

ASX ANNOUNCEMENT | 16 May 2025

SUPPLEMENTARY INFORMATION PROVIDED FOR ASX ANNOUNCEMENT DATED 6 MAY 2025

Askari Metals Limited (**ASX: AS2**) ("**Askari**" or "**Company**") refers to its ASX announcement titled "*Uis Project Delivers More High-Grade Tin and Tantalum*" as initially lodged with the ASX on 6 May 2025 (the "**Announcement**").

The Announcement made reference to a comprehensive technical review of the historical exploration data that the Company had completed which enabled a re-interpretation of the information focused on delineating and demonstrating the extensive tin and tantalum mineralisation that had been identified through previous exploration at EPL 7345, part of the Uis Project in Namibia.

The re-interpretation of the data supports the Company's view that the Uis Project offers a strategic polymetallic project opportunity, offering tin, tantalum, rubidium and lithium mineralisation. The location of the Uis Project is also strategically located given it adjoins the operating Uis Tin Mine, owned by Andrada Mining Ltd (LSE: ATM).

The Announcement also included rock sample results from the OP and DP Pegmatite Targets on EPL 7345 which had not been previously released, however did not contain the complete details of the sampling locations for those rock sample results.

In addition, the Announcement did not contain the complete details of the previous ASX announcements that the Company had made which refers to the original data which supported the technical review. As a result, the Company is lodging a replacement Announcement which also contains an updated JORC Table 1 and 2 as well as a complete Appendix 2. Furthermore, Figures 2 – 5 (inclusive) have been replaced with higher resolution images.

All other information contained in the Announcement remains unchanged.

This announcement is authorised for release by the Board of Directors of Askari Metals Limited

- ENDS -

FOR FURTHER INFORMATION PLEASE CONTACT

INVESTORS

Gino D'Anna EXECUTIVE DIRECTOR

M. +61 400 408 878

E. gino@askarimetals.com

ABOUT ASKARI METALS

Askari Metals is a focused Southern African exploration company. The Company is actively exploring and developing its Uis Lithium Project in Namibia located along the Cape-Cross – Uis Pegmatite Belt of Central Western Namibia. The Uis project is located within 2.5 km from the operating Uis Tin-Tantalum-Lithium Mine which is currently operated by Andrada Mining Ltd and is favourably located with the deep water port of Walvis Bay being less than 230 km away from the Uis project, serviced by all-weather sealed roads. In March 2023, the Company welcomed Lithium industry giant Huayou Cobalt onto the register who remains supportive of the Company's ongoing exploration initiatives.

The Company has also recently acquired the Matemanga Uranium Project in Southern Tanzania which is strategically located less than 70km south of the world-class Nyota Uranium Mine. Askari Metals is actively engaged in due diligence to acquire further uranium projects in this emerging tier-1 uranium province.

The Company is currently assessing its options for a suitable "value-add" divestment strategy of the Australian projects which includes highly prospective gold, copper and REE projects.

For more information please visit: www.askarimetals.com

ASX ANNOUNCEMENT | 6 May 2025

TECHNICAL REVIEW DELINEATES FURTHER HIGH-GRADE TIN AND TANTALUM MINERALISATION AT UIS PROJECT, NAMIBIA

HIGHLIGHTS

- Askari has continued to review the historical exploration database for the Uis Project in Namibia, focused on evaluating the significant tin and tantalum mineralisation that exists
- Current data review focused on EPL 7345, strategically located contiguous to the operating Uis Tin Mine, owned by Andrada Mining (LSE: ATM) hosting a JORC (2012) MRE of 77.51Mt @ 0.79% Li₂O, 0.15% Sn and 82 ppm Ta*
- Historical exploration comprising 1,163 rock chip samples has highlighted exceptionally high-grade tin, tantalum and rubidium mineralisation with assay results including 4.05% SnO₂, 1,121ppm Ta₂O₅ and 0.83% Rb₂O
- The OP Pegmatite Target, which is up to 26m wide and has a mapped strike length of more than 2km, displays high grade mineralisation with values up to 1.64% SnO₂, 392ppm Ta₂O₅ and 0.22% Rb₂O
- Mapping and rock chip sampling at the PS Pegmatite Target has demonstrated high grade mineralisation with values up to 1.63% SnO₂, 639ppm Ta₂O₅ and 0.27% Rb₂O
- Fieldwork at the DP Pegmatite Target has also revealed high grade mineralisation with values up to 0.89% SnO_2 , 635ppm Ta_2O_5 and 0.29% Rb_2O with proximal pegmatites returning higher grades reaching up to 4.05% SnO_2 , 1,121ppm Ta_2O_5 and 0.44% Rb_2O
- The K9 Pegmatite Target also displays high grade mineralisation with values up to 0.27% SnO₂, 216ppm Ta₂O₅ and 0.49% Rb₂O
- Historical drilling returned high-grade intercepts including 4m @ 0.16% SnO $_2$ (incl. 1m @ 0.26%), 4m @ 314 ppm Ta $_2$ O $_5$ (incl. 1m @ 695 ppm), and 2m @ 0.30% Rb (incl. 1m @ 0.38%).
- The Uis Project is fast emerging as a strategic asset offering polymetallic mineralisation including tin, tantalum, lithium and rubidium and with its strategic location next door to the operating Uis Tin Mine highlighting the significant value-add opportunity that exists

^{*} For further details refer to: Uis-V1V2-Mineral-Resource-Update.pdf

Askari Metals Limited (ASX: AS2) ("**Askari Metals**" or "**Company**") is pleased to announce that the Company has progressed with its technical review of the historical exploration database covering the Uis Project in Namibia, focused on evaluating the significant tin, tantalum and rubidium potential that exists.

The data review initially focused on EPL 8535 and has been expanded to include EPL 7345, the central tenement held by Askari Metals, located contiguous to the southwestern boundary of the operating Uis Tin Mine (Andrada Mining Limited, LOM: ATM) which boasts a globally important JORC (2012) MRE of 77.51Mt $(0.79\% \text{ Li}_2\text{O}, 0.15\% \text{ Sn})$ and 82 ppm Ta.

Historical exploration across EPL 7345 has returned exceptionally high grades of tin, tantalum, and rubidium mineralisation, based on results from surface mapping, rock chip sampling, and two phases of reverse circulation (RC) drilling. The key pegmatite targets OP, PS, DP and K9 have already been delineated and explored in detail whilst newly identified pegmatite zones have been mapped but remain untested to date.

Commenting on the exploration potential of the Uis Project, Director Mr Gino D'Anna stated:

"Our team continues to review the mineralisation potential of the Uis Project having identified extensive high-grade mineralisation for tin, tantalum and rubidium. It is important to recognise that the Uis Project lies contiguous with and directly along strike of the operating Uis Tin Mine which is owned by Andrada Mining Limited (LOM: ATM), however despite sharing the same geology as the nearby Uis Tin Mine, the potential of the Uis Project to host significant tin and tantalum mineralisation was never a focus in previous exploration or analysis. The contribution of these metals significantly enhance the economic attractiveness of the Uis Project and will be an area of close focus for the Company going forward. The Uis Project is shaping up to be a valuable polymetallic project offering significant economic upside and is fast emerging as a major strategic asset for the Company which remains underexplored highlighting the significance of the upside potential.

The Uis Project represents a heavily underexplored opportunity and includes some spectacular historical exploration results which identified high-grade tin and tantalum mineralisation. These results demonstrate the significant exploration potential of the project area.

The Company is excited to begin further exploration of these targets and we look forward to keeping shareholders informed."

Uis Project – EPL 7345 – Tin, Tantalum and Rubidium Mineralisation Potential Detailed Rock Chip Sampling Program

A review of the geological database for EPL 7345 confirms that a total of 1,163 rock chip samples were collected across multiple phases of exploration, including initial due diligence activities. Sampling focused on exposed pegmatites and included areas of historical artisanal workings previously mined for tin and semi-precious stones.

The results from these campaigns were highly encouraging, particularly for tin mineralisation, with assays up to 4.05% SnO₂ and 66 samples reporting values exceeding 1,900 ppm Sn (equivalent to 0.25% SnO₂).

Tantalum mineralisation was also significant, with 268 samples assaying above 100 ppm Ta2O5, including result as high as 1,121 ppm Ta2O5. Strong rubidium values were likewise recorded, with assays returning up to 0.83% Rb₂O.

In addition to the Company's known pegmatite targets—PS, OP, DP, and K9—the assay results indicate an anomalous tantalum and rubidium trend extending northwest, following the same lithological and structural trends as the established targets.

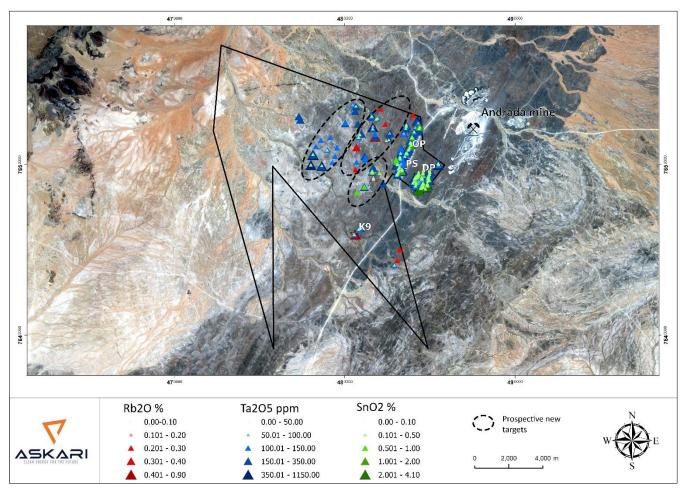


Figure 1: All Rock chip assays received from EPL 7345 to date with the prospective pegmatite target areas clearly shown.

Tin Results

The highest tin grade returned from EPL 7345 to date is 4.05% SnO₂, with a selection of the most significant results presented in Table 1 (below). In total, 66 samples returned grades exceeding 0.25% SnO₂.

Numerous high-grade tin assays were recorded at the OP target with 175 samples collected and returning an average grade of $0.11\%~SnO_2$. At the DP target, 174 samples were collected, yielding an average grade of $0.19\%~SnO_2$. These results, illustrated in Figure 2, underscore the strong potential for tin mineralisation across EPL 7345.

Table 1:The most significant SnO₂ grades returned from EPL 7345 rock chips.

Sample ID	Tenement	Easting	Northing	SnO ₂ %
Y0402	EPL7345	484361	7648509	4.05
Y0444	EPL7345	484834	7648769	2.69
B2510	EPL7345	483874	7651152	1.64
K2221	EPL7345	483314	7649670	1.63
Y0466	EPL7345	484380	7652260	1.22
K1054	EPL7345	481143	7648724	0.97
K3061	EPL7345	483023	7650174	0.92
Y0449	EPL7345	484920	7649161	0.92
K1063	EPL7345	481604	7649614	0.91
Y0436	EPL7345	484207	7649330	0.89
K2220	EPL7345	483009	7650312	0.81
K3137	EPL7345	484198	7649003	0.71
K3140	EPL7345	484603	7648921	0.66
Y0445	EPL7345	484843	7648867	0.61
Y0413	EPL7345	484590	7649399	0.61
K1061	EPL7345	481607	7649619	0.56
Y0462	EPL7345	483947	7651624	0.56
B2524	EPL7345	480709	7648386	0.56
Y0437	EPL7345	484156	7649280	0.54
K1097	EPL7345	483140	7649771	0.5
Y0425	EPL7345	484548	7649168	0.5
Y0476	EPL7345	483177	7649652	0.49
Y0454	EPL7345	484938	7649425	0.49
Y0453	EPL7345	484911	7649358	0.48
U4616	EPL7345	481599	7649623	0.47
Y0407	EPL7345	484531	7648739	0.45
Y0426	EPL7345	484550	7649230	0.43
K1006	EPL7345	481492	7652893	0.42
K3104	EPL7345	484128	7649220	0.41
K3048	EPL7345	483079	7650049	0.4
K1062	EPL7345	481608	7649618	0.39
Y0433	EPL7345	484311	7649339	0.39
K2227	EPL7345	484576	7648761	0.38
K3152	EPL7345	484461	7648633	0.37
K1017	EPL7345	480820	7651629	0.37
K1050	EPL7345	481667	7649217	0.36
K1051	EPL7345	481667	7649217	0.35
Y0415	EPL7345	484613	7649695	0.35

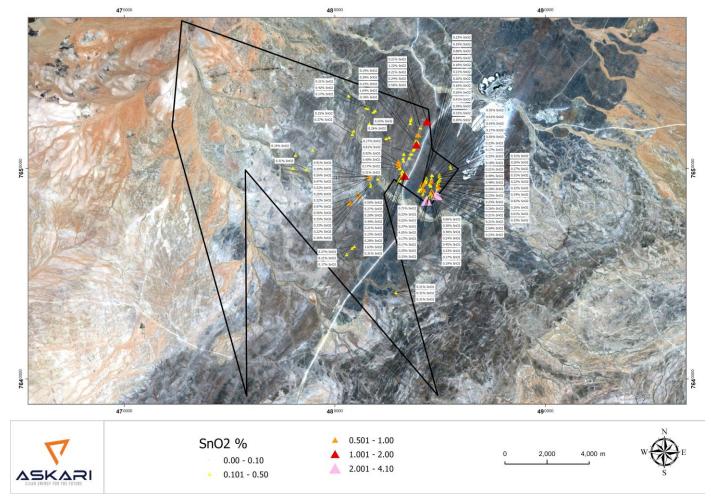


Figure 2: Map showing the SnO₂ assays from EPL 7345 from the rock sampling campaigns.

Tantalum Results

The highest tantalum grades returned from within EPL 7345 include 1,121 ppm, 803 ppm, and 639 ppm Ta_2O_5 , with the highest grades listed in Table 2. In total, 268 samples returned values exceeding 100 ppm Ta_2O_5 , highlighting exceptional tantalum prospectivity across the licence, as is depicted in Figure 3.

At the OP target, 175 samples were collected, returning an average grade of 129 ppm Ta_2O_5 , whilst at the DP target and proximal pegmatites, 174 samples returned a higher average of 154 ppm Ta_2O_5 .

These consistent elevated grades over substantial sample populations are particularly compelling when compared to Andrada's adjacent operational mine, where the current tantalum resource grade averages just 82 ppm Ta. The significantly higher values reported within EPL 7345 highlights the project areas strong potential for polymetallic tin and tantalum mineralisation.

Table 2 : The most significant Ta_2O_5 grades returned from EPL 7345 rock chips.

Sample ID	Tenement	Easting	Northing	Ta ₂ O ₅ ppm
K3169	EPL7345	484930.6	7649165	1121
B2595	EPL7345	478131	7650617	803
K3085	EPL7345	483366.9	7649732	639
K3147	EPL7345	484107.2	7649243	635
B2588	EPL7345	478126	7650635	608
K2221	EPL7345	483314.4	7649670	552
K3143	EPL7345	484576.8	7648767	529
K1037	EPL7345	484977	7649686	528
K1067	EPL7345	478001	7650020	460
Y0409	EPL7345	484599.8	7648914	428
B2506	EPL7345	481642	7652243	421
Y0470	EPL7345	484268.3	7652627	420
U4624	EPL7345	478643	7649963	409

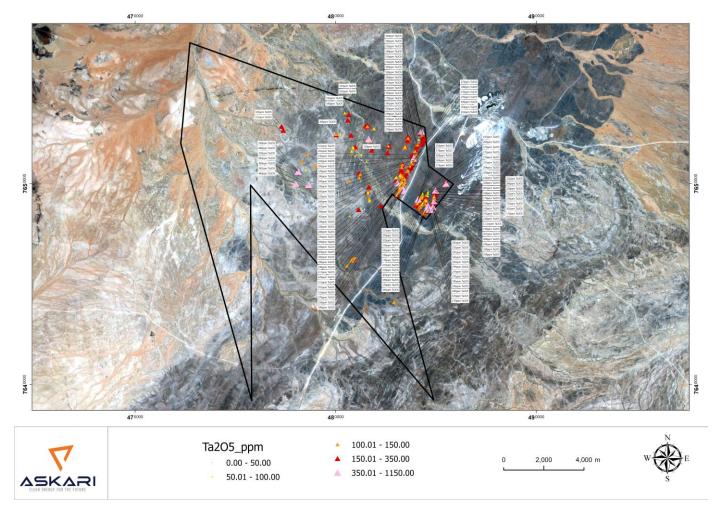


Figure 3: Map showing the Ta_2O_5 assays from EPL 7345 from the rock sampling campaigns.

Rubidium Results

The maximum rubidium result from the rock sampling campaigns was 0.83% Rb₂O with 61 samples returning results greater than 0.2% Rb₂O and the DP pegmatite target averaging 0.14% Rb₂O over 174 samples collected. This indicates excellent rubidium prospectivity, adding additional potential economic extraction value on top of the significantly positive tin and tantalum results.

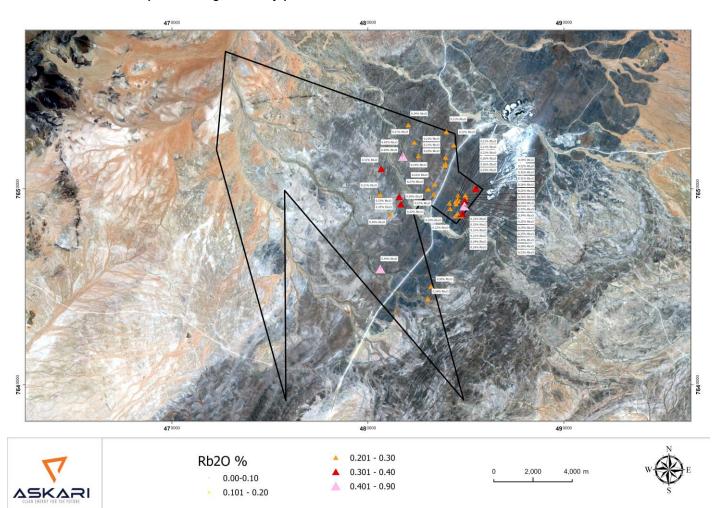


Figure 4: Rb₂O rock chip results from EPL 7345 from the rock sampling campaigns.

Table 3: The most significant Rb₂O grades returned from EPL 7345 rock chips.

Sample ID	Tenement	Easting	Northing	Rb2O %
N2559	EPL7345	481787	7651679	0.83
N2607	EPL7345	480633	7645945	0.49
B2546	EPL7345	484925	7649157	0.44
Y0454	EPL7345	484938	7649425	0.37
B2544	EPL7345	484912	7649357	0.34
K1061	EPL7345	481607	7649619	0.33
K1049	EPL7345	481682	7649249	0.32
K1123	EPL7345	484836	7648781	0.32

U4640	EPL7345	485492	7650047	0.32
K1121	EPL7345	484834	7648750	0.31
N2192	EPL7345	480682	7651052	0.31
K1030	EPL7345	485510	7650043	0.31
N2406	EPL7345	483227	7645044	0.30

RC Drilling Results

On EPL 7345 a total of 114 RC holes totaling 6,384m and generating 2,411 samples was completed over two drilling campaigns.

Several notable Ta_2O_5 , SnO_2 and Rb_2O intercepts were delivered including 4m @ 0.16% SnO_2 , including 1m @ 0.26% SnO_2 , 4m @ 314ppm Ta_2O_5 including 1m @ 695ppm Ta_2O_5 , and 2m @ 0.30% Rb_2O , from 10m, including 1m @ 0.38% Rb_2O .

Table 4: The most significant SnO₂ grades returned from EPL 7345 drilling.

Hole ID	Easting	Northing	Drill Phase	Summary
A7BRC002	481675	7649177	EPL7345 Phase 2	1m @ 0.08% SnO ₂ , from 7m
A7BRC005	481386	7648692	EPL7345 Phase 2	4m @ 0.09% SnO ₂ , from 23m
A7BRC008	481705	7648898	EPL7345 Phase 2	2m @ 0.10% SnO ₂ , from 32m
A7BRC009	481999	7649528	EPL7345 Phase 2	3m @ 0.10% SnO ₂ , from 21m
A7BRC011	482004	7649506	EPL7345 Phase 2	6m @ 0.09% SnO ₂ , from 20m
A7BRC019	478949	7651782	EPL7345 Phase 2	2m @ 0.14% SnO ₂ , from 24m, including 1m @ 0.20% SnO ₂
A7BRC020	480793	7649943	EPL7345 Phase 2	2m @ 0.08% SnO ₂ , from 24m
A7BRC023	480641	7650762	EPL7345 Phase 2	2m @ 0.10% SnO ₂ , from 17m
A7BRC024	480700	7651023	EPL7345 Phase 2	5m @ 0.11% SnO ₂ , from 21m
A7BRC025	480717	7651015	EPL7345 Phase 2	3m @ 0.09% SnO ₂ , from 37m
A7BRC026	480962	7650962	EPL7345 Phase 2	4m @ 0.16% SnO ₂ , from 48m, including 1m @ 0.26% SnO ₂
A7BRC026	480962	7650962	EPL7345 Phase 2	1m @ 0.12% SnO ₂ , from 58m

Table 5: The most significant Ta₂O₅ grades returned from EPL 7345 drilling.

Hole ID	Easting	Northing	Drill Phase	Summary
A7BRC005	481386	7648692	EPL7345 Phase 2	4m @ 314ppm Ta_2O_5 , from 26m, including: 1m @ 695ppm Ta_2O_5
A7BRC009	481999	7649528	EPL7345 Phase 2	2m @ 178ppm Ta ₂ O ₅ , from 24m
A7BRC011	482004	7649506	EPL7345 Phase 2	6m @ 101ppm Ta ₂ O ₅ , from 21m
A7BRC017	480149	7649529	EPL7345 Phase 2	1m @ 192ppm Ta ₂ O ₅ , from 25m
A7BRC019	478949	7651782	EPL7345 Phase 2	4m @ 283ppm Ta $_2$ O $_5$, from 25m, including 1m @ 578ppm Ta $_2$ O $_5$ and 1m @ 437ppm Ta $_2$ O $_5$
A7BRC020	480793	7649943	EPL7345 Phase 2	2m @ 154ppm Ta ₂ O ₅ , from 24m
A7BRC021	480812	7649937	EPL7345 Phase 2	4m @ 97ppm Ta ₂ O ₅ , from 56m
A7BRC024	480700	7651023	EPL7345 Phase 2	3m @ 117ppm Ta ₂ O ₅ , from 25m
A7BRC036	482388	7644680	EPL7345 Phase 2	2m @ 182ppm Ta ₂ O ₅ , from 11m
A7BRC039	482971	7642477	EPL7345 Phase 2	2m @ 180ppm Ta ₂ O ₅ , from 19
AMURC0009	478050	7650624	EPL7345 Phase 1	4m @ 179ppm Ta ₂ O ₅ , from 80m
AMURC0050	484143	7649361	EPL7345 Phase 1	2m @ 138ppm Ta ₂ O ₅ , from 42m
AMURC0062	483530	7652133	EPL7345 Phase 1 2m @ 143ppm Ta ₂ O ₅ , from 37m	

Table 6: The most significant Rb₂O grades returned from EPL 7345 drilling.

Hole ID	Easting	Northing	Drill Phase	Summary
A7BRC017	480149	7649529	EPL7345 Phase 2	7m @ 0.16% Rb₂O, from 24m, including: 1m @ 0.23% Rb₂O
A7BRC036	482388	7644680	EPL7345 Phase 2	3m @ 0.24% Rb₂O, from 11m, including: 1m @ 0.36% Rb₂O
AMURC0022	483353	7649742	EPL7345 Phase 1	2m @ 0.16% Rb ₂ O, from 17m
AMURC0031	485468	7650126	EPL7345 Phase 1	3m @ 0.28% Rb ₂ O, from 10m, including: 1m @ 0.27% Rb ₂ O, 1m @ 0.32% Rb ₂ O, 1m @ 0.23% Rb ₂ O
AMURC0034	485489	7650087	EPL7345 Phase 1	4m @ 0.21% Rb $_2$ O, from 7m, including: 1m @ 0.31% Rb $_2$ O, 1m @ 0.26% Rb $_2$ O
AMURC0035	485476	7650101	EPL7345 Phase 1	3m @ 0.18% Rb₂O, from 10m, including: 1m @ 0.21% Rb₂O
AMURC0041	484057	7649067	EPL7345 Phase 1	3m @ 0.23% Rb $_2$ O, from 8m, including: 1m @ 0.28% Rb $_2$ O, 1m @ 0.24% Rb $_2$ O
AMURC0044	484074	7649132	EPL7345 Phase 1	3m @ 0.15% Rb₂O, from 8m
AMURC0048	484171	7649333	EPL7345 Phase 1	1m @ 0.11% Rb ₂ O, from 17m
AMURC0049	484159	7649346	EPL7345 Phase 1	5m @ 0.15% Rb₂O, from 23m, including: 1m @ 0.24% Rb₂O
AMURC0050	484143	7649361	EPL7345 Phase 1	2m @ 0.17% Rb ₂ O, from 41m
AMURC0052	484560	7648772	EPL7345 Phase 1	3m @ 0.16% Rb ₂ O, from 11m
AMURC0053	484519	7648700	EPL7345 Phase 1	4m @ 0.16% Rb ₂ O, from 15m
AMURC0055	484539	7648780	EPL7345 Phase 1	2m @ 0.30% Rb ₂ O, from 10m, including: 1m @ 0.23% Rb ₂ O, 1m @ 0.38% Rb ₂ O
AMURC0060	483446	7651917	EPL7345 Phase 1	3m @ 0.17% Rb ₂ O, from 24m, including: 1m @ 0.21% Rb ₂ O
AMURC0063	483517	7652061	EPL7345 Phase 1	3m @ 0.15% Rb ₂ O, from 4m, including: 1m @ 0.22% Rb ₂ O

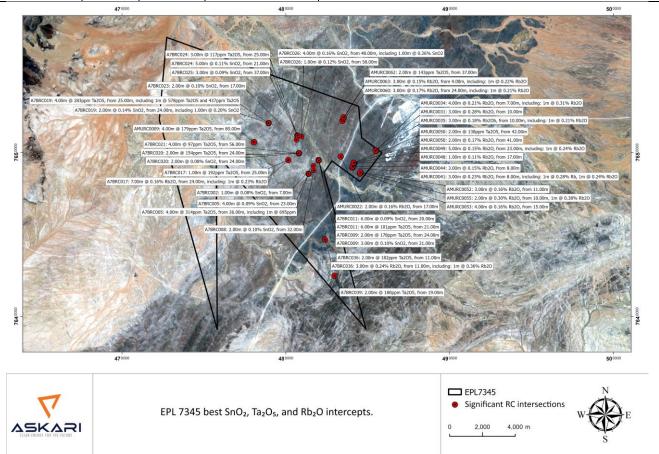


Figure 5: The best SnO₂, Ta₂O₅ and Rb₂O intercepts from the Phase 1 and 2 RC programmes on EPL7345.

Future Work

The Company is planning to conduct further exploration aimed at further developing and expanding the known tin and tantalum mineralisation at EPL 7345. This work will consist of:

- An assessment of the Phase 1 trenching campaign assays from EPL 7345 once these are received
- Detailed mapping and rock chip sampling of new targets on EPL 7345
- Pending successful results, mobilizing an excavator to site for EPL 7345 Phase 2 trenching program

Figure 6 (below) outlines the tin and tantalum targets across EPL 7345, including extensions of the current OP and DP targets previously identified by the Company. These areas will form the focus of upcoming follow-up exploration programs, aimed at delineating additional zones of high-grade tin and tantalum mineralisation. The planned low-cost fieldwork is designed to refine and prioritise high-confidence drill targets within EPL 7345, advancing the broader objective of testing and defining the polymetallic mineralisation associated with the Uis Project.

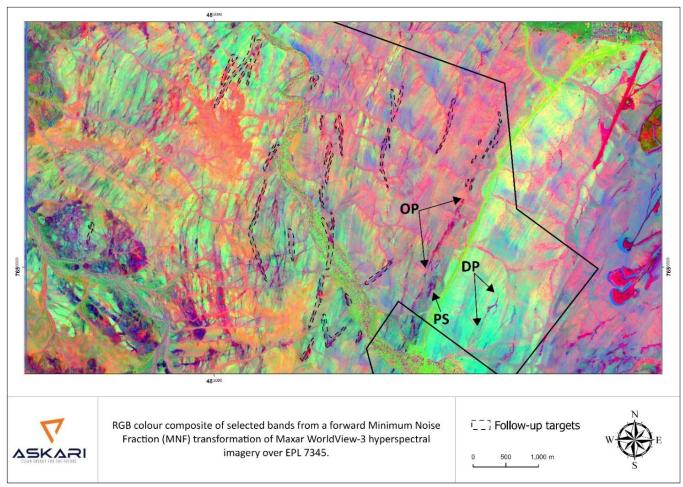


Figure 6: Hyperspectral imagery showing Askari Metals newly identified pegmatite targets on EPL 7345.

The Company looks forward to keeping its shareholders and investors updated as exploration activities continue to advance at the Uis project and as exploration results are received.

- ENDS -

This announcement is authorised for release by the Board of Askari Metals Limited.

FOR FURTHER INFORMATION PLEASE CONTACT

INVESTORS

Gino D'Anna

DIRECTOR

M. +61 400 408 878

E. gino@askarimetals.com

Cliff Fitzhenry

CHIEF PROJECT AND EXPLORATION MANAGER (AFRICA)

M. +61 482 384 048

E. cliff@askarimetals.com

ABOUT ASKARI METALS

Askari Metals is a focused Southern African exploration company. The Company is actively exploring and developing its Uis Lithium Project in Namibia located along the Cape-Cross – Uis Pegmatite Belt of Central Western Namibia. The Uis project is located within 2.5 km from the operating Uis Tin-Tantalum-Lithium Mine which is currently operated by Andrada Mining Ltd and is favourably located with the deep water port of Walvis Bay being less than 230 km away from the Uis project, serviced by all-weather sealed roads. In March 2023, the Company welcomed Lithium industry giant Huayou Cobalt onto the register who remains supportive of the Company's ongoing exploration initiatives.

The Company has also recently acquired the Matemanga Uranium Project in Southern Tanzania which is strategically located less than 70km south of the world-class Nyota Uranium Mine. Askari Metals is actively engaged in due diligence to acquire further uranium projects in this emerging tier-1 uranium province.

The Company is currently assessing its options for a suitable value-accretive divestment strategy of the Australian projects which includes highly prospective gold, copper and REE projects.

For more information please visit: www.askarimetals.com

CAUTION REGARDING FORWARD-LOOKING INFORMATION

This document contains forward-looking statements concerning Askari Metals Limited. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based on the Company's beliefs, opinions and estimates of Askari Metals Limited as of the dates the forward-looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

CAUTIONARY STATEMENT

Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets, Exploration Results or Mineral Resources is based on information compiled by Clifford Fitzhenry, a Competent Person who is a Registered Professional Natural Scientist with the South African Council for Natural Scientific Professions (SACNASP) as well as a Member of the Geological Society of South Africa (GSSA) and a Member of the Society of Economic Geologists (SEG).

Mr. Fitzhenry is the Chief Project and Exploration Manager (Africa) for Askari Metals Limited, who has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Fitzhenry consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 - Re-interpreted RC results on EPL 7345. Refer to ASX release:

Askari intersects broad lithium bearing pegmatites at flagship Namibian project – 17 May 2023 Final assay results received from Uis RC drilling campaigns – 29 December 2023

SnO₂ %

Hole ID	Easting	Northing	Drill Phase	Sample Type	Summary
A7BRC002	481675	7649177	EPL7345 Phase 2	RC chips	A7BRC002: 1.00m @ 0.08% SnO2, from 7.00m
A7BRC005	481386	7648692	EPL7345 Phase 2	RC chips	A7BRC005: 4.00m @ 0.09% SnO2, from 23.00m
A7BRC008	481705	7648898	EPL7345 Phase 2	RC chips	A7BRC008: 2.00m @ 0.10% SnO2, from 32.00m
A7BRC009	481999	7649528	EPL7345 Phase 2	RC chips	A7BRC009: 3.00m @ 0.10% SnO2, from 21.00m
A7BRC011	482004	7649506	EPL7345 Phase 2	RC chips	A7BRC011: 6.00m @ 0.09% SnO2, from 20.00m
A7BRC019	478949	7651782	EPL7345 Phase 2	RC chips	A7BRC019: 2.00m @ 0.14% SnO2, from
					24.00m, including 1.00m @ 0.20% SnO2
A7BRC020	480793	7649943	EPL7345 Phase 2	RC chips	A7BRC020: 2.00m @ 0.08% SnO2, from 24.00m
A7BRC023	480641	7650762	EPL7345 Phase 2	RC chips	A7BRC023: 2.00m @ 0.10% SnO2, from 17.00m
A7BRC024	480700	7651023	EPL7345 Phase 2	RC chips	A7BRC024: 5.00m @ 0.11% SnO2, from 21.00m
A7BRC025	480717	7651015	EPL7345 Phase 2	RC chips	A7BRC025: 3.00m @ 0.09% SnO2, from 37.00m
A7BRC026	480962	7650962	EPL7345 Phase 2	RC chips	A7BRC026: 4.00m @ 0.16% SnO2, from
					48.00m, including 1.00m @ 0.26% SnO2
A7BRC026	480962	7650962	EPL7345 Phase 2	RC chips	A7BRC026: 1.00m @ 0.12% SnO2, from 58.00m

Ta₂O₅ ppm

Hole ID	Easting	Northing	Drill Phase	Sample	Summary
				Туре	
A7BRC002	481675	7649177	EPL7345 Phase 2	RC Chips	A7BRC002: 2.00m @ 87ppm Ta2O5, from
					8.00m
A7BRC002	481675	7649177	EPL7345 Phase 2	RC Chips	A7BRC003: 1.00m @ 117ppm Ta2O5, from
					3.00m
A7BRC005	481386	7648692	EPL7345 Phase 2	RC Chips	A7BRC005: 4.00m @ 314ppm Ta2O5, from
					26.00m, including 1m @ 695ppm
A7BRC008	481705	7648898	EPL7345 Phase 2	RC Chips	A7BRC008: 1.00m @ 87ppm Ta2O5, from
					33.00m
A7BRC009	481999	7649528	EPL7345 Phase 2	RC Chips	A7BRC009: 2.00m @ 178ppm Ta2O5, from
					24.00m
A7BRC011	482004	7649506	EPL7345 Phase 2	RC Chips	A7BRC011: 6.00m @ 101ppm Ta2O5, from
					21.00m
A7BRC017	480149	7649529	EPL7345 Phase 2	RC Chips	A7BRC017: 1.00m @ 192ppm Ta2O5, from
					25.00m
A7BRC017	480149	7649529	EPL7345 Phase 2	RC Chips	A7BRC017: 1.00m @ 85ppm Ta2O5, from
					27.00m
A7BRC019	478949	7651782	EPL7345 Phase 2	RC Chips	A7BRC019: 4.00m @ 283ppm Ta2O5, from
					25.00m, including 1m @ 578ppm Ta2O5 and
					1m @ 437ppm Ta2O5
A7BRC020	480793	7649943	EPL7345 Phase 2	RC Chips	A7BRC020: 2.00m @ 154ppm Ta2O5, from
					24.00m
A7BRC020	480793	7649943	EPL7345 Phase 2	RC Chips	A7BRC020: 2.00m @ 103ppm Ta2O5, from
					46.00m

				_	
A7BRC020	480793	7649943	EPL7345 Phase 2	RC Chips	A7BRC020: 1.00m @ 92ppm Ta2O5, from 50.00m
A7BRC021	480812	7649937	EPL7345 Phase 2	RC Chips	A7BRC021: 4.00m @ 97ppm Ta2O5, from 56.00m
A7BRC021	480812	7649937	EPL7345 Phase 2	RC Chips	A7BRC021: 1.00m @ 86ppm Ta2O5, from 61.00m
A7BRC023	480641	7650762	EPL7345 Phase 2	RC Chips	A7BRC023: 2.00m @ 107ppm Ta2O5, from 17.00m
A7BRC024	480700	7651023	EPL7345 Phase 2	RC Chips	A7BRC024: 3.00m @ 117ppm Ta2O5, from 25.00m
A7BRC025	480717	7651015	EPL7345 Phase 2	RC Chips	A7BRC025: 1.00m @ 87ppm Ta2O5, from 37.00m
A7BRC025	480717	7651015	EPL7345 Phase 2	RC Chips	A7BRC025: 2.00m @ 117ppm Ta2O5, from 40.00m
A7BRC026	480962	7650962	EPL7345 Phase 2	RC Chips	A7BRC026: 1.00m @ 189ppm Ta2O5, from 48.00m
A7BRC026	480962	7650962	EPL7345 Phase 2	RC Chips	A7BRC026: 2.00m @ 114ppm Ta2O5, from 50.00m
A7BRC026	480962	7650962	EPL7345 Phase 2	RC Chips	A7BRC026: 2.00m @ 111ppm Ta2O5, from 59.00m
A7BRC027	480087	7652534	EPL7345 Phase 2	RC Chips	A7BRC027: 1.00m @ 92ppm Ta2O5, from 16.00m
A7BRC036	482388	7644680	EPL7345 Phase 2	RC Chips	A7BRC036: 2.00m @ 182ppm Ta2O5, from 11.00m
A7BRC039	482971	7642477	EPL7345 Phase 2	RC Chips	A7BRC039: 2.00m @ 180ppm Ta2O5, from 19.00m
A7BRC040	483458	7642558	EPL7345 Phase 2	RC Chips	A7BRC040: 1.00m @ 101ppm Ta2O5, from 81.00m
A7BRC041	483502	7642558	EPL7345 Phase 2	RC Chips	A7BRC041: 1.00m @ 107ppm Ta2O5, from 14.00m
A7BRC041	483502	7642558	EPL7345 Phase 2	RC Chips	A7BRC041: 1.00m @ 118ppm Ta2O5, from 17.00m
A7BRC043	483369	7642370	EPL7345 Phase 2	RC Chips	A7BRC043: 1.00m @ 94ppm Ta2O5, from 67.00m
A7BRC053	483659	7640948	EPL7345 Phase 2	RC Chips	A7BRC053: 1.00m @ 178ppm Ta2O5, from 63.00m
A7BRC054	483472	7642469	EPL7345 Phase 2	RC Chips	A7BRC054: 2.00m @ 101ppm Ta2O5, from 65.00m
AMURC0005	478544	7649946	EPL7345 Phase 1	RC Chips	AMURC0005: 1.00m @ 113ppm Ta2O5, from 46.00m
AMURC0007	478103	7650649	EPL7345 Phase 1	RC Chips	AMURC0007: 2.00m @ 135ppm Ta2O5, from 43.00m
AMURC0008	478087	7650604	EPL7345 Phase 1	RC Chips	AMURC0008: 1.00m @ 92ppm Ta2O5, from 29.00m
AMURC0009	478050	7650624	EPL7345 Phase 1	RC Chips	AMURC0009: 1.00m @ 140ppm Ta2O5, from 67.00m
AMURC0009	478050	7650624	EPL7345 Phase 1	RC Chips	AMURC0009: 4.00m @ 179ppm Ta2O5, from 80.00m
AMURC0016	483270.97	7649594	EPL7345 Phase 1	RC Chips	AMURC0016: 1.00m @ 121ppm Ta2O5, from 7.00m
AMURC0020	483290.47	7649667.19	EPL7345 Phase 1	RC Chips	AMURC0020: 1.00m @ 89ppm Ta2O5, from 9.00m

AMURC0025	483700.42	7650900.9	EPL7345 Phase 1	RC Chips	AMURCOORE: 1 00m @ 94nnm Ta2OE from
				·	AMURC0025: 1.00m @ 84ppm Ta2O5, from 49.00m
AMURC0029	483856.92	7651161.6	EPL7345 Phase 1	RC Chips	AMURC0029: 1.00m @ 119ppm Ta2O5, from 3.00m
AMURC0029	483856.92	7651161.6	EPL7345 Phase 1	RC Chips	AMURC0029: 1.00m @ 80ppm Ta2O5, from 24.00m
AMURC0029	483856.92	7651161.6	EPL7345 Phase 1	RC Chips	AMURC0029: 1.00m @ 93ppm Ta2O5, from 29.00m
AMURC0029	483856.92	7651161.6	EPL7345 Phase 1	RC Chips	AMURC0029: 2.00m @ 98ppm Ta2O5, from 33.00m
AMURC0030	483841.36	7651166.6	EPL7345 Phase 1	RC Chips	AMURC0030: 1.00m @ 106ppm Ta2O5, from 16.00m
AMURC0031	485468.45	7650126	EPL7345 Phase 1	RC Chips	AMURC0031: 1.00m @ 89ppm Ta2O5, from 12.00m
AMURC0033	485482.72	7650034.54	EPL7345 Phase 1	RC Chips	AMURC0033: 1.00m @ 98ppm Ta2O5, from 19.00m
AMURC0034	485488.66	7650086.85	EPL7345 Phase 1	RC Chips	AMURC0034: 2.00m @ 87ppm Ta2O5, from 8.00m
AMURC0043	484019.3	7649088.97	EPL7345 Phase 1	RC Chips	AMURC0043: 1.00m @ 87ppm Ta2O5, from 50.00m
AMURC0045	484140.78	7649285.31	EPL7345 Phase 1	RC Chips	AMURC0045: 1.00m @ 85ppm Ta2O5, from 8.00m
AMURC0045	484140.78	7649285.31	EPL7345 Phase 1	RC Chips	AMURC0045: 1.00m @ 85ppm Ta2O5, from 15.00m
AMURC0047	484104.8	7649305.4	EPL7345 Phase 1	RC Chips	AMURC0047: 2.00m @ 97ppm Ta2O5, from 49.00m
AMURC0048	484171.48	7649333	EPL7345 Phase 1	RC Chips	AMURC0048: 1.00m @ 117ppm Ta2O5, from 11.00m
AMURC0049	484158.81	7649345.63	EPL7345 Phase 1	RC Chips	AMURC0049: 1.00m @ 110ppm Ta2O5, from 24.00m
AMURC0049	484158.81	7649345.63	EPL7345 Phase 1	RC Chips	AMURC0049: 1.00m @ 98ppm Ta2O5, from 27.00m
AMURC0050	484142.95	7649361.43	EPL7345 Phase 1	RC Chips	AMURC0050: 2.00m @ 138ppm Ta2O5, from 42.00m
AMURC0051	484211.06	7649400.87	EPL7345 Phase 1	RC Chips	AMURC0051: 1.00m @ 89ppm Ta2O5, from 21.00m
AMURC0053	484518.65	7648699.74	EPL7345 Phase 1	RC Chips	AMURC0053: 2.00m @ 95ppm Ta2O5, from 15.00m
AMURC0054	484499.89	7648708.62	EPL7345 Phase 1	RC Chips	AMURC0054: 3.00m @ 89ppm Ta2O5, from 34.00m
AMURC0056	484508.07	7648756.88	EPL7345 Phase 1	RC Chips	AMURC0056: 1.00m @ 100ppm Ta2O5, from 11.00m
AMURC0057	483411	7651828	EPL7345 Phase 1	RC Chips	AMURC0057: 1.00m @ 104ppm Ta2O5, from 16.00m
AMURC0058	483444	7651865	EPL7345 Phase 1	RC Chips	AMURC0058: 1.00m @ 88ppm Ta2O5, from 13.00m
AMURC0059	483422	7651880	EPL7345 Phase 1	RC Chips	AMURC0059: 1.00m @ 134ppm Ta2O5, from 25.00m
AMURC0061	483428	7651923	EPL7345 Phase 1	RC Chips	AMURC0061: 2.00m @ 103ppm Ta2O5, from 41.00m
AMURC0062	483530	7652133	EPL7345 Phase 1	RC Chips	AMURC0062: 2.00m @ 143ppm Ta2O5, from 37.00m

AMURC0063	483517	7652061	EPL7345 Phase 1	RC Chips	AMURC0063: 1.00m @ 95ppm Ta2O5, from
					6.00m
AMURC0063	483517	7652061	EPL7345 Phase 1	RC Chips	AMURC0063: 1.00m @ 115ppm Ta2O5, from
					8.00m

Rb₂O %

Hole ID	Easting	Northing	Drill Phase	Sample Type	Summary
A7BRC017	480149	7649529	EPL7345 Phase 2	RC Chips	A7BRC017: 7.00m @ 0.16% Rb ₂ O, from 24.00m,
					including: 1m @ 0.23% Rb ₂ O
A7BRC036	482388	7644680	EPL7345 Phase 2	RC Chips	A7BRC036: 3.00m @ 0.24% Rb ₂ O, from 11.00m,
					including: 1m @ 0.36% Rb ₂ O
AMURC0022	483352.69	7649741.83	EPL7345 Phase 1	RC Chips	AMURC0022: 2.00m @ 0.16% Rb ₂ O, from
					17.00m
AMURC0031	485468.45	7650126	EPL7345 Phase 1	RC Chips	AMURC0031: 3.00m @ 0.28% Rb ₂ O, from
					10.00m, including: 1m @ 0.27% Rb ₂ O, 1m @
					0.32% Rb ₂ O, 1m @ 0.23% Rb ₂ O
AMURC0034	485488.66	7650086.85	EPL7345 Phase 1	RC Chips	AMURC0034: 4.00m @ 0.21% Rb ₂ O, from
					7.00m, including: 1m @ 0.31% Rb ₂ O, 1m @
					0.26% Rb ₂ O
AMURC0035	485476.36	7650100.78	EPL7345 Phase 1	RC Chips	AMURC0035: 3.00m @ 0.18% Rb ₂ O, from
					10.00m, including: 1m @ 0.21% Rb ₂ O
AMURC0041	484057.39	7649067.09	EPL7345 Phase 1	RC Chips	AMURC0041: 3.00m @ 0.23% Rb ₂ O, from
					8.00m, including: 1m @ 0.28% Rb ₂ O, 1m @
					0.24% Rb ₂ O
AMURC0044	484074.35	7649132.32	EPL7345 Phase 1	RC Chips	AMURC0044: 3.00m @ 0.15% Rb ₂ O, from
					8.00m
AMURC0048	484171.48	7649333	EPL7345 Phase 1	RC Chips	AMURC0048: 1.00m @ 0.11% Rb ₂ O, from
					17.00m
AMURC0049	484158.81	7649345.63	EPL7345 Phase 1	RC Chips	AMURC0049: 5.00m @ 0.15% Rb ₂ O, from
					23.00m, including: 1m @ 0.24% Rb ₂ O
AMURC0050	484142.95	7649361.43	EPL7345 Phase 1	RC Chips	AMURC0050: 2.00m @ 0.17% Rb ₂ O, from
					41.00m
AMURC0052	484559.52	7648771.89	EPL7345 Phase 1	RC Chips	AMURC0052: 3.00m @ 0.16% Rb ₂ O, from
					11.00m
AMURC0053	484518.65	7648699.74	EPL7345 Phase 1	RC Chips	AMURC0053: 4.00m @ 0.16% Rb ₂ O, from
					15.00m
AMURC0055	484538.88	7648780.06	EPL7345 Phase 1	RC Chips	AMURC0055: 2.00m @ 0.30% Rb ₂ O, from
					10.00m, including: 1m @ 0.23% Rb ₂ O, 1m @
					0.38% Rb ₂ O
AMURC0060	483446	7651917	EPL7345 Phase 1	RC Chips	AMURC0060: 3.00m @ 0.17% Rb ₂ O, from
					24.00m, including: 1m @ 0.21% Rb ₂ O
AMURC0063	483517	7652061	EPL7345 Phase 1	RC Chips	AMURC0063: 3.00m @ 0.15% Rb ₂ O, from
					4.00m, including: 1m @ 0.22% Rb ₂ O

Appendix 1 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. 	Rock Chip Sampling – previously undisclosed, new results and information Rock chip samples (0.4-5kg) were collected within EPL7345. The rock chip samples were collected on a random basis with regards to mineralization. The grab samples can be subjected to bias. Sample information was recorded at the time of sampling including, colour, lithology, alteration, structures and mineralization. Duplicate samples are difficult to perform with accuracy and precision. AMIS standards were included in the sampling process. Industry-standard practice was used in the processing of samples for assay Drilling – previously disclosed Note ***Drillhole IDs have been updated from AURC (ASX RELEASE: ASKARI INTERSECTS BROAD LITHIUM BEARING PEGMATITES AT FLAGSHIP NAMIBIAN PROJECT - 17 May 2023) to AMURC (e.g., AURC0001 is now AMURC0001, AURC0002 is now AMURC0002, etc.). Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 Rock Chip Sampling – previously disclosed High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024 High Resolution Data – previously disclosed, re-interpreted analysis Information can be reviewed from the ASX release below: ASKARI ACCELERATES EXPLORATION ONSEVEN NEW LITHIUM PEGMATITE TARGETS AT UIS LITHIUM PROJECT, NAMIBIA, 6 June 2024 High resolution WorldView-3 multi-spectral satellite imagery was obtained from Woolpert, Inc.

ACN 646 034 460 I askarimetals.com

Criteria	JORC Code explanation	Commentary
		 The data was obtained from WorldView-3 (WV-3) imaging and environment-monitoring satellite located at an altitude of 617km in a sun-synchronous oRb2Oit. The data package consists of 16 bands ranging from visible light through near-infrared (8x VNIR bands at - 1.24m resolution) to 8 short-wave infra-red bands (SWIR - 3.7m resolution). A panchromatic sensor with a 30cm resolution is used to pan-sharpen the visible and NIR bands. In house processing was conducted on the bands to produce high res multispectral (false colour RGB band composite) and ortho-images (RGB true colour composites). The SWIR bands from the WV-3 scenes were primarily select for band math and RGB composite image creation. Decorrelation stretch and Saturation stretch image transformations were applied on SWIR RGB image composites.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, bangka, sonic, etc) and details.	Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource Estimation, mining studies and metallurgical studies.	Rock Chip Sampling – previously undisclosed, new results and information Samples were logged with comments in the field before being placed into Calico bags. Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024

Criteria	JORC Code explanation	Commentary
		MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE
		MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Sub-sampling	For all sample types, the nature, quality and	Rock Chip Sampling – previously undisclosed, new results and information
techniques and	appropriateness of the sample preparation technique.	Sample prep was performed by Activation Laboratories Ltd. (Actlabs) in Namibia.
sample preparation		Samples are dried at 60 degrees for 4 hours prior to crushing.
		 The entire rock sample is crushed to a nominal -2 mm, mechanically split to obtain a representative sample and then pulverized to at least 90% -75 microns (μm).
		 All of their mills are mild steel and do not introduce Cr or Ni contamination.
		 A quartz flush is put through the pulveriser prior to each new batch of samples. A number of quartz flushes are also put through the pulveriser to ensure the bowl is
		clean prior to the next sample being processed
		 Quality of crushing and pulverization is routinely checked as part of our quality assurance program
		An approximately 100g pulp sub-sample is taken from the large sample, and the
		residual material is stored
		Drilling – previously disclosed
		 Information can be reviewed from the ASX release below:
		High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis
		Lithium Project, Namibia 16 November 2022
		 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT,
		NAMIBIA 29 December 2023
		Rock Chip Sampling – previously disclosed
		Information can be reviewed from the ASX release below:
		High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis
		Lithium Project, Namibia 16 November 2022
		ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND
		TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024
		MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE AND SERVICE AND SERVI
0	TI 1 10 10 10 10 10 10 10 10 10 10 10 10 1	MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Quality of assay	The nature, quality and appropriateness of the assaying and laboratory procedures used and whather the technique.	Rock Chip Sampling – previously undisclosed, new results and information
data and laboratory tests	and laboratory procedures used and whether the technique is considered partial or total.	 All AS2 samples were submitted for assays to Activation Laboratories Ltd. (Actlabs) in Canada.
IESIS	Nature of quality control procedures adopted (eg	The samples are analysed for multi-elements using a Sodium Peroxide Fusion with
	standards, blanks, duplicates, external laboratory checks)	ICP and ICP-MS
	and whether acceptable levels of accuracy (ie lack of bias)	ICP-MS finish - Fused samples are diluted and analyzed by Agilent 7900 ICP-MS.
	and precision have been established.	Calibration is performed using five synthetic calibration standards. A set of (10-20)

ACN 646 034 460 | askarimetals.com

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	fused certified reference material is run with every batch of samples for calibration and quality control. Fused duplicates are run every 10 samples. ICP-OES finish - Samples are analyzed with a minimum of 10 certified reference materials for the required analytes, all prepared by sodium peroxide fusion. Every 10th sample is prepared and analyzed in duplicate; a blank is prepared every 30 samples and analyzed. Samples are analyzed using a Varian 735ES ICP and internal standards are used as part of the standard operating procedure. The lab randomly inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. AS2 also inserted QAQC samples, as mentioned above Drilling - previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling - previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RCCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024 Rock Chip Sampling - previously undisclosed, new results and information All of the QAQC data has been statistically assessed, 100% within acceptable QAQC limits as stated by the standard deviation stipulated on the certificate for the reference material used. The results are considered acceptable and suitable for reporting. Drilling - previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, N

Criteria	JORC Code explanation	Commentary
		Rock Chip Sampling – previously disclosed Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Rock Chip Sampling – previously undisclosed, new results and information Samples were marked with a Garmin handheld GPS (accuracy of 2-5m) Drilling – previously undisclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling – previously undisclosed High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Rock Chip Sampling – previously undisclosed, new results and information The rock chips were taken from outcrop No compositing was done. Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling – previously disclosed High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024

Criteria	JORC Code explanation	Commentary
		MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
Sample security	The measures taken to ensure sample security.	 Rock Chip Sampling – previously undisclosed, new results and information All samples were collected and accounted for by AS2 employees/consultants during drilling. All samples were bagged into calico and plastic bags and closed with cable ties. Samples were transported to Windhoek for prep and shipped to Canada for assay. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for. Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENEWITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis
		Lithium Project, Namibia 16 November 2022

Criteria	JORC Code explanation	Commentary
		RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE
		MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	The Uis Lithium-Tantalum-Tin Project (Uis Project – EPL7345) is located less than 5km from the township of Uis and less than 2.5km from the operating Uis Tin-Tantalum-Lithium Mine, owned and operated by Andrada Mining plc (LSE. ATM), within the Erongo Region of west-central Namibia. Swakopmund, the capital city of the Erongo Region and Namibia's fourth largest settlement is located approximately 165km south of the Uis Project, while the Namibian capital city of Windhoek is located approximately 270km southeast of the Uis Project. The Uis Project boasts more than 80 mapped pegmatites across the project area, with many of the pegmatites having been mined historically for tin and semi-precious stones.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling – previously disclosed High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024

ACN 646 034 460 | askarimetals.com

Criteria	JORC Code explanation	Commentary
		MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Geology	Deposit type, geological setting and style of mineralisation.	The rocks of the Erongo Region, and specifically the Dâures Constituency, are represented by rocks of the Khomas Subgroup, a division of the Swakop Group of the Damara Sequence, which have been intruded by numerous zones and unzoned mineralised pegmatites rich in cassiterite, lepidolite, petalite, amblygonite, spodumene, tantalite, columbite, beryl, gem tourmaline, and rare to sparse sulphides, wolframite, scheelite, pollucite or rare earth metals. The Uis and Nainais-Kohero swarm of pegmatites represents the fillings of en-echelon tension gashes that formed as a result of shearing of a regional nature, which evolved slowly over considerable geological time. These pegmatites are pervasively altered or extensively albitised, with only relics of the original potassium feldspars left after their widespread replacement by albite. They are remarkably similar in composition, except for the varying intensity of pneumatolytic effects, and the introduction or concentration of trace elements during the final stages of crystallisation has resulted in complex pegmatite mineralogies. These pegmatites are found within schistose and quartzose rocks of the Khomas Subgroup, a division of the Swakop Group, which have been subjected to intense tectonic deformation and regional metamorphism. Detailed geological mapping within the Uis area suggests that the Uis swarm of pegmatites consists of over 100 individual pegmatite bodies. Shearing opened spaces within the Khomas Subgroup country rocks, spaces in which pegmatite or quartz veins were subsequently intruded. Within the Nainais pegmatites, high tin values are found in smaller altered mica-rich pegmatites near the pegmatite edges. The pegmatite mineralisation composition changes in the distance from the granitic contacts with a mineral crystallisation sequence having been mapped, which indicates garnet and schorl occurring closest to the granitic contacts, the cassiterite and lithium-tourmaline occurring further away therefrom, and the tantalite being associated with lithium-tou

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling – previously disclosed High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 No Mineral Resource has been estimated for the project at this stage. The results presented are based on a reinterpretation of assay data previously released to the market (refer to ASX announcements listed section 1 of this JORC table). 153 new assay samples formed part of the release and can be found in Appendix 2 Tin (SnO₂): Intervals with continuous 1-metre samples each grading ≥0.07% SnO₂ were averaged and included if the resulting average was ≥0.08%. Tantalum (Ta₂O₅): Intervals with continuous 1-metre samples each grading ≥80 ppm Ta₂O₅ were averaged. Rubidium (Rb2O₂O): Intervals with continuous 1-metre samples each grading ≥0.10% Rb2O₂O were averaged and included if the resulting average was ≥0.15%. Elemental assay results for rubidium (Rb2O), lithium (Li), tantalum (Ta), and tin (Sn) have been converted to their respective oxide forms (Rb2O₂O, Li₂O, Ta₂O₅, SnO₂) using standard industry conversion factors. These are: Rb2O₂O = Rb2O × 1.0925 ÷ 10,000 Li₂O = Li × 2.153 ÷ 10,000 Ta₂O₅ = Ta × 1.2211 ÷ 10,000 SnO₂ = Sn × 1.2696 ÷ 10,000 Oxide conversions used stoichiometric factors from the James Cook University Advanced Analytical Centre: https://www.jcu.edu.au/advanced-analytical-centre/resources/element-to-stoichiometric-oxide-conversion-factors

Criteria	JORC Code explanation	Commentary
		 All available assay data for Ta₂O₅, SnO₂, and Rb2O₂O were used to calculate average grades, with no cut-off grades or overlimit exclusions applied. These averages were calculated per target area using the full dataset of received results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams are included in the body of the document.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of results.	 Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023 Rock Chip Sampling – previously disclosed High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024 Unreleased sample results have been attached in appendix 2 of this announcement
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Drilling – previously disclosed Information can be reviewed from the ASX release below: High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 RC DRILLING CAMPAIGN ASSAY RESULTS RECEIVED UIS LITHIUM PROJECT, NAMIBIA 29 December 2023

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling).	Rock Chip Sampling – previously disclosed High-Grade Spodumene Hosted Lithium Identified in Extensive Pegmatites at the Uis Lithium Project, Namibia 16 November 2022 ROCK SAMPLING ASSAY RESULTS CONFIRM HIGH GRADE LITHIUM, TIN AND TANTALUM POTENTIAL UIS LITHIUM PROJECT, NAMIBIA 08 January 2024 MAPPING AND SAMPLING REVEALS VISIBLE SPODUMENE WITH HIGH-GRADE MINERALISATION AT SIGNIFICANT KESTREL PEGMATITE TARGET 20 May 2024 Project wide soil geochemical sample programmes across the "Corridor of Interest" with an aim to delineate further anomalous areas (targeting buried / blind pegmatites) Detailed mapping and rock chip sampling of new targets on EPL 7345 EPL 7345 Phase 2 trenching program Further RC drilling

Appendix 2 – Previously unreleased rock chip samples from the OP and DP targets on EPL7345.

Sample ID	Tenement	Easting	Northing	Cs_ppm	Li_ppm	Rb_ppm	Sn_ppm	Ta_ppm	Nd_ppm
K3093	EPL7345	484322	7649440	40.4	733	1330	408	233	0.9
K3094	EPL7345	484321	7649417	55	1900	1530	1410	118	0.6
K3095	EPL7345	484313	7649341	11.8	1430	370	216	61.2	0.7
К3096	EPL7345	484287	7649324	44.1	549	1280	92.1	161	0.6
K3097	EPL7345	484259	7649271	28.8	649	941	779	39	< 0.4
K3098	EPL7345	484303	7649421	52.3	1190	1040	666	60.9	0.7
K3099	EPL7345	484278	7649413	32.6	1020	761	700	71.9	0.4
K3100	EPL7345	484250	7649387	73.5	355	1140	572	132	< 0.4
K3101	EPL7345	484216	7649340	50.2	559	992	1470	131	0.7
K3102	EPL7345	484196	7649318	42.9	1190	1010	2080	122	1.4
K3103	EPL7345	484156	7649271	41.5	927	1260	999	91.8	0.6
K3104	EPL7345	484128	7649220	104	3370	1510	3190	144	1.8
K3105	EPL7345	484117	7649174	40.2	422	808	568	99.1	0.9
K3106	EPL7345	484085	7649110	139	1160	1860	719	207	1
K3107	EPL7345	484076	7649070	50.6	599	1210	1680	74.7	0.5
K3108	EPL7345	484052	7649022	53.9	775	1080	1450	151	0.7
K3109	EPL7345	483987	7648939	114	138	1310	889	143	0.5
K3110	EPL7345	484331	7649478	38.8	1210	935	389	75.5	0.4
K3111	EPL7345	484349	7649566	23.5	1350	889	350	50.2	< 0.4
K3113	EPL7345	484609	7649671	39.1	769	1140	1270	76.6	0.6
K3114	EPL7345	484592	7649599	34.7	1390	946	641	75.5	0.5
K3116	EPL7345	484578	7649525	50.7	477	1480	114	38.4	0.8
K3117	EPL7345	484590	7649516	50.1	563	841	854	74.7	0.8
K3118	EPL7345	484600	7649510	72.2	1550	1520	264	76.5	0.8
K3119	EPL7345	484497	7649424	58.2	857	1290	444	79.8	0.8

ACN 646 034 460 | askarimetals.com

K3120	EPL7345	484589	7649394	80.5	710	1520	271	51.6	0.9
K3123	EPL7345	484563	7649256	78.6	946	1410	379	46.8	6
K3124	EPL7345	484552	7649171	53.5	638	1450	1310	59.1	0.7
K3125	EPL7345	484532	7649163	46.9	564	1220	404	83.6	0.6
K3126	EPL7345	484499	7649126	48.1	724	1100	363	72.7	0.9
K3127	EPL7345	484493	7649254	89.1	339	1460	777	156	0.5
K3128	EPL7345	484476	7649194	36.2	613	937	121	88.8	0.7
K3129	EPL7345	484449	7649175	39.8	1090	1040	277	102	0.4
K3130	EPL7345	484381	7649089	9.1	440	322	103	31.9	< 0.4
K3131	EPL7345	484353	7649052	34	217	976	133	49.8	< 0.4
K3133	EPL7345	484306	7648980	31.1	1930	762	401	77.8	0.5
K3134	EPL7345	484218	7648889	58.5	373	1310	790	93.8	0.6
K3135	EPL7345	484189	7648934	66.8	420	917	661	138	0.6
K3136	EPL7345	484195	7648964	96.8	677	1390	418	127	0.7
K3137	EPL7345	484198	7649003	170	53	2020	5560	178	0.4
K3139	EPL7345	484169	7648831	115	651	1500	987	114	0.7
K3140	EPL7345	484603	7648921	41.8	330	499	5230	218	< 0.4
K3141	EPL7345	484590	7648922	32.7	1460	454	783	110	< 0.4
K3142	EPL7345	484606	7648967	46.3	5760	728	635	124	0.7
K3143	EPL7345	484577	7648767	284	1550	2180	1280	433	0.5
K3144	EPL7345	484523	7648713	65.5	708	1070	1850	137	0.4
K3145	EPL7345	484527	7648758	27.3	2750	641	258	52.8	0.5
K3146	EPL7345	484562	7648902	86.1	1100	1220	1270	88.2	0.6
K3147	EPL7345	484107	7649243	116	260	1510	920	520	0.5
K3148	EPL7345	484972	7649716	101	1150	1590	2580	182	< 0.4
K3149	EPL7345	484483	7649060	109	403	1520	631	146	0.7
K3150	EPL7345	484463	7648998	122	313	1430	673	99.1	1.6
K3151	EPL7345	484467	7648625	107	1170	1690	2580	172	< 0.4

K3152	EPL7345	484461	7648633	43.1	918	829	2940	155	< 0.4
K3153	EPL7345	484462	7648652	69.9	1000	958	1940	112	< 0.4
K3154	EPL7345	484458	7648680	31	1500	592	1320	79.7	< 0.4
K3155	EPL7345	484487	7648636	49.6	1540	922	824	94.8	0.5
K3156	EPL7345	484510	7648676	65.6	481	961	1010	168	< 0.4
K3157	EPL7345	484505	7648682	76.7	872	1080	1330	115	0.4
K3159	EPL7345	484969	7649658	188	68	1360	2430	234	2.1
K3160	EPL7345	484971	7649625	199	222	1390	1430	219	1.9
K3161	EPL7345	484979	7649593	130	131	1460	421	180	0.7
K3162	EPL7345	484996	7649574	120	620	1150	2040	189	0.7
K3163	EPL7345	484971	7649474	151	1220	1430	1040	175	< 0.4
K3164	EPL7345	484916	7649366	151	1830	2260	430	122	0.9
K3165	EPL7345	484909	7649302	111	1250	1190	1730	165	0.5
K3166	EPL7345	484894	7649280	74.9	1450	960	1580	197	0.7
K3167	EPL7345	484874	7649215	86.3	798	1080	1840	180	< 0.4
K3168	EPL7345	484900	7649200	137	25	1480	341	98	0.5
K3169	EPL7345	484931	7649165	292	2660	2530	1790	918	< 0.4
K3170	EPL7345	484910	7649246	165	66	1840	296	143	5.5
K3001	EPL7345	484362	7652314	43.8	18	590	461	193	< 0.4
K3002	EPL7345	484145	7652199	52.1	61	228	97.4	78.5	7.5
К3003	EPL7345	484364	7652293	22.9	< 15	581	601	138	< 0.4
K3004	EPL7345	484271	7651970	57.7	29	800	552	269	1.2
К3005	EPL7345	484059	7651930	53.7	122	1740	227	63.4	< 0.4
К3006	EPL7345	483993	7651698	43.6	69	770	236	143	< 0.4
К3008	EPL7345	483947	7651626	82.6	197	1480	839	104	< 0.4
К3009	EPL7345	484041	7651433	31.9	31	430	194	98.8	0.5
K3010	EPL7345	483806	7651425	108	77	1110	163	238	< 0.4
K3011	EPL7345	483842	7651331	52.6	124	918	852	193	< 0.4

K3012	EPL7345	483875	7651318	15.7	230	714	210	57.7	< 0.4
K3013	EPL7345	483934	7651263	29.7	170	850	976	191	< 0.4
K3014	EPL7345	483929	7651180	45	126	1330	674	114	< 0.4
K3015	EPL7345	483870	7651160	40.9	1170	903	1510	104	0.6
K3016	EPL7345	483809	7651008	42.1	339	1220	716	120	< 0.4
K3017	EPL7345	483799	7651014	34.2	682	905	848	81.1	< 0.4
K3018	EPL7345	483766	7650942	23.9	913	716	711	65.8	< 0.4
K3019	EPL7345	483731	7650894	16.6	644	642	521	63.1	< 0.4
K3020	EPL7345	483703	7650869	12.8	665	560	596	81.1	< 0.4
K3022	EPL7345	483709	7650681	14.5	41	742	46.2	34	< 0.4
K3023	EPL7345	483637	7650694	19.4	487	1330	76.3	15.7	0.5
K3024	EPL7345	483589	7650701	28.2	139	552	1070	136	< 0.4
K3025	EPL7345	483521	7650519	12.3	2160	640	113	64.4	< 0.4
K3026	EPL7345	483480	7650375	54.9	904	1080	344	151	< 0.4
K3027	EPL7345	483411	7650273	75	1060	1920	282	114	< 0.4
K3028	EPL7345	483350	7650248	27.4	208	686	234	121	< 0.4
K3029	EPL7345	483332	7650217	44	140	833	310	190	< 0.4
K3030	EPL7345	483438	7650081	19.5	124	628	410	109	< 0.4
K3031	EPL7345	483364	7650087	9.5	100	426	41.6	43.9	< 0.4
K3032	EPL7345	483304	7650084	28.4	258	929	138	41.6	< 0.4
K3033	EPL7345	483253	7650083	28.7	95	643	149	120	< 0.4
К3034	EPL7345	483232	7650004	46	134	1390	685	52.1	< 0.4
K3035	EPL7345	483310	7650973	58.4	52	1060	359	101	< 0.4
K3036	EPL7345	483332	7650988	52.4	46	990	568	148	< 0.4
K3037	EPL7345	483294	7650910	37.9	42	764	130	184	< 0.4
K3038	EPL7345	483283	7650823	31	56	747	239	112	< 0.4
К3039	EPL7345	483282	7650771	62.6	60	1620	660	213	< 0.4
K3040	EPL7345	483276	7650685	50.3	379	1110	835	133	0.8

K3042	EPL7345	483273	7650616	34.5	168	572	597	219	< 0.4
K3043	EPL7345	483249	7650508	28.4	291	539	413	169	< 0.4
K3044	EPL7345	483207	7650404	22.2	106	732	229	71.9	0.6
K3045	EPL7345	483268	7650408	25.5	439	833	801	114	< 0.4
K3046	EPL7345	483295	7650385	30.6	265	722	449	101	< 0.4
K3047	EPL7345	483005	7650314	15	66	533	608	41.9	0.5
K3048	EPL7345	483079	7650049	62.9	88	1050	3150	294	< 0.4
K3049	EPL7345	483081	7650012	242	79	2460	1330	170	< 0.4
K3050	EPL7345	483169	7649821	49.5	88	919	545	80.4	< 0.4
K3051	EPL7345	483209	7649871	61.7	51	976	749	204	< 0.4
K3052	EPL7345	484307	7652046	54.1	23	767	720	246	0.9
K3053	EPL7345	484050	7651846	60.2	66	846	191	149	< 0.4
K3056	EPL7345	483951	7651329	21.6	472	577	435	94.3	< 0.4
K3057	EPL7345	483744	7650823	29.2	196	691	788	129	< 0.4
K3058	EPL7345	483332	7650339	34.7	75	714	817	121	< 0.4
K3059	EPL7345	483643	7650648	60	531	857	251	71.5	< 0.4
K3061	EPL7345	483023	7650174	43.5	747	1310	7260	188	0.6
K3062	EPL7345	483483	7649890	15.8	138	839	159	28	0.6
K3063	EPL7345	483327	7649942	15.4	599	799	160	25	< 0.4
K3064	EPL7345	483654	7650697	67.9	613	1520	1320	130	< 0.4
К3066	EPL7345	484355	7652138	38.2	62	708	842	255	0.5
K3067	EPL7345	484392	7652228	52.5	219	982	1660	177	0.5
K3068	EPL7345	484314	7652443	44.5	41	788	704	112	< 0.4
K3070	EPL7345	483926	7651849	3.2	22	14.6	11.8	1	6
K3071	EPL7345	483596	7651393	1.5	< 15	13.6	4.1	0.8	1.6
K3072	EPL7345	483830	7651283	26.7	52	503	830	139	< 0.4
K3073	EPL7345	483812	7650970	30.1	34	576	137	133	< 0.4
K3074	EPL7345	483768	7651070	1.4	24	6.2	6	0.8	1.5

K3075	EPL7345	483771	7651071	31.3	31	529	379	76.3	0.6
K3076	EPL7345	483296	7650503	30.2	112	1010	341	39	< 0.4
K3077	EPL7345	483740	7650787	28.7	114	585	369	127	< 0.4
K3078	EPL7345	483406	7650334	22.7	172	623	89.6	56.1	0.5
K3079	EPL7345	483092	7650359	1.9	< 15	5.8	3.6	0.6	0.5
K3081	EPL7345	483329	7650056	34.6	94	687	250	92.2	0.4
K3082	EPL7345	483408	7650082	33.7	224	1030	390	147	< 0.4
K3083	EPL7345	483330	7649752	36.7	1180	1050	1790	174	0.4
K3084	EPL7345	483382	7649766	15	696	457	377	58.5	< 0.4
K3085	EPL7345	483367	7649732	45.9	2500	1210	1260	523	< 0.4
K3086	EPL7345	483346	7649673	28.6	240	754	2470	130	1.1
K3087	EPL7345	483314	7649664	25	597	625	822	83.9	< 0.4
K3088	EPL7345	483301	7649619	41.8	1680	1140	386	155	0.8
K3089	EPL7345	483333	7649837	18.8	177	561	329	93.6	0.5
K3090	EPL7345	483308	7649764	31.4	117	634	165	71.7	0.6
K3091	EPL7345	483288	7649693	28.8	163	646	322	107	0.7

