ASX ANNOUNCEMENT **10 JUNE 2025** # SURFACE SAMPLING & DRILLING RECORDS MORE SHALLOW GOLD # **KEY POINTS** - Grab sampling returns high grades from historical workings at Halloween - Possible paleochannel yields high-grade gold results of 17.16, 19.32 and 26.81 g/t Au - Supports interval of 3m @ 23.52g/t Au in historical aircore drilling - Grab sampling at intersection of Halloween/Guiding Star records grades up to 3.64g/t Au - Guiding Star follow-up drilling returns 21m @ 0.56g/t Au and 16m @ 0.53g/t Au - Violet and Killarney tested and downgraded Lunnon Metals Limited (**ASX: LM8**) (the **Company** or **Lunnon Metals**) is pleased to provide an update on the results of three surface exploration programs on the Foster-Baker project (**FBA**), including surface sampling at Halloween, follow-up drilling at Guiding Star and first pass testing of Violet and Killarney North gold prospects. These activities are part of the expanded discovery program aimed at making the Company's next gold discovery at its Kambalda Gold & Nickel Project (**KGNP**). A selective grab and rock chip sampling program has been completed and successfully identified high-grade gold mineralisation and a potential paleochannel feature at Halloween. These results also place historical aircore (**AC**) drilling results in better context. Significant gold assays returned included (>1.0g/t Au cut-off): | Prospect | Type | Grade g/t Au | |--------------|------|------------------------------------| | Halloween | Grab | 26.81, 19.32, 1.16, 17.16, 8.11 | | Guiding Star | Grab | 3.64, 3.60, 3.57, 2.26, 1.93, 1.56 | Follow-up reverse circulation (**RC**) drilling was also recently completed at Guiding Star, whilst first pass scout drilling was completed at Violet and Killarney North gold prospects. At Guiding Star structural interpretations have been assisted by the results of selected down hole Optical Televiewer (**OTV**) surveys. Both Guiding Star and Violet are in the Foster Gold Belt while Killarney North is hosted within the Lunnon Basalt Domain (see domains depicted in **Figure 1**). Significant intercepts¹ in drilling at Guiding Star were (full results in **Annexure 2a**): - 21m @ 0.56g/t Au (from 128m) in hole COE25RC_038 and - 16m @ 0.53g/t Au (from 29m) in hole COE25RC_041. Guiding Star, along with Hustler and Koombana as reported on 3 June 2025, exhibits strong potential to be another Lady Herial lookalike. Identifying a potential paleochannel at Halloween, that appears to 'shed off' the gold mineralisation at Guiding Star, has placed historical, scattered high-grade AC results in better context. It reaffirms the Company's view that there may well be a very high-grade component at Guiding Star that drilling has failed to accurately define. Follow up exploration work will be planned to integrate with other Foster Gold Belt targets in parallel with continuing to advance permitting of the Lady Herial Mineral Resource as quickly and efficiently as possible. Managing Director, Edmund Ainscough, commenting said: "These new surface sampling results, along with follow up RC drilling at Guiding Star, are really starting to tease out the opportunity at this southern end of the Foster Gold Belt. Guiding Star sits within an extremely heavily endowed gold corridor, so it is no surprise to see an array of different structural orientations at play as well as a potential paleochannel present that probably followed this same structural trend and helped selectively pick out the very highest grades, now presenting as alluvial gold." ¹ >0.5g/t Au reporting cut-off; true widths vary and are as interpreted and depicted on later **Figure 5**. # **SURFACE SAMPLING PROGRAM** A total of 85 surface samples have been collected, mostly selective grabs of 1920s workings and float material, along with limited rock chip sampling of outcrop where this was possible. The focus of this work was the gold prospect Halloween (see **Figure 1**). Location details and assay results for all relevant samples are included in **Annexure 3**. The program objectives were: - 1. Investigate the level of near surface/outcropping gold mineralisation generally and where present, in 1920s vintage workings, spoil and float; and - 2. Assess the level of gold mineralisation around Halloween, where it interacts with Guiding Star and in the Paringa Basalt domain. From the total data set collected, 17 samples assayed greater than 0.25 g/t Au (15 from spoils, 2 from float), of which 11 returned assays greater than 1.0g/t Au (9 grab, 2 spoils). Figure 1: Plan view of the Foster Gold Belt and other high priority gold belts at Foster-Baker. # **IMPACT OF THESE RESULTS** # Halloween The results are indicative of a potential blind paleochannel containing alluvial gold. In light of the proximity of Halloween (within 500m south of the Guiding Star prospect) this may suggest that this alluvial gold has 'shed' from the Guiding Star mineralisation, which would have been 'upstream' at some point in the past. Existing historical AC drilling, spaced locally at 40m x 50m, contained multiple anomalous significant gold intercepts that are now placed in better context. The hand dug shafts at Halloween are curious in that they have been sunk through semi-consolidated transported overburden to an estimated depth of between 15m and 20m where paleochannel alluvial sands and pebbles have been encountered and brought to surface (see **Figure 2**). The spoil pile material from these shafts and sample pits has been grab sampled and returned gold grades ranging from 0.02 to 26.81g/t Au (see **Figure 3** and **Annexure 3**). Figure 2: Lunnon Metals' geologist Hailey Cameron and field technician Daniel Roberts sampling extensive quartz spoil at Halloween. The Halloween paleochannel appears to have been only intermittently intersected by reasonably close-spaced, historical AC programs (see **Figure 3**). It is likely there is a narrow channel feature that strikes south-southwest from Guiding Star, effectively 'snaking' its way between the past drilling. However, identifying a high-grade component to the paleochannel recorded by Lunnon Metals' surface sampling is significant and has allowed historical high-grade mineralisation in AC drilling to be better understood. It has also assisted in assigning other local AC anomalism to potential bedrock sources in the area where the Halloween prospect intersects the Guiding Star target area. Whilst the historical AC program returned mainly negative tests (full results in **Annexure 2b**), the following intercepts are now interpreted to have greater significance considering these recent results: # Halloween or Halloween/Guiding Star intersection (>0.5g/t Au in potential paleochannel): - 3m @ 23.52g/t Au (from 15m) in hole CD3675; - 2m @ 1.00g/t Au (from 14m) in CD3674; - 1m @ 3.33g/t Au (from 17m) in hole CD3677; and - 1m @ 3.43g/t Au (from 26m) in hole CD3700 Figure 3: Plan view of the Halloween and Guiding Star prospects showing surface grab sampling results (>1.0g/t Au) and historical aircore drilling. # **DRILLING PROGRAM (SEE PRIOR FIGURE 1 FOR PROSPECT LOCATIONS)** # **Guiding Star** The Guiding Star prospect is an advanced target with multiple potentially economic drill intercepts already returned. However it is not yet clear how, or if, those intercepts relate to one another in the form of a coherent mineralised system. With the aid of interpreted downhole OTV surveys on selected holes, the recently completed program of six RC holes at Guiding Star aimed to resolve the relationship between the numerous existing intercepts recorded from previous drilling². Along with new drill intercepts of **21m @ 0.56g/t Au** (from 128m) in hole COE25RC_038 and **16m @ 0.53g/t Au** (from 29m) in hole COE25RC_041, the current interpretation is that there is both a shallow, 30 degree east dipping component as well as a steep north-south striking component to the gold mineralisation in the bedrock. Given this finding, the two deeper intersections previously reported² in COE24RC_002, **14m @ 0.80g/t Au** (from 85 metres) and **11m @ 1.14g/t Au** (from 116 metres), appear to sit on a steeper structure which itself has <u>not been adequately tested</u> by the surrounding, steeply west dipping RC holes. The potential Halloween paleochannel and Guiding Star prospects sit within a structural corridor, which is aligned with the interpreted northern extension of the Argo/Apollo corridor. The Argo and Apollo gold mines, discovered by WMC Resources Ltd (**WMC**) and then mined by both WMC and later Gold Fields Limited (**Gold Fields**) recorded total production³ greater than 1.0 Moz of gold. **Figure 4**: Plan view of the Guiding Star prospect drilling program results along with previous drilling (see ASX announcement dated 13 Jan 2025) and showing section line location for **Figure 5**. ² See ASX announcement January 13, 2025 for details of drilling by Lunnon Metals and previous owners depicted on Figures 4 & 5. ³ Sum of historical WMC production records to December 2001 and sum of Gold Fields Annual Report filings thereafter. As with the prior reporting of other Foster Gold Belt prospects and targets, it is often not possible to display all significant intercepts in any one plan or sectional view due to the overlapping nature and broad width of gold mineralisation encountered. Accordingly, the Competent Person selects the most appropriate sectional representation, which may be, by necessity, a long section and not a cross section, to depict the program results in the clearest and most meaningful way. **Figure 5**: Cross sectional view slice (+/- 10m wide) of the Guiding Star drilling program results indicating alternate potential structural orientations of the recorded gold mineralisation to date (see **Figure 4** for section location) # TARGETS TESTED AND DOWNGRADED ## **Violet Gold Prospect** The Violet prospect is a Defiance Dolerite hosted gold in quartz vein – shear structure target located
within the Foster Gold Belt. The target is early stage with only shallow aircore drilling previously drilled in the area and no prior bedrock drilling tests. The current drill program comprised three RC holes (COE25RC_033 to _035) drilled to a maximum depth of 132m, for a total of 354m. Two of the holes were a scissor pair drilled at 60 degrees to the east and west with collars spaced 100m apart. The third hole was drilled at 60 degrees to the east and collared 22m north of the scissor pair. Although quartz veining was intersected in two of the three holes, logging suggests that the granophyric Defiance Dolerite zone 4 is poorly developed in this area. None of the three holes returned reportable significant assays greater than 0.5g/t gold, with only one weakly anomalous zone of 11m @ 0.07g/t Au from 32m being returned from COE25RC_035. # **Killarney North Gold Prospect** Killarney North comprises several targets within the Lunnon Basalt Domain related to the interpreted structural offset of the Lunnon Dolerite immediately north of the "Argo/Apollo" structural corridor. This first pass scout drilling program aimed firstly to identify the prospective dolerite host rock within the Lunnon Basalt which is interpreted to be responsible for the magnetic anomaly in this area, and secondly find evidence of north-south trending faulting or shear zones to explain the apparent offset of the dolerite unit (by up to 100m). While doleritic zones were observed in the drill holes no significant faulting, shearing, or gold mineralisation was encountered. None of the holes returned reportable significant assays greater than 0.5g/t gold with only one weakly anomalous zone of 7m @ 0.09g/t Au from 98m being returned from LBS25RC_024. Although this initial bedrock program at Killarney North failed to intersect any significant faulting, shear zones, or gold mineralisation the in-depth learnings being gained from the EIS Defiance West drill hole⁴ will allow the Company to use multi-element assays to build a better litho-structural targeting model in the Killarney North prospect area. # MINERAL RESOURCES ON THE FOSTER GOLD BELT The current Mineral Resource Estimate (**MRE**) for Lady Herial was announced on 7 May 2025 at a 0.5 g/t Au cut-off grade and is shown in **Table 1**, below. This is the first gold MRE declared by the Company in the emerging Foster Gold Belt. Table 1: MRE for the Lady Herial Gold Deposit as at 7 May 2025. | Lady Herial | Tonnes | Au g/t | Au Oz | |-------------|---------|--------|--------| | Measured | 270,000 | 1.9 | 16,600 | | Indicated | 221,000 | 1.3 | 8,900 | | Inferred | 82,000 | 1.3 | 3,500 | | Total | 573,000 | 1.6 | 29,000 | Note: tonnes have been rounded to 3 significant figures, grade to 2 significant figures and gold ounces has been rounded to the nearest 100oz, and therefore totals may not add up. Figure 6: Foster-Baker Project Area showing select high-ranking gold prospects, plus gold and nickel Mineral Resource⁵ positions. This release has been approved and authorised for release by the Board. Edmund Ainscough Managing Director Phone: +61 8 6424 8848 Email: info@lunnonmetals.com.au ⁴ See ASX announcement dated 16 May 2025. $^{^{5}}$ A full breakdown of the gold and nickel Mineral Resource and nickel Ore Reserve is contained on pages 11 & 12. Figure 7: Location of the KGNP, regionally and at the local Kambalda/St Ives scale; showing surface geology and structure of this significant Australian gold camp. # **BACKGROUND: ST IVES / KAMBALDA - ONE OF AUSTRALIA'S MOST PROLIFIC GOLD PRODUCTION CENTRES** The Kambalda / St Ives gold camp is one of Australia's most prolific gold production and discovery centres. Gold has been produced in the area since the discovery of the Red Hill gold mine in 1896 (adjacent to the Company's historical Silver Lake nickel mine at Kambalda). The area immediately encompassing and surrounding the Foster-Baker project (**FBA**) produced gold from the 1920s onwards, but this goldfield came to prominence in the early 1980s when WMC commenced dedicated gold production from the adjacent Victory-Defiance Complex and the Hunt nickel mine, approximately 15km to the north near Kambalda. The St Ives Gold Mine was sold by WMC to Gold Fields Ltd (**Gold Fields**) in December 2001 after 5.6Moz^{6a} of gold had been produced. With an expanded exploration budget requisite with being one of the world's major gold companies, Gold Fields has gone on to mine over 10Moz^{6b} of gold itself and has found what is shaping to be the most significant discovery in the camp's history, the Invincible deposit (see **Figure 7** above), suggesting that the biggest deposits are not always found first in the discovery cycle. The Company holds all mineral rights over the FBA, except gold in specific "Excluded Areas" (see **Figure 6** above). The Company highlights that all gold prospects being tested and evaluated are 100% owned by Lunnon Metals. The FBA project is located on granted mining tenements with significant existing infrastructure in place. Nearby gold plants include the Lefroy, Lakewood (ASX:BC8) and Higginsville plants (ASX:WGX), with the Lefroy plant, a few kilometres to the north, notably owned and operated by the Company's major shareholder, Gold Fields. The gold prospects of the Foster Gold Belt are hosted in the Defiance Dolerite, a known favourable host for gold in the immediate vicinity of FBA at the Victory-Defiance gold complex a few kilometres to the north. High-grade quartz veins were mined by prospectors in the 1920s in what was then called the Cooee/St Ives field (see ASX announcement dated 22 April 2024) with gold ore won from these workings treated at either the nearby historical State Battery or the privately owned Ives Reward battery, the relic sites of which are both located on what are now Lunnon Metals' leases. # **ABOUT THE KAMBALDA GOLD & NICKEL PROJECT (KGNP)** The KGNP features approximately 47sqkm of tenements in the Kambalda/St Ives district. KGNP is located approximately 570km east of Perth and 50-70km south-southeast of Kalgoorlie, in the Eastern Goldfields of Western Australia. KGNP comprises two project areas, Foster and Baker* (19 contiguous mining leases) and Silver Lake and Fisher⁺ (20 contiguous mining leases). This world-renowned district has produced in excess of 1.6 million tonnes⁸ of nickel metal since its discovery in 1966 by WMC. In addition, over 16Moz of gold⁸ in total has been mined, making Kambalda/St Ives a globally significant gold camp in its own right. The KGNP is assessed via public roads, well-established mine road infrastructure and the main SIGM causeway over Lake Lefroy. The KGNP is broadly surrounded by tenements held by SIGM, a wholly owned subsidiary of Gold Fields Limited (JSE:GFI) and the Company's major shareholder. *SIGM retains rights⁷ to explore for and mine gold in the "Excluded Areas" at the FBA, as defined in the subsisting agreements between Lunnon Metals and SIGM, and on the remaining area of the tenements, has select rights to gold in limited circumstances. *The Company has the exclusive rights to nickel on 19 mining leases and related access rights on one additional tenure. Gold Fields retains the rights to the other minerals (except to the extent minerals occur in conjunction with nickel mineralisation or nickel bearing ore but excluding gold). ⁶ (a) sum of historical WMC production records to Dec 2001 and (b) sum of Gold Fields Annual Report filings thereafter. Refer to the Company's Prospectus (lodged 11 June 2021) for further details. SIGM has a pre-emptive right over gold material from the FBA (other than the Excluded Areas and the Lady Herial deposit). ⁸ Gold: Sum of historical WMC production records to December 2001, sum of Gold Fields Ltd's, Karora Resources and Westgold Resources report filings thereafter. Nickel: Sum of historical WMC production records and relevant ASX company nickel production figures. # **COMPETENT PERSON'S STATEMENT & COMPLIANCE** The information in this announcement that relates to gold and nickel geology, or previously informed gold and nickel Mineral Resources, Exploration Targets, Exploration Results and the Company's Historical Core Program, which includes the accessing, re-processing, re-logging, cutting and assaying of historical WMC diamond core and the appropriateness of the use of this data and other historical geoscience hard copy data such as cross sections, underground level mapping plans, longitudinal projections and long sections, including commentary relying on personal experience whilst employed at Kambalda by WMC and Gold Fields, is based on, and fairly represents, information and supporting documentation prepared by Mr. Aaron Wehrle, who is a Member of the Australasian Institute of Mining and Metallurgy (**AusIMM**). Mr. Wehrle is a full-time employee of the Company, a shareholder and holder of employee options/performance rights; he has sufficient experience that is relevant to the style of mineralisation and types of deposit under consideration and to the activity that he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (**JORC Code**). Mr. Wehrle is the Company's principal Competent Person and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. Any information in this or previous announcements that relates to the MRE geostatistics, methodology and estimation is based on, and fairly represents, information and supporting documentation prepared by Mr. Stephen Law, who holds current Chartered Professional (Geology) status with the AuslMM. Mr Law is a full-time employee of Lunnon Metals Ltd, a shareholder and holds employee performance rights; he has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity
that he is undertaking to qualify as Competent Person as defined in the JORC Code. Mr. Law consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. Any information in this or previous announcements that relates to the Lady Herial gold metallurgical testwork program, or past nickel metallurgy, was based on, and fairly represents, information and supporting documentation prepared by Mr. Barry Cloutt, who is a Member of the AuslMM. Mr. Cloutt is an external and independent consultant to the Company and has sufficient experience that is relevant to the activity that he is undertaking to qualify as Competent Person as defined in the JORC Code. Mr. Cloutt consented to the inclusion in this report of the matters based on his information in the form and context in which it appears. Any information in this announcement that relates to the mining, metallurgical and environmental Modifying Factors or assumptions as they may apply was based on, and fairly represents, information and supporting documentation prepared by Mr. Wehrle, Mr. Max Sheppard and Mr. Edmund Ainscough. Messrs. Sheppard and Ainscough are also Competent Persons and Members of the AuslMM. Mr Ainscough is a full-time employee and Mr Sheppard is a permanent, part-time employee, both of Lunnon Metals Ltd. Both Messrs. Ainscough and Sheppard are shareholders and hold employee performance rights in Lunnon Metals Ltd. Messrs Wehrle, Sheppard and Ainscough have sufficient experience that is relevant to the style of mineralisation, both gold and nickel, the types of deposit under consideration, the activity that they are undertaking and the relevant factors, in particular regarding Lady Herial specifically and the Foster-Baker project area more generally, the historical Foster mine and the KGNP regionally, to qualify as Competent Persons as defined in the JORC Code. Messrs. Sheppard, Wehrle and Ainscough consent to the inclusion in this announcement of the matters based on their information in the form and context in which it appears. The information in this report that relates to nickel Ore Reserves at Baker is also based on information compiled by Mr. Sheppard, whose details are as above. In addition to the above, in regard Ore Reserves, he has sufficient experience relevant to the style of mineralisation and types of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code. Mr Sheppard consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. References in this announcement may have been made to certain previous ASX announcements, which in turn may have included Exploration Results, Exploration Targets, Mineral Resources, Ore Reserves and the results of Pre-Feasibility Studies. For full details, please refer to the said announcement on the said date. The Company is not aware of any new information or data that materially affects this information. Other than as specified in this announcement and mentioned announcements, the Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement(s), and in the case of estimates of Mineral Resources and Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant announcement continue to apply and have not materially changed. The Company confirms that the Competent Person's findings in relation to the estimates of Mineral Resources and Ore Reserves have not been materially modified from the original announcements reporting those estimates. # **GOLD MINERAL RESOURCES** The detailed breakdown, by mineralised structures, of the Company's gold Mineral Resources⁹ as at 7 May 2025, is as follows: | | | Measured | | | Indicated | | | Inferred | | | Total | | |-------------|---------|----------|-----------|---------|-----------|-----------|--------|----------|-----------|---------|--------|-----------| | | Tonnes | Au g/t | Au Ounces | | LADY HERIAL | | | | | | | | | | | | | | Upper | 117,000 | 2.3 | 8,800 | 46,000 | 1.7 | 2,400 | 24,000 | 1.7 | 1,300 | 187,000 | 2.1 | 12,500 | | Middle | 23,000 | 1.9 | 1,400 | - | - | - | - | - | - | 23,000 | 1.9 | 1,400 | | Lower | 125,000 | 1.5 | 6,200 | 175,000 | 1.2 | 6,500 | 58,000 | 1.2 | 2,200 | 358,000 | 1.3 | 14,900 | | MZ Surface | 5,000 | 1.2 | 200 | - | - | - | - | - | - | 5,000 | 1.2 | 200 | | | | | | | | | | | | | | | | TOTAL | 270,000 | 1.9 | 16,600 | 221,000 | 1.3 | 8,900 | 82,000 | 1.3 | 3,500 | 573,000 | 1.6 | 29,000 | ## **NICKEL MINERAL RESOURCES** The detailed breakdown of the Company's nickel Mineral Resources⁹ as at 30 June 2024, is as follows: | | M | leasured N | li | li | ndicated I | Vi | | Inferred N | | | Total Ni | | |----------------|---------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------| | | Tonnes | % | Ni Tonnes | Tonnes | % * | Ni Tonnes | Tonnes | % * | Ni Tonnes | Tonnes | % * | Ni Tonnes | | FOSTER MINE | | | | | | | | | | | | | | Warren | | | | 345,000 | 2.6 | 8,800 | 100,000 | 2.4 | 2,400 | 445,000 | 2.5 | 11,200 | | Foster Central | | | | | | | | | | | | | | 85H | | | | 395,000 | 3.2 | 12,800 | 294,000 | 1.2 | 3,600 | 689,000 | 2.4 | 16,400 | | N75C | | | | 271,000 | 2.6 | 6,900 | 142,000 | 1.9 | 2,600 | 413,000 | 2.3 | 9,500 | | S16C/N14C | | | | - | - | - | 64,000 | 5.7 | 3,700 | 64,000 | 5.7 | 3,700 | | South | | | | 264,000 | 4.7 | 12,400 | 111,000 | 4.7 | 5,200 | 375,000 | 4.7 | 17,600 | | Sub total | | | | 1,275,000 | 3.2 | 40,900 | 711,000 | 2.5 | 17,500 | 1,986,000 | 2.9 | 58,400 | | BAKER AREA | | | | | | | | | | | | | | Baker | 110,000 | 3.4 | 3,700 | 622,000 | 3.7 | 22,900 | 298,000 | 2.4 | 7,100 | 1,030,000 | 3.3 | 33,700 | | East Trough | | | | - | - | - | 108,000 | 2.7 | 3,000 | 108,000 | 2.7 | 3,000 | | Sub total | 110,000 | 3.4 | 3,700 | 622,000 | 3.7 | 22,900 | 406,000 | 2.5 | 10,100 | 1,138,000 | 3.2 | 36,700 | | SILVER LAKE | | | | | | | | | | | | | | 25H | | | | 336,000 | 1.6 | 5,300 | 488,000 | 1.7 | 8,500 | 824,000 | 1.7 | 13,800 | | Sub total | | | | 336,000 | 1.6 | 5,300 | 488,000 | 1.7 | 8,500 | 824,000 | 1.7 | 13,800 | | FISHER | | | | | | | | | | | | | | F Zone | | | | 56,000 | 2.7 | 1,500 | 196,000 | 1.6 | 3,200 | 252,000 | 1.9 | 4,700 | | Sub total | | | | 56,000 | 2.7 | 1,500 | 196,000 | 1.6 | 3,200 | 252,000 | 1.9 | 4,700 | | | | | | | | | | | | | | | | TOTAL | 110,000 | 3.4 | 3,700 | 2,289,000 | 3.1 | 70,600 | 1,801,000 | 2.2 | 39,300 | 4,200,000 | 2.7 | 113,600 | Note: Figures in both the above tables have been rounded and hence may not add up exactly to the given totals. The nickel Mineral Resource is inclusive of any reported nickel Ore Reserves. ⁹ As defined in the Joint Ore Reserves Committee of the Australian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (JORC): 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The detailed breakdown of the Company's Baker Ore Reserve¹⁰ as at 30 June 2024, is as follows: | Baker | tonnes | Ni % | Cu % | Co % | Pd g/t | Pt g/t | As ppm | Ni metal | |----------|---------|------|------|-------|--------|--------|--------|----------| | Proved | - | - | - | - | - | - | - | - | | Probable | 612,000 | 2.86 | 0.24 | 0.052 | 0.49 | 0.20 | 110 | 17,500 | | TOTAL | 612,000 | 2.86 | 0.24 | 0.052 | 0.49 | 0.20 | 110 | 17,500 | The Ore Reserve was reported using the Baker December 2022 Mineral Resource. The Ore Reserve was evaluated using a cut- off grade of 1.5% Ni, except for an incremental cut-off grade of 1.0% Ni for low grade development necessary for access to mining zones. The inputs used for the NPV in the Ore Reserve study were a A\$35,294/t nickel price (US\$24,000/t at US\$0.68: A\$1.00) and 8% discount rate. The Ore Reserve is predicated on processing future nickel ore through the Kambalda Concentrator, or other such third-party facility proximal to the KGNP. The BHP Nickel West Kambalda Concentrator will be on care and maintenance from October 2024, with the temporary suspension to be reviewed by BHP by February 2027. See the Company's 2024 Annual Report (lodged on 16 September 2024) for the latest restatement of Mineral Resources and Ore Reserves. # **ANNEXURE 1: DRILLING PROGRAM COLLAR DETAILS** | Hole ID | Easting | Northing | Elevation
(m ASL) | Dip | Azimuth | EOH
Drill
Depth
(m) | Hole
Type | Grid | | | |---|----------------|-------------|----------------------|-------|---------|------------------------------|--------------|----------|--|--| | LM8 Guiding S | Star Prospect | | | | | | | | | | | COE25RC_037 384,203.0 6,529,155.0 324.0 -60.0 270.8 102.0 RC MG | | | | | | | | | | | | COE25RC_038 | 384,330.0 | 6,529,000.0 | 324.0 | -59.0 | 274.1 | 168.0 | RC | MGA94_51 | | | | COE25RC_039 | 384,100.0 | 6,529,176.0 | 324.0 | -90.0 | 0.0 | 126.0 | RC | MGA94_51 | | | | COE25RC_040 | 384,095.0 | 6,529,164.0 | 324.0 | -60.2 | 313.8 | 132.0 | RC | MGA94_51 | | | | COE25RC_041 | 384,104.0 | 6,529,156.0 | 324.0 | -60.2 | 271.0 | 120.0 | RC | MGA94_51 | | | | COE25RC_042 | 384,144.0 | 6,529,156.0 | 324.0 | -60.2 | 271.6 | 126.0 | RC | MGA94_51 | | | | LM8 Violet Pro | spect | | | | | | | | | | | COE25RC_033 | 385,350.0 | 6,528,808.0 | 324.0 | -60.4 | 90.9 | 132.0 | RC | MGA94_51 | | | | COE25RC_034 | 385,450.0 | 6,528,800.0 | 324.0 | -60.3 | 281.3 | 120.0 | RC | MGA94_51 | | | | COE25RC_035 | 385,350.0 | 6,528,830.0 | 324.0 | -60.3 | 89.8 | 102.0 | RC | MGA94_51 | | | | LM8 Killarney | North Prospect | : | | | | | | | | | | LBS25RC_020 | 383,815.0 | 6,530,345.0 | 320.0 | -60.2 | 87.1 | 162.0 | RC | MGA94_51 | | | | LBS25RC_021 |
383,960.0 | 6,530,345.0 | 320.0 | -60.4 | 275.1 | 156.0 | RC | MGA94_51 | | | | LBS25RC_024 | 383,726.0 | 6,530,462.0 | 321.0 | -60.3 | 74.0 | 150.0 | RC | MGA94_51 | | | | LBS25RC_025 | 383,872.0 | 6,530,490.0 | 318.0 | -60.3 | 259.6 | 150.0 | RC | MGA94_51 | | | ¹⁰ As defined in the Joint Ore Reserves Committee of the Australian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (JORC): 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. | Hole ID | Easting | Northing | Elevation
(m ASL) | Dip | Azimuth | EOH
Drill
Depth
(m) | Hole
Type | Grid | |----------------|---------------|-------------|----------------------|-------|---------|------------------------------|--------------|----------| | Historical Air | core Drilling | | | | | | | | | CD3668 | 384,216.2 | 6,528,916.0 | 320.7 | -90.0 | 0.0 | 38.0 | AC | MGA94_51 | | CD3669 | 384,226.3 | 6,528,916.5 | 320.8 | -90.0 | 0.0 | 36.0 | AC | MGA94_51 | | CD3670 | 384,236.2 | 6,528,917.0 | 320.9 | -90.0 | 0.0 | 45.0 | AC | MGA94_51 | | CD3671 | 384,226.3 | 6,528,906.5 | 320.7 | -90.0 | 0.0 | 27.0 | AC | MGA94_51 | | CD3672 | 384,236.3 | 6,528,907.0 | 320.6 | -90.0 | 0.0 | 37.0 | AC | MGA94_51 | | CD3673 | 384,246.3 | 6,528,907.0 | 320.7 | -90.0 | 0.0 | 19.0 | AC | MGA94_51 | | CD3674 | 384,226.3 | 6,528,896.5 | 320.4 | -90.0 | 0.0 | 43.0 | AC | MGA94_51 | | CD3675 | 384,235.8 | 6,528,897.0 | 320.4 | -90.0 | 0.0 | 51.0 | AC | MGA94_51 | | CD3676 | 384,245.4 | 6,528,895.0 | 320.0 | -90.0 | 0.0 | 44.0 | AC | MGA94_51 | | CD3677 | 384,236.0 | 6,528,887.0 | 320.2 | -90.0 | 0.0 | 44.0 | AC | MGA94_51 | | CD3678 | 384,246.4 | 6,528,887.5 | 320.3 | -90.0 | 0.0 | 45.0 | AC | MGA94_51 | | CD3679 | 384,256.4 | 6,528,887.5 | 320.3 | -90.0 | 0.0 | 52.0 | AC | MGA94_51 | | CD3680 | 384,277.9 | 6,528,885.5 | 320.6 | -90.0 | 0.0 | 31.0 | AC | MGA94_51 | | CD3681 | 384,236.1 | 6,528,877.0 | 320.2 | -90.0 | 0.0 | 47.0 | AC | MGA94_51 | | CD3682 | 384,246.8 | 6,528,877.5 | 320.2 | -90.0 | 0.0 | 43.0 | AC | MGA94_51 | | CD3683 | 384,256.5 | 6,528,877.5 | 320.1 | -90.0 | 0.0 | 42.0 | AC | MGA94_51 | | CD3684 | 384,275.5 | 6,528,875.5 | 320.0 | -90.0 | 0.0 | 20.0 | AC | MGA94_51 | | CD3685 | 384,241.0 | 6,528,860.0 | 319.8 | -90.0 | 0.0 | 42.0 | AC | MGA94_51 | | CD3686 | 384,255.2 | 6,528,858.5 | 320.0 | -90.0 | 0.0 | 40.0 | AC | MGA94_51 | | CD3687 | 384,266.3 | 6,528,859.0 | 319.8 | -90.0 | 0.0 | 39.0 | AC | MGA94_51 | | CD3688 | 384,276.0 | 6,528,859.5 | 320.0 | -90.0 | 0.0 | 46.0 | AC | MGA94_51 | | CD3689 | 384,295.1 | 6,528,860.0 | 320.6 | -90.0 | 0.0 | 39.0 | AC | MGA94_51 | | CD3690 | 384,067.5 | 6,528,643.5 | 316.0 | -90.0 | 0.0 | 45.0 | AC | MGA94_51 | | CD3691 | 384,107.5 | 6,528,644.0 | 316.0 | -90.0 | 0.0 | 57.0 | AC | MGA94_51 | | CD3692 | 384,147.5 | 6,528,644.5 | 317.0 | -90.0 | 0.0 | 49.0 | AC | MGA94_51 | | CD3693 | 384,187.4 | 6,528,644.5 | 317.0 | -90.0 | 0.0 | 54.0 | AC | MGA94_51 | | CD3694 | 384,227.4 | 6,528,645.0 | 318.0 | -90.0 | 0.0 | 59.0 | AC | MGA94_51 | | CD3695 | 384,067.1 | 6,528,693.5 | 317.0 | -90.0 | 0.0 | 45.0 | AC | MGA94_51 | | CD3696 | 384,107.1 | 6,528,694.0 | 317.0 | -90.0 | 0.0 | 57.0 | AC | MGA94_51 | | CD3697 | 384,147.0 | 6,528,694.5 | 318.0 | -90.0 | 0.0 | 55.0 | AC | MGA94_51 | | CD3698 | 384,187.0 | 6,528,694.5 | 318.0 | -90.0 | 0.0 | 57.0 | AC | MGA94_51 | | CD3699 | 384,227.0 | 6,528,695.0 | 318.0 | -90.0 | 0.0 | 50.0 | AC | MGA94_51 | | CD3700 | 384,066.7 | 6,528,743.5 | 317.0 | -90.0 | 0.0 | 35.0 | AC | MGA94_51 | | CD3701 | 384,106.7 | 6,528,744.0 | 318.0 | -90.0 | 0.0 | 57.0 | AC | MGA94_51 | | CD3702 | 384,146.6 | 6,528,744.5 | 318.0 | -90.0 | 0.0 | 56.0 | AC | MGA94_51 | | CD3703 | 384,186.6 | 6,528,744.5 | 319.0 | -90.0 | 0.0 | 52.0 | AC | MGA94_51 | | CD3704 | 384,226.6 | 6,528,745.0 | 319.0 | -90.0 | 0.0 | 53.0 | AC | MGA94_51 | | CD3705 | 384,146.2 | 6,528,794.5 | 319.0 | -90.0 | 0.0 | 57.0 | AC | MGA94_51 | | CD3706 | 384,186.2 | 6,528,794.5 | 319.0 | -90.0 | 0.0 | 52.0 | AC | MGA94_51 | | CD3708 | 384,226.2 | 6,528,795.0 | 319.0 | -90.0 | 0.0 | 49.0 | AC | MGA94_51 | # ANNEXURE 2A: LUNNON METALS DRILLING PROGRAM ASSAY RESULTS | Hole ID | From
(drill depth)
(m) | Width
(m) | Au g/t | Cut-
off Au
g/t | Structure, cor | mments / internal zones below | |---------------|------------------------------|--------------|-----------|-----------------------|-----------------|-----------------------------------| | COE25RC_037 | 49.00 | 1.00 | 1.36 | 1.0 | | | | and | 71.00 | 1.00 | 1.01 | 1.0 | | | | COE25RC_038 | 43.00 | 1.00 | 0.51 | 0.5 | | | | | 128.00 | 21.00 | 0.56 | 0.5 | Guiding Star | Maximum of 4.0m internal dilution | | including | 128.00 | 1.00 | 1.86 | 1.0 | | | | and including | 131.00 | 1.00 | 1.38 | 1.0 | | | | and including | 134.00 | 1.00 | 2.13 | 1.0 | | | | and including | 138.00 | 1.00 | 1.91 | 1.0 | | | | COE25RC_039 | 7.00 | 4.00 | 1.00 | 0.5 | Guiding Star | | | including | 9.00 | 1.00 | 1.75 | 1.0 | | | | and | 20.00 | 1.00 | 1.56 | 1.0 | | | | and | 47.00 | 1.00 | 0.67 | 0.5 | | | | and | 50.00 | 1.00 | 0.58 | 0.5 | | | | and | 80.00 | 1.00 | 0.55 | 0.5 | | | | COE25RC_040 | 27.00 | 3.00 | 0.51 | 0.5 | Guiding Star | Maximum of 1.0m internal dilution | | and | 50.00 | 7.00 | 0.66 | 0.5 | Guiding Star | Maximum of 2.0m internal dilution | | COE25RC_041 | 29.00 | 16.00 | 0.53 | 0.5 | Guiding Star | Maximum of 2.0m internal dilution | | including | 29.00 | 1.00 | 1.79 | 1.0 | | | | and including | 36.00 | 1.00 | 1.37 | 1.0 | | | | and | 56.00 | 1.00 | 0.53 | 0.5 | | | | and | 94.00 | 5.00 | 0.62 | 0.5 | Guiding Star | Maximum of 1.0m internal dilution | | and | 103.00 | 1.00 | 0.63 | 0.5 | | | | COE25RC_042 | 15.00 | 5.00 | 0.83 | 0.5 | Guiding Star | Maximum of 2.0m internal dilution | | including | 19.00 | 1.00 | 1.88 | 1.0 | | | | and | 32.00 | 3.00 | 0.64 | 0.5 | | | | and | 53.00 | 3.00 | 0.83 | 0.5 | Guiding Star | Maximum of 1.0m internal dilution | | including | 53.00 | 1.00 | 1.77 | 1.0 | | | | and | 53.00 | 1.00 | 0.58 | 0.5 | | | | COE25RC_033 | | | | | | | | COE25RC_034 | | | | | Violet | | | COE25RC_035 | | | | | | | | LBS25RC_020 | N | o significar | nt assays | | | | | LBS25RC_021 | | | | | IZII N I | | | LBS25RC_024 | | | | | Killarney North | | | LBS25RC_025 | | | | | | | # **ANNEXURE 2B: HISTORICAL AIRCORE ASSAY RESULTS** | Hole ID | From
(drill
depth)
(m) | Width
(m) | Au
g/t | Cut-
off
Au
g/t | Structure, comments / internal zones below cut-off | |-----------|---------------------------------|--------------|-----------|--------------------------|--| | CD3668 | No | significant | assay | | Guiding Star | | CD3669 | 7.00 | 1.00 | 0.74 | 0.5 | Describe Cuiding Stor | | and | 11.00 | 1.00 | 0.51 | 0.5 | Regolith, Guiding Star | | and | 25.00 | 1.00 | 0.77 | 0.5 | Bedrock, Guiding Star | | CD3670 | 10.00 | 3.00 | 0.54 | 0.5 | Regolith, Guiding Star | | CD3671 | No | significant | assay | | Guiding Star | | CD3672 | 1.00 | 1.00 | 0.59 | 0.5 | Regolith, Guiding Star | | CD3673 | No | significant | assay | | Guiding Star | | CD3674 | 14.00 | 2.00 | 1.00 | 0.5 | Regolith, Guiding Star | | including | 15.00 | 1.00 | 1.27 | 1.0 | Regolitii, Guiding Star | | CD3675 | 15.00 | 3.00 | 23.52 | 0.5 | Halloween/Guiding Star intersection, potential paleochannel | | including | 15.00 | 2.00 | 34.85 | 1.0 | Halloween/Gulding Star Intersection, potential paleochamiler | | CD3676 | 1.00 | 1.00 | 0.53 | 0.5 | | | and | 15.00 | 1.00 | 0.67 | 0.5 | | | CD3677 | 17.00 | 1.00 | 3.33 | 0.5 | | | CD3678 | 2.00 | 1.00 | 0.63 | 0.5 | Regolith, Guiding Star | | and | 12.00 | 1.00 | 0.84 | 0.5 | | | and | 17.00 | 1.00 | 0.72 | 0.5 | | | and | 22.00 | 1.00 | 0.60 | 0.5 | | | CD3679 | No | significant | assay | | Guiding Star | | CD3680 | 6.00 | 7.00 | 0.68 | 0.5 | Regolith, Guiding Star | | and | 23.00 | 1.00 | 0.93 | 0.5 | Bedrock, Guiding Star | | CD3681 | 14.00 | 1.00 | 0.85 | 0.5 | Regolith, Guiding Star | | CD3682 | 32.00 | 1.00 | 0.74 | 0.5 | negonti, dulang stal | | CD3683 | No | significant | assay | 1 | Guiding Star | | CD3684 | 8.00 | 1.00 | 0.58 | 0.5 | | | and | 11.00 | 1.00 | 0.61 | 0.5 | Regolith, Guiding Star | | and | 15.00 | 1.00 | 0.90 | 0.5 | | | CD3685 | | | | | | | CD3686 | No | significant | assav | | Guiding Star | | CD3687 | | 9 | | | 2 | | CD3688 | | 1 | I | ı | | | CD3689 | 25.00 | 3.00 | 0.64 | 0.5 | Bedrock, Guiding Star | | CD3690 | No | significant | assav | | Halloween | | CD3691 | | | 1 | ı | | | CD3692 | 30.00 | 1.00 | 0.72 | 0.5 | Regolith, Halloween | | and | 34.00 | 1.00 | 0.53 | 0.5 | | | and | 37.00 | 3.00 | 0.70 | 0.5 | Potential paleochannel, Halloween | | Hole ID | From
(drill
depth)
(m) | Width
(m) | Au
g/t | Cut-
off
Au
g/t | Structure, comments / internal zones below cut-off | |-----------|---------------------------------|--------------|-----------|--------------------------|--| | CD3693 | | | | | | | CD3694 | No | significant | assay | | Halloween | | CD3695 | | | | | | | CD3696 | 52.00 | 1.00 | 0.59 | 0.5 | Bedrock, Halloween | | CD3697 | No | significant | assay | | Halloween | | CD3698 | 15.00 | 1.00 | 0.71 | 0.5 | Regolith, Halloween | | CD3699 | No | significant | assay | | Halloween | | CD3700 | 26.00 | 1.00 | 3.43 | 1.0 | Danalish Hallangan | | and | 33.00 | 1.00 | 0.62 | 0.5 | Regolith, Halloween | | CD3701 | No | cianificant | | | Halloween | | CD3702 | INO | significant | . assay | | nalloween | | CD3703 | 11.00 | 1.00 | 0.93 | 0.5 | Danalish Hallangan | | and | 25.00 | 1.00 | 0.72 | 0.5 | Regolith, Halloween | | CD3704 | 43.00 | 2.00 | 0.67 | 0.5 | Bedrock, Halloween | | CD3705 | No | significant | assay | | Halloween | | CD3706 | 22.00 | 5.00 | 0.69 | 0.5 | Danalish Hallannan | | including | 26.00 | 1.00 | 2.32 | 1.0 | Regolith, Halloween | | CD3708 | No | significant
 assay | | Halloween | # ANNEXURE 3: LUNNON METALS' SAMPLING PROGRAM LOCATION DETAILS AND ASSAY RESULTS | Location ID | Easting | Northing | Elevation
(m ASL) | Prospect | Grade (Au
g/t) | Туре | Grid | |-------------|-----------|-------------|----------------------|-----------|-------------------|--------|----------| | 3536 | 384,158.4 | 6,528,694.9 | 320.0 | Halloween | 0.08 | Spoils | MGA94_51 | | 3536.1 | 384,158.4 | 6,528,694.9 | 320.0 | Halloween | 0.03 | Spoils | MGA94_51 | | 3536.2 | 384,158.4 | 6,528,694.9 | 320.0 | Halloween | 0.21 | Spoils | MGA94_51 | | 3536.3 | 384,158.5 | 6,528,694.9 | 320.0 | Halloween | 0.01 | Spoils | MGA94_51 | | 3536.4 | 384,158.5 | 6,528,694.9 | 320.0 | Halloween | 0.01 | Spoils | MGA94_51 | | 3536.5 | 384,158.5 | 6,528,694.9 | 320.0 | Halloween | 0.08 | Spoils | MGA94_51 | | 3536.6 | 384,158.5 | 6,528,694.9 | 320.0 | Halloween | 0.12 | Spoils | MGA94_51 | | 3536.7 | 384,158.5 | 6,528,694.9 | 320.0 | Halloween | 0.04 | Spoils | MGA94_51 | | 3537 | 384,132.0 | 6,528,712.2 | 320.5 | Halloween | 0.01 | Spoils | MGA94_51 | | 3537.1 | 384,132.0 | 6,528,712.2 | 320.5 | Halloween | 0.01 | Spoils | MGA94_51 | | 3537.2 | 384,132.0 | 6,528,712.2 | 320.5 | Halloween | 0.01 | Spoils | MGA94_51 | | 3537.3 | 384,132.0 | 6,528,712.2 | 320.5 | Halloween | 0.01 | Spoils | MGA94_51 | | 3539 | 384,125.5 | 6,528,712.6 | 320.4 | Halloween | 0.04 | Soil | MGA94_51 | | 3540 | 384,114.6 | 6,528,720.8 | 321.1 | Halloween | 0.01 | Spoils | MGA94_51 | | 3541 | 384,076.4 | 6,528,745.2 | 321.6 | Halloween | 0.01 | Spoils | MGA94_51 | | 3541.1 | 384,076.5 | 6,528,745.2 | 321.6 | Halloween | 0.01 | Spoils | MGA94_51 | | 3541.2 | 384,076.5 | 6,528,745.2 | 321.6 | Halloween | 0.06 | Spoils | MGA94_51 | | 3541.3 | 384,076.5 | 6,528,745.2 | 321.6 | Halloween | 0.01 | Spoils | MGA94_51 | | Location ID | Easting | Northing | Elevation
(m ASL) | Prospect | Grade (Au
g/t) | Туре | Grid | |-------------|-----------|-------------|----------------------|---------------------|-------------------|-----------|----------| | 3594 | 384,458.0 | 6,528,754.6 | 325.1 | Paringa Basalt | 0.01 | Spoils | MGA94_51 | | 3595 | 384,431.4 | 6,528,636.6 | 324.5 | Paringa Basalt | 0.34 | Grab | MGA94_51 | | 3596 | 384,439.7 | 6,528,630.4 | 325.2 | Paringa Basalt | 0.16 | Grab | MGA94_51 | | 3597 | 384,448.5 | 6,528,634.8 | 324.3 | Paringa Basalt | 0.17 | Grab | MGA94_51 | | 3598 | 384,455.9 | 6,528,626.8 | 324.0 | Paringa Basalt | 0.15 | Rock Chip | MGA94_51 | | 3599 | 384,464.0 | 6,528,633.2 | 324.1 | Paringa Basalt | 0.08 | Rock Chip | MGA94_51 | | 3600 | 384,418.5 | 6,528,633.7 | 323.6 | Paringa Basalt | 0.07 | Grab | MGA94_51 | | 3601 | 384,352.7 | 6,528,713.5 | 323.8 | Paringa Basalt | 0.08 | Grab | MGA94_51 | | 3602 | 384,350.1 | 6,528,726.9 | 323.1 | Paringa Basalt | 0.01 | Grab | MGA94_51 | | 3603 | 384,312.9 | 6,528,756.0 | 323.3 | Paringa Basalt | 0.02 | Grab | MGA94_51 | | 3604 | 384,284.7 | 6,528,774.1 | 323.4 | Paringa Basalt | 0.09 | Grab | MGA94_51 | | 3604.1 | 384,371.0 | 6,528,708.4 | 323.0 | Paringa Basalt | 0.01 | Grab | MGA94_51 | | 3605 | 384,296.9 | 6,528,846.6 | 322.8 | Guiding Star | 0.08 | Grab | MGA94_51 | | 3606 | 384,296.4 | 6,528,865.0 | 323.1 | Guiding Star | 0.01 | Grab | MGA94_51 | | 3608.1 | 384,236.9 | 6,528,842.5 | 323.5 | Halloween | 0.01 | Spoils | MGA94_51 | | 3608.2 | 384,236.9 | 6,528,842.5 | 323.5 | Halloween | 0.01 | Spoils | MGA94_51 | | 3608.3 | 384,236.9 | 6,528,842.5 | 323.5 | Halloween | 0.01 | Spoils | MGA94_51 | | 3609 | 384,221.0 | 6,528,858.8 | 324.3 | Halloween | 0.01 | Spoils | MGA94_51 | | 3610 | 384,221.0 | 6,528,858.9 | 324.3 | Halloween | 0.16 | Spoils | MGA94_51 | | 3610.1 | 384,221.0 | 6,528,858.9 | 324.3 | Halloween | 0.41 | Spoils | MGA94_51 | | 3610.2 | 384,221.0 | 6,528,858.9 | 324.3 | Halloween | 17.16 | Spoils | MGA94_51 | | 3610.3 | 384,221.0 | 6,528,858.9 | 324.3 | Halloween | 8.11 | Spoils | MGA94_51 | | 668.1 | 384,432.7 | 6,528,807.6 | 321.4 | Guiding Star | 0.02 | Rock Chip | MGA94_51 | | 671 | 384,410.5 | 6,528,778.5 | 321.2 | Paringa Basalt | 0.02 | Rock Chip | MGA94_51 | | 672 | 384,392.9 | 6,528,771.0 | 321.1 | Paringa Basalt | 0.00 | Rock Chip | MGA94_51 | | 679 | 384,126.9 | 6,528,712.3 | 316.8 | Halloween | 0.01 | Grab | MGA94_51 | | 679.1 | 384,127.0 | 6,528,712.3 | 316.8 | Halloween | 0.02 | Grab | MGA94_51 | | 679.2 | 384,127.1 | 6,528,712.3 | 316.8 | Halloween | 0.04 | Grab | MGA94_51 | | 679.3 | 384,127.2 | 6,528,712.3 | 316.8 | Halloween | 1.16 | Grab | MGA94_51 | | 680.01 | 384,158.3 | 6,528,693.4 | 317.0 | Halloween | 0.02 | Grab | MGA94_51 | | 680.02 | 384,158.4 | 6,528,693.4 | 317.0 | Halloween | 0.02 | Grab | MGA94_51 | | 680.03 | 384,158.5 | 6,528,693.4 | 317.0 | Halloween | 0.20 | Grab | MGA94_51 | | 680.04 | 384,158.6 | 6,528,693.4 | 317.0 | Halloween | 26.81 | Grab | MGA94_51 | | 680.05 | 384,158.7 | 6,528,693.4 | 317.0 | Halloween | 0.08 | Grab | MGA94_51 | | 680.06 | 384,158.8 | 6,528,693.4 | 317.0 | Halloween | 0.18 | Grab | MGA94_51 | | 680.07 | 384,158.9 | 6,528,693.4 | 317.0 | Halloween | 0.08 | Grab | MGA94_51 | | 680.08 | 384,159.0 | 6,528,693.4 | 317.0 | Halloween | 0.02 | Grab | MGA94_51 | | 680.09 | 384,159.1 | 6,528,693.4 | 317.0 | Halloween | 0.02 | Grab | MGA94_51 | | 680.1 | 384,159.2 | 6,528,693.4 | 317.0 | Halloween | 0.02 | Grab | MGA94_51 | | 685 | 384,075.5 | 6,528,746.6 | 317.0 | Halloween | 0.08 | Grab | MGA94_51 | | 685.1 | 384,075.6 | 6,528,746.6 | 317.0 | Halloween | 0.01 | Grab | MGA94_51 | | 687 | 384,218.0 | 6,528,856.5 | 320.0 | Halloween | 0.34 | Grab | MGA94_51 | | 687.1 | 384,218.1 | 6,528,856.5 | 320.0 | Halloween | 19.32 | Grab | MGA94_51 | | 705 | 384,245.3 | 6,528,929.3 | 321.6 | Guiding Star | 0.93 | Grab | MGA94_51 | | 705.1 | 384,245.4 | 6,528,929.3 | 321.6 | Guiding Star | 0.38 | Grab | MGA94_51 | | 705.2 | 384,245.5 | 6,528,929.3 | 321.6 | Guiding Star | 3.60 | Grab | MGA94_51 | | Location ID | Easting | Northing | Elevation
(m ASL) | Prospect | Grade (Au
g/t) | Туре | Grid | |-------------|-----------|-------------|----------------------|---------------------|-------------------|-----------|----------| | 706 | 384,279.9 | 6,528,934.8 | 322.0 | Guiding Star | 0.06 | Grab | MGA94_51 | | 706.1 | 384,280.0 | 6,528,934.8 | 322.0 | Guiding Star | 3.64 | Grab | MGA94_51 | | 707 | 384,271.4 | 6,528,910.5 | 321.4 | Guiding Star | 1.93 | Grab | MGA94_51 | | 707.1 | 384,271.5 | 6,528,910.5 | 321.4 | Guiding Star | 2.26 | Grab | MGA94_51 | | 707.2 | 384,271.6 | 6,528,910.5 | 321.4 | Guiding Star | 3.57 | Grab | MGA94_51 | | 707.3 | 384,271.7 | 6,528,910.5 | 321.4 | Guiding Star | 1.56 | Grab | MGA94_51 | | 1608 | 384,458.5 | 6,528,755.5 | 319.8 | Paringa Basalt | 0.01 | Rock Chip | MGA94_51 | | 1608.1 | 384,459.0 | 6,528,756.0 | 319.8 | Paringa Basalt | 0.01 | Grab | MGA94_51 | | 1610 | 384,439.1 | 6,528,633.0 | 320.1 | Paringa Basalt | 0.19 | Rock Chip | MGA94_51 | | 1611 | 384,412.9 | 6,528,638.4 | 320.0 | Paringa Basalt | 0.65 | Grab | MGA94_51 | | 1613 | 384,350.7 | 6,528,724.1 | 320.2 | Paringa Basalt | 0.02 | Grab | MGA94_51 | | 1621 | 384,312.2 | 6,528,752.5 | 320.4 | Paringa Basalt | 0.02 | Rock Chip | MGA94_51 | | 1622 | 384,286.3 | 6,528,771.4 | 320.1 | Paringa Basalt | 0.09 | Grab | MGA94_51 | | 1626 | 384,463.2 | 6,528,628.9 | 320.0 | Paringa Basalt | 0.02 | Rock Chip | MGA94_51 | | 1632 | 384,406.2 | 6,528,810.7 | 322.0 | Guiding Star | 0.03 | Grab | MGA94_51 | | 1633 | 384,433.9 | 6,528,802.0 | 321.3 | Guiding Star | 0.02 | Rock Chip | MGA94_51 | | 1634 | 384,433.1 | 6,528,809.1 | 321.4 | Guiding Star | 0.05 | Grab | MGA94_51 | | 1635 | 384,455.9 | 6,528,799.8 | 320.3 | Guiding Star | 0.01 | Grab | MGA94_51 | | 1637 | 384,409.1 | 6,528,779.8 | 321.3 | Paringa Basalt | 0.01 | Rock Chip | MGA94_51 | | 1638 | 384,394.6 | 6,528,771.6 | 321.1 | Paringa Basalt | 0.01 | Grab | MGA94_51 | | 1639 | 384,480.5 | 6,528,942.2 | 322.0 | Guiding Star | 0.00 | Grab | MGA94_51 | #### **JORC TABLE 1** Today's announcement details **selective surface sampling** and **RC drilling activities** by the Company, but also **historical aircore**. By necessity past DD, and RC results are also referenced and depicted, and are therefore also covered in this Table 1. As historical drilling is also represented, the following tables also address historical WMC and Gold Fields exploration activities/methods where relevant, as well as covering the Company's Historical Core Program, again resampled historical drilling has occurred. # **SECTION 1: SAMPLING TECHNIQUES AND DATA** # Criteria JORC Code explanation Commentary # Sampling techniques Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. - All drilling and sampling are undertaken in an industry standard manner both by Lunnon Metals Ltd (Lunnon Metals or the Company) since 2021 and historically by both Gold Fields Ltd (Gold Fields) from 2001 to 2014 and WMC Resources Ltd (WMC) from 1966 to 2001 (collectively Previous Owners). - Lunnon Metals' diamond drill (DD) and reverse circulation
(RC) holes are completed by Blue Spec Drilling Pty Ltd (Blue Spec) following protocols and QAQC procedures aligned with industry best practice. - Any DD holes on the surface of the salt lake, Lake Lefroy, have been drilled to date by Ausdrill Pty Ltd (Ausdrill), using a track-mounted lake rig. #### **RC Lunnon Metals** - RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. - Duplicate samples are also collected directly into calico sample bags from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. - Duplicate samples were collected at a rate of 1 in every 5 samples for the first phase (34 drillholes) of grade control at Lady Herial and reduced to the standard number for the remaining drillholes. - Sub-sampling techniques and sample preparation are described further below in the relevant section. - Sample sizes are considered appropriate for the material sampled. - The samples are considered representative and appropriate for this type of drilling. - RC samples are appropriate for use in a Mineral Resource estimate. # **DD Lunnon Metals** - Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) either from surface or as tails from RC pre-collars. Occasionally PQ (83mm core diameter) is drilled in shallow holes which have the additional purpose of collecting material and data for metallurgical and geotechnical studies. HQ3 (61mm core diameter) is occasionally used for shallow geotechnical holes. - All DD core is stored in industry standard plastic core trays labelled with the drill hole ID and core depth intervals. - Sub-sampling techniques and sample preparation are described further below in the relevant section. - Sample sizes are considered appropriate for the material sampled. - The samples are considered representative and appropriate for this type of drilling. - DD core samples are appropriate for use in a Mineral Resource estimate. ## **Historical data** - Sampling procedures followed by Previous Owners in the drilling, retrieval, and storage of air core (**AC**), RC and DD samples and core were in line with industry standards at the time. - Surface diamond drill obtaining NQ (48mm) and/or BQ (37mm) diameter drill core, were the standard exploration sample techniques employed by WMC. Underground DD was also used extensively in the operating environment, with drilling of both up and down holes, | Criteria | JORC Code explanation | Commentary | |--|---|--| | Criteria Sampling techniques (continued) | JORC Code explanation | retrieving typically BQ diameter drill core and to a lesser extent AQ (22mm) diameter drill core. The core trays were labelled with the drill hole number and numbered with the downhole meterage for the start of the first 1 m run and the end of the last 1 m run on the lip of the core tray and typically included core blocks within the core trays demarcating the depth meterage of rod pull breaks. The earlier drilling was collected in wooden, and hybrid wooden/steel core trays and occasionally depths recorded in feet. Handheld XRF Where a handheld XRF tool was used to collect any exploration data reported, it was done so to assess the levels of key chemical elements. The individual XRF results themselves are not reported and any element values or ratios are used as a guide only for lithological and alteration logging/sampling and to assist vectoring to potential mineralisation. No XRF results are used in the MRE. Surface rock chip and grab sampling Rock chip samples are taken manually from outcrop exposures using geological pick / crack hammer while grab samples are collected from loose rock material proximal to its original source such as spoils from historical sample pits. Larger rock samples may be reduced in size using geological pick / crack hammer for representative sample compositing purposes. Individual samples comprise several rock chips / grab samples from the area of interest, typically totalling 1.0 to 3.0kg collected in prenumbered calico bags. The sampling methodology is considered to be appropriate for the intended purpose of the data. Sub-sampling techniques and sample preparation are described further below in the relevant section. | | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | The samples are not considered appropriate for use, and will not be used, in any resource estimate. RC Lunnon Metals RC holes are typically drilled with a 5 1/2-inch bit and face sampling hammer. Holes are drilled dry with use of booster/auxiliary air when/if ground water is encountered. In the case of short holes not likely to intersect the water table and thus not requiring the use of booster/auxiliary air, a 4-inch bit and face sampling hammer may be used. DD Lunnon Metals Core samples are collected with a DD rig typically drilling HQ (63.5mm core diameter) and/or NQ2 (51mm core diameter) from surface, or as tails from RC pre-collars, or as wedge holes off parent DD holes. Occasionally PQ (83mm core diameter) or HQ3 (61mm core diameter) is drilled in shallow holes which have the additional purpose of collecting material and data for metallurgical and geotechnical studies. Triple tube HQ or PQ drilling techniques may be used where maximum recovery and preservation of core is required through the weathered zone from surface until competent fresh rock ground conditions are reached. To help accurately test the targets, "navi" or motor drilling is sometimes used over short runs to control the direction of the drill hole. In these instances, no drill core or sample is returned from that portion of the drill hole. No navi drilling is undertaken within expected intervals of mineralisation. Wedge holes, where present, utilise the parent hole to a given depth then branch off from the parent hole using either a casing wedge, a | | Criteria | JORC Code explanation | Commentary | |---------------------------------------|--
---| | Drilling
techniques
(continued) | | Hall-Rowe wedge, or a natural elbow, or navi bend, in the parent hole from where a lip can be cut with the diamond drill bit and the wedge hole drilled straight off the parent. • The DD core is orientated during the drilling process by the drill contractor, using a down hole Reflex ACTIII™ Rapid Descent Digital Core Orientation Tool, and then reconstructed over zones of interest by Lunnon Metals field staff for structural and geotechnical logging. Historical Drilling • Historical surface DD completed by Previous Owners typically comprised HQ, NQ and BQ size drill core. Pre-collars to the surface diamond drillholes are typically PQ and HQ size and occasionally comprised RC drilling techniques. The pre-collars are not typically mineralised. • Underground WMC DD was used extensively in the underground mining environments when present. Drilling included both up hole and downhole, retrieving typically BQ diameter drill core and to a lesser extent AQ diameter drill core. • Although no documentation is available to describe the drilling techniques used by Previous Owners at the time it is understood that the various drilling types used conventional drilling methods consistent | | | | with industry standards of the time. • None of the historical WMC diamond drill core was oriented. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | None of the historical winc diamond drift core was oriented. For both Lunnon Metals RC and DD Every RC sample is assessed and recorded for recovery and moisture by Lunnon Metals field staff in real time during the drilling process. Samples are monitored for possible contamination during the drilling process by Lunnon Metals geologists. DD core recovery is measured for each drilling run by the driller and then checked by the Lunnon Metals geological team during the mark up and logging process. No sample bias is observed. There is no observed relationship between recovery and gold grade nor bias related to fine or coarse sample material. Historical data There are no available records for sample recovery for AC, DD or RC drilling completed by Previous Owners; however, re-logging exercises completed by Lunnon Metals of surface and underground DD holes from across the KGNP between 2017 and present found that on average drill recovery was good and acceptable by industry standards. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. | For both Lunnon Metals RC and DD (and re-logging of Historical DD where relevant) Geological logging is undertaken for the entire hole recording lithology, oxidation state, mineralisation, alteration, structural fabrics, and veining. DD orientated structural logging, core recovery, and Rock Quality Designation (RQDs) are all recorded from drill core over intervals of interest and relevance. Detailed geotechnical logging and rock property test work is completed over intervals of relevance by independent MineGeoTech Pty Ltd (MGT) contractor geotechnical engineers. Geological logging (and where required, geotechnical logging) is completed in sufficient detail to support future Mineral Resource estimation, mining and metallurgical studies. Metallurgical test work in the broader project area is ongoing in addition to the geological logging and element assaying detailed below. General logging data captured are qualitative (descriptions of the various geological features and units) and quantitative (numbers representing structural attitudes, and vein and sulphide percentages, magnetic susceptibility and conductivity). DD core is photographed in both dry and wet form. | | Criteria | JORC Code explanation | Commentary | |---|---|--| | Logging | | Historical data | | | | Historical data There is no available documentation describing the logging procedures employed by Previous Owners' geologists in the KGNP area. However, the WMC historical graphical hardcopy logs and other geoscientific records available for the project are of high quality and contain significant detail with logging intervals down to as narrow as 0.01 m. The geological logs document lithology, textures, structures, alteration, and mineralisation observed in drill core captured both graphically and in a five-character logging code (Lunnon Metals notes that a previous logging legend employed at WMC's Kambalda Nickel Operations utilised a 3-letter code which is often represented on hard copy plans and cross sections of an older vintage and which was converted by WMC to the latter 5-character code at some later time). Stratigraphy is also captured in a three-character logging code. Sample intervals are recorded on the graphical log. These logging legends are well documented in lieu of a recorded procedure and are utilised by Lunnon Metals in current logging practices. In regard geotechnical logging or procedures, there is no record of any formal relevant procedures or logging and based on personal experience of the Competent Person, such logging was not routinely completed prior to the introduction of Regulation 10:28 in the WA Mine Safety and Inspection Act, requiring the same in approximately 1996. Based on the personal experience of the relevant Competent Person to | | | | this announcement, having worked for WMC in Kambalda between 1996 and 2001, and Gold Fields between 2001 and 2006, it is known that the Previous Owners had a rigorous and regimented system for storing and archiving the graphical logs physically, microfilmed, and drafted on to master cross sections, plans, and long sections. • Starting in the early 2000s under Gold Fields ownership drillhole logging information was captured digitally via rugged tablet, field- based laptops (known as "Toughbooks") using a newly developed in-house (and industry standard) geological logging legend which was overseen by the Competent Person who was Exploration Manager for the St Ives Gold Mining Co Pty Ltd (SIGM) at that time. • Both the graphically captured interval data and the more recently digitally captured geological logging information was stored in a secure digital database. | | | | Lunnon Metals sourced
historical diamond core from the SIGM
Kambalda core yard on Durkin Road where relevant to its investigations. Optical Televiewer downhole surveys For additional information regarding Optical Televiewer surveys please
refer to Table 1 section 2 'Other substantive exploration data' criteria. | | | | Surface rock chip and grab sampling All rock chip / grab samples have been geologically described and recorded by a qualified geologist. The geological logging was to a level appropriate for exploration planning purposes. | | | | Geological logging of the samples is qualitative in nature. | | Sub-sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. | Lunnon Metals RC Dry RC samples are collected directly into calico sample bags on a 1.0m basis from a cone splitter mounted on the drill rig cyclone. 1.0m sample mass typically averages 3.0kg splits. | | | If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of | Industry prepared certified reference material (CRM), or standard samples, of various grades appropriate to the mineralisation expected are inserted into the sample batches, approximately every 50 samples and more frequently in the expected mineralised zones. Lunnon Metals prepared blank samples are inserted, approximately every 50 samples and more frequently in the expected mineralised | # Criteria # **JORC Code explanation** # **Sub-sampling** techniques and sample preparation (continued) the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. # Commentary zones. Blanks were inserted at a rate of 1 in every 5 samples for the first phase (34 drillholes) of grade control at Lady Herial and reduced to the standard number for the remaining drillholes. - At present blank samples are prepared from CRM Bunbury Basalt. In the past blanks were prepared from barren non-ultramafic RC chips as verified by laboratory analysis or barren non-ultramafic Proterozoic Dyke DD core acquired locally and verified by geological logging. - Blank samples are prepared from barren reject RC chips as verified by laboratory analysis and geological logging. - Duplicate samples are also collected from the drill rig cyclone, at a rate of 1 in every 25 samples and more frequently in the expected mineralised zones. Duplicate samples were collected at a rate of 1 in every 5 samples for the first phase (34 drillholes) of grade control at Lady Herial and reduced to the standard number after that. - After receipt of the RC samples by the independent laboratory the samples submitted for fire assay or multielement analysis are typically dried and pulverised with >85% pulverised to 75micron or better. For sample weights > 3kg the sample is dried, split and pulverised up to - RC samples submitted for Chrysos PhotonAssayTM (**PhotonAssay**) method of gold analysis, are dried and crushed to ~2-3mm and loaded into 330mL plastic jars (typically 400-650g) ready for analysing. # **Lunnon Metals DD (and re-sampling of Historical DD where relevant)** - DD core samples are collected with a diamond drill rig drilling HQ and/or NQ2 size core. After logging, sample interval mark-up, photographing, and geotechnical rock property test work, selected sample intervals of drill core are cut in half along the length of the drill core with a diamond saw in a Discoverer® Automatic Core Cutting Facility using a Corewise Auto Core Saw. - Typically, one half of the drill core is sent to the laboratory for assay and the other half retained in its original core tray. - The PQ metallurgical holes had one guarter sent to the assay laboratory and the remaining three-quarters is saved for metallurgical testwork samples. - Holes are marked-up and sampled for assaying over mineralised and surrounding intervals at a typical minimum sample interval of 0.3m to ensure adequate sample weight and a typical maximum sample interval of 1.0m, constrained by geological boundaries. - Specific Gravity Sufficient density measurements are taken for each mineralised DD sample for the Lunnon Metals drill holes. - Sample weights vary depending on core diameter, sample length and density of the rock. Regolith zonation is taken into account. - Industry prepared certified reference material (CRM), or standard samples of various grades appropriate to the mineralisation expected are inserted into the sample batches, approximately every 50 samples and more frequently in the identified mineralised zones. - Lunnon Metals prepared blank samples are inserted, approximately every 50 samples and more frequently in the identified mineralised zones. At present blank samples are prepared from CRM Bunbury Basalt. In the past blanks were prepared from barren non-ultramafic RC chips as verified by laboratory analysis or barren non-ultramafic Proterozoic Dyke DD core acquired locally and verified by geological logging. - Field duplicate samples are collected at a rate of 1 in 25 samples, and more frequently in the identified mineralised zones, by cutting the core into quarters and submitting both quarters to the laboratory for analysis as two separate samples. - In the case of the metallurgical holes no field duplicates are collected to preserve a consistent amount of core for metallurgical testwork. | Criteria | JORC Code explanation | Commentary | |--|---|---| | Sub-sampling
techniques
and sample
preparation
(continued) | | Surface rock chip and grab sampling As the rock chip / grab samples are intended for exploration planning purposes only no Company sample preparation QAQC processes were undertaken (insertion of CRM's or blanks). Laboratory QAQC protocols were utilized in the sample preparation and analysis phase. After receipt of the rock chip / grab samples by the independent laboratory the samples are dried, crushed to ~2mm, and pulverised with >85% pulverised to 75micron or better. For sample weights >3kg the sample is dried, crushed to ~2mm, split, and pulverised up to 3kg. Rock chip / grab samples submitted for PhotonAssay method of gold analysis, are dried and crushed to ~2-3mm and loaded into 330mL plastic jars (typically 400-650g) ready for analysing. Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation i.e. drying, crushing where necessary, and pulverising. Pulverised samples are then transported to Intertek Genalysis in Perth for analysis. | | Quality of | The nature, quality and | For both Lunnon Metals RC and DD (and re-assaying of Historical DD | | assay data and | appropriateness of the assaying | where relevant) and surface rock chip / grab samples | | laboratory
tests | and laboratory procedures used and whether the technique is considered partial or total. | Samples are submitted to Intertek Genalysis in Kalgoorlie for sample preparation such as drying, crushing where necessary, and pulverising.
Prepared samples are then transported to Intertek Genalysis in Perth for analysis. | | | For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | Samples are analysed for a multi-element suite (typically 33 or 48 elements) including, as a minimum, Ni, Cu, Co, Cr, As, Fe, Mg, Pb, S, Ti, Zn. Analytical techniques used a four-acid digest (with ICP-OES or ICP-MS finish) of hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for near total dissolution of almost all mineral species including silica-based samples. Within selected gold mineralised zones and all nickel mineralised zones, the platinum group elements (Pd, Pt, Au) are also analysed using a 50g charge lead collection fire assay method with ICP-MS finish. For the purpose of gold exploration, all samples have been typically submitted for 50g charge lead collection fire assay, while samples specifically located in weathered regolith and mineralised zones are submitted for the same multi-element suite as above for the purpose of assessing potential gold path finder elements. From 2024 the Company has moved to Chrysos PhotonAssayTM (PhotonAssay) as its preferred methods of gold analysis. PhotonAssay is a high-energy X-ray source that is used to irradiate large mineral samples, typically about 0.5 kg. The X-rays induce short-lived changes in the structure of any gold nuclei present. As the excited gold nuclei return to their ground state, they emit a characteristic gamma-ray signature, the intensity of which is directly proportional to the concentration of gold. The penetrating nature of PhotonAssay provides much higher energy than those used in conventional X-ray fluorescence (XRF), which provides a true bulk analysis of the entire sample. Samples are presented into a fully automatic process where samples are irradiated, measured, data collected and reported. These techniques are considered quantitative in nature. As discussed previously, except in the case of rock chip/grab samples, CRM standard, and blank samples are inserted by Lunnon Metals into | | | | sample batches, and the laboratory also carries out internal standards in individual batches. The resultant Lunnon Metals and laboratory QAQC data is reviewed upon receipt to determine that the accuracy and precision of the data has been identified as acceptable prior to being cleared for upload to the project-wide Lunnon Metals KGNP Geobank® (Micromine) database (Database). | | Criteria | JORC Code explanation | Commentary | |---------------------------------------|--|---| | | | Historical data | | | | There is no data available at the time of this announcement pertaining | | | | to the assaying and laboratory procedures nor the historical field or | | | | laboratory quality assurance and quality control (QAQC), if any, | | | | undertaken by Previous Owners' drilling programs in the KGNP area; | | | | however, it is expected that industry standards as a minimum were likely | | | | to have been adopted in the KGNP area and the analytical laboratory. | | Verification of | The verification of significant | For both Lunnon Metals RC and DD | | sampling and | intersections by either | • In the case of current gold exploration, previous lodgements have | | assaying | independent or alternative | specifically documented the results of drilling DD holes adjacent to | | , , , , , , , , , , , , , , , , , , , | company personnel. | previous Company RC holes. | | | , , , , | Specific assayed gold interval samples nominated for verification are | | | The use of twinned holes. | either re-split in the field via riffle splitter in the case of RC samples, or in | | | | the case of DD core the remaining half of core from the core trays are | | | Documentation of primary data, | sampled. These full intervals of duplicate samples are assayed via the | | | data entry procedures, data | original and/or alternative methods as a means of verifying the original | | | verification, data storage (physical and electronic) | gold assays. • Prior to drilling, all planned collar data is captured in a digital drillhole | | | protocols. | collar register stored on a secure site-based server which is backed up to | | | protocols. | Perth based server continuously. The collar register is updated as drilling | | | Discuss any adjustment to assay | progresses and is completed. | | | data. | Sample intervals are captured in digital QAQC'd spreadsheets via | | | | Toughbooks. | | | | Since September 2023 the data collected on the Toughbooks | | | | synchronises directly to the Database stored on a separate secure sequel | | | | server. A set of buffer tables store the data before the database | | | | administrator does a second validation of the data (driven by in-built | | | | validation rules in the Database) before loading to the production data tables. | | | | Assays from the laboratory are sent directly to the database | | | | administrator via a dedicated Lunnon Metals assays email address where | | | | they are all checked and verified by the Lunnon Metals database | | | | administrator before accepting the batches into the database. | | | | No adjustments are made to the original assay data. Only the Lunnon | | | | Metals database administrator has editable access to assay values stored | | | | in the Database and an internal periodic audit protocol is in place to | | | | verify Database assay values against original laboratory provided assay data. | | | | Historical data | | | | Diamond core data – across the KGNP, Lunnon Metals has undertaken | | | | exhaustive assessment of historical WMC underground and surface | | | | diamond drill core to inspect and visually validate significant drill assays | | | | and intercepts, and re-sample and re-assay to validate historical assay | | | | data in the KGNP Database. | | | | No significant or systematic inconsistencies have been identified and the | | | | Competent Person is satisfied that the original data in the project area is | | | | representative of the geology and mineralisation modelled; thus, no adjustments to assay data have been deemed necessary or made. | | | | Surface rock chip and grab sampling | | | | No verification of sampling and assaying of surface rock chip/grab | | | | samples is undertaken. No rock chip data is used in any MRE. | | Location of | Accuracy and quality of surveys | General | | data points | used to locate drillholes (collar | • The grid projection is GDA94/ MGA Zone 51. | | | and down-hole surveys), | Diagrams and location data tables have been provided in the previous | | | trenches, mine workings and | reporting of exploration results where relevant. | | | other locations used in Mineral | For both Lunnon Metals RC and DD | | | Resource estimation. | • RC and DD hole collar locations are located initially by handheld GPS to | | | 1 | an accuracy of +/- 3m. Planned resource drill holes are set out by a | | Critoria | IOPC Code evaluation | Commonton | |-------------------------|--|--| | Criteria | JORC Code explanation | Commentary | | Location of data points | Specification of the grid system used. | licensed surveyor for better than 3m accuracy. Subsequently, drill hole collar locations are then picked up by a licensed surveyor using DGPS | | (continued) | useu. | methods following the completion of the drilling. | | (continued) | Quality and adequacy of | All drill holes are typically surveyed downhole at 5m intervals using the | | | topographic control. | REFLEX gyro Sprint-IQ (north seeking gyro) system for both azimuth and | | | topograpme comrot. | dip measurements or the new REFLEX gyro OMNIx42, which is stated to | | | | have an even greater accuracy than the Sprint-IQ. | | | | Downhole surveys are uploaded by Blue Spec and Ausdrill to the | | | | IMDEXHUB-IQ, a cloud-based data management program where | | | | surveys are validated and approved by trained Lunnon Metals staff. | | | | Surveys can now be validated live and in 3D with the introduction of | | | | Seequent Central to the process, a cloud-based management system | | | | with direct integration between IMDEX and Leapfrog Geo (3D geology | | | | modelling software). Approved exports are then downloaded to the | | | | server and after additional QAQC checks and sign off the survey data is | | | | uploaded to the Database. The input file is the same file directly | | | | downloaded from the IMDEX hub, so data entry errors are eliminated. | | | | Historical data | | | | Historical methods of drill collar survey pick-up are not recorded however Provings Owners did employ surface surveyers dedicated to | | | | however Previous Owners did employ surface surveyors dedicated to | | | | the collection of exploration collar data. The easting, northing and elevation values were originally recorded in local KNO ('Kambalda Nickel | | | | Operations') grid and later converted to the currently used GDA94/MGA | | | | Zone 51 grid. Both the original KNO grid coordinates and the converted | | | | coordinates are recorded in the Database. A representative number of | | | | historical drill collars were located in the field and their locations
cross | | | | checked via differential GPS and/or handheld GPS to validate the | | | | Database collar coordinates. | | | | Historical hardcopy downhole survey data is generally available for the | | | | majority of surface drillholes and the records show that single shot | | | | magnetic instruments were used. A representative number of these | | | | hardcopy downhole survey records have been cross checked against the | | | | digital records in the Database. | | | | Downhole surveys of select historical surface DD have been conducted | | | | using modern gyro systems as described above and no significant errors | | | | or inconsistencies were deemed present. | | | | Lunnon Metals has corrected where necessary incorrect data in the | | | | Database where down hole measurements from the hardcopy data were | | | | incorrectly processed. | | | | No other significant errors or inconsistencies were deemed present or capable of being detrimental to any interpretation of gold or nickel | | | | mineralisation, including any MRE work. | | | | Surface rock chip and grab sampling | | | | The rock chip / grab sampling points are located by handheld GPS to a | | | | typical accuracy of +/- 3m. | | Data spacing | Data spacing for reporting of | For both Lunnon Metals RC and DD | | and | Exploration Results. | The RC and DD programs at KGNP comprise drillhole spacings that are | | distribution | | dependent on the target style, orientation and depth. Drillholes are not | | | Whether the drill spacing and | necessarily drilled to set patterns or spacing at the exploration stage of | | | distribution is sufficient to | the program. | | | establish the degree of | Previous drill spacing varies greatly, again subject to the target style | | | geological and grade continuity | dimensions, orientation and depth and inherent geological variability | | | appropriate for the Mineral | and complexity. | | | Resource and Ore Reserve | All holes have been geologically logged and provide a strong basis for The standard and continuity of mineral and continuity of mineral and continuity. | | | estimation procedure(s) and | geological control and continuity of mineralisation. | | | classifications applied | No sample compositing has been applied except at the reporting stage of drill intercepts within a single hole. | | | Whether sample compositing | of drill intercepts within a single hole. | | | has been applied | | | | mas been applied | ı | | Criteria | JORC Code explanation | Commentary | |--|--|--| | Data spacing | | Historical data | | and
distribution
(continued) | | The typical spacing for the early WMC DD surface drill traverses varies but is typically approximately 200m to 400m apart with drillhole spacing along the traverses at 100m to 50m. In areas of shallower RC drilling this drill spacing is sometimes improved to 100m by 50m or even 50m by 50m. The drill spacing for areas the subject of underground DD holes was variable but was on average spaced at approximately 20m along the | | | | strike of a mineralised zone with fans or rings of DD holes that deliver pierce points in the dip orientation at variable spacing, but typically 10m to 20m apart. The drill spacing for the gold prospects reported, with both Lunnon Metals surface DD and RC and Previous Owners surface DD, RC and AC, is variable but ranges typically from 320m, 160m, 80m, 40m, to 20m hole spacing depending on the maturity or state of advancement of the prospect by those Previous owners. Surface rock chip and grab sampling Not relevant to the reporting of rock chip / grab samples. | | | | Spacing of sample location is arbitrary, and dependent on the surface exposures identified in the field. The location, assay results and geological descriptions of the rock chip / grab samples reported is not appropriate for use, and will not be used, in any mineral resource estimate. | | Orientation of | Whether the orientation of | The preferred orientation of drilling at KGNP is designed to intercept the | | data in | sampling achieves unbiased | target approximately perpendicular to the strike and dip of the | | relation to
geological
structure | sampling of possible structures and the extent to which this is known, considering the deposit type. | mineralisation where/if known. Subsequent sampling is therefore considered representative of the mineralised zones if/when intersected. The chance of bias introduced by sample orientation relative to structures, mineralised zones or shears at a low angle to the drillhole is | | | If the relationship between the drilling orientation and the orientation of key mineralised | possible, however quantified orientation of the intercepted interval allows this possible bias to be assessed. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal. | | | structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Lunnon Metals does not consider that any bias was introduced by the orientation of sampling resulting from any particular drilling technique. Where drilling intercepts the interpreted mineralisation as planned, bias is considered non-existent to minimal. | | | | Surface rock chip and grab sampling Not relevant to the reporting of rock chip / grab samples. | | Sample
security | The measures taken to ensure sample security | Lunnon Metals RC • The calico sample bags are collected by Lunnon Metals personnel | | security | sumple security | stationed at the drill rig typically at the end of each day. The calico samples are collected sequentially in groups of five and placed into polyweave bags, or more recently green plastic bags, which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. • The laboratory checks the samples received against the submission form and notifies the Company of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse rejects are held in the Laboratory's secure warehouse until collected by the Company or approves them to be discarded. Lunnon Metals DD (and re-sampled Historical DD where relevant) • After the drill core is cut and returned to its original position in the core tray, Lunnon Metals' geologists mark up the drill core for sampling and | | | | records the sample intervals against unique sample numbers in a digital sample register. | | Criteria | JORC Code explanation | Commentary | |-----------------------------------|---|---| | Sample
security
(continued) | | A Lunnon Metals core farm technician then collects the cut core samples into calico bags guided by the sample register and sampling information contained therein. The following two steps are also relevant to surface rock chip and grab sampling The calico samples are collected sequentially in groups of five and placed
into polyweave bags which are labelled and secured with cable ties. The polyweave bags are in turn placed in bulka bags which are secured on wooden pallets and transported directly via road freight to the laboratory with a corresponding submission form and consignment note. The laboratory checks the samples received against the submission form and notifies Lunnon Metals of any inconsistencies. Once the laboratory has completed the assaying, the pulp packets, pulp residues and coarse rejects are held in the laboratory's secure warehouse until collected by Lunnon Metals or approval is provided for them to be discarded. Historical data There is no documentation which describes the historical sample handling and submission protocols during Previous Owners' drilling programs; however, it is assumed that due care was taken with security of samples during field collection, transport and laboratory analysis. The historical drill core remaining after sampling was stored and catalogued at the KNO core farm (now Gold Fields, SIGM core farm) and it remains at this location to the present day. | | Audits or review | The results of any audits or reviews of sampling techniques and data. | No external audits or reviews have been undertaken at this stage of the program. WMC Historical data Cube Consulting Pty Ltd (Cube) are independent of Lunnon Metals and have been previously retained by Lunnon Metals to complete the grade estimation for nickel mineralisation models and MRE exercises. Cube were also requested to review and comment on the protocols developed by Lunnon Metals to deal with, and thereafter utilise, the historical WMC Resources' data, in particular the re-sampling and QAQC exercise completed by Lunnon Metals such that the data is capable of being used in accordance with current ASX Listing Rules where applicable and JORC 2012 guidelines and standards for the generation and reporting of MREs. Cube documented no fatal flaws in that work completed by Lunnon Metals in this regard. | # **SECTION 2: REPORTING OF EXPLORATION RESULTS** # Criteria JORC Code explanation # Mineral tenement and land tenure status Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. # **Commentary** - The property is located on granted Mining Leases. Although all the tenements wholly or partially overlap with areas the subject of determined native title rights and interests, the Company notes that the original grant of the right to mine pre-dates 23 December 1996 and as such section 26D of the Native Title Act may be applied to exempt any future renewals or term extensions from the right to negotiate in Subdivision P of the Act. - Notwithstanding the above, on January 9, 2025, the Company announced that it had executed a Mining Agreement with the Ngadju Native Title Aboriginal Corporation RNTBC (NNTAC), covering the relevant parts of the KGNP that fall on Ndadju Determination Area country. Significantly, the Agreement secures the renewal of the Company's mining licences, delivering certainty beyond the current term ending in December 2025. - The complete area of contiguous tenements on which the Silver Lake-Fisher project and rights is located is, together with the wholly owned Foster-Baker project area on the south side of Lake Lefroy, collectively referred to as the Kambalda Gold & Nickel Project ("KGNP") area. - Gold Fields Ltd's wholly owned subsidiary, SIGM, remains the registered holder and the beneficial owner of the Silver Lake- Fisher area. - Lunnon Metals holds: - 100% of the rights and title to the Foster-Baker (FBA) area of KGNP, its assets and leases, subject to certain select reservations and excluded rights retained by SIGM, principally relating to the right to gold in defined areas and the rights to process any future gold ore mined at their nearby Lefroy Gold Plant; - The FBA project area of KGNP comprises 19 tenements, each approximately 1,500 m by 800 m in area, and three tenements on which infrastructure may be placed in the future. The tenement numbers are as follows: M15/1546; M15/1548; M15/1549; M15/1550; M15/1551; M15/1553; M15/1556; M15/1557; M15/1559; M15/1568; M15/1570; M15/1571; M15/1572; M15/1573; M15/1575; M15/1576 M15/1577; M15/1590; M15/1592; and additional infrastructure tenements: M15/1668; M15/1669; M15/1670; and 100% of the mineral rights to nickel and associated metals in the Silver Lake-Fisher (SLF) project area of KGNP, subject to the rights retained by SIGM as tenement holder and as detailed in the Mineral Rights Agreement (MRA). The tenement numbers are as follows (note select tenements are not wholly within the MRA area): M15/1497; M15/1498; M15/1499; M15/1505; M15/1506; M15/1507; M15/1511; M15/1512; M15/1513; M15/1515; M15/1516; M15/1523; M15/1524; M15/1525; M15/1526; M15/1529; M15/1528; M15/1530; M15/1531: and access rights to ML15/0142. - There are no known impediments to potential future development or operations, subject to relevant regulatory approvals, over the leases where significant results have been reported. - The tenements are in good standing with the Western Australian Department of Mines, Industry Regulation and Safety. | Criteria | JORC Code explanation | Commentary | |-----------------------------------|--|---| | Exploration done by other parties | Acknowledgement and appraisal of exploration by other parties. | In relation to nickel mineralisation, WMC, now BHP Nickel West Pty Ltd and a wholly owned subsidiary of BHP Group Ltd, conducted all relevant exploration, resource estimation, development and mining of the mineralisation at Foster, Jan, Silver Lake and Fisher mines from establishment of the mineral licences through to sale of the properties to SIGM in December 2001. Whilst the majority of this prior work had a nickel focus, some gold exploration did occur. Approximately over 550,000m of DD was undertaken on the properties the subject of the FBA and SLF area by WMC prior to 2001. SIGM has conducted later gold exploration activities on the KGNP area since 2001, however until nickel focused work recommenced under Lunnon Metals management, no meaningful nickel exploration has been conducted since the time of WMC ownership and only one nickel focused surface diamond core hole (with two wedge holes), was completed in total since WMC ownership and prior to Lunnon Metals' IPO. In relation to gold exploration, Lunnon Metals adopted a 100% gold focussed strategy in early 2024. Since that time over 17.7km of drilling has been completed by the Company, with 273 RC holes and 20 DD holes completed. In relation to past gold production, no modern gold production has occurred on FBA leases where Lunnon Metals has the gold rights. 1920s vintage gold production occurred and is understood to have totalled approximately 50k short tons, for 23.4koz of gold (source: "WA Government List of Cancelled Gold Mining Leases (which have produced gold)" WA DMP 1954). On the KGNP, past total production from underground mining was conducted by WMC and was solely focused on nickel, recording in contained nickel metal terms: - Foster 61,129 nickel tonnes; - Jan 30,270 nickel tonnes; - Jan 30,270 nickel tonnes; - Fisher 38,070 nickel tonnes; -
Fisher 38,070 nickel tonnes; | | Geology | Deposit type, geological setting and style of mineralisation. | The KGNP area is host to both typical Archaean greenstone gold deposits and 'Kambalda' style, komatiitic hosted, nickel sulphide deposits as routinely discovered and mined in the Kambalda/St Ives district. The project area is host to gold mineralisation as evidenced by the past mining activities noted above and also nickel mineralisation and elements associated with this nickel mineralisation, such as Cu, Co, Pd and Pt. | | Drillhole
information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: • easting and northing of the drillhole collar • elevation or RL (elevation above sea level in metres) of the drillhole collar • dip and azimuth of the hole • down hole length and • interception depth hole length | Drill hole collar location and directional information has been provided within the body of related previous ASX reports and also within the relevant Additional Details Table in the Annexures of those reports. A representative proportion of historical drilling completed by Previous Owners as recorded in the drilling Database and relevant to the report, has been verified. If long plunge extents are present, long projections are often considered the most appropriate format to present most results, especially if there are insufficient drill hole intercepts to present meaningful, true cross sections. Isometric and plan views are also utilised to place drill results in context if possible. In regard the gold prospects reported, plan, isometric, long projection and/or cross section views are presented if sufficient data or individual drill intercepts are present to make this meaningful. Cross sections are often only able to be presented once sufficient pierce points on the same section have been generated and the | | Criteria | JORC Code explanation | Commentary | |---|---|---| | | | interpretation sufficiently well advanced to present such sections in a meaningful manner. | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. | Grades have been reported as intervals recording down-hole length and interpreted true width where this estimation is able to be made. Any grades composited and reported to represent an interpreted mineralised intercept of significance are reported as sample-length weighted averages over that drill intercept. Other composite grades may be reported above differing cut-offs however in such cases the cut off will be specifically stated. Gold Exploration Results The Company currently considers that grades above 0.5 g/t Au and/or 1.0 g/t Au are worthy of consideration for individual reporting in any announcement of Exploration Results in additional details tables provided. Composite grades may be calculated typically to a 0.5 g/t Au cut-off with intervals greater than 1.0 g/t reported as "including" in any zones of broader lower grade mineralisation. Other composite grades may be reported above differing cut-offs however in such cases the cut off will be specifically stated. Reported intervals may contain variable widths of internal waste (samples with values below stated cut-off grade) depending on the style of gold mineralisation being investigated however the resultant composite must be greater than either the 0.5 g/t Au or 1.0 g/t Au as relevant (or the alternatively stated cut-off grade). No top-cuts have been applied to reporting of drill assay results and no metal equivalent values have been reported. Where present, historical SIGM drilling in the project area was typically only assayed for Au. Surface rock chip and grab sampling Only individual rock chip assay results have been released. Results have not been aggregated. No metal equivalent values are reported. Results are from surface outcrops and / or existing historical sample pit spoils as relevant, no estimate of width or geometry of the sampled medium is provided | | Relationship
between
mineralisation
widths and
intercept
lengths | If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | In regard to the gold prospects reported, subject to the stage of maturity and thus understanding of the prospect and target mineralisation, again, if possible, drillholes are designed to intersect target surfaces at approximately perpendicular to the strike of mineralisation. Earlier stage or conceptual gold targets however may not be sufficiently well understood to allow this to be the case. Surface rock chip and grab sampling Not relevant to the reporting of rock chip / grab samples which is selective and point based in the field. | | Criteria | JORC Code explanation | Commentary | |---------------------|---|---| | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views. | It is often not possible to display all significant intercepts in any plan view due to the overlapping nature and broad width of gold mineralisation encountered in and on the Foster Gold Belt prospects. Accordingly, the Competent Person may select either cross
sectional or long sectional views, as the most appropriate sectional representation to comply with the JORC Code and to depict the program results in the clearest and most meaningful way for the reader. If practical and meaningful, both sectional views may be possible and if so will be provided. Generally numerous and extensive plans, long projections and sections, and isometric imagery where able to clearly represent the results of drilling, have been previously provided in prior lodged reports and should be referenced where possible. | | Balanced | Where comprehensive reporting of | Drill collar locations of Previous Owners Historical drilling and current | | reporting | all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | drilling completed by Lunnon Metals have been previously lodged on the ASX platform and all results of the drilling have also been previously reported. All results pertinent to this report are provided in detail in the annexures. | | Other | Other exploration data, if | • The KGNP has a long history of geological investigation, primarily for | | substantive | meaningful and material, should | nickel, but also gold to a lesser degree. | | exploration
data | be reported including (but not limited to): geological | Datasets pertinent to the KGNP that represent other meaningful and
material information include: | | data | observations; geophysical survey | - Geophysics - multiple ground and aerial based surveys of magnetic, | | | results; geochemical survey results;
bulk samples – size and method of
treatment; metallurgical test
results; bulk density, groundwater,
geotechnical and rock
characteristics; potential | gravity, Sub Audio Magnetics, electro magnetics, and down hole | | | | transient electromagnetic surveys along with more limited 2D and 3D | | | | seismic surveys. | | | | Geochemistry - gold and nickel soil geochemistry datasets across the
KGNP and rock chip sampling in areas of outcrop. | | | deleterious or contaminating substances. | Geotechnical test work on drill core is carried out by independent consultants MGT involving on-site geotechnical logging of the DD core and off-site rock property testing of selected DD core samples. Downhole Transient Electro-magnetic (DHTEM) surveys, when conducted, use the DigiAtlantis system and DRTX transmitter. The readings are typically recorded at 2.5m to 10m intervals. The survey used loops ranging from 300m x 200m to 690m x 290m in orientations designed relative to the target and stratigraphic setting. If required, the Company generally retains ABIM Solutions Pty Ltd (ABIMS) to use the latest generation QL40 OBI Optical Televiewer (OTV) and a customized logging vehicle, to conduct OTV wireline surveys in the project area in select RC or DD holes. The OTV survey generates an oriented 360-degree image of the borehole wall by way of a CCD camera recording the image reflected from a prism. ABIMS provide in-house OTV data interpretation techniques which include structural feature classifications along with structural feature dip and dip direction determination The OTV wireline surveys in RC holes, if applicable, are particularly useful in defining geological and structural orientation data, data that is otherwise unobtainable from RC drill chips. | | | | Where completed, these OTV surveys can identify the downhole locations of geological and structural features potentially associated with gold mineralisation such as veining and shearing, such that the positions and intensity of these features can be reconciled with the RC chips used by the geologist for geological logging. If required, ABIMS are also used to collected down-hole imaging data using the latest generation ABI40 Acoustic Televiewer (ATV) and a | | Criteria | JORC Code explanation | Commentary | |--------------|--------------------------------------|--| | Other | | customised logging vehicle. The ATV wireline survey in DD holes | | substantive | | provides down-hole geological definition, geotechnical rock mass | | exploration | | characterisation, determination of fracture frequency and orientation, | | data | | and primary stress orientation. The ABI40 ATV generates an image of | | (continued) | | the drillhole wall by transmitting ultrasound pulses from a rotating | | | | sensor and recording the amplitude and travel time of the signals | | | | reflected from the drillhole wall. Data is transferred back to the surface | | | | via a wireline in real time. Such data collected is used by the | | | | Company's geologists in support of deposit geological and structural | | | | modelling and by geotechnical consultants for geotechnical assessment purposes. | | | | • If required, Southern Geoscience Consultants Pty Ltd (SGC) provide an | | | | ultrasonic velocity meter for the collection of velocity data | | | | measurements on DD. Data from this coupled with density | | | | measurements will provide acoustic impedance information, enabling | | | | the reflectivity in the seismic section to be tied to the geology in the | | | | borehole. | | | | Commentary specific to previous metallurgical test work | | | | • In regard gold, initial 'sighter' testwork has now been conducted on RC samples to characterise and confirm high level recovery and | | | | reagent usage parameters at Lady Herial, and as a proxy therefore, for | | | | other Foster Gold Belt prospects until specific test work is completed | | | | This work was conducted by an independent firm, Independent | | | | Metallurgical Operations Pty Ltd and based on reverse circulation | | | | material sourced from the 2024 drill program and reported on 17 & 19 | | | | February 2025, with full details provided in those reports of: | | | | - the sample preparation for metallurgical testing; | | | | - the Gravity Stage test work; and | | | | - the 48 hr Cyanide Leach test work | | | | • In summary, a series of bottle roll tests were completed at P80 passing | | | | 125 µm to simulate leach conditions over 48 hours and were | | | | considered sighter in nature. | | | | • Individual 1 metre RC samples at site (in the 'green bags') containing the remainder of the drilled sample not already sampled and assayed | | | | for reporting and Mineral Resource estimation purposes, were selected | | | | by site personnel. | | | | The basis for selection was to ensure spatial coverage of the three | | | | structures at Lady Herial whilst testing all weathering types intersected | | | | by drilling and the range of gold grades recorded to date. | | | | • Gold grades for the intervals selected ranged from 0.47 g/t to 4.13 g/t | | | | and are considered representative and reflective of the broad gold | | | | grade distribution recorded to date by Lunnon Metals' drilling. | | | | • In the future, available DD core will undergo a testwork program aligned with the likely or potential chosen processing route, for | | | | example, the nearby Gold Fields' Lefroy Plant or other 3 rd party plants | | | | in the Kambalda-Kalgoorlie-Coolgardie district. | | Further work | The nature and scale of planned | • Since the Company's IPO, over 101,000m of either diamond or RC | | | further work (e.g. tests for lateral | drilling has now been completed at FBA and SLF, primarily focused on | | | extensions or depth extensions or | nickel exploration until a shift of focus to gold in early 2024. | | | large-scale step-out drilling). | • Over 25,000m of historical core has also been reprocessed in the | | | | Company's Historical Core Program (HCP). • All Company work programs are continuously assessed against, and in | | | | comparison to, ongoing high priority programs elsewhere at the | | | | KGNP. | | | | Where activity or drilling relates to early-stage exploration, it is an | | | | iterative process with assay, geological, geochemical, geophysical and | | | | litho-structural observations and results all contributing to a | | Criteria | JORC Code explanation | Commentary | |-----------------------------|-----------------------|---| | Further work
(continued) | | continuous assessment of the merits of any particular target, and how, or whether, to continue to pursue further data and further definition, potentially by continuing to drill. • Thereafter, subject to positive ongoing results and external market and price variables, updates and future additions to the Company's MRE may then form the basis for development studies that may lead to the future declaration of a Probable Ore Reserve from those portions of the MRE at the Indicated (or higher) classification. • Any such Ore Reserves then in turn may form the basis of technical and economic studies to investigate the potential to exploit those gold or nickel deposits in the future. |