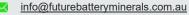
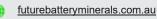


27 May 2025

ASX ANNOUNCEMENT


Competent Person Statement

Future Battery Minerals Ltd (ASX: FBM) (FBM or the Company) advises that a Competent Person Statement has been added on page 7 of the ASX announcement released on 27 May 2025, titled "Key Gold Prospects Identified at Miriam".


This announcement has been authorised for release by Managing Director of the Company.

For further information visit www.futurebatteryminerals.com or contact:

Silfia Morton **Company Secretary** E: info@futurebatteryminerals.com.au

27 May 2025

ASX ANNOUNCEMENT

KEY GOLD PROSPECTS IDENTIFIED AT MIRIAM

Highlights

- Historical drilling data review completed on recently consolidated Miriam Project, following FBM's acquisition of the gold and base metal rights (plus residual lithium rights).
- Review highlights consistent and continuous gold mineralisation previously intersected over a strike of more than 600m at the Forrest prospect.
- Drilling at Forrest has intercepted shallow gold believed to be regolith and fresh rock hosted; significant intercepts include:
 - 12m @ 2.09g/t from Au from 60m (MRC97-15)
 - 10m @ 2.51g/t from Au from 30m (FGA002)
 - 10m @ 2.09 g/t Au from 30m and 4m @ 4.86 g/t Au from 73m (MRC97-5)
 - 5m @ 7.35 g/t Au from 70m (MRC97-25)
 - 8m @ 1.63 g/t Au from 28m (MRC97-17)
 - 9m @ 1.07 g/t Au from 51m (MRC97-12)
- The gold mineralisation at Forrest remains open at depth and to the north-east and southwest; these zones represent priority targets for initial follow-up Miriam drilling.
- Two further gold occurrences also identified at Forrest South (16m @ 0.94g/t Au from 44m) and Jungle (4m @ 3.37g/t Au from 97m).
- Litho-geophysics and geochemistry review on Miriam in progress.
- Initial drill program at Miriam set to commence in July 2025, with RC drilling to be focussed on prospective gold targets (including Forrest).
- Fully permitted to conduct planned exploration and drilling activities at the Miriam Project.
- FBM well-funded to undertake all planned exploration activities through 2025 and beyond with a strong cash balance of A\$7.4 million and zero debt (as at 31 March 2025).

Future Battery Minerals Ltd (ASX: FBM) (FBM or the Company) is pleased to advise that it has completed its review of available historical geological and drilling data for its recently consolidated and now 100%-owned Miriam Project, which is located in the W.A. Goldfields region of Western Australia.

FBM Managing Director and CEO, Nick Rathjen, commented:

"The results of this initial gold-focussed geological and drill data review of Miriam are highly encouraging. We now plan to overlay these identified zones with the outcomes from the geophysical and geochemical data review currently in progress. This process will allow us to refine our initial pipeline of key gold targets, in preparation for targeted maiden drilling of these targets commencing in July.

"We are excited to be approaching our first drilling program at Miriam. The project is an undeniably attractive exploration opportunity, offering structurally controlled gold prospectivity (along with lithium opportunity) matched with multiple potential commercialisation pathways given its proximity to established process facilities for both gold and lithium."

futurebatteryminerals.com.au

Miriam prospectivity overview

The Miriam Project tenure covers a region of the Coolgardie Greenstone Belt overlying a suite of mafic and ultramafic units along with felsic intrusives. Miriam also overlies formations and structural trends that host multiple nearby gold deposits, including Horizon Minerals' Burbanks (466 koz @ 2.4 g/t Au), Beacon Minerals' McPhersons Reward (132 koz @ 1.2 g/t Au) and Focus Minerals' Coolgardie Operations (2.7 Moz @ 1.8 g/t Au).1

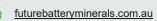



Figure 1: Regional Map - Coolgardie Gold & Lithium Projects (W.A. Goldfields)

Evidence of historic artisanal mining is readily apparent within and outlying the Miriam Project tenure from when the region was subject to intense gold prospecting following initial discovery in the 1890's. It was within these historic shafts and workings where spodumene bearing pegmatites were first observed in 2022.

While modern exploration is limited within the Miriam Project tenure area, multiple gold occurrences have been recorded and are available on the Mines and Mineral Deposits Public Database (MINEDEX), provided by the Department of Mines and Industry Regulation and Safety (DEMIRS). Multiple prospective gold occurrences were previously identified within the Miriam Project tenure including Forest, Goroke and Burbanks Monarch.

¹ Bullabulling refer to Minerals 260 ASX Announcement dated 14th January 2025, MacPhersons refer to Beacon Minerals ASX Announcement dated 6th November 2024, Three Mile Hill refer to Focus Minerals ASX Announcement dated 1st December 2023. Refer to Horizon Minerals Reserves & Resources

Any future gold discoveries at the Miriam Project will benefit from exceptional commercialisation optionality with several operating gold mills in close proximity to the area. The Burbanks Mine, which is located only 1 km north of the Miriam Project tenure, contains a mill and processing plant owned by Auric Mining. The Greenfields Mill, owned and operated by FMR Investments, and the Three Mile Hill Mill, owned and operated by Focus Minerals, are approximately 16 kilometres by a sealed road to the north-east.

Key gold prospects identified from review of historical drilling results

Following its recent ownership consolidation, FBM has completed a geology and drilling data review of the Miriam Project. This review included the collation of all historical drill hole data for the tenure and validation of assay methods to better understand the reported gold occurrences in the area.

While the region was subjected to artisanal mining and prospecting following discovery in the 1890's, the review highlighted that no drilling had occurred since the early 2000's. Previous drilling also appears to have been relatively limited to the Forrest prospect (gold) and the Miriam prospect (nickel), also noting that many of the holes drilled at the Miriam prospect were not assayed for gold.

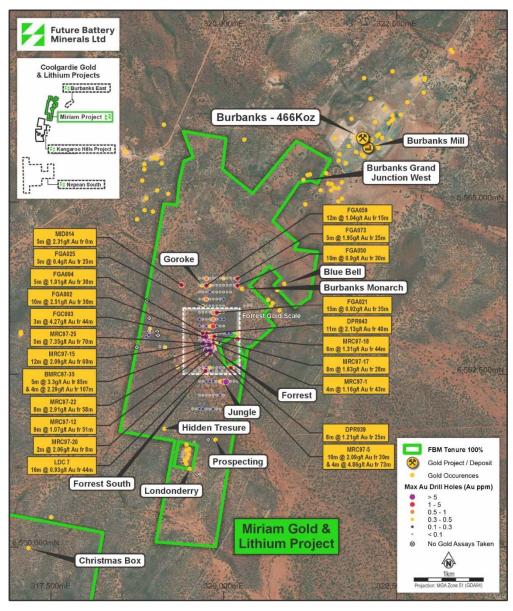


Figure 2: Miriam Project Plan View with Historical Gold Intercepts Marked

Forrest prospect

At Forrest, drilling during the late 1990's discovered and intersected multiple flat lying lodes of gold mineralisation within regolith and bed rock. Mineralisation is consistent over a strike length greater than 600m highlighting near surface intersections. Significant intersections returned from this drilling included:

- 12m @ 2.09g/t from Au from 60m (MRC97-15)
- 10m @ 2.51g/t from Au from 30m (FGA002)
- 10m @ 2.09 g/t Au from 30m and 4m @ 4.86 g/t Au from 73m (MRC97-5)
- 5m @ 7.35 g/t Au from 70m (MRC97-25)
- 8m @ 1.63 g/t Au from 28m (MRC97-17)
- 9m @ 1.07 g/t Au from 51m (MRC97-12)

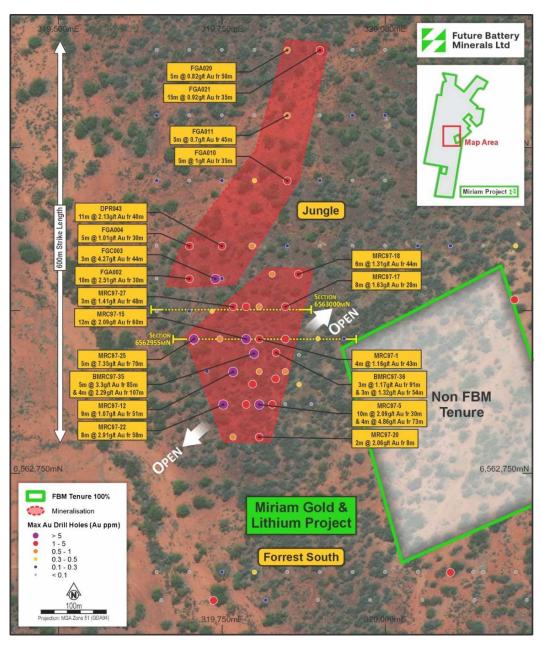
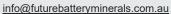



Figure 3: Forrest Prospect Plan View

Drilling was conducted on 40m x 60m grid with many holes only testing down to a planned depth of 80m. Extensional air core drilling completed in the early 2000's also only reached depths of approximately 60m on average.

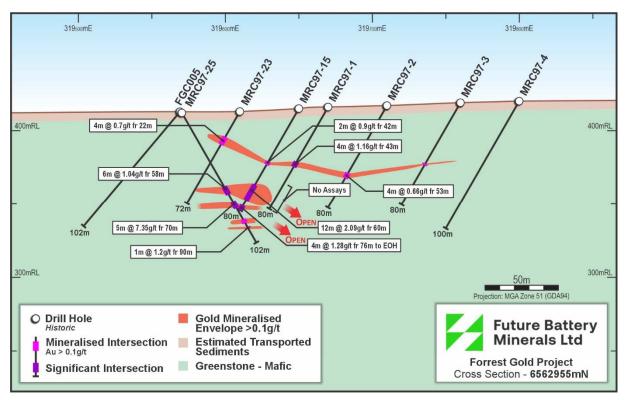


Figure 4: Cros Section 1 - Line 6562955

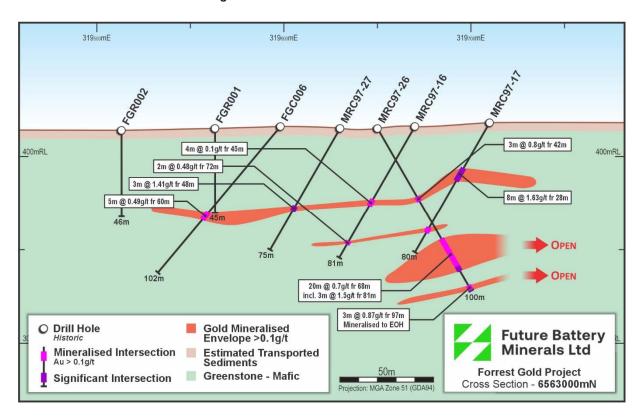


Figure 5: Cros Section 2 - Line 6563000

5

Geological logs collected have limited recorded details making it difficult to determine key information such as depth of oxidation or rock textures and structures.

FBM has identified multiple areas where the Forrest system may remain open, particularly to the North East and South West. These zones are planned to be tested as part of its maiden Miriam drilling programme. This programme is also planned to provide confirmation on previous intercepts, including delivering key geological information required for a potential Mineral Resource estimate.

Forrest South and Jungle prospects

Wide spaced drilling conducted to the south of Forrest has also intercepted two additional prospective zones known as Forrest South and Jungle. The intercepts remain open and further drilling is required to understand the potential scale of mineralisation, however these prospects represents opportunities for further growth. Key intercepts include;

- 16m @ 0.93g/t Au from 44m (LDC7) Forrest South
- 4m @ 3.77g/t Au from 94m (FGC001) Jungle
- 10m @ 0.62g/t from 30m (DPR022) Jungle

Goroke and Burbanks Monarch prospects

FBM has also investigated other regional occurrences such as Goroke (5m @ 2.3 g/t Au from surface and 12m @ 1.04g/t from 15m) and Burbanks Monarch (10m @ 0.9 g/t Au from 30m). Only limited drilling has tested these occurrences and more work is required to better evaluate their potential. Key intercepts from Goroke and Burbanks Monarch Include;

- 5m @ 2.3 g/t Au from surface (MID014) Goroke
- 12m @ 1.04g/t Au from 15m (FGA059) Goroke
- 5m @ 1.94g/t Au from 25m (FGA073) Burbanks Monarch
- 10m @ 0.90g/t from 30m (FGA050) Burbanks Monarch

Other prospect zones

Burbanks Grand Junction in the north FBM located historic drilling data, with further confirmation work required to evaluate this prospect.

To the south of the Forrest and Forrest South prospects, there is limited recorded recent drilling and gold assay data. FBM plans to evaluate this area through surface geochemistry and geophysical interpretation.

Initial Miriam drilling programme set to commence in July

FBM is fully permitted to conduct exploration and drilling activities over the Miriam Project tenure, with an approved Conservation Management Plan and granted drilling Program of Work (PoW) currently in place. Most of the Miriam tenure has already been surveyed by the relevant Native Title Party representative, meaning FBM can rapidly advance towards drill testing of any priority drill targets.

A litho-geophysical and geochemical review of the Miriam Project has commenced in order to better define the key structural gold targets that have been identified. Following this work, an initial RC drill programme designed to test these prospective gold targets is planned to commence in July 2025.

This announcement has been authorised for release by the Board of Directors of the Company.

-END-

For further information visit www.futurebatteryminerals.com or contact:

Nicholas Rathjen

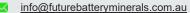
CEO & Managing Director

Technical Director

E: nrathjen@futurebatteryminerals.com.au

E: rcox@futurebatteryminerals.com.au

Competent Persons Statement


The information in this announcement that relates to exploration results is based on and fairly represents information compiled by Mr Robin Cox BSc (E.Geol), a Competent Person, who is a Member of the Australian Institute of Mining and Metallurgy. Mr Cox is the Company's Chief Geologist and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Cox consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Future Battery Minerals Limited's planned exploration programme and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential", "should," and similar expressions are forward-looking statements. Although Future Battery Minerals Limited believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties, and no assurance can be given that actual results will be consistent with these forward-looking statements.

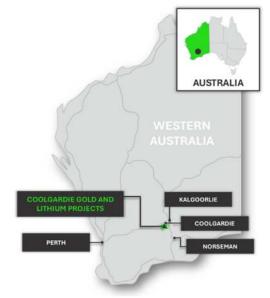
Previously Reported Results

The information in this announcement that relates to Exploration Results is extracted from the ASX announcements (Original Announcements), as referenced, which are available at www.futurebatteryminerals.com.au. FBM confirms that it is not aware of any new information or data that materially affects the information included in the Original Announcements and, that all material assumptions and technical parameters underpinning the estimates in the Original Announcements continue to apply and have not materially changed. FBM confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the original announcement.

futurebatteryminerals.com.au

About Future Battery Minerals (ASX: FBM)

THE BUSINESS: Gold and lithium exploration and development


Future Battery Minerals (ASX: FBM) is an exploration and development company focused on rapidly advancing its world-class gold and lithium projects in the Eastern Goldfields of Western Australia.

THE LOCATION: Infrastructure-rich project setting

The Eastern W.A. Goldfields is an outstanding location in which to explore for, build, and operate gold and lithium mines. It is a longestablished mining province with all the accompanying benefits, including all-year land access, skilled labour, mining services and infrastructure.

We are positioned just 15km south of the mining hub of Coolgardie (via sealed road), approximately 370km to the port of Esperance and approximately 550km to Perth via road and rail. We are proximal to multiple gold and lithium mining and processing operations and development projects of substantial scale.

This available range of potential commercialisation options, including standalone development, positions us well to monetise current and future success.

THE TEAM: Proven value generators

Our carefully assembled team has an extensive track record of exploration success, project stewardship, development expertise and operating excellence that has repeatedly resulted in the delivery of substantial shareholder value: Nick Rathjen (MD), Robin Cox (Technical Director), Nev Power (Chairman), Rob Waugh (NED).

THE CAPACITY: Balance sheet strength and runway

We are a business and team that is resolutely focussed on the stewardship of our shareholders' capital and the astute application of this capital for maximal return. With a cash balance of A\$7.4 million and zero debt (as at 31 March 2025), we are well-funded to undertake our planned exploration and evaluation work programs across our projects over the next 18-24 months.

in CA

Future Battery Minerals Ltd

Suite 10, 38 Colin St, West Perth WA 6005

Appendix 1 - Drill Hole Results

Table 1 - Drill Hole Significant Intercepts >0.1g/t (Intervals represented as down dole length)

Hole Id	From	To	Interval	Au (g/t)
BMRC97-32	0	2	2	0.2
BMRC97-32	36	37	1	0.15
BMRC97-32	39	40	1	0.43
BMRC97-33	54	55	1	0.3
BMRC97-33	61	65	4	0.64
BMRC97-33	74	75	1	0.16
BMRC97-33	98	100	2	0.3
BMRC97-34	7	8	1	0.28
BMRC97-34	9	10	1	1.05
BMRC97-35	20	25	5	0.15
BMRC97-35	35	36	1	1.69
BMRC97-35	85	86	1	1.23
BMRC97-35	87	91	4	3.89
BMRC97-35	92	95	3	0.18
BMRC97-35	107	111	4	2.29
BMRC97-36	40	42	2	0.14
BMRC97-36	44	45	1	0.14
BMRC97-36	53	59	6	0.79
BMRC97-36	60	65	5	0.32
BMRC97-36	70	75	5	0.13
BMRC97-36	91	94	3	1.17
DPR003	25	30	5	0.17
DPR006	25	30	5	0.21
DPR006	40	55	15	0.13
DPR007	30	35	5	0.23
DPR016	30	35	5	0.12
DPR016	45	50	5	0.12
DPR022	30	40	10	0.62
DPR023	20	25	5	0.17
DPR023	45	50	5	0.32
DPR027	25	30	5	0.13
DPR028	30	35	5	0.22
DPR029	35	36	1	0.11
DPR032	30	35	5	0.1
DPR033	35	40	5	0.41
DPR033	45	50	5	0.13
DPR033	60	65	5	0.35
DPR039	25	33	8	1.21
DPR042	20	23	3	0.2
DPR043	40	51	11	2.13
DPR045	30	45	15	0.19
DPR045	50	60	10	0.17
DPR049	0	5	5	0.23
DPR050	0	5	5	0.22

futurebatteryminerals.com.au

DPR052	25	30	5	0.14
DPR052	35	40	5	0.5
DVC005	41	43	2	0.86
DVC005	58	59	1	0.19
DVC005	62	63	1	0.19
FGA002	30	40	10	2.51
FGA003	45	50	5	0.14
FGA004	30	35	5	1.01
FGA006	35	40	5	0.19
FGA008	45	50	5	0.13
FGA009	30	35	5	0.33
FGA009	45	50	5	0.19
FGA010	25	30	5	0.19
FGA010	35	50	15	0.23
FGA010 FGA011	45	50	5	0.54
FGA011	60	63	3	0.7
			4	
FGA015	65	69 55	•	0.1
FGA020	40	55 55	15	0.39
FGA021	35	55 20	20	0.74
FGA025	25	36	11	0.26
FGA032	45	50	5	0.14
FGA037	20	35	15	0.47
FGA043	35	44	9	0.18
FGA050	30	40	10	0.9
FGA050	50	55 70	5	0.12
FGA050	70	76	6	0.26
FGA058	25	30	5	0.3
FGA059	0	5	5	0.13
FGA059	15	27	12	1.04
FGA064	0	5	5	0.58
FGA069	35	39	4	0.43
FGA073	0	5	5	0.11
FGA073	25	30	5	1.95
FGA073	35	70 	35	0.29
FGC001	40	55	15	0.39
FGC001	65	70	5	0.11
FGC001	90	91	1	0.12
FGC001	94	98	4	3.77
FGC003	44	47	3	4.27
FGC003	48	49	1	0.16
FGC003	50	51	1	0.68
FGC004	45	55 	10	0.25
FGC004	60	75	15	0.31
FGC004	80	85	5	0.18
FGC006	60	65	5	0.49
FGR001	20	30	10	0.19
FGR001	40	45	5	0.16
FGR003	35	40	5	0.12
FGR006	35	40	5	0.13

FGR006	50	55	5	0.22
FGR007	40	45	5	0.28
LDC 7	44	60	16	0.93
MID012	150	155	5	0.4
MID012	165	170	5	0.19
MID012	268.9	269.9	1	0.43
MID013	0	5	5	2.31
MID014	211.6	212.6	1	0.13
MID014	214.6	215.6	1	0.13
MRC96-3	188	191	3	0.12
MRC90-3	38	40	2	0.82
			5	
MRC97-1	43	48		0.97
MRC97-1	56	60	4	0.14
MRC97-11	12	13	1	1.41
MRC97-11	14	15	1	0.14
MRC97-11	36	39	3	0.43
MRC97-12	34	37	3	0.39
MRC97-12	39	40	1	0.18
MRC97-12	46	50	4	0.22
MRC97-12	51	60	9	1.07
MRC97-13	36	39	3	0.28
MRC97-13	48	51	3	0.26
MRC97-13	56	60	4	0.16
MRC97-14	61	62	1	0.37
MRC97-14	63	75	12	0.2
MRC97-14	76	80	4	0.38
MRC97-15	42	44	2	0.9
MRC97-15	60	72	12	2.09
MRC97-15	74	80	6	0.94
MRC97-16	45	49	4	0.1
MRC97-16	72	74	2	0.48
MRC97-16	75	77	2	0.12
MRC97-17	28	36	8	1.63
MRC97-17	37	38	1	0.17
MRC97-17	39	43	4	0.57
MRC97-17	52	53	1	1.3
MRC97-17	54	59	5	0.41
MRC97-17	60	76	16	0.23
MRC97-18	44	50	6	1.31
MRC97-18	52	53	1	1.03
MRC97-18	57	62	5	0.4
MRC97-18	68	80	12	0.95
MRC97-19	0	4	4	0.33
MRC97-19	24	28	4	0.11
MRC97-19	36	42	6	0.11
MRC97-19 MRC97-19	43	42	4	0.28
MRC97-19 MRC97-2	33	35	2	0.43
MRC97-2 MRC97-2	40	35 44		
			<u>4</u> 7	0.11
MRC97-2	53	60	/	0.48

MRC97-2	76	80	4	0.11
MRC97-20	8	10	2	
	40			2.06
MRC97-21		44	4	0.11
MRC97-21	45	52	7	0.25
MRC97-21	72	84	12	0.53
MRC97-22	43	44	1	0.2
MRC97-22	45	46	1	0.23
MRC97-22	47	49	2	0.35
MRC97-22	50	56	6	0.51
MRC97-22	58	66	8	2.91
MRC97-22	68	75	7	0.5
MRC97-23	20	26	6	0.62
MRC97-23	32	34	2	0.34
MRC97-23	35	36	1	0.14
MRC97-23	44	45	1	0.24
MRC97-24	56	60	4	0.15
MRC97-25	45	48	3	0.31
MRC97-25	58	64	6	1.04
MRC97-25	70	73	3	12
MRC97-25	74	76	2	0.4
MRC97-25	85	86	1	0.58
MRC97-25	90	91	1	1.2
MRC97-26	30	32	2	0.63
MRC97-26	34	35	1	0.16
MRC97-26	37	38	1	0.36
MRC97-26	42	45	3	0.8
MRC97-26	46	48	2	0.15
MRC97-26	60	61	1	0.34
MRC97-26	62	67	5	0.25
MRC97-26	68	71	3	0.45
MRC97-26	72	92	20	0.65
MRC97-26	95	96	1	0.48
MRC97-26	97	100	3	0.87
MRC97-27	28	32	4	0.11
MRC97-27	48	51	3	1.41
MRC97-27	52	64	12	0.51
MRC97-27	66	67	1	1.02
MRC97-28	36	40	4	0.11
MRC97-28	60	63	3	0.11
MRC97-28	64	65	1	0.15
MRC97-29	80	84	4	0.13
MRC97-29	47	50	3	0.14
MRC97-31	20	44	24	0.23
MRC97-31 MRC97-31		52	4	
	48		-	0.1
MRC97-31	60 06	68	8	0.4
MRC97-31	96	97	1	0.26
MRC97-4	40	44	4	0.1
MRC97-5	24	27	3	0.15
MRC97-5	28	29	1	0.18

MRC97-5	30	40	10	2.09
MRC97-5	43	44	1	0.19
MRC97-5	46	54	8	0.37
MRC97-5	55	58	3	0.29
MRC97-5	59	60	1	0.41
MRC97-5	73	75	2	9.53
MRC97-5	76	77	1	0.38

Table 2 – Drill Hole Location Information (UTM MGA 94 Zone 51)

								Max Down Hole Au
Hole_id	Hole_Type	Max_Depth	Easting	Northing	RL	Dip	Azi	Assay (g/t)
LDC 1	RC	9	320217	6562557	400	-90	0	0.004
LDC 2	RC	34	320137	6562557	400	-90	0	0.022
LDC 3	RC	40	320057	6562557	400	-90	0	0.005
LDC 4	RC	71	319977	6562557	400	-90	0	0.034
LDC 5	RC	66	319897	6562557	400	-90	0	0.035
LDC 6	RC	48	319817	6562557	400	-90	0	0.111
LDC 7	RC	63	319737	6562557	400	-90	0	2.518
LDC 8	RC	65	319657	6562557	400	-90	0	0.032
LDC 9	RC	39	319577	6562557	400	-90	0	0.014
MRC96-1	RC	174	319036	6563072	416	-60	278	
MRC96-2	RC	238	319051	6563067	416	-70	273	
MRC96-3	RC	215	318935	6563165	420	-70	100	0.31
MRC96-4	RC	115.7	318922	6563132	418	-60	100	
MRC96-5	RC	160	319039	6563125	416	-60	300	
MRC97-1	RC	80	319807	6562957	416	-60	270	1.57
MRC97-								
10	RC	80	319657	6561057	403	-60	270	0.03
MRC97-								
11	RC	75	319787	6562857	413	-60	270	1.41
MRC97-	DO.	00	040707	0500007	44.4	00	070	F 4
12 MDC07	RC	80	319767	6562907	414	-60	270	5.1
MRC97- 13	RC	80	319807	6562907	415	-60	270	0.5
MRC97-	TIC .		313007	0302307	413	-00	270	0.5
14	RC	80	319847	6562907	416	-60	270	0.88
MRC97-								
15	RC	80	319787	6562957	415	-60	270	10.5
MRC97-								
16	RC	81	319807	6563007	416	-60	270	0.51
MRC97-					_			
17	RC	80	319847	6563007	418	-60	270	3.61
MRC97-	DC.	00	210067	6562057	410	60	270	2.00
18 MRC97-	RC	80	319867	6563057	418	-60	270	3.08
19	RC	72	319767	6562807	411	-60	270	0.97

Suite 10, 38 Colin St, West Perth WA 6005

MRC97-2	RC	80	319847	6562957	417	-60	270	1.21
MRC97-								
20	RC	80	319807	6562807	414	-60	270	3.87
MRC97-								
21	RC	112	319827	6562857	415	-60	270	2.34
MRC97-	50	0.4	040750	0500057	440	00	00	04.45
22	RC	84	319752	6562857	412	-60	90	21.45
MRC97- 23	RC	70	210747	GEGOOE7	413	60	270	0.00
MRC97-	RC .	72	319747	6562957	413	-60	270	0.99
24	RC	76	319727	6562907	413	-60	270	0.15
MRC97-	110	70	313727	0302307	410	-00	270	0.13
25	RC	102	319707	6562957	412	-60	90	18.8
MRC97-	110	102	010707	0002007	712		00	10.0
26	RC	100	319787	6563007	415	-60	90	2.02
MRC97-								
27	RC	75	319767	6563007	415	-60	268	2.64
MRC97-								
28	RC	114	318884	6563044	419	-60	102	0.15
MRC97-								
29	RC	160	318919	6563072	418	-60	102	0.14
MRC97-3	RC	80	319897	6562957	419	-60	270	0.33
MRC97-								
30	RC	127	318931	6563113	418	-60	102	0.03
MRC97-								
31	RC	114	319827	6563057	418	-60	270	0.94
MRC97-								
32	RC	101	319647	6564757	433	-60	85	0.03
MRC97-								
33	RC	102	319597	6564858	434	-60	87	0.05
MRC97-4	RC	100	319937	6562957	420	-60	270	0.1
MRC97-5	RC	80	319807	6562857	414	-60	270	18.24
MRC97-6	RC	80	319847	6562857	416	-60	270	0.08
MRC97-7	RC	80	319887	6562857	416	-60	270	0.02
MRC97-8	RC	80	319777	6561557	412	-60	270	
MRC97-9	RC	80	319617	6561057	403	-60	270	
BMRC97-								
32	RC	90	319868	6562887	413	-60	270	0.43
BMRC97-								
33	RC	110	319832	6562896	413	-60	270	1.77
BMRC97-								
34	RC	123	319797	6562888	413	-60	270	1.05
BMRC97-								
35	RC	125	319799	6562935	413	-60	270	10.1
BMRC97-								
36	RC	110	319833	6562936	413	-60	270	2.69
BMRC97-	DO		04000	050000	4		2=2	
37	RC	90	319868	6562932	413	-60	270	-0.01
MID008	DDH	300.9	318926	6563317	412.09	-55	90	

futurebatteryminerals.com.au

MID010	DDH	396.7	318747	6562897	413.3	-52	90	
MID011	DDH	355	318894	6563577	416.61	-52	90	
MID012	DDH	549.3	319336	6562607	405.05	-60.21	268.99	0.4
MID013	DDH	467.7	319154	6562897	408.5	-60.52	272.15	0.43
MID014	DDH	297.5	319390	6563807	408.71	-59.63	284.97	2.31
MID015	RC	300	319299	6562763	405.32	-59.6	279.59	0.03
DPR001	RAB	39	319950	6562000	404	-90	0	0.019
DPR002	RAB	43	319900	6562000	405	-90	0	0.009
DPR003	RAB	55	319850	6562000	407	-90	0	0.173
DPR004	RAB	63	319800	6562000	408	-90	0	0.032
DPR005	RAB	55	319750	6562000	409	-90	0	0.052
DPR006	RAB	58	319700	6562000	411	-90	0	0.212
DPR007	RAB	36	319650	6562000	412	-90	0	0.227
DPR008	RAB	42	319600	6562000	413	-90	0	0.026
DPR009	RAB	45	319550	6562000	413	-90	0	0.008
DPR010	RAB	42	319650	6562200	411	-90	0	0.005
DPR011	RAB	26	319700	6562200	409	-90	0	0.01
DPR012	RAB	60	319750	6562200	407	-90	0	0.021
DPR013	RAB	60	319800	6562200	406	-90	0	0.042
DPR014	RAB	38	319850	6562200	404	-90	0	0.012
DPR015	RAB	41	319900	6562200	404	-90	0	0.052
DPR016	RAB	60	319950	6562200	406	-90	0	0.122
DPR017	RAB	66	320000	6562200	406	-90	0	0.032
DPR018	RAB	39	320200	6562400	415	-90	0	0.028
DPR019	RAB	31	320150	6562400	414	-90	0	0.069
DPR020	RAB	44	320100	6562400	413	-90	0	0.036
DPR021	RAB	40	320050	6562400	412	-90	0	0.041
DPR022	RAB	48	320000	6562400	409	-90	0	1.1
DPR023	RAB	72	319950	6562400	406	-90	0	0.318
DPR024	RAB	27	319895	6562400	407	-90	0	0.01
DPR025	RAB	42	319650	6562400	409	-90	0	0.008
DPR026	RAB	48	319700	6562400	407	-90	0	0.09
DPR027	RAB	52	319750	6562400	407	-90	0	0.129
DPR028	RAB	60	319800	6562400	406	-90	0	0.223
DPR029	RAB	39	319850	6562400	406	-90	0	0.105
DPR030	RAB	48	319650	6562600	408	-90	0	0.015
DPR031	RAB	48	319700	6562600	408	-90	0	0.038
DPR032	RAB	50	319750	6562600	409	-90	0	0.104
DPR033	RAB	84	319800	6562600	410	-90	0	0.41
DPR034	RAB	60	319850	6562600	411	-90	0	0.035
DPR035	RAB	69	319900	6562600	410	-90	0	0.049
DPR036	RAB	57	319950	6562600	412	-90	0	0.023
DPR037	RAB	51	320000	6562600	412	-90	0	0.072
DPR038	RAB	21	320050	6562600	411	-90	0	0.015
DPR039	RAB	33	320100	6562600	411	-90	0	2.3

DPR040	RAB	22	320150	6562600	413	-90	0	0.018
DPR041	RAB	23	320200	6562600	414	-90	0	0.013
DPR042	RAB	23	320250	6562600	416	-90	0	0.197
DPR043	RAB	51	319750	6563100	416	-90	0	3.12
DPR044	RAB	37	319800	6563100	417	-90	0	0.06
DPR045	RAB	60	319850	6563100	419	-90	0	0.233
DPR046	RAB	66	319900	6563100	420	-90	0	0.037
DPR047	RAB	36	319950	6563100	421	-90	0	0.024
DPR048	RAB	57	320000	6563100	422	-90	0	0.066
DPR049	RAB	63	320050	6563100	421	-90	0	0.227
DPR050	RAB	56	320100	6563100	425	-90	0	0.216
DPR051	RAB	63	320150	6563100	425	-90	0	0.03
DPR052	RAB	46	320200	6563100	424	-90	0	0.496
DPR053	RAB	4	320400	6563500	427	-90	0	0.004
DPR054	RAB	3	320350	6563500	427	-90	0	0.031
DPR055	RAB	12	320300	6563500	428	-90	0	0.031
DVC005	RC	84	320198	6563018	409.7	-50	270	1.38
MIC001	RC	290	319078	6562904	411.5	-65	285	0.03
FGA001	AC	48	319650	6563050	415	-90	0	0.05
FGA002	AC	50	319700	6563050	415	-90	0	3.29
FGA003	AC	54	319750	6563050	416	-90	0	0.14
FGA004	AC	63	319700	6563100	415	-90	0	1.01
FGA005	AC	57	319650	6563100	414	-90	0	0.09
FGA006	AC	66	319650	6563200	413	-90	0	0.19
FGA007	AC	53	319700	6563200	414	-90	0	0.01
FGA008	AC	66	319750	6563200	415	-90	0	0.1
FGA009	AC	55	319800	6563200	415	-90	0	0.33
FGA010	AC	63	319850	6563200	416	-90	0	1
FGA011	AC	63	319850	6563300	416	-90	0	0.7
FGA012	AC	42	319800	6563300	416	-90	0	0.01
FGA013	AC	69	319750	6563300	417	-90	0	0.08
FGA014	AC	33	319700	6563300	418	-90	0	0.02
FGA015	AC	69	319650	6563300	417	-90	0	0.1
FGA016	AC	34	319650	6563400	418	-90	0	0.02
FGA017	AC	33	319700	6563400	420	-90	0	0.02
FGA018	AC	36	319750	6563400	420	-90	0	0.01
FGA019	AC	32	319800	6563400	416	-90	0	0.01
FGA020	AC	60	319850	6563400	420	-90	0	0.82
FGA021	AC	57	319900	6563400	420	-90	0	1.39
FGA022	AC	65	319950	6563400	420	-90	0	0.02
FGA023	AC	66	320000	6563400	423	-90	0	0.01
FGA024	AC	33	319650	6563500	419	-90	0	0.01
FGA025	AC	36	319700	6563500	420	-90	0	0.4
FGA026	AC	26	319750	6563500	422	-90	0	0.01
FGA027	AC	14	319800	6563500	423	-90	0	0.01

info@futurebatteryminerals.com.au

FGA028	AC	68	319850	6563500	424	-90	0	0.01
FGA029	AC	45	319900	6563500	424	-90	0	0.01
FGA030	AC	49	319950	6563500	423	-90	0	0.02
FGA031	AC	58	320000	6563500	422	-90	0	0.01
FGA032	AC	61	320000	6563600	425	-90	0	0.14
FGA033	AC	52	319950	6563600	427	-90	0	0.03
FGA034	AC	47	319900	6563600	426	-90	0	0.02
FGA035	AC	59	319850	6563600	425	-90	0	0.04
FGA036	AC	31	319800	6563600	424	-90	0	0.01
FGA037	AC	40	319750	6563600	422	-90	0	0.9
FGA038	AC	27	319700	6563600	421	-90	0	0.05
FGA039	AC	30	319650	6563600	420	-90	0	0.01
FGA040	AC	30	319650	6563700	420	-90	0	0.02
FGA041	AC	33	319700	6563700	421	-90	0	0.06
FGA042	AC	45	319750	6563700	421	-90	0	0.07
FGA043	AC	44	319800	6563700	422	-90	0	0.22
FGA044	AC	10	319850	6563700	424	-90	0	0.03
FGA045	AC	56	319900	6563700	427	-90	0	0.06
FGA046	AC	37	319950	6563700	427	-90	0	0.02
FGA047	AC	52	320000	6563700	426	-90	0	0.02
FGA048	AC	54	320050	6563700	425	-90	0	0.01
FGA049	AC	66	320100	6563700	424	-90	0	0.01
FGA050	AC	76	320200	6563800	426	-90	0	1.48
FGA051	AC	53	320150	6563800	425	-90	0	0.04
FGA052	AC	57	320100	6563800	425	-90	0	0.03
FGA053	AC	47	320050	6563800	425	-90	0	0.02
FGA054	AC	57	320000	6563800	426	-90	0	0.03
FGA055	AC	35	319950	6563800	427	-90	0	0.03
FGA056	AC	45	319900	6563800	426	-90	0	0.02
FGA057	AC	8	319850	6563800	424	-90	0	0.01
FGA058	AC	45	319800	6563800	424	-90	0	0.3
FGA059	AC	27	319750	6563800	423	-90	0	1.53
FGA060	AC	17	319700	6563800	423	-90	0	0.09
FGA061	AC	7	319650	6563800	422	-90	0	0.02
FGA062	AC	7	319650	6563900	425	-90	0	0.02
FGA063	AC	33	319700	6563900	423	-90	0	0.02
FGA064	AC	9	319750	6563900	427	-90	0	0.58
FGA065	AC	37	319800	6563900	427	-90	0	0.02
FGA066	AC	15	319850	6563900	427	-90	0	0.01
FGA067	AC	6	319900	6563900	427	-90	0	0
FGA068	AC	39	319950	6563900	428	-90	0	0.01
FGA069	AC	39	320000	6563900	427	-90	0	0.43
FGA070	AC	45	320050	6563900	426	-90	0	0.01
FGA071	AC	51	320100	6563900	426	-90	0	0.02
FGA072	AC	60	320150	6563900	427	-90	0	0.04

ASX: FBM

17

info@futurebatteryminerals.com.au

FC 4 0 7 2	100	75	220200	CEC2000	400	00	0	1.05
FGA073	AC	75	320200	6563900	428	-90	0	1.95
FGC001	RC	111	320036	6562400	411	-50	270	14.4
FGC002	RC	114	320135	6562600	412	-50	270	0.07
FGC003	RC	114	319740	6563050	416	-50	270	8.84
FGC004	RC	102	319796	6563100	417	-50	270	0.58
FGC005	RC	102	319706	6562950	413	-50	270	0.08
FGC006	RC	102	319735	6563000	416	-50	270	0.49
FGR001	RAB	45	319700	6563000	415	-90	0	0.24
FGR002	RAB	46	319650	6563000	414	-90	0	0.08
FGR003	RAB	55	319900	6563200	418	-90	0	0.12
FGR004	RAB	69	319950	6563200	420	-90	0	0.07
FGR005	RAB	44	320000	6563200	422	-90	0	0.04
FGR006	RAB	60	320000	6563300	421	-90	0	0.22
FGR007	RAB	65	319950	6563300	419	-90	0	0.28
FGR008	RAB	59	319900	6563300	417	-90	0	0.02

JORC Code, 2012 Edition, Table 1 Section 1: Sampling Techniques and Data

CRITERIA	EXPLANATION	COMMENTARY
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse Circulation drilling collects a 1m bulk sample. Sampling is then composited into 4m composites for fire assay purpose. Anomalous intercepts are then sub assayed to their 1m sample. Air Core drilling collects a 1m bulk sample. Sampling is then composited into 4m composites for fire assay purpose. Anomalous intercepts are then sub assayed to their 1m sample. Rotary Air Blast Drilling collects a 1m bulk sample. Sampling is then composited into 4m composites for fire assay purpose.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core	 Historic results reported include drilling by Reverse Circulation (RC), Air Core (AC) and Rotary Air Blast (RAB). The drill type has been specified in the appropriate collar table.

	is oriented and if so, by what method, etc).	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Results reported are historic and FBM has relied upon public domain data reported by previous project holders. Recovery was measured/commented in sample logs. No sample bias relationship has been identified.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Results reported are historic and FBM has relied upon public domain data reported by previous project holders. Drill holes have been lithologically logged by geologists in the field by respective historic explorers Lithological data has been compiled. Logging is a qualitative nature. At Forrest Gold prospect primary lithology has been recorded. Not all drill logs include data such as oxidation, texture and structure.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sampling of drill chips included compositing by spear sample on 4m composites. Single metre samples were riffle split to obtain an approximate 3kg sample.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	The Historic data represented in this announcement was culminated from the exploration work conducted the following parties. • Mt Kersey Mining conducted Reverse Cuirculation drilling in 1996 consisting of 9 holes. Samples were assayed via Fire Assay for gold and aqua regia digest for other elements at AAL Kalgoorlie • Crest Mining conducted Reverse Cuirculation drilling in 1996 and 1997 consisting of 38 holes. Samples were assayed via PM203 at ALS laboratories • Barminco conducted Reverse Cuirculation drilling in 1997 consisting of 6 holes. Samples were assayed via Fire Assay FA1 at Amdel laboratories.

futurebatteryminerals.com.au

19

1		Spinifex Resources conducted 3 diamond core below together the Minimum
		diamond core holes targeting the Miriam Nickel prospect in 2000. Samples containing gold were assayed via fire assay at Analabs Berkeley Resources conducted 3 diamond core and 1 RC hole targeting the Miriam Nickel prospect in 2004. Samples containing gold were assayed via fire assay at Analabs. Sipa Resources conducted Air Core (73 holes), RAB (63 holes) and RC (8 holes) drilling between 2005 and 2007. Samples were assayed by Ultratrace laboratories utilising methods, ICP101, ICP102, ICP302 and fire assay FA002 and FA003
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No independent verification has been conducted Field data is imported to the FBM geochemistry database. No adjustments are made to assay data
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill Holes were located utilising a hand held GPS with a accuracy +/-5m and via local gridding All drill hole collar information has been transformed to UTM MGA 94 Zone 51 Holes were field checked by FBM utilising a hand held gps to validate the grid transformation of the historic data. Field checks found the holes to be within the error range of the hand held gps. Geospatial grid information is represented in UTM MGA 94 Zone 51
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 At Forrest, holes were drilled on a 40m spacing, 60m line spacing. Regional targets were drilled on greater than 80m hole spacing and greater than 80m line spacing This data spacing is appropriate for identifying continuous and noncontinuous geochemical anomalies
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drilling has mostly been conducted on E-W grid lines. Geological units in the region have a dominantly N-S to NE-SW strike. As such the E-W drilling provides relative oblique interceptions.
Sample security	The measures taken to ensure sample security.	Results reported are historic and FBM has relied upon public domain data reported by previous project holders.

20

Suite 10, 38 Colin St, West Perth WA 6005

		FBM has not located historic data relating to sample security
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No independent audit or review has been undertaken.

	rting of Exploration Results	
CRITERIA	EXPLANATION	COMMENTARY
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Miriam Project consists of 5 prospecting leases. Granted leases are P15/6136, P15/6137, P156138 and P15/6139. P15/6135 remains in application Leases P15/6136-6139 are held by Coolgardie Nickel Pty Ltd, now an 100% subsidiary of Future Battery Minerals Ltd. P15/6135 is held by Limelight Industries Pty Ltd until time of grant The tenements are located in the Kangaroo Hills Timber Reserve, an approved Conservation Management Plan provides conditional access to the tenure. The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Historic data represented in this announcement was culminated from the exploration work conducted the following parties. • Mt Kersey Mining conducted Reverse Cuirculation drilling in 1996 consisting of 9 holes. Samples were assayed via Fire Assay for gold and aqua regia digest for other elements at AAL Kalgoorlie • Crest Mining conducted Reverse Cuirculation drilling in 1996 and 1997 consisting of 38 holes. Samples were assayed via PM203 at ALS laboratories • Barminco conducted Reverse Cuirculation drilling in 1997 consisting of 6 holes. Samples were assayed via Fire Assay FA1 at Amdel laboratories. • Spinifex Resources conducted 3 diamond core holes targeting the Miriam Nickel prospect in 2000. Samples containing gold were assayed via fire assay at Analabs • Berkeley Resources conducted 3 diamond core and 1 RC hole targeting the Miriam Nickel prospect in 2004. Samples containing gold were assayed via fire assay at Analabs. • Sipa Resources conducted Air Core (73 holes), RAB (63 holes) and RC (8 holes) drilling between 2005 and 2007. Samples were assayed by Ultratrace laboratories utilising

ASX: FBM

ABN 91 148 966 545

Geology	Deposit type, geological setting and style of mineralisation.	methods, ICP101, ICP102, ICP302 and fire assay FA002 and FA003 The Miriam project is prospective for Lithium, Caesium, Tantalum (LCT) enriched pegmatites which intrudes older Archean aged greenstone lithologies. The tenements are prospective for lode and structurally hosted gold mineralisation hosted within Archean aged greenstone lithologies.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drill Hole collar tables including location, height and drill direction have been included. (Table 2). Maximum Au assay has been represented in the maps. This data is included in the collar table Significant intercept assay data has been tabled. (Table1)
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Maximum down hole gold assays have been included in maps. Cutoff ranges are shown in legends Significant intercepts are considered as intercepts >0.1g/t Au and include up to 1m internal dilution. This is considered a significant intercept for first pass drilling technique such as RAB and AC.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	All results are reported as down hole length only. Mineralisation is interpreted as flat lying lodes however geological understanding is still insufficient and further drilling planned by FBM aims to address the uncertainty.

ABN 91 148 966 545

Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Relevant diagrams have been included within the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Assay data has been represented for all holes drilled in the project area.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other substantive data exists.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 FBM plans to conduct further target generative exploration including geophysical review and surface sampling. FBM will schedule drill testing of the Miriam project which is scheduled for July 2025. Refer to figures/diagrams in the main body of text.

ASX: FBM

23