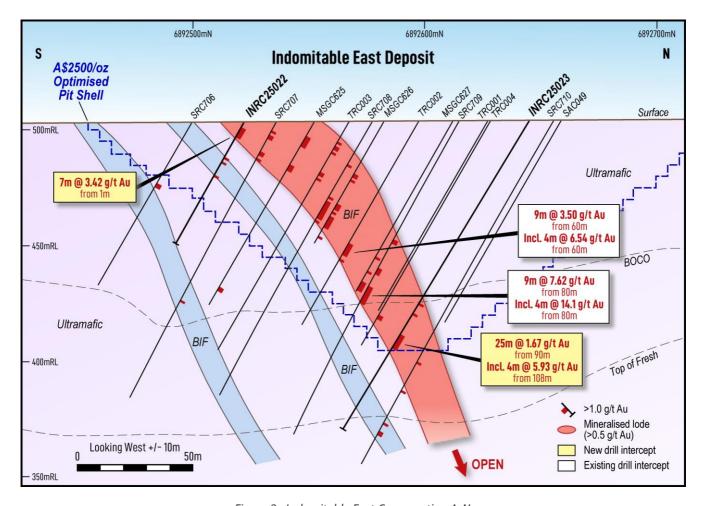


Figure 3– Indomitable East Cross-section A-A'.

Cork Tree Well

The Cork Tree Well deposit, within the Duketon Greenstone Belt north of Laverton, lies along the western limb of the Erlistoun synclinal structure.

Mineralisation at the Cork Tree Well mine is contained within interflow cherts displaying preferential brittle deformation and less-silicified sediments displaying preferential ductile deformation which contain sulphide alteration/mineralisation. Where sedimentary units host gold mineralisation, late-stage porphyry intrusions have been observed.

The mineralisation north of the historical open pits at Delta (Cork Tree Well North) is associated with a sheared quartz metadolerite within a talc chlorite schist host. Gold is associated with brecciated quartz veining and other deformational features across multiple lithologies.

The current RC drilling program at Delta included a total of **thirty-five drill holes for 3,930m**, was designed to infill mineralisation within a portion of the current mineral resource, ensuring sufficient drill spacing for future MRE updates to support Indicated resource classification and de-risk future mining operations.

Significant results from the current drilling program include;

- 3m @ 4.53g/t Au from 80m, and
- 4m @ 7.84g/t Au from 101m, including 1m @ 14.7 g/t Au from 103m in CTRC25008A
- 6m @ 4.37g/t Au from 92m, including 2m @ 8.34 g/t Au from 93m, and
- 4m @ 2.59g/t Au from 109m, including 1m @ 7.30 g/t Au from 110m in CTRC25010
- 5m @ 2.64g/t Au from 114m in CTRC25028
- 7m @ 1.82g/t Au from 80m in CTRC25029
- 7m @ 1.77g/t Au from 81m in CTRC25007
- 1m @ 8.71g/t Au from 121m in CTRC25019

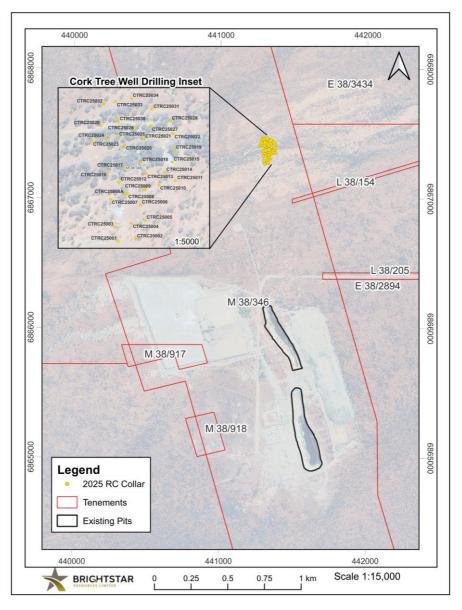


Figure 4– Plan view map of Cork Tree Well drill collar locations

Table 1 - Significant Intercepts (>1.0g/t Au) for the Indomitable East RC drilling, +10 gram-metre intercepts highlighted.

		From	То	Drilled	Au		Gram-
Hole ID		(m)	(m)	Interval (m)	(g/t)	Interval	metres
INRC25001		24	28	4	1.22	4m @ 1.22g/t from 24m	4.87
INRC25001	including	26	27	1	2.71	1m @ 2.71g/t from 44m	2.71
INRC25002		44	45	1	1.21	1m @ 1.21g/t from 44m	1.21
INRC25003		29	30	1	1.05	1m @ 1.05g/t from 29m	1.05
INRC25004						NSI	
INRC25005		72	73	1	1.74	1m @ 1.74g/t from 72m	1.74
INRC25006		12	14	2	1.44	2m @ 1.44g/t from 12m	2.87
INRC25007		46	57	11	1.21	11m @ 1.21g/t from 46m	13.4
INRC25007	including	52	53	1	3.44	1m @ 3.44g/t from 52m	3.44
INRC25007		70	71	1	1.30	1m @ 1.30g/t from 70m	1.30
INRC25008						NSI	
INRC25009		52	56	4	1.40	4m @ 1.40g/t from 52m	5.60
INRC25010		6	13	7	2.76	7m @ 2.76g/t from 6m	19.3
INRC25010	including	6	7	1	9.58	1m @ 9.58g/t from 6m	9.6
INRC25010		44	48	4	1.84	4m @ 1.84g/t from 44m	7.36
INRC25010		90	93	3	1.75	3m @ 1.75g/t from 90m	5.26
INRC25010		90	91	1	4.16	1m @ 4.16g/t from 90m	4.16
INRC25011		60	65	5	1.10	5m @ 1.10g/t from 60m	5.49
INRC25012		19	21	2	3.05	2m @ 3.05g/t from 19m	6.09
INRC25012	including	20	21	1	5.14	1m @ 5.14g/t from 20m	5.14
INRC25012		24	30	6	1.01	6m @ 1.01g/t from 24m	6.03
INRC25012	including	24	25	1	3.00	1m @ 3.00g/t from 24m	3.00
INRC25012		34	48	14	2.46	14m @ 2.46g/t from 34m	34.4
INRC25012	including	34	36	2	9.29	2m @ 9.29g/t from 34m	18.6
INRC25012	and including	39	42	3	3.03	3m @ 3.03g/t from 39m	9.09
INRC25013		13	19	6	1.16	6m @ 1.16g/t from 13m	6.94
INRC25013	including	16	17	1	2.22	1m @ 2.22g/t from 16m	2.22
INRC25013		84	87	3	1.05	3m @ 1.05g/t from 84m	3.14
INRC25013	including	85	86	1	1.81	1m @ 1.81g/t from 85m	1.81
INRC25014		35	37	2	1.02	2m @ 1.02g/t from 35m	2.04
INRC25014		41	43	2	1.15	2m @ 1.15g/t from 41m	2.29
INRC25015		15	18	3	2.76	3m @ 2.76g/t from 15m	8.28
INRC25015	including	15	16	1	5.50	1m @ 5.50g/t from 15m	5.50

		From	То	Drilled	Au		Gram-
Hole ID		(m)	(m)	Interval (m)	(g/t)	Interval	metres
INRC25015		24	25	1	1.16	1m @ 1.16g/t from 24m	1.16
INRC25015		44	47	3	2.06	3m @ 2.06g/t from 44m	6.18
INRC25015	including	45	46	1	3.57	1m @ 3.57g/t from 45m	3.57
INRC25015		90	95	5	2.64	5m @ 2.64g/t from 90m	13.2
INRC25015		128	131	3	1.88	3m @ 1.88g/t from 128m	5.63
INRC25015	including	128	129	1	3.54	1m @ 3.54g/t from 128m	3.54
INRC25016		59	64	5	1.35	5m @ 1.35g/t from 59m	6.73
INRC25016		69	70	1	1.10	1m @ 1.10g/t from 69m	1.10
INRC25016		88	89	1	1.12	1m @ 1.12g/t from 88m	1.12
INRC25017						NSI	
INRC25018		24	32	8	1.26	8m @ 1.26g/t from 24m	10.0
INRC25018		34	36	2	1.18	2m @ 1.18g/t from 34m	2.35
INRC25018		41	42	1	1.03	1m @ 1.03g/t from 41m	1.03
INRC25019		26	38	12	1.03	12m @ 1.03g/t from 26m	12.3
INRC25019	including	26	27	1	2.26	1m @ 2.26g/t from 26m	2.26
INRC25019		41	42	1	1.95	1m @ 1.95g/t from 41m	1.95
INRC25019		46	53	7	1.83	7m @ 1.83g/t from 46m	12.8
INRC25019	including	51	52	1	7.04	1m @ 7.04g/t from 51m	7.04
INRC25020		37	38	1	3.11	1m @ 3.11g/t from 37m	3.11
INRC25020		57	58	1	1.31	1m @ 1.31g/t from 57m	1.31
INRC25020		62	65	3	1.54	3m @ 1.54g/t from 62m	4.62
INRC25020		72	73	1	1.81	1m @ 1.81g/t from 72m	1.81
INRC25021		26	28	2	1.77	2m @ 1.77g/t from 26m	3.53
INRC25021		92	93	1	1.09	1m @ 1.09g/t from 92m	1.09
INRC25021		115	119	4	1.39	4m @ 1.39g/t from 115m	5.55
INRC25022		1	8	7	3.42	7m @ 3.42g/t from 1m	23.9
INRC25022	including	2	6	4	4.90	4m @ 4.90g/t from 2m	19.6
INRC25022		17	18	1	1.10	1m @ 1.10g/t from 17m	1.10
INRC25022		19	20	1	1.33	1m @ 1.33g/t from 19m	1.33
INRC25022		26	27	1	1.77	1m @ 1.77g/t from 26m	1.77
INRC25023		90	93	3	1.23	3m @ 1.23g/t from 90m	3.69
INRC25023		90	115	25	1.67	25m @ 1.67g/t from 90m	41.8
INRC25023	including	108	112	4	5.93	4m @ 5.93g/t from 108m	23.7
INRC25023	and including	108	110	2	10.40	2m @ 10.4g/t from 108m	20.8
INRC25023		133	134	1	1.03	1m @ 1.03g/t from 133m	1.03

		From	То	Drilled	Au		
Hole ID		(m)	(m)	Interval	(g/t)	Interval	Gram-
				(m)			metres
INRC25024		16	18	2	2.35	2m @ 2.35g/t from 16m	4.69
INRC25025		25	27	2	1.11	2m @ 1.11g/t from 25m	2.22
INRC25025		37	38	1	1.13	1m @ 1.13g/t from 37m	1.13
INRC25025		58	62	4	1.73	4m @ 1.73g/t from 58m	6.92
INRC25025		69	73	4	4.96	4m @ 4.96g/t from 69m	19.8
INRC25025	including	71	72	1	8.20	1m @ 8.20g/t from 71m	8.20
INRC25026		50	52	2	1.23	2m @ 1.23g/t from 50m	2.45
INRC25026		70	74	4	1.84	4m @ 1.84g/t from 70m	7.34
INRC25026	including	72	73	1	5.47	1m @ 5.47g/t from 72m	5.47
INRC25027						NSI	
INRC25028		5	11	6	2.72	6m @ 2.72g/t from 5m	16.3
INRC25028	including	6	7	1	6.34	1m @ 6.34g/t from 6m	6.34
INRC25028	and including	10	11	1	6.10	1m @ 6.10g/t from 10m	6.10
INRC25028		35	36	1	1.51	1m @ 1.51g/t from 35m	1.51
INRC25029		42	45	3	1.09	3m @ 1.09g/t from 42m	3.27
INRC25029		46	47	1	1.02	1m @ 1.02g/t from 46m	1.02
INRC25029		53	62	9	1.74	9m @ 1.74g/t from 53m	15.6
INRC25029	including	59	60	1	3.06	1m @3.06g/t from 59m	3.06
INRC25029		81	84	3	1.97	3m @ 1.97g/t from 81m	5.92
INRC25029		118	121	3	6.50	3m @ 6.50g/t from 118m	19.5
INRC25029	including	118	119	1	13.47	1m @ 13.5g/t from 118m	13.5
INRC25030						NSI	
INRC25031		13	14	1	1.06	1m @ 1.06g/t from 13m	1.06
INRC25031		15	16	1	1.25	1m @ 1.25g/t from 15m	1.25
INRC25031		49	51	2	1.05	2m @ 1.05g/t from 49m	2.09
INRC25032		81	88	7	1.23	7m @ 1.23g/t from 81m	8.64
INRC25032		89	90	1	1.27	1m @ 1.27g/t from 89m	1.27
INRC25032		106	107	1	1.36	1m @ 1.36g/t from 106m	1.36
INRC25033		33	34	1	1.07	1m @ 1.07g/t from 33m	1.07
INRC25034						NSI	
INRC25035		8	10	2	1.60	2m @ 1.60g/t from 8m	3.20
INRC25035		56	60	4	1.48	4m @ 1.48g/t from 56m	5.90
INRC25036		9	11	2	1.12	2m @ 1.12g/t from 9m	2.24
INRC25036		44	50	6	1.84	6m @ 1.84g/t from 44m	11.0
INRC25036	including	46	47	1	3.91	1m @ 3.91g/t from 46m	3.9

Hole ID		From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
INRC25036		52	53	1	1.08	1m @ 1.08g/t from 52m	1.08
INRC25036		54	56	2	1.06	2m @ 1.06g/t from 54m	2.12
INRC25037						NSI	
INRC25038						NSI	
INRC25039		78	90	12	2.14	12m @ 2.14g/t from 78m	25.7
INRC25039	including	79	83	4	3.16	4m @ 3.16g/t from 79m	12.6
INRC25039	and including	87	89	2	3.37	2m @ 3.37g/t from 87m	6.74

Table 2 – Significant Intercepts (>1.0g/t Au) for the Cork Tree Well RC drilling, +10 gram-metre intercepts highlighted.

Hole ID		From (m)	To (m)	Drilled Interval	Au (g/t)	Interval	Gram-
				(m)			metres
CTRC25001						NSI	
CTRC25002						NSI	
CTRC25003						NSI	
CTRC25004						NSI	
CTRC25005		99	102	3	2.13	3m @ 2.13g/t from 99m	6.39
CTRC25006		100	103	3	2.36	3m @ 2.36g/t from 100m	7.08
CTRC25007		81	88	7	1.77	7m @ 1.77g/t from 81m	12.4
CTRC25007	including	87	88	1	5.54	1m @ 5.54g/t from 87m	5.54
CTRC25008						Hole Not Sampled (recollared)	
CTRC25008A		69	70	1	2.28	1m @ 2.28g/t from 69m	2.28
CTRC25008A		80	83	3	4.53	3m @ 4.53g/t from 80m	13.6
CTRC25008A	including	80	81	1	9.39	1m @ 9.39 from 80m	9.39
CTRC25008A		101	105	4	7.84	4m @ 7.84g/t from 101m	31.4
CTRC25008A	including	103	104	1	14.70	1m @ 14.7g/t from 103m	14.7
CTRC25009		108	109	1	1.04	1m @ 1.04g/t from 108m	1.04
CTRC25010		92	98	6	4.37	6m @ 4.37g/t from 92m	26.2
CTRC25010	including	93	95	2	8.34	2m @ 8.34 from 93m	16.7
CTRC25010		109	113	4	2.59	4m @ 2.59g/t from 109m	10.4
CTRC25010	including	110	111	1	7.30	1m @ 7.30 from 110m	7.30
CTRC25011						NSI	
CTRC25012		56	57	1	1.65	1m @ 1.65g/t from 56m	1.65

Hole ID	From (m)	To (m)	Drilled Interval	Au (g/t)	Interval	Gram-
noie iD	(111)	(111)	(m)	(8/1)	interval	metres
CTRC25013	76	77	1	2.19	1m @ 2.19g/t from 76m	2.19
CTRC25013	83	86	3	1.31	3m @ 1.31g/t from 83m	3.93
CTRC25014	106	108	2	1.57	2m @ 1.57g/t from 106m	3.14
CTRC25015	108	111	3	2.61	3m @ 2.61g/t from 108m	7.83
CTRC25015	120	126	6	0.91	6m @ 0.91g/t from 120m	5.46
CTRC25016	69	70	1	1.18	1m @ 1.18g/t from 69m	1.18
CTRC25016	91	94	3	1.42	3m @ 1.42g/t from 91m	4.26
CTRC25017	62	63	1	1.84	1m @ 1.84g/t from 62m	1.84
CTRC25017	86	87	1	1.02	1m @ 1.02g/t from 86m	1.02
CTRC25018	67	72	5	1.18	5m @ 1.18g/t from 67m	5.90
CTRC25018	78	81	3	1.57	3m @ 1.57g/t from 78m	4.71
CTRC25018	93	94	1	1.22	1m @ 1.22g/t from 93m	1.22
CTRC25019	121	122	1	8.71	1m @ 8.71 from 121m	8.71
CTRC25020	67	71	4	1.70	4m @ 1.70g/t from 67m	6.80
CTRC25020	84	85	1	1.94	1m @ 1.94g/t from 84m	1.94
CTRC25020	96	97	1	1.99	1m @ 1.99g/t from 96m	1.99
CTRC25021	67	71	4	1.45	4m @ 1.45g/t from 67m	5.80
CTRC25021	121	122	1	1.01	1m @ 1.01g/t from 121m	1.01
CTRC25022					NSI	
CTRC25023	43	46	3	1.55	3m @ 1.55g/t from 43m	4.65
CTRC25024	55	56	1	1.06	1m @ 1.06g/t from 55m	1.06
CTRC25024	74	75	1	1.13	1m @ 1.13g/t from 74m	1.13
CTRC25025	77	81	4	0.74	4m @ 0.74g/t from 77m	2.96
CTRC25026	60	62	2	4.19	2m @ 4.19g/t from 60m	8.38
CTRC25026	73	79	6	1.40	6m @ 1.40g/t from 73m	8.40
CTRC25027	84	85	1	2.43	1m @ 2.43g/t from 84m	2.43
CTRC25028	114	119	5	2.64	5m @ 2.64g/t from 114m	13.2
CTRC25029	16	20	4	2.03	4m @ 2.03g/t from 16m	8.12
CTRC25029	35	37	2	3.11	2m @ 3.11g/t from 35m	6.22
CTRC25029	80	87	7	1.82	7m @ 1.82g/t from 80m	12.7
CTRC25030	71	73	2	1.20	2m @ 1.20g/t from 71m	2.40
CTRC25030	93	94	1	4.97	1m @ 4.97g/t from 93m	4.97
CTRC25031	78	80	2	1.72	2m @ 1.72g/t from 78m	3.44
CTRC25032					NSI	
CTRC25033	65	66	1	1.28	1m @ 1.28g/t from 65m	1.28

Hole ID	From (m)	To (m)	Drilled Interval (m)	Au (g/t)	Interval	Gram- metres
CTRC25033	70	71	1	1.16	1m @ 1.16g/t from 70m	1.16
CTRC25033	74	75	1	1.02	1m @ 1.02g/t from 74m	1.02
CTRC25034	67	69	2	1.61	2m @ 1.61g/t from 67m	3.22
CTRC25034	76	77	3	1.07	3m @ 1.07g/t from 76m	3.21
CTRC25034	88	89	1	1.04	1m @ 1.04g/t from 88m	1.04
CTRC25034	92	93	1	1.13	1m @ 1.13g/t from 92m	1.13

Table 3 – Indomitable East 2025 Reverse Circulation collar information. Holes located on tenements M57/665. Grid coordinates shown in MGA94 Zone 50.

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
LNRC25011	RC	745939	6883912	472	89	-51	162	This ASX announcement
LNRC25012	RC	745921	6883799	473	92	-62	252	This ASX announcement
LNRC25013	RC	745890	6883740	474	89	-56	282	This ASX announcement
LNRC25014	RC	745989	6883723	472	87	-50	240	This ASX announcement
INRC25001	RC	734059	6892757	508	180	-61	60	This ASX announcement
INRC25002	RC	734098	6892742	508	180	-59	60	This ASX announcement
INRC25003	RC	734143	6892738	508	179	-61	66	This ASX announcement
INRC25004	RC	734182	6892734	508	180	-60	84	This ASX announcement
INRC25005	RC	734219	6892740	509	182	-60	102	This ASX announcement
INRC25006	RC	734305	6892665	507	180	-60	60	This ASX announcement
INRC25007	RC	734303	6892700	508	180	-60	84	This ASX announcement
INRC25008	RC	734347	6892670	507	180	-60	84	This ASX announcement
INRC25009	RC	734364	6892603	505	179	-60	102	This ASX announcement
INRC25010	RC	734365	6892645	506	180	-60	120	This ASX announcement

INRC25011	RC	734361	6892681	506	181	-61	108	This ASX announcement
INRC25012	RC	734381	6892478	503	178	-60	66	This ASX announcement
INRC25013	RC	734384	6892517	504	181	-60	108	This ASX announcement
INRC25014	RC	734383	6892597	505	180	-59	108	This ASX announcement
INRC25015	RC	734384	6892638	506	177	-60	132	This ASX announcement
INRC25016	RC	734383	6892673	506	181	-61	102	This ASX announcement
INRC25017	RC	734425	6892476	503	181	-60	42	This ASX announcement
INRC25018	RC	734427	6892513	503	181	-60	60	This ASX announcement
INRC25019	RC	734426	6892557	504	181	-61	90	This ASX announcement
INRC25020	RC	734422	6892598	505	181	-60	102	This ASX announcement
INRC25021	RC	734423	6892640	505	182	-60	144	This ASX announcement
INRC25022	RC	734461	6892522	503	181	-61	60	This ASX announcement
INRC25023	RC	734459	6892645	504	180	-60	156	This ASX announcement
INRC25024	RC	734598	6892419	508	181	-60	54	This ASX announcement
INRC25025	RC	734598	6892461	508	180	-60	102	This ASX announcement
INRC25026	RC	734605	6892495	508	180	-61	120	This ASX announcement
INRC25027	RC	734624	6892401	503	180	-60	42	This ASX announcement
INRC25028	RC	734623	6892440	503	181	-60	84	This ASX announcement
INRC25029	RC	734625	6892477	504	181	-61	132	This ASX announcement
INRC25030	RC	734661	6892402	505	179	-60	60	This ASX announcement
INRC25031	RC	734662	6892439	505	181	-60	84	This ASX announcement
INRC25032	RC	734666	6892480	504	180	-60	114	This ASX announcement
INRC25033	RC	734702	6892396	504	181	-61	54	This ASX announcement
INRC25034	RC	734740	6892316	504	182	-60	42	This ASX announcement
INRC25035	RC	734740	6892360	504	182	-60	84	This ASX announcement

INRC25036	RC	734743	6892396	505	182	-60	90	This ASX announcement
INRC25037	RC	734778	6892316	504	182	-60	42	This ASX announcement
INRC25038	RC	734781	6892360	504	180	-60	84	This ASX announcement
INRC25039	RC	734780	6892400	505	180	-61	102	This ASX announcement

Table 4 – Cork Tree Well 2025 Reverse Circulation collar information. Holes located on tenements M38/346. Grid coordinates shown in MGA94 Zone 51.

Hole ID	Hole Type / EOH drill method	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)	Status
CTRC25001	RC	441302	6867272	473	254	-60	66	This ASX announcement
CTRC25002	RC	441323	6867275	473	255	-60	90	This ASX announcement
CTRC25003	RC	441298	6867290	473	255	-61	60	This ASX announcement
CTRC25004	RC	441318	6867295	473	254	-60	90	This ASX announcement
CTRC25005	RC	441334	6867300	473	254	-60	114	This ASX announcement
CTRC25006	RC	441328	6867320	473	255	-61	114	This ASX announcement
CTRC25007	RC	441293	6867328	472	255	-61	90	This ASX announcement
CTRC25008	RC	441312	6867335	473	254	-60	120	This ASX announcement
CTRC25008A	RC	441310	6867334	473	254	-61	126	This ASX announcement
CTRC25009	RC	441333	6867342	473	255	-61	114	This ASX announcement
CTRC25010	RC	441350	6867347	473	255	-61	132	This ASX announcement
CTRC25011	RC	441370	6867353	473	255	-60	150	This ASX announcement
CTRC25012	RC	441303	6867351	473	260	-61	114	This ASX announcement
CTRC25013	RC	441335	6867362	473	254	-61	114	This ASX announcement
CTRC25014	RC	441357	6867364	473	255	-61	138	This ASX announcement
CTRC25015	RC	441366	6867378	473	251	-63	150	This ASX announcement

CTRC25016	RC	441289	6867365	473	266	-65	96	This ASX announcement
CTRC25017	RC	441309	6867370	473	266	-61	108	This ASX announcement
CTRC25018	RC	441329	6867377	473	260	-62	126	This ASX announcement
CTRC25019	RC	441368	6867394	473	255	-58	150	This ASX announcement
CTRC25020	RC	441309	6867400	473	252	-61	120	This ASX announcement
CTRC25021	RC	441332	6867408	473	252	-61	138	This ASX announcement
CTRC25022	RC	441367	6867416	473	253	-62	162	This ASX announcement
CTRC25023	RC	441270	6867405	472	267	-65	60	This ASX announcement
CTRC25024	RC	441287	6867409	472	264	-60	84	This ASX announcement
CTRC25025	RC	441301	6867411	473	254	-61	102	This ASX announcement
CTRC25026	RC	441322	6867424	472	256	-61	132	This ASX announcement
CTRC25027	RC	441340	6867426	473	254	-60	132	This ASX announcement
CTRC25028	RC	441363	6867433	473	255	-61	156	This ASX announcement
CTRC25029	RC	441281	6867426	472	263	-60	102	This ASX announcement
CTRC25030	RC	441302	6867432	472	263	-59	96	This ASX announcement
CTRC25031	RC	441341	6867448	473	254	-60	120	This ASX announcement
CTRC25032	RC	441284	6867455	473	257	-59	60	This ASX announcement
CTRC25033	RC	441298	6867458	473	256	-61	90	This ASX announcement
CTRC25034	RC	441317	6867463	473	254	-61	114	This ASX announcement

Next Steps

Drilling is ongoing at the Sandstone Hub with RC programs currently underway at the Indomitable Camp. Brightstar will provide updates from this drilling as they occur.

Assays from the Yunndaga infill drilling program are currently pending.

The pace of drilling is expected to increase materially with an additional three rigs, including an additional RC rig, a surface diamond drill rig and an underground diamond rig mobilising to site in the coming weeks for **extensional drilling** across Menzies, Laverton and Sandstone Hubs.

This ASX announcement has been approved by the Managing Director on behalf of the board of Brightstar.

FOR FURTHER INFORMATION, PLEASE CONTACT:

Alex Rovira

Managing Director

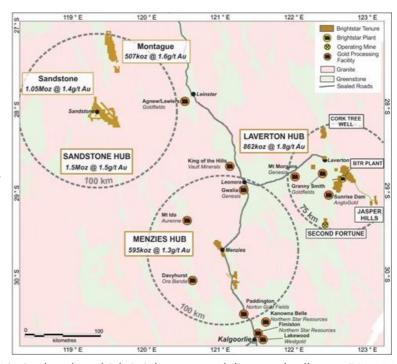
Email: alex@brightstarresources.com.au

Investor Relations

Lucas Robinson

Phone: +61 408 228 889

Email: lucas@corporatestorytime.com



ABOUT BRIGHTSTAR RESOURCES

Brightstar Resources Limited is a Perthbased gold development company listed on the Australian Securities Exchange (ASX: BTR).

The Company hosts a portfolio of highquality assets hosted in the prolific Goldfields and Murchison regions of Western Australia, which are ideally located proximal to significant regional infrastructure and suppliers.

The Company currently operates two underground mines at its Laverton operations - Second Fortune and Fish, with ore from these mines currently being processed at Mt Morgans under an Ore

Purchase Agreement with Genesis Minerals Limited under which Brightstar can deliver and sell up to 500,000 tonnes of ore from its Laverton operations over the course of CY25 and Q1 CY26. Brightstar is due to deliver a DFS on a wider development scenario at its Laverton and Menzies hubs in 1H CY25.

In August 2024, Brightstar announced the consolidation of the Sandstone district with the integration of the Sandstone and Montague East Gold Project into Brightstar resulting in a total Group JORC (2012) Mineral Resource of **3.0Moz Au at 1.5g/t Au.** Brightstar is now advancing a systematic exploration and study program on Sandstone targeting the delivery of a PFS in 1H CY26.

Brightstar Consolidated JORC Mineral Resources

Location		Me	easured		In	dicated			Inferred			Total	
	Au Cut-off (g/t)	Kt	g/t Au	Ko z	Kt	g/t Au	Koz	Kt	g/t Au	Koz	Kt	g/t Au	Koz
Alpha	0.5	623	1.6	33	374	2.1	25	455	3.3	48	1,452	2.3	106
Beta	0.5	345	1.7	19	576	1.6	29	961	1.7	54	1,882	1.7	102
Cork Tree Well	0.5	-	-	-	3,036	1.6	157	3,501	1.3	146	6,537	1.4	303
Lord Byron	0.5	453	1.8	26	1,141	1.6	58	2,929	1.7	160	4,523	1.7	244
Fish	0.6	26	7.7	6	149	5.8	28	51	4.3	7	226	5.7	41
Gilt Key	0.5	-	-	-	15	2.2	1	153	1.3	6	168	1.3	8
Second Fortune (UG)	2.5	17	16.9	9	78	8.2	21	71	12.3	28	165	10.9	58
Total – Laverton		1,464	2.0	93	5,369	1.8	319	8,121	1.7	449	14,953	1.8	862
Lady Shenton System	0.5	-	-	-	2,770	1.3	119	4,200	1.3	171	6,970	1.2	287
Yunndaga	0.5	-	-	-	1,270	1.3	53	2,050	1.4	90	3,320	1.3	144
Yunndaga (UG)	2.0	-	-	-	-	-	-	110	3.3	12	110	3.3	12
Aspacia	0.5	-	-	-	137	1.7	7	1,238	1.6	62	1,375	1.6	70
Lady Harriet System	0.5	-	-	-	520	1.3	22	590	1.1	21	1,110	1.2	43
Link Zone	0.5	-	-	-	145	1.2	6	470	1.0	16	615	1.1	21
Selkirk	0.5	-	-	-	30	6.3	6	140	1.2	5	170	2.1	12
Lady Irene	0.5	-	-	-	-	-	-	100	1.7	6	100	1.7	6
Total – Menzies		-	-	-	4,872	1.4	214	8,898	1.3	383	13,770	1.3	595
Montague-Boulder	0.6	-	-	-	522	4.0	67	2,556	1.2	96	3,078	1.7	163
Whistler (OP) / Whistler (UG)	0.5 / 2.0	-	-	-	-	-	-	1,700	2.2	120	1,700	2.2	120
Evermore	0.6	-	-	-	-	-	-	1,319	1.6	67	1,319	1.6	67
Achilles Nth / Airport	0.6	-	-	-	221	2.0	14	1,847	1.4	85	2,068	1.5	99
Julias ¹ (Resource)	0.6	-	-	-	1,405	1.4	61	503	1.0	16	1,908	1.3	77
Julias² (Attributable)	0.6	-	-	-							1,431	1.3	58
Total – Montague	(Global)	-	-	-	2,148	2.1	142	7,925	1.5	384	10,073	1.6	526
Total – Montague	(BTR) ^{1,2}	-	-	-	2,148	2.1	142	7,925	1.5	384	9,596	1.6	502
Lord Nelson	0.5	-	-	-	1,500	2.1	100	4,100	1.4	191	5,600	1.6	291
Lord Henry	0.5	-	-	-	1,600	1.5	78	600	1.1	20	2,200	1.4	98
Vanguard Camp	0.5	-	-	-	400	2.0	26	3,400	1.4	191	3,800	1.5	217
Havilah Camp	0.5	-	-	-	-	-	-	1,200	1.3	54	1,200	1.3	54
Indomitable Camp	0.5	-	-	-	800	0.9	23	7,300	0.9	265	8,100	0.9	288
Bull Oak	0.5	-	-	-	-	-	-	2,500	1.1	90	2,500	1.1	90
Ladybird	0.5	-	-	-	-	-	-	100	1.9	8	100	1.9	8
Total – Sandst	one	-	-	-	4,300	1.6	227	19,200	1.3	819	23,500	1.4	1,046
Total – BTR (Attrib	utable)	1,464	2.0	93	16,689	1.7	902	44,144	1.4	2,035	61,819	1.5	3,005

Note some rounding discrepancies may occur.

Pericles, Lady Shenton & Stirling consolidated into Lady Shenton System; Warrior, Lady Harriet & Bellenger consolidated into Lady Harriet System. Julias is located on M57/427, which is owned 75% by Brightstar and 25% by Estuary Resources Pty Ltd.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Brightstar Resources Limited's planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Brightstar believes that its expectations reflected in these forward- looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that further exploration will result in the estimation of a Mineral Resource.

Competent Person Statement - Exploration

The information presented here relating to exploration of the Menzies, Laverton and Sandstone Gold Project areas are based on information compiled by Mr Michael Kammermann, MAIG. Mr Kammermann is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a "Competent Person" as that term is defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012)". Mr Kammermann is a fulltime employee of the Company in the position of Exploration Manager and has provided written consent approving the inclusion of the Exploration Results in the form and context in which they appear.

Competent Person Statement - Mineral Resource Estimates

This Announcement contains references to Brightstar's JORC Mineral Resource estimates, extracted from the ASX announcements titled "Cork Tree Well Resource Upgrade Delivers 1Moz Group MRE" dated 23 June 2023, "Maiden Link Zone Mineral Resource" dated 15 November 2023, "Aspacia deposit records maiden Mineral Resource at the Menzies Gold Project" dated 17 April 2024, "Brightstar Makes Recommended Bid for Linden Gold", dated 25 March 2024, "Brightstar to drive consolidation of Sandstone Gold District" dated 1 August 2024 and "Scheme Booklet Registered by ASIC" dated 14 October 2024.

Brightstar confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the Mineral Resource estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Compliance Statement

With reference to previously reported Exploration Results and Mineral Resources, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

APPENDIX 1: JORC CODE, 2012 EDITION - TABLE 1

SECTION 1 SAMPLING TECHNIQUES AND DATA

(Criteria in this section apply to all succeeding sections)

Note the following tables refer to various drilling campaigns, as summarised below:

Brightstar Resources Ltd: (drilled 2025-) Hole prefix INRC, CTRC
Alto Metals Ltd: (drilled 2016-2024) Hole prefix SRC, SAC
Troy Resources Ltd (drilled 2001-2009) Hole prefix TRC
Western Mining Corporation Limited (WMC) (drilled 1983-1993) Hole prefix MSGC

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual 	 Drilling carried out by Brightstar Resources (BTR) Industry standard RC drilling and sampling protocols for lode and supergene gold deposits have been utilised throughout the BTR campaign. BTR RC holes were sampled using 4m composite spear samples or 1 metre cone-split samples. RC drilling techniques are used to obtain samples of the entire downhole length. RC samples were taken using a 10:1 Sandvik static cone splitter mounted under a polyurethane cyclone to obtain 1m samples. Approximately 2-3kg samples were submitted to the laboratory. Brightstar samples were submitted to Intertek Laboratory in Perth where the samples were analysed by Photon. Sample spoils from selected RC drill holes were placed into green bags for possible future use when required.

commodities or mineralisation types (eg submarine nodules) may warrant Drilling carried out by Alto Metals Ltd (SRC, SAC prefixes) • RC samples were passed directly from the in-line cyclone disclosure of detailed information. through a rig mounted cone splitter. Samples were collected in 1m intervals into bulk plastic bags and 1m calico splits (which were retained for later use). • From the bulk sample, a 4-metre composite sample was collected using a split PVC scoop and then submitted to the laboratory for analysis. • RC 1m splits were submitted to the laboratory if the composite sample assay values are equal to or greater than 0.2g/t Au. • AC samples were collected from the in-line cyclone placed directly onto the ground (bulk sample). • From the bulk samples, a 4m composite sample was collected using a split PVC scoop and then submitted to Intertek Laboratory in Perth for analysis of gold by photon analysis. • Where the 4m composite sample reported >0.1 g/t gold, 1m samples were later collected from the bulk sample using a split PVC scoop and then submitted to Intertek Laboratory in Perth for analysis of gold by photon analysis. Drilling carried out by Troy Resources NL (Troy) 2001-2009 (TRC prefixes) • RC samples were passed directly from the in-line cyclone through a rig mounted multi-tier riffle splitter. • Samples were collected in 1m intervals into bulk plastic bags and 1m 3kg calico bags (which were retained for later use). • From the bulk samples, a 5m composite sample was collected using a split PVC scoop and then submitted to the laboratory for analysis.

Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Where anomalous gold zones were detected, 1m re-split samples were collected at a later date and submitted to the laboratory. Drilling carried out by Western Mining Corporation Limited (WMC) 1983-1993 (MSGC prefixes) Percussion Reverse Circulation (RC) drilling was used to collect samples over 1 m intervals via a cyclone and riffle splitter unless the sample was too damp or puggy in which case the sample was grabbed from throughout the bag. From the bulk 1m RC samples, a sample was collected then submitted to the laboratory for analysis. WMC drill assays were assayed at a WMC laboratory using their own aqua regia style of analysis with a lower detection limit of 0.02 ppm Au. Drilling carried out by BTR BTR RC holes were drilled utilising a 5.5-inch face sampling hammer and surveyed using a Axis Champ true-North-seeking gyroscopic survey tool. Drilling was conducted by Topdrill using a Schramm C685 drill rig with a booster compressor. An Azi aligner was used on all holes drilled from surface (TN14 Gyro Compass true-North-seeking). Drilling carried out by Alto Metals Ltd RC drilling was with a KWL 350 drill rig with an onboard 1100/350 compressor using a sampling hammer of nominal 140mm hole. AC drilling was carried out by Challenge Drilling using a custom built trick mounted air-core drill rig with an on board compressor. Drilling carried out by Troy (2001-2009) Troy's drilling included RAB and RC drilling. Industry Standard RC drilling rigs were utilised
---------------------	---	---

		Drilling carried out by WMC (1983-1993)
		• WMC RC drilling was by roller bit or hammer using a cross over sub.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	

		 Alto AC samples generally had good recovery due to the shallow depth of the drilling and minimal groundwater intersected. The cyclone was routinely cleaned at the end of each rod. Recovery was estimated as a percentage and recorded on field sheets prior to entry into the database. BTR has no quantitative information on Troy or WMC RC sample recovery. WMC noted on the logging sheets where samples were wet. Comments on recovery were also noted on the logging sheets where relevant. There does not appear to be a relationship with sample recovery and grade and there is no indication of sample bias. No relationship between recovery and grade has been identified.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC holes were logged on one metre intervals at the rig by the geologist from drill chips. Logging was recorded directly into LogChief computer software. Detailed geological logging includes the lithology, alteration, veining and mineralisation of the drill chips or core. Logging is both quantitative and qualitative in nature, depending on the feature. 100% of BTR drilling is geologically logged. Alto AC and RC drill chips were sieved from each 1m sample and geologically logged. Washed drill chips from each 1m sample were stored in chip trays and photographed. Geological logging of drill hole intervals was carried out with sufficient detail to meet the requirements of resource estimation.

		 Troy drill holes were logged using detailed geological codes that were correlated with Alto/BTR logging codes. WMC drill logging was reported on log sheets with laboratory assay data typically for each metre. The historical graphical hardcopy logs and other geoscientific records available for the project are of high quality and contain significant detail. The WMC logging was commentary based with no specific geological codes used for events such as top of fresh rock, base of oxidation etc. However, the logging and descriptions are of sufficient quality that the lithologies drilled can be correlated with later logging carried out by Troy, and Alto's geological logging codes.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/secondhalf sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 BTR Drilling RC drilling single 1 metre splits were automatically taken at the time of drilling by a cone splitter attached to the cyclone. For interpreted non-mineralised areas, 4 metre composite samples were collected from the drill rig by spearing each 1m collection bag. The 4 metre composites were submitted for assay. Composite samples returning grade >0.1 g/t Au were resampled as 1m cone-split samples with samples having been collected for upcoming laboratory analyses. For interpreted mineralised areas, the 1 metre splits were bagged on the static cyclone splitter on the RC rig. QAQC samples (blanks and standards) were submitted for all samples at a rate between 1:10 and 1:20 Duplicate samples were taken over selected interpreted mineralised intervals to determine if sampling is representative.

Samples submitted for analysis via Photon assay technique were dried, crushed to nominal 85% passing 2mm, linear split and a nominal 500g sub sample taken. The 500g sample is assayed for gold by Photon Assay along with quality control samples including certified reference materials, blanks and sample duplicates.

 Samples submitted for Fire assays were dried, crushed, and pulverised to nominal 85% passing 75 microns. Homogenised pulp material was then used for a 50g Fire assay analysis.

• Samples volumes were typically 1.0-4.0 kg and are considered to be of suitable size for the style of mineralisation.

Drilling carried out by Alto Metals

Intertek Genalysis (Perth) and MinAnalytical Laboratory
 Services Australia Pty Ltd located in Canning Vale, Western
 Australia, were responsible for sample preparation and
 assaying for drill hole samples and associated check assays.
 Both are certified to NATA in accordance with ISO 17025:2005
 ISO requirements for all related inspection, verification, testing
 and certification activities.

• 3kg 4m composite AC and RC samples were dried and then ground in an LM5 ring mill for 85% passing 75 Microns.

• Subsequently, intervals of 4m composite samples reporting greater than 0.2g/t Au were selected for re-assay, and 1m resplit samples were submitted for 50gm fire assay or the Photon Assay method.

• AC and RC 1m samples were analysed using 50 gm fire assay with AAS finish, or the Photon Assay method.

Drilling carried out by Troy (2001 - 2009)

		 Troy RAB and RC samples were assayed at Analabs Perth by 50g aqua regia digest followed by DIBK extraction Flame Atomic Absorption Spectrometry Drilling carried out by WMC (1983-1993) 1m samples were collected via a cyclone and riffle splitter unless the sample was too damp or puggy in which case the sample was grabbed from throughout the bag. No composite sampling was undertaken. WMC drill assays were assayed at a WMC laboratory using their own aqua regia style of analysis.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 BTR Drilling 1m and 4m composite samples were assayed via the Photon Assay method at Intertek laboratory, Perth, or via 50g Fire assay at Bureau Veritas Laboratory, Kalgoorlie. Laboratory QC involves the use of internal lab standards, certified reference material, blanks, splits and replicates. QC results (blanks, coarse reject duplicates, bulk pulverised,

28

		results are reported along with the sample values in the final report. Selected samples are also re-analysed to confirm anomalous results. Laboratory and field QA/QC results are reviewed by Alto personnel. Drilling carried out by Troy (2001 - 2009) For Troy RC drilling, an average of 1 field duplicate, 1 blank and 1 standard was submitted for every 50 samples. For Troy AC drilling, field duplicates and standards were used at 1:50 however no blank samples were routinely used in RAB or AC drilling. Troy engaged Maxwell to undertake periodic audit of the exploration QAQC data. Drilling carried out by WMC (1983-1993) Repeat assays were carried out and recorded on the logging sheets. There is no available documentation for the WMC procedures of QAQC protocols however it is known that the laboratory included one repeat analysis, one standard and one blank in each tray of 50 samples. Anomalous assays reported that could not be explained have been removed from the dataset.
Verification of sampling and assaying	• The verification of significant intersections by either independent or alternative company personnel.	Significant intersections have been reviewed by several company personnel.
	The use of twinned holes.	Data storage was captured electronically onsite using a
	Documentation of primary data, data entry procedures, data verification,	standard set of templates, before uploading to a cloud-based
	data storage (physical and electronic) protocols.	server and imported into an externally managed Datashed
	Discuss any adjustment to assay data.	geological database.

		 Security is set through both SQL and the DataShed configuration software. Brightstar has an external consultant Database Administrator with expertise in programming and SQL database administration. Access to the database by the geoscience staff is controlled through security groups where they can export and import data with the interface providing full audit trails. Assay data is provided in MaxGEO format from the laboratories and imported by the Database Administrator. The database assay management system records all metadata within the MDS, providing full audit trails to meet industry best practice. No data was adjusted. No transformations or alterations are made to assay data stored in the database. The lab's primary Au field is the one used for plotting purposes. No averaging of results for individual samples is employed. No top cuts are applied to the assays when calculating intercepts.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill collar locations were initially surveyed using a handheld GPS, accurate to within 3-5m. All AC, RC and DD holes are routinely surveyed by differential GPS (DGPS) once drilling is complete, although this has not yet occurred for recently completed holes. Some historic drill collars have existing DGPS surveys The grid system used is MGA94 Zone 50. All reported coordinates are referenced to these grids. The site topography utilised DTM from airborne magnetic survey. Troy drill hole collars were recorded using either GPS, DGPS or by a licenced surveyor.

Data spacing and distribution	Deta consists for reporting of Eugleration Results	 Alto used handheld Garmin GPS to locate and record drill collar positions, accurate to +/-5 metres. Alto periodically used a DGPS to locate Alto drill collars and to re-locate historical Troy and WMC drill collars to verify the accuracy of historical data. In March 2018, Alto engaged an independent licenced surveyor to obtain accurate collar survey data for a substantial number of Alto drill holes and historical drill hole collars. Alto carried out a desktop check of all drill hole collars using satellite and aerial drone imagery. Alto carried out field checks using a DGPS on 24 randomly selected drill holes in November 2018 to confirm the locations of the drill hole collars. Contract surveyors were engaged by previous explorers to accurately locate the surface location of drill collars and historic workings in local grid format. WMC drillholes were reported using an AMG grid established by contract surveyors. The average depth of the WMC inclined RC drillholes is ~70 m. No down hole survey data was reported however it is considered unlikely that variation from the reported dip over the short drillhole length would be materially significant.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Holes are variably spaced. The current RC drilling program has infilled the spacing at a portion of the Lord Nelson deposit to approximately 20m x 20m. Results will be used to update previously reported Mineral Resources at Lord Nelson. No sample compositing of field samples has been applied.

Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	introduced a sampling bias. Most holes have been drilled
Sample security	The measures taken to ensure sample security.	 Samples were collected on site under supervision of the geologist. Visitors needed permission to visit site. Once collected samples were bagged, they were transported to Perth by company personnel or reputable freight contractors for assaying at Intertek, Perth. Despatch and consignment notes were delivered and checked for discrepancies. No information is available on sample security for historical Troy and WMC drilling.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and data has been reviewed internally by company personnel.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria JORC Code Explanation		Commentary			
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures,	The Indomitable East deposit is located within Mining Lease M57/665.			
	partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	M57/665 is a granted tenement, owned 100% by Sandstone Exploration Pty Ltd, a 100% owned subsidiary of Brightstar			

	The security of the tenure held at the time of reporting along with any	
	known impediments to obtaining a licence to operate in the area.	known impediments.
		The Cork Tree Well deposit is located within mining lease
		M38/346.
		Brightstar Resources Limited has a 100% interest in this
		tenement.
		The tenement is in good standing with no known impediments.
Exploration done by other	 Acknowledgment and appraisal of exploration by other parties. 	Indomitable East Deposit
parties		Modern exploration for gold in the Sandstone Greenstone
		Belt began with Western Mining Corporation (WMC) in the
		late 1970s through to the 1990s. WMC carried out 17
		significant regional exploration programs and formed
		several joint ventures in the main Sandstone mines area
		and at Oroya, Hacks, and Bull Oak. After spending
		approximately \$6M, WMC put its Sandstone assets out to
		tender, with Herald ultimately the successful bidder.
		Herald carried out extensive exploration throughout the
		project area and carried out open pit mining at Bull Oak
		and Oroya. The Sandstone tenements were then sold to
		Troy Resources NL (Troy).
		Troy undertook systematic exploration of the project area
		between 1998 and 2010, resulting in the discovery and
		subsequent mining of the Bulchina, Lord Henry and Lord
		Nelson deposits. Troy ceased mining in August 2010 and
		the operations were placed on care and maintenance.
		In the early 1900s mining was carried out at Indomitable East.
		Recorded production was 18.85 ounces from 98 tonnes.
		Cork Tree Well Deposit
		Cork free well beposit

		 Multiple owners of the lease prior to Brightstar Resources. including Placer Dome, Ashton Mining, Whim Creek, A1 Minerals, Stone Resources. Exploration has included RAB, AC, RC, and diamond drilling and mining of small pits
Geology	Deposit type, geological setting and style of mineralisation.	 Indomitable East Deposit The Sandstone Project covers much of the Sandstone Greenstone Belt, a triangular belt interpreted to be a northplunging antiform situated at the northern end of the Southern Cross Domain. The belt primarily comprises mafic volcanic and intrusive units, with subordinate ultramafic, BIF and siliciclastic sediments. Much of the residual greenstone belt regolith is overlain by depositional material including colluvium, sheet wash alluvium and aeolian deposits. The alluvium thins in the northern and eastern parts of the project area where underlying meta-sediments and granitoids are exposed at the surface. A lateritic horizon is observed across much of the belt. At Indomitable East the stratigraphy is subvertical and has an east-west strike. Two main geological units are observed being a northern deeply weathered ultramafic unit and a southern unit comprising interlayered banded iron formation within deeply weathered ultramafic. Weathered banded iron formation is exposed on the surface. Elsewhere there is no outcrop. At Indomitable East the gold mineralisation appears to be constrained to the banded iron formation/ ultramafic package. Cork Tree Well Deposit

		Classic Yilgarn Structurally Hosted Gold Deposit located within a mafic unit, sedimentary units and along a mafic/sedimentary contact.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The relevant data for drillholes reported in this announcement is provided in the body of the announcement. Data for historical collars referenced in this announcement is provided in tables within the announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Assay results reported here have been length weighted. Significant intercepts are reported above 1.0 g/t Au with a maximum consecutive interval of internal dilution (<1.0 g/t Au) of 2m. No metal equivalent calculations were applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	True widths are not confirmed at this time although all drilling is planned perpendicular to interpreted strike of the target lodes at the time of drilling.

35

	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures in this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data is reported here.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Additional drilling is being planned and if successful, further mineral resource estimates will be calculated.

APPENDIX 2: Historical Hole Details: Indomitable East

Hole ID	Hole Type	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)		From (m)	To (m)	Drilled Interval (m)	Au (g/t)
SAC049	AC	734462	6892659	504	180	-60	101	NSI				
SRC706	RC	734457	6892499	502	180	-60	80		29	31	2	1.10
				502		-60			3	7	4	1.10
SRC707	RC	734457	6892535		180		134		13	18	5	1.34
									86	87	1	1.44
			6892577	502					20	21	1	1.34
SRC708	RC	734456			180	-60	134		34	51	17	1.72
								including	40	45	5	3.07
		734458	6892614	503	180	-60	152		58	59	1	1.26
									68	74	6	1.62
SRC709	RC							Including	72	73	1	4.86
									80	89	9	7.62
								including	80	84	4	14.1
		RC 734458		503	180	-60	170		119	120	1	1.82
SRC710	DC.		6892655						133	134	1	1.73
3KC/10	, KC								148	155	7	1.01
								Including	149	150	1	3.39
			734461 6892552	502					6	11	5	1.40
MSGC625	RC	734461			180	-60	90		20	25	5	1.67
									81	83	2	1.36
MSGCG26	RC	734461	6892582	503	180	-60	60		25	29	4	1.51
MSGC626 R	NC.		0032302						40	60	20	2.26

Hole ID	Hole Type	Easting	Northing	RL	Azimuth	Dip	Hole Depth (m)		From (m)	To (m)	Drilled Interval (m)	Au (g/t)
								including	46	52	6	5.20
									56	60	4	1.34
			6892612	503	180	-60	80		67	68	1	1.30
MSGC627	RC	734461							74	75	1	1.03
									79	80	1	1.21
TRC001	RC	734463	6892627	503	180	-60	94	NSI				
TDC003	RC	734461	1 6892597	503	180	-60	101		60	69	9	3.50
TRC002	KC							including	60	64	4	6.54
					180	-60	-60 113		8	15	7	1.23
TRC003	RC	C 734461 6	6892567 503	503					24	28	4	1.01
									40	44	4	1.11
TRC004	RC	734461	6892628	503	180	-60	111		96	98	2	4.27
								including	97	98	1	7.05