ASX ANNOUNCEMENT

12 June 2025

Branches Prospect Grows with Regional Aircore Success at Wallbrook Gold Project

- ✓ All gold assay results have been received from the recently completed 237 hole / 10,171 metre regional aircore (AC) drill program at the Wallbrook Gold Project
- ✓ The program targeted three regional prospects across the project, including targets MC1.4, MC4.3 and MC5.4
- ✓ Broad regional drilling at target MC1.4 has identified a 1km southern extension to the Branches mineralised system with intercepts including:
 - 4m at 2.48g/t Au from 20m
 - 4m at 1.92g/t Au from 0m
 - 4m at 0.90g/t Au from 24m
- ✓ This represents a potential doubling of the strike footprint of the Branches system to over 2.1km adding to the Nexus historical drill results including:
 - 5m @ 17.91g/t Au (within 8m @ 11.37g/t Au from 118m)
 - 5m @ 5.45g/t Au (within 36m @ 2.04g/t Au from 43m)
 - 12m @ 5.21g/t Au (within 24m @ 2.23g/t Au from 25m)
 - o 8m @ 7.59g/t Au (within 25m @ 2.86g/t Au from 43m)
 - 4m @ 7.23g/t Au (within 10m @ 3.33g/t Au from 115m)
 - 4m @ 7.47g/t Au (within 8m @ 3.96g/t Au from 73m)
- ✓ Drilling at target MC4.3 has encountered anomalous zones of interest over approximately 1km of strike length with results including,
 - $\circ~$ 4m at 1.72g/t Au from 32m and 8m at 0.45g/t Au from 60m
 - $\circ~$ 4m at 1.30g/t Au (Within 8m at 0.72g/t Au) from 36m
 - \circ 4m at 0.82g/t Au (Within 9m at 0.48g/t Au) from 68m
 - 4m at 0.75g/t Au from 52m
- ✓ Target MC5.4 returned minimal mineralisation with no further work planned on this target
- ✓ Systematic exploration focused on near-surface discoveries continues with RC drilling currently underway at the recent Payns Prospect discovery

Nexus Managing Director Andy Tudor commented "Our continued systematic exploration approach at Wallbrook has yielded some incredible results over the last 12 months, with many targets now ranking highly for RC drilling. Target MC1.4 certainly generates further excitement, having mapped a potential doubling of the mineralised system at the Branches Prospect. The pipeline of high-quality targets underpin an exciting period of growth for the Wallbrook Gold Project.

The width and tenor of the current assay results represent regional aircore success on the project, but also further highlights the calibre of other targets, including Payns Prospect, where the RC rig is now operating. We look forward to sharing updates from this RC program and incorporating further expansion of the Branches Prospect into future AC and RC drilling campaigns."

Figure 1: Nexus Wallbrook Regional Prospects Location Map

Program Overview

Nexus Minerals Limited (ASX: NXM) (Nexus or the Company) is pleased to announce that gold assays have been received for the recently completed regional aircore (AC) drill program at the Wallbrook Gold Project in the north-eastern goldfields region of Western Australia. The drill program consisted of 237 drill holes for a total of 10,171 metres and was completed across three regional targets including MC1.4, MC4.3 and MC5.4 (Figure 1 and Table 1).

Prospect	Holes	Metres
MC1.4	109	4,241
MC4.3	76	3,878
MC5.4	52	2,052
Total	237	10,171

Table 1: Wallbrook Aircore program summary

The aircore targets were prioritised based on a combination of geological features including structure, lithology, and alteration along with any known gold anomalism. Consistent with the Company's exploration strategy, the targets provided shallow discovery opportunities to efficiently build the project's near-surface ounce portfolio.

Drilling at MC1.4 has followed up on previous AC drilling, where an anomalous gold footprint was identified accompanied by significant alteration. The results from this campaign map an anomalous trend from the southern end of Branches Prospect a further 1km to the south. The mineralised system at Branches now has potential to be traced over approximately 2.1km.

Both MC4.3 and MC5.4 represented a first pass regional assessment of conceptual targets. Target MC4.3 has identified multiple anomalous features and will initially be assessed during further field ground truthing studies, in combination with an assessment of bottom of hole multielement data once received. Target MC5.4 returned a limited number of anomalous intercepts which fail to form coherent anomalism or geological associations. This target has therefore been assessed and discounted from further exploration work.

Drill holes were four metre composite sampled across the entire hole, with samples submitted for gold analysis. The final metre of each hole is sampled for gold analysis and is also subject to multi-element litho-geochemical analysis to improve target vectoring.

RC drilling is currently underway at Payns Prospect as the exploration team look to expand upon earlier success with the aircore rig (ASX: announcements 11/11/2024; 31/3/2025). This program is comprised of approximately 4,000 metres and represents the first RC campaign to be completed over one of the recent aircore discoveries. Building on the recently completed aircore, the exploration team will work to incorporate further expansion of the Branches Prospect into future AC and RC drilling campaigns.

Target MC1.4

Target MC1.4 is situated in an area of increased porphyry dyke activity, geological units which are implicated in controlling gold mineralisation at the Company's Crusader-Templar deposit (3km to the south). In addition to this there is a major northwest-southeast trending structure with multiple splays providing a potential pathway for hydrothermal fluids. Aircore drilling was previously completed at MC1.4 in July 2024 (ASX: announcement 27/8/2024), identifying an anomalous gold footprint accompanied by alteration and geology considered indicative of the peripheries of a mineralising system with scale potential. The current program comprised a total of 109 drill holes for 4,241 metres, predominantly focusing on an area to the west of the area previously targeted (Figure 2).

The weathering profile encountered was highly variable, with very shallow fresh rock (<10 metres) near localised ridges, down to a maximum of approximately 70 metres. The main lithologies encountered included an intermediate volcaniclastic and felsic volcanics/volcaniclastic. Several porphyry intrusions with varying degrees of alteration and veining were observed. Some hematised porphyry intercepts were logged up to 20 metres thick.

Results from the current program map an anomalous trend from the southern end of Branches Prospect a further 1km to the south. Whilst the drilling was broad spaced (generally 60 x 150 metre centres) the corridor was successfully captured with highly anomalous intercepts including:

- 4m at 2.48g/t Au from 20m (Photo 1 / Figure 3)
- 4m at 1.92g/t Au from 0m
- 4m at 0.90g/t Au from 24m

The mineralised system at Branches now has potential to be traced over approximately 2.1km. This new potential extension represents a significant target zone given previous RC drilling within Branches Prospect itself returned significant intercepts including (ASX: anouncement 24/8/2022):

- 5m @ 17.91g/t Au (within 8m @ 11.37g/t Au from 118m)
- o 5m @ 5.45g/t Au (within 36m @ 2.04g/t Au from 43m)
- 12m @ 5.21g/t Au (within 24m @ 2.23g/t Au from 25m)
- o 8m @ 7.59g/t Au (within 25m @ 2.86g/t Au from 43m)
- 4m @ 7.23g/t Au (within 10m @ 3.33g/t Au from 115m)
- o 4m @ 7.47g/t Au (within 8m @ 3.96g/t Au from 73m)

The exploration team will work to incorporate further expansion of the Branches Prospect into future AC and RC drilling campaigns.

Photo 1: NMWBAC25-1285: 4m @ 2.48 g/t Au from 20m

NEXUSMINERALS

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	Au (ppm)
NMWBAC25-1235	MC1.4	432878	6699415	369	55	-60	90	36	48	12	0.17
								54	55 (EOH)	1	0.18
NMWBAC25-1257	MC1.4	433006	6699815	370	22	-60	90	16	21	5	0.23
NMWBAC25-1259	MC1.4	432931	6699817	369	39	-60	90	24	28	4	0.90
NMWBAC25-1272	MC1.4	432913	6699512	369	27	-60	90	12	16	4	0.21
NMWBAC25-1273	MC1.4	432877	6699507	369	16	-60	90	12	15	3	0.19
NMWBAC25-1285	MC1.4	432950	6700103	369	34	-60	90	20	24	4	2.48
NMWBAC25-1302	MC1.4	432941	6700259	369	33	-60	90	20	28	8	0.16
NMWBAC25-1329	MC1.4	432957	6699711	369	24	-60	90	0	4	4	1.92
NMWBAC25-1331	MC1.4	432877	6699711	369	48	-60	90	47	48 (EOH)	1	0.20

Table 2: Target MC1.4 significant intercepts >0.10 g/t Au

Figure 2: Target MC1.4 Map (larger red dots +0.1 g.t Au intercepts)

Figure 3: Target MC1.4 Cross Section A – A'

Target MC4.3

Target MC4.3 covers a contact zone between an intermediate iron-rich lithology (east) and an intermediate non-iron-rich lithology (west). Two major northeast-southwest faults are present in the north and south of the target zone. The contact zone represents a potential chemical interface for gold deposition whilst the mapped structure offers conduits for fluid flow. Geophysical interpretations further support a zone of alteration. A total of 76 drill holes for 3,878 metres were completed at target MC4.3.

The weathering profile was observed increasing from east to west up to 90 metres depth. Observed lithologies were predominantly intermediate volcanics and volcaniclastics with a limited number of felsic and intermediate intrusions. Significant quartz/quartz-goethite veining and goethite dusting in clay zones were common.

Mineralisation was typically associated with increased veining and hematite. Results include:

- $\circ~$ 4m at 1.72g/t Au from 32m and 8m at 0.45g/t Au from 60m
- o 4m at 1.30g/t Au (Within 8m at 0.72g/t Au) from 36m
- o 4m at 0.82g/t Au (Within 9m at 0.48g/t Au) from 68m
- o 4m at 0.75g/t Au from 52m

The results map out a number of anomalous zones (Figure 4) which will initially be assessed during further field ground truthing studies in combination with an assessment of bottom of hole multielement data once received.

Figure 4: Target MC4.3 Map (larger red dots +0.1 g/t Au intercepts)

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	Au (ppm)
NMWBAC25-1341	MC4.3	436210	6696254	372	60	-60	90	56	59	3	0.12
NMWBAC25-1342	MC4.3	436128	6696251	372	83	-60	90	76	80	4	0.43
NMWBAC25-1343	MC4.3	436050	6696253	372	83	-60	90	52	56	4	0.75
NMWBAC25-1349	MC4.3	436236	6696401	373	66	-60	90	48	52	4	0.10
NMWBAC25-1350	MC4.3	436154	6696397	373	69	-60	90	48	52	4	0.10
NMWBAC25-1352	MC4.3	435990	6696409	372	87	-60	90	48	56	8	0.23
NMWBAC25-1353	MC4.3	436528	6696549	374	32	-60	90	28	31	3	0.12
NMWBAC25-1356	MC4.3	436286	6696551	373	65	-60	90	48	52	4	0.35
								56	60	4	0.10
NMWBAC25-1358	MC4.3	436133	6696554	373	76	-60	90	48	52	4	0.47
NMWBAC25-1359	MC4.3	436050	6696557	373	78	-60	90	68	77	9	0.48
							inc	68	72	4	0.82
NMWBAC25-1361	MC4.3	435893	6696553	372	84	-60	90	68	72	4	0.27
NMWBAC25-1373	MC4.3	436312	6696857	375	44	-60	90	24	28	4	0.32
								32	36	4	0.41
NMWBAC25-1385	MC4.3	436222	6696999	375	31	-60	90	30	31 (EOH)	1	0.17
NMWBAC25-1391	MC4.3	435735	6697004	375	73	-60	90	32	36	4	1.72
								48	52	4	0.11
								60	68	8	0.45
NMWBAC25-1399	MC4.3	435847	6697149	375	64	-60	90	63	64	1	0.10
NMWBAC25-1406	MC4.3	436021	6697300	375	47	-60	90	36	44	8	0.72
							inc	36	40	4	1.30
NMWBAC25-1409	MC4.3	435784	6697295	376	68	-60	90	64	67	3	0.11
NMWBAC25-1410	MC4.3	435716	6697299	376	70	-60	90	52	56	4	0.11
NMWBAC25-1411	MC4.3	435626	6697303	376	86	-60	90	80	85	5	0.10

Table 3: Target MC4.3 significant intercepts >0.10 g/t Au

Target MC5.4

Target MC5.4 is centred on an area of modelled increased intrusive activity. The target is situated one kilometre northwest of the Wallbrook Gold Mine (Northern Star Resources) and immediately to the southwest of Nexus' Crusader-Templar Deposit. A total of 52 drill holes for 2,052 metres were completed at Target MC5.4.

The weathering profile was observed shallowing towards the north. Lithologies are dominated by felsic and intermediate volcanics with rare quartz and quartz-goethite veining. Aplite and granite were present in the north-west.

Drilling returned a limited number of anomalous intercepts which fail to form coherent anomalism or geological associations. This target has therefore been assessed and discounted from further exploration work.

Figure 5: Target MC5.4 Map (larger red dots +0.1 g/t Au intercepts)

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	Au (ppm)
NMWBAC25-1183	MC5.4	432697	6695760	376	64	-60	90	28	32	4	0.12
NMWBAC25-1188	MC5.4	432622	6695957	376	48	-60	90	28	32	4	0.37
NMWBAC25-1194	MC5.4	433039	6696154	375	67	-60	90	60	66	6	0.18
NMWBAC25-1195	MC5.4	432969	6696142	375	58	-60	90	40	44	4	0.35
NMWBAC25-1198	MC5.4	432722	6696149	375	41	-60	90	32	36	4	0.18
NMWBAC25-1205	MC5.4	432453	6696352	374	43	-60	90	24	28	4	0.10
NMWBAC25-1220	MC5.4	432383	6696657	373	31	-60	90	24	28	4	0.15

Table 4: Target MC5.4 significant intercepts >0.10 g/t Au

Figure 6: Nexus Wallbrook Gold Project Location Map

This announcement is authorised for release by Mr Andy Tudor, Managing Director, Nexus Minerals Limited.

About Nexus

Figure 7: Nexus Minerals Australian Project Locations

Nexus is actively exploring for gold deposits on its highly prospective tenement package in the Eastern Goldfields of Western Australia. In Western Australia, the consolidation of the highly prospective Wallbrook Gold Project by the amalgamation of existing Nexus tenements with others acquired, will advance these gold exploration efforts. Nexus holds a significant land package of highly prospective geological terrane within a major regional structural corridor and is exploring for gold deposits.

Nexus Minerals' tenement package at the Wallbrook Gold Project commences immediately to the north of Northern Star's multi-million ounce Carosue Dam mining operations (CDO), and current operating Karari and Whirling Dervish underground gold mines. The Company's Pinnacles Gold Project is located immediately to the south of CDO and comprises Nexus 100% owned tenure and Nexus-Northern Star Resources JV tenure.

In addition to this, the Company has expanded its existing project portfolio with the addition of the granted tenure over 7,500km² of Gold, Copper and Critical Mineral prospective tenure in NSW, and the Bethanga Porphyry Copper-Gold project in Victoria.

Nexus is actively investing in new exploration techniques to refine the targeting approach for their current and future tenements.

	- Ellus –
Enquiries	Mr Andy Tudor, Managing Director
	Mr Paul Boyatzis, Non-Executive Chairman
Contact	Phone: 08 9481 1749
Website	www.nexus-minerals.com
ASX Code	NXM

The information in the report to which this statement is attached that relates to Pinnacles Mineral Resources is based upon information compiled by Mr Mark Drabble, a Competent Person who is a member of The Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Drabble is a full-time employee of Optiro Pty Ltd, consultants to Nexus Minerals Limited. Mr Drabble has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Drabble consents to the inclusion in the report of matters based on his information in the form and context in which it appears. The information is extracted from the announcement dated 27/02/2020 and is available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the original announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.

The information in the report to which this statement is attached that relates to Wallbrook Mineral Resources is based upon information compiled by Mr Paul Blackney, a Competent Person who is a member of the Australian Institute of Geoscientists. Mr Blackney is a full-time employee of Snowden Optiro, consultants to Nexus Minerals Limited. Mr Blackney has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Blackney consents to the inclusion in the report of matters based on his information in the form and context in which it appears. The information is extracted from the announcement dated 01/05/2024 and is available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the original announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.

The Exploration Target estimate has been prepared by Mr Andy Tudor, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Tudor is the Managing Director and full-time employee of Nexus Minerals Limited. Mr Tudor has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Tudor consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. The information is extracted from the announcement dated 26/03/2023 and is available to be viewed on the Company website www.nexusminerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the original announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcement.

The information in this release that relates to Exploration Results, Mineral Resources or Ore Reserves is based on, and fairly represents, information and supporting documentation, prepared, compiled or reviewed by Mr Adam James, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr James is the Exploration Manager and full-time employee of Nexus Minerals Limited. Mr James has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity for which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr James consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. The results are available to be viewed on the Company website www.nexus-minerals.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

FORWARD LOOKING AND CAUTIONARY STATEMENTS. Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future earnings, cash flow, costs and financial performance. Forward looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "predict", "foresee", "proposed", "aim", "target", "opportunity", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this report are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements are provided as a general guide only and should not be relied on as a guarantee of future performance. Forward-looking statements may be affected by a range of variables that could cause actual results to differ from estimated results and may cause the Company's actual performance and financial results in future periods to materially differ from any projections of future performance or results expressed or implied by such forward-looking statements. No Ore Reserves have currently been defined on the Pinnacles or Wallbrook tenements. There has been insufficient exploration and technical studies to estimate an Ore Reserve and it is uncertain if further exploration and/or technical studies will result in the estimation of an Ore Reserve. The potential for the development of a mining operation and sale of ore from the Pinnacles or Wallbrook tenements has yet to be established.

Appendix 1

	Indicated			Inferred		TOTAL					
Tonnes (kt)	Au grade (g/t)	Au ounces (koz)	Tonnes (kt)	Au grade (g/t)	Au ounces (koz)	Tonnes (kt)	Au grade (g/t)	Au ounces (koz)			
2,460	1.8	140	3,210	1.6	164	5,670	1.7	304			

Crusader-Templar Mineral Resource Summary (0.4g/t cut-off) (rounding errors may occur)

Cut Off Grade (g/t Au)		Category	Tonnes (kt)	Au Grade (g/t)	Au Ounces (kOz)
		Indicated	140	2.6	11
0.5	O/P	Inferred	19	1.6	1
		Sub-total	159	2.4	12
		Indicated	170	5.6	30
1.0	U/G	Inferred	280	4.0	36
	8	Sub-total	450	4.6	66
	Combine		609	4.0	78

Pinnacles Mineral Resource Summary (OP & UG gold g/t cut-off) (rounding errors may occur)

Northern Star Ltd Carosue Dam Resource Table as at 31/3/2025

	M	MEASURED			IN	DICATED		IN	FERRED		TOTAL RESOURCES			
	Tonnes	Grade	Ounces		Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	
NST ATTRIBUTABLE INCLUSIVE OF RESERVE	(000's)	(gpt)	(000's)		(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	(000's)	(gpt)	(000's)	
Carosue Dam														
Surface	3,518	1.8	205		20,042	1.7	1,098	7,462	1.6	389	31,022	1.7	1,692	
Underground	7,178	3.1	713		12,614	2.5	984	8,615	2.8	662	28,407	2.7	2,359	
Stockpiles	6,628	1.3	141		-	-	-	-	-	-	6,628	1.3	141	
Gold in Circuit	-	-	6		-	-	-	-	-	-	-	-	6	
Sub-Total Carosue Dam	17,323	1.9	1,065		32,656	2.0	2,083	16,077	2.3	1,051	66,057	2.1	4,198	

Northern Star Ltd Carosue Dam Reserve Table as at 31/3/2025

		F	PROVED		PF	ROBABLE		TOTAL RESERVE				
		Tonnes	Grade	Ounces	Tonnes	Grade	Ounces	Tonnes	Grade	Ounces		
NST ATTRIBUTABLE RESER	VE	(000's) (gpt) (000's)		(000's)	(000's) (gpt) (000's)		(000's)	(gpt)	(000's)			
Carosue Dam												
	-	-	-	3,610	1.9	217	3,610	1.9	217			
	Underground	2,359	3.0	229	3,297	3.1	325	5,656	3.0	553		
Stockpiles		6,628	0.7	141	-	-	-	6,628	0.7	141		
Gold in Circuit		-	-	6	-	-	-	-	-	6		
Sub-Total Carosue Dam	8,987	1.3	376	6,907	2.4	542	15,894	1.8	917			

Appendix 2

Target MC1.4 aircore results – all drill holes

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From To Interval Au (ppm)			
NMWBAC25-1229	MC1.4	433117	6699412	370	40	-60	90			NSI	
NMWBAC25-1230	MC1.4	433071	6699412	370	57	-60	90			NSI	
NMWBAC25-1231	MC1.4	433035	6699417	370	72	-60	90			NSI	
NMWBAC25-1232	MC1.4	432994	6699418	369	54	-60	90			NSI	
NMWBAC25-1233	MC1.4	432950	6699419	369	55	-60	90			NSI	
NMWBAC25-1234	MC1.4	432911	6699417	369	51	-60	90			NSI	
NMWBAC25-1235	MC1.4	432878	6699415	369	55	-60	90	36	48	12	0.17
								54	55	1	0.18
NMWBAC25-1236	MC1.4	432834	6699416	368	51	-60	90			NSI	
NMWBAC25-1237	MC1.4	432795	6699420	368	26	-60	90			NSI	
NMWBAC25-1238	MC1.4	432756	6699418	368	32	-60	90			NSI	
NMWBAC25-1239	MC1.4	432718	6699419	367	54	-60	90			NSI	
NMWBAC25-1240	MC1.4	433113	6699612	371	63	-60	90	NSI			
NMWBAC25-1241	MC1.4	433076	6699612	370	72	-60	90	NSI			
NMWBAC25-1242	MC1.4	433031	6699608	370	34	-60	90			NSI	
NMWBAC25-1243	MC1.4	432994	6699606	370	55	-60	90			NSI	
NMWBAC25-1244	MC1.4	432957	6699610	369	23	-60	90			NSI	
NMWBAC25-1245	MC1.4	432918	6699609	369	7	-60	90			NSI	
NMWBAC25-1246	MC1.4	432874	6699613	369	21	-60	90			NSI	
NMWBAC25-1247	MC1.4	432834	6699611	368	16	-60	90			NSI	
NMWBAC25-1248	MC1.4	432798	6699612	368	10	-60	90			NSI	
NMWBAC25-1249	MC1.4	432761	6699614	368	10	-60	90			NSI	
NMWBAC25-1250	MC1.4	432714	6699615	367	13	-60	90			NSI	
NMWBAC25-1251	MC1.4	432673	6699612	367	41	-60	90			NSI	
NMWBAC25-1252	MC1.4	432631	6699613	367	38	-60	90			NSI	
NMWBAC25-1253	MC1.4	432596	6699612	366	31	-60	90			NSI	
NMWBAC25-1254	MC1.4	433124	6699814	370	73	-60	90			NSI	
NMWBAC25-1255	MC1.4	433088	6699813	370	76	-60	90			NSI	
NMWBAC25-1256	MC1.4	433043	6699811	370	39	-60	90			NSI	
NMWBAC25-1257	MC1.4	433006	6699815	370	22	-60	90	16	21	5	0.23
NMWBAC25-1258	MC1.4	432964	6699816	369	38	-60	90			NSI	
NMWBAC25-1259	MC1.4	432931	6699817	369	39	-60	90	24	28	4	0.90
NMWBAC25-1260	MC1.4	432885	6699818	368	32	-60	90	NSI			
NMWBAC25-1261	MC1.4	432845	6699820	368	20	-60	90	NSI			
NMWBAC25-1262	MC1.4	432762	6699817	367	32	-60	90			NSI	
NMWBAC25-1263	MC1.4	432683	6699815	367	58	-60	90			NSI	
NMWBAC25-1264	MC1.4	432643	6699818	366	23	-60	90	NSI			
NMWBAC25-1265	MC1.4	432605	6699818	366	15	-60	90			NSI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From To Interval Au (ppm)			
NMWBAC25-1266	MC1.4	432564	6699819	366	29	-60	90			NSI	
NMWBAC25-1267	MC1.4	433118	6699514	371	57	-60	90			NSI	
NMWBAC25-1268	MC1.4	433075	6699513	370	60	-60	90			NSI	
NMWBAC25-1269	MC1.4	433032	6699513	370	46	-60	90			NSI	
NMWBAC25-1270	MC1.4	432993	6699512	370	65	-60	90			NSI	
NMWBAC25-1271	MC1.4	432951	6699510	369	39	-60	90			NSI	
NMWBAC25-1272	MC1.4	432913	6699512	369	27	-60	90	12	16	4	0.21
NMWBAC25-1273	MC1.4	432877	6699507	369	16	-60	90	12	15	3	0.19
NMWBAC25-1274	MC1.4	432834	6699510	368	25	-60	90			NSI	
NMWBAC25-1275	MC1.4	432794	6699504	368	15	-60	90			NSI	
NMWBAC25-1276	MC1.4	432751	6699511	368	24	-60	90			NSI	
NMWBAC25-1277	MC1.4	432718	6699510	367	44	-60	90			NSI	
NMWBAC25-1278	MC1.4	433235	6700099	370	48	-60	90			NSI	
NMWBAC25-1279	MC1.4	433187	6700105	370	52	-60	90			NSI	
NMWBAC25-1280	MC1.4	433150	6700105	370	70	-60	90	NSI			
NMWBAC25-1281	MC1.4	433106	6700104	370	69	-60	90			NSI	
NMWBAC25-1282	MC1.4	433068	6700104	369	78	-60	90			NSI	
NMWBAC25-1283	MC1.4	433037	6700104	369	50	-60	90			NSI	
NMWBAC25-1284	MC1.4	432995	6700105	369	26	-60	90			NSI	
NMWBAC25-1285	MC1.4	432950	6700103	369	34	-60	90	20	24	4	2.48
NMWBAC25-1286	MC1.4	432909	6700105	368	22	-60	90			NSI	
NMWBAC25-1287	MC1.4	432872	6700105	368	34	-60	90			NSI	
NMWBAC25-1288	MC1.4	432828	6700102	368	30	-60	90			NSI	
NMWBAC25-1289	MC1.4	432791	6700106	367	32	-60	90			NSI	
NMWBAC25-1290	MC1.4	432711	6700104	367	48	-60	90			NSI	
NMWBAC25-1291	MC1.4	432628	6700103	366	20	-60	90			NSI	
NMWBAC25-1292	MC1.4	432589	6700102	365	28	-60	90			NSI	
NMWBAC25-1293	MC1.4	432549	6700102	365	43	-60	90			NSI	
NMWBAC25-1294	MC1.4	432511	6700099	365	28	-60	90			NSI	
NMWBAC25-1295	MC1.4	433223	6700255	371	44	-60	90			NSI	
NMWBAC25-1296	MC1.4	433180	6700251	370	40	-60	90			NSI	
NMWBAC25-1297	MC1.4	433145	6700246	370	63	-60	90			NSI	
NMWBAC25-1298	MC1.4	433105	6700254	370	81	-60	90			NSI	
NMWBAC25-1299	MC1.4	433060	6700254	370	68	-60	90			NSI	
NMWBAC25-1300	MC1.4	433021	6700255	369	13	-60	90	NSI			
NMWBAC25-1301	MC1.4	432985	6700252	369	26	-60	90	NSI			
NMWBAC25-1302	MC1.4	432941	6700259	369	33	-60	90	20	28	8	0.16
NMWBAC25-1303	MC1.4	432903	6700252	368	36	-60	90			NSI	
NMWBAC25-1304	MC1.4	432862	6700255	368	34	-60	90			NSI	
NMWBAC25-1305	MC1.4	432820	6700257	368	42	-60	90	NSI			
NMWBAC25-1306	MC1.4	432778	6700259	367	27	-60	90			NSI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From To Interval			Au (ppm)	
NMWBAC25-1307	MC1.4	432740	6700257	367	20	-60	90			NSI		
NMWBAC25-1308	MC1.4	433275	6699914	371	68	-60	90			NSI		
NMWBAC25-1309	MC1.4	433234	6699916	370	52	-60	90			NSI		
NMWBAC25-1310	MC1.4	433198	6699917	370	44	-60	90			NSI		
NMWBAC25-1311	MC1.4	433155	6699914	370	54	-60	90			NSI		
NMWBAC25-1312	MC1.4	433114	6699919	370	65	-60	90			NSI		
NMWBAC25-1313	MC1.4	433075	6699919	370	17	-60	90			NSI		
NMWBAC25-1314	MC1.4	433032	6699918	369	10	-60	90			NSI		
NMWBAC25-1315	MC1.4	432995	6699921	369	24	-60	90			NSI		
NMWBAC25-1316	MC1.4	432958	6699918	368	26	-60	90			NSI		
NMWBAC25-1317	MC1.4	432914	6699920	368	29	-60	90			NSI		
NMWBAC25-1318	MC1.4	432876	6699919	368	22	-60	90					
NMWBAC25-1319	MC1.4	432837	6699916	368	36	-60	90					
NMWBAC25-1320	MC1.4	432755	6699922	367	48	-60	90		NSI			
NMWBAC25-1321	MC1.4	432676	6699917	367	23	-60	90			NSI		
NMWBAC25-1322	MC1.4	432633	6699917	366	31	-60	90			NSI		
NMWBAC25-1323	MC1.4	432598	6699914	366	51	-60	90			NSI		
NMWBAC25-1324	MC1.4	432561	6699924	366	25	-60	90			NSI		
NMWBAC25-1325	MC1.4	433114	6699712	371	72	-60	90			NSI		
NMWBAC25-1326	MC1.4	433073	6699708	370	66	-60	90			NSI		
NMWBAC25-1327	MC1.4	433036	6699720	370	37	-60	90			NSI		
NMWBAC25-1328	MC1.4	432992	6699715	370	28	-60	90			NSI		
NMWBAC25-1329	MC1.4	432957	6699711	369	24	-60	90	0	4	4	1.92	
NMWBAC25-1330	MC1.4	432914	6699712	369	31	-60	90			NSI		
NMWBAC25-1331	MC1.4	432877	6699711	369	48	-60	90	47	48	1	0.20	
NMWBAC25-1332	MC1.4	432835	6699711	368	22	-60	90			NSI		
NMWBAC25-1333	MC1.4	432798	6699715	368	25	-60	90			NSI		
NMWBAC25-1334	MC1.4	432715	6699717	367	18	-60	90	NSI				
NMWBAC25-1335	MC1.4	432678	6699712	367	31	-60	90			NSI		
NMWBAC25-1336	MC1.4	432644	6699710	367	57	-60	90	NSI				
NMWBAC25-1337	MC1.4	432598	6699714	366	23	-60	90			NSI		

NEXUSMINERALS

Target MC4.3 aircore results – all drill holes

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	Au (ppm)
NMWBAC25-1338	MC4.3	436441	6696244	373	40	-60	90			NSI	
NMWBAC25-1339	MC4.3	436366	6696249	373	53	-60	90			NSI	
NMWBAC25-1340	MC4.3	436287	6696250	373	55	-60	90			NSI	
NMWBAC25-1341	MC4.3	436210	6696254	372	60	-60	90	56	59	3	0.12
NMWBAC25-1342	MC4.3	436128	6696251	372	83	-60	90	76	80	4	0.43
NMWBAC25-1343	MC4.3	436050	6696253	372	83	-60	90	52	56	4	0.75
NMWBAC25-1344	MC4.3	435969	6696252	372	51	-60	90			NSI	
NMWBAC25-1345	MC4.3	435895	6696256	371	77	-60	90			NSI	
NMWBAC25-1346	MC4.3	436514	6696400	374	22	-60	90			NSI	
NMWBAC25-1347	MC4.3	436430	6696401	373	32	-60	90			NSI	
NMWBAC25-1348	MC4.3	436320	6696402	373	46	-60	90			NSI	
NMWBAC25-1349	MC4.3	436236	6696401	373	66	-60	90	48	52	4	0.10
NMWBAC25-1350	MC4.3	436154	6696397	373	69	-60	90	48	52	4	0.10
NMWBAC25-1351	MC4.3	436071	6696402	372	72	-60	90			NSI	
NMWBAC25-1352	MC4.3	435990	6696409	372	87	-60	90	48	56	8	0.23
NMWBAC25-1353	MC4.3	436528	6696549	374	32	-60	90	28	31	3	0.12
NMWBAC25-1354	MC4.3	436446	6696550	374	34	-60	90			NSI	
NMWBAC25-1355	MC4.3	436371	6696551	374	41	-60	90			NSI	
NMWBAC25-1356	MC4.3	436286	6696551	373	65	-60	90	48	52	4	0.35
								56	60	4	0.10
NMWBAC25-1357	MC4.3	436210	6696552	373	35	-60	90			NSI	
NMWBAC25-1358	MC4.3	436133	6696554	373	76	-60	90	48	52	4	0.47
NMWBAC25-1359	MC4.3	436050	6696557	373	78	-60	90	68	77	9	0.48
							inc	68	72	4	0.82
NMWBAC25-1360	MC4.3	435966	6696557	372	63	-60	90			NSI	
NMWBAC25-1361	MC4.3	435893	6696553	372	84	-60	90	68	72	4	0.27
NMWBAC25-1362	MC4.3	436504	6696702	375	44	-60	90			NSI	
NMWBAC25-1363	MC4.3	436420	6696703	375	29	-60	90			NSI	
NMWBAC25-1364	MC4.3	436338	6696705	374	23	-60	90			NSI	
NMWBAC25-1365	MC4.3	436262	6696703	374	40	-60	90			NSI	
NMWBAC25-1366	MC4.3	436188	6696713	374	35	-60	90			NSI	
NMWBAC25-1367	MC4.3	436095	6696707	373	53	-60	90			NSI	
NMWBAC25-1368	MC4.3	436023	6696704	373	42	-60	90			NSI	
NMWBAC25-1369	MC4.3	435940	6696703	373	77	-60	90			NSI	
NMWBAC25-1370	MC4.3	435863	6696704	373	58	-60	90			NSI	
NMWBAC25-1371	MC4.3	435780	6696702	373	70	-60	90			NSI	
NMWBAC25-1372	MC4.3	436387	6696859	375	30	-60	90			NSI	
NMWBAC25-1373	MC4.3	436312	6696857	375	44	-60	90	24	28	4	0.32
								32	36	4	0.41
NMWBAC25-1374	MC4.3	436230	6696855	374	18	-60	90			NSI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	Au (ppm)
NMWBAC25-1375	MC4.3	436152	6696856	374	20	-60	90			NSI	
NMWBAC25-1376	MC4.3	436077	6696853	374	42	-60	90			NSI	
NMWBAC25-1377	MC4.3	435992	6696853	374	28	-60	90			NSI	
NMWBAC25-1378	MC4.3	435908	6696850	374	96	-60	90			NSI	
NMWBAC25-1379	MC4.3	435832	6696853	374	52	-60	90			NSI	
NMWBAC25-1380	MC4.3	435750	6696854	374	54	-60	90			NSI	
NMWBAC25-1381	MC4.3	435667	6696854	374	48	-60	90			NSI	
NMWBAC25-1382	MC4.3	436361	6696856	375	19	-60	90			NSI	
NMWBAC25-1383	MC4.3	436275	6696851	375	19	-60	90			NSI	
NMWBAC25-1384	MC4.3	436298	6696995	375	30	-60	90			NSI	
NMWBAC25-1385	MC4.3	436222	6696999	375	31	-60	90	30	31	1	0.17
NMWBAC25-1386	MC4.3	436062	6697000	374	37	-60	90			NSI	
NMWBAC25-1387	MC4.3	436140	6696999	375	26	-60	90			NSI	
NMWBAC25-1388	MC4.3	435983	6697003	374	48	-60	90			NSI	
NMWBAC25-1389	MC4.3	435890	6697006	374	60	-60	90			NSI	
NMWBAC25-1390	MC4.3	435818	6697003	374	59	-60	90			NSI	
NMWBAC25-1391	MC4.3	435735	6697004	375	73	-60	90	32	36	4	1.72
								48	52	4	0.11
								60	68	8	0.45
NMWBAC25-1392	MC4.3	435663	6697008	375	59	-60	90			NSI	
NMWBAC25-1393	MC4.3	435578	6697000	375	55	-60	90			NSI	
NMWBAC25-1394	MC4.3	436248	6697150	375	36	-60	90			NSI	
NMWBAC25-1395	MC4.3	436168	6697150	375	37	-60	90			NSI	
NMWBAC25-1396	MC4.3	436087	6697151	375	46	-60	90			NSI	
NMWBAC25-1397	MC4.3	436003	6697153	375	41	-60	90			NSI	
NMWBAC25-1398	MC4.3	435926	6697154	375	54	-60	90			NSI	
NMWBAC25-1399	MC4.3	435847	6697149	375	64	-60	90	63	64	1	0.10
NMWBAC25-1400	MC4.3	435776	6697149	375	62	-60	90			NSI	
NMWBAC25-1401	MC4.3	435696	6697146	375	63	-60	90			NSI	
NMWBAC25-1402	MC4.3	435600	6697159	375	55	-60	90			NSI	
NMWBAC25-1403	MC4.3	435525	6697158	375	52	-60	90			NSI	
NMWBAC25-1404	MC4.3	436187	6697302	376	27	-60	90			NSI	
NMWBAC25-1405	MC4.3	436104	6697303	375	30	-60	90			NSI	
NMWBAC25-1406	MC4.3	436021	6697300	375	47	-60	90	36	44	8	0.72
							inc	36	40	4	1.30
NMWBAC25-1407	MC4.3	435945	6697298	375	44	-60	90			NSI	
NMWBAC25-1408	MC4.3	435868	6697297	376	57	-60	90			NSI	
NMWBAC25-1409	MC4.3	435784	6697295	376	68	-60	90	64	67	3	0.11
NMWBAC25-1410	MC4.3	435716	6697299	376	70	-60	90	52	56	4	0.11
NMWBAC25-1411	MC4.3	435626	6697303	376	86	-60	90	80	85	5	0.10
NMWBAC25-1412	MC4.3	435539	6697304	376	62	-60	90			NSI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	Au (ppm)
NMWBAC25-1413	MC4.3	435469	6697312	376	54	-60	90			NSI	

NEXUSMINERALS

Target MC5.4 aircore results – all drill holes

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	Au (ppm)
NMWBAC25-1177	MC5.4	433182	6695758	375	36	-60	90			NSI	
NMWBAC25-1178	MC5.4	433102	6695763	375	64	-60	90			NSI	
NMWBAC25-1179	MC5.4	433020	6695759	375	52	-60	90			NSI	
NMWBAC25-1180	MC5.4	432933	6695758	375	38	-60	90			NSI	
NMWBAC25-1181	MC5.4	432855	6695757	376	30	-60	90			NSI	
NMWBAC25-1182	MC5.4	432772	6695760	376	54	-60	90			NSI	
NMWBAC25-1183	MC5.4	432697	6695760	376	64	-60	90	28	32	4	0.12
NMWBAC25-1184	MC5.4	432611	6695760	377	60	-60	90			NSI	
NMWBAC25-1185	MC5.4	432884	6695950	376	53	-60	90			NSI	
NMWBAC25-1186	MC5.4	432793	6695953	376	29	-60	90			NSI	
NMWBAC25-1187	MC5.4	432708	6695949	376	72	-60	90			NSI	
NMWBAC25-1188	MC5.4	432622	6695957	376	48	-60	90	28	32	4	0.37
NMWBAC25-1189	MC5.4	432545	6695955	376	42	-60	90			NSI	
NMWBAC25-1190	MC5.4	432459	6695952	377	34	-60	90			NSI	
NMWBAC25-1191	MC5.4	432395	6695956	379	52	-60	88			NSI	
NMWBAC25-1192	MC5.4	432308	6695961	381	44	-60	90			NSI	
NMWBAC25-1193	MC5.4	433125	6696148	375	39	-60	90			NSI	
NMWBAC25-1194	MC5.4	433039	6696154	375	67	-60	90	60	66	6	0.18
NMWBAC25-1195	MC5.4	432969	6696142	375	58	-60	90	40	44	4	0.35
NMWBAC25-1196	MC5.4	432891	6696145	375	54	-60	90			NSI	
NMWBAC25-1197	MC5.4	432800	6696145	375	30	-60	90			NSI	
NMWBAC25-1198	MC5.4	432722	6696149	375	41	-60	90	32	36	4	0.18
NMWBAC25-1199	MC5.4	432643	6696145	375	33	-60	90			NSI	
NMWBAC25-1200	MC5.4	432567	6696148	375	38	-60	90			NSI	
NMWBAC25-1201	MC5.4	432481	6696150	375	49	-60	90			NSI	
NMWBAC25-1202	MC5.4	432408	6696151	376	65	-60	90			NSI	
NMWBAC25-1203	MC5.4	432324	6696154	377	54	-60	90			NSI	
NMWBAC25-1204	MC5.4	432247	6696154	378	51	-60	90			NSI	
NMWBAC25-1205	MC5.4	432453	6696352	374	43	-60	90	24	28	4	0.10
NMWBAC25-1206	MC5.4	432375	6696356	374	42	-60	90			NSI	
NMWBAC25-1207	MC5.4	432295	6696346	374	39	-60	90			NSI	
NMWBAC25-1208	MC5.4	432218	6696352	375	34	-60	90			NSI	
NMWBAC25-1209	MC5.4	432813	6696453	375	22	-60	90			NSI	
NMWBAC25-1210	MC5.4	432731	6696453	375	24	-60	90			NSI	
NMWBAC25-1211	MC5.4	432652	6696453	375	23	-60	90			NSI	
NMWBAC25-1212	MC5.4	432569	6696451	374	11	-60	90			NSI	
NMWBAC25-1213	MC5.4	432492	6696450	374	44	-60	90			NSI	
NMWBAC25-1214	MC5.4	432413	6696448	374	28	-60	90			NSI	
NMWBAC25-1215	MC5.4	432331	6696448	373	8	-60	90			NSI	
NMWBAC25-1216	MC5.4	432251	6696455	373	25	-60	90			NSI	

Site ID	Prospect	Easting	Northing	Elevation	Depth	Dip	Azimuth	From	То	Interval	Au (ppm)
NMWBAC25-1217	MC5.4	432170	6696456	374	32	-60	90			NSI	
NMWBAC25-1218	MC5.4	432541	6696654	373	25	-60	90			NSI	
NMWBAC25-1219	MC5.4	432466	6696659	373	36	-60	90			NSI	
NMWBAC25-1220	MC5.4	432383	6696657	373	31	-60	90	24	28	4	0.15
NMWBAC25-1221	MC5.4	432309	6696654	372	17	-60	90	NSI			
NMWBAC25-1222	MC5.4	432224	6696660	373	8	-60	90			NSI	
NMWBAC25-1223	MC5.4	432584	6696550	374	48	-60	90			NSI	
NMWBAC25-1224	MC5.4	432509	6696556	373	35	-60	90			NSI	
NMWBAC25-1225	MC5.4	432427	6696554	373	45	-60	90			NSI	
NMWBAC25-1226	MC5.4	432344	6696563	373	39	-60	90	NSI			
NMWBAC25-1227	MC5.4	432270	6696557	373	14	-60	90	NSI			
NMWBAC25-1228	MC5.4	432191	6696561	373	28	-60	90			NSI	

Appendix 3 12/6/2025

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 The sampling was carried out using Aircore Drilling (AC). AC chips provide representative samples for analysis. Sampling was carried out in accordance with Nexus Minerals protocols and QAQC procedures which Nexus considers to be industry best practice. AC holes were drilled to refusal, with 1m samples collected in buckets through a cyclone and upended on the ground in rows of 10m. All samples had 4 consecutive 1m samples composited to form a 4m composite sample which was sent to the laboratory for analysis. The bottom of hole sample was collected as a 1m sample and sent to the laboratory for analysis. All 4m composite samples were crushed at the laboratory to -2mm, to produce a 500g charge for gold Photon Assay. All 1m bottom of hole samples were crushed at the laboratory to -2mm, to produce a 500g charge for gold Photon Assay. All 1m bottom of hole samples are split to produce a separate sample which was pulverized at the laboratory to -75um, to produce a 50g charge for gold Photon Assay. All 1m bottom of hole samples are split to produce a 50g charge for four acid digest multi element (48 elements + 12 rare earth elements) analysis undertaken on the sample pulps by the laboratory.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	An AC drilling rig was used to undertake the AC drilling and collect the samples. Drilling was completed using a 3.5 inch (90mm) diameter bit.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All samples were dry with no significant ground water encountered. No sample bias is believed to have occurred during the sampling process.

Criteria	JORC Code explanation	Commentary			
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	AC face sampling bits and dust suppression were used to minimise sample loss. Average AC metre sample weight recovered was 10kg with			
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	minimal variation between samples.			
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All AC chip samples were geologically logged by Nexus Minerals geologists, using the approved Nexus Minerals logging code.			
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	colour, weathering and other characteristics as observed. All AC samples (except clays) were wet sieved.			
	The total length and percentage of the relevant intersections logged.	All AC holes and all metres were geologically logged.			
Sub-	If core, whether cut or sawn and whether quarter, half or all core taken.	AC holes were drilled to refusal, with 1m samples collected in buckets			
sampling techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	samples had 4 consecutive 1m samples composited to form a 4m composite sample which was sent to the laboratory for analysis. The bottom of hole sample was collected as a 1m sample and sent to the laboratory for analysis.			
	or all sample types, the nature, quality and appropriateness of the sample preparation technique.	For composite samples four consecutive metres were sampled using an aluminium scoop which penetrates the entire sample with multiple slices taken from multiple angles to ensure a representative sample is collected. These are combined to produce a 4m composite sample of 2-3kg.			
		All samples submitted for analysis were dry.			
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Samples were prepared at an accredited laboratory in either Perth or Kalgoorlie. Samples were dried, and the sample crushed to ~2mm (photon assay) with ~500g sample retained and analysed. The 1 metre bottom of hole samples are also pulverized to 85% passing 75um (four acid digest), with a sub-sample of ~200g retained and a nominal 50g used for analysis. This is best industry practice.			
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field				
	duplicate/second-half sampling.	Duplicate composite scoop field samples were collected at 1:25 samples.			
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sampling methods and company QAQC protocols are best industry practice.			

Criteria	JORC Code explanation	Commentary
		Sample sizes are considered appropriate for the material being sampled and the sample size being submitted for analysis.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were analysed at an accredited laboratory in either Perth or Kalgoorlie. 4m and 1m samples were analysed for gold using Photon Assay technique. This method is considered appropriate for the material being assayed. Independent comparison test work has found this method of analysis to be superior on the project compared to traditional fire assay owing to benefits of larger sample size and presence of coarse gold.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	All 1m bottom of hole samples are also analysed at an accredited laboratory in Perth using four acid digest multi element (48 elements + 12 rare earth elements) technique. This method is considered appropriate for the material being assayed.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	No other geophysical tools, spectrometers etc. were used in this drill program.
		Nexus Minerals protocol provides for Certified Reference Material (Standards and Blanks) to be inserted at a rate of 4 standards and 4 blanks per 100 samples. Field duplicates are inserted at a rate of 1 per 25 samples.
Verification of sampling	The verification of significant intersections by either independent or alternative company personnel.	Results and significant intersections were verified by the Exploration Manager.
and assaving	The use of twinned holes.	No twin holes were drilled as part of this program.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All field logging is carried out on a laptop computer. Data is submitted electronically to the database manager in Perth. Assay files are received electronically from the laboratory and added to the database. All data is managed by the database geologist.
	Discuss any adjustment to assay data.	No adjustment to assay data has occurred.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole locations were determined using a handheld GPS, with an accuracy of 3m. Drill holes were lined up using a sighting compass – no down hole surveys were completed.
	Specification of the grid system used.	Grid projection is GDA94 Zone51.
	Quality and adequacy of topographic control.	The drill hole collar RL is allocated from a handheld GPS.
		Accuracy is +/- 3m.

Criteria	JORC Code explanation	Commentary		
Data spacing and	Data spacing for reporting of Exploration Results.	AC drilling took place at Target MC1.4, Target MC4.3, and Target MC5.4. All targets are discussed in this release.		
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is not sufficient to establish the degree of geological and grade continuity appropriate for any Mineral Resource and Ore Reserve estimation procedure(s) and classifications to be applied.		
	Whether sample compositing has been applied.	Yes, as stated above.		
Orientation of data in relation to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The orientation of the drill lines is considered to be roughly perpendicular to the strike of the regional structures controlling the mineralisation (0 degrees).		
geological structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling	AC holes were drilled at a dip of -60 degrees. Drill hole azimuth was 090 degrees for Target MC1.4, Target MC4.3, and Target MC5.4.		
	bias, this should be assessed and reported if material.	The relationship between the drilling orientation and the orientation of key mineralised structures is not considered to have introduced a sampling bias.		
Sample security	The measures taken to ensure sample security.	For the AC drilling program pre-numbered calico bags were placed into green plastic bags, sealed and transported to the laboratory in Kalgoorlie by company personnel or established transport company.		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All sampling, logging, assaying and data handling techniques are considered to be industry best practice.		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	AC drilling was undertaken on tenements E31/1160, E31/1108, M31/231, M31/190 and M31/188. Tenure is held by Nexus 100%

Criteria	JORC Code explanation	Commentary
	The security of the tenure held at the time of reporting along with any	There are no other known material issues with the tenements.
	known impediments to obtaining a licence to operate in the area.	The tenements are in good standing with the Western Australian Mines Department (DMP).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	In the areas targeted, the tenements have been subject to minimal prior exploration activities by other parties.
Geology	Deposit type, geological setting and style of mineralisation.	Gold mineralisation in the Wallbrook area is known to be closely associated with quartz +/- pyrite and brick-red coloured hematitic alteration of high level porphyry intrusives and their volcanic / sedimentary host rocks.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to ASX announcement for full tables.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data	In reporting Exploration Results, weighting averaging techniques,	No top cuts have been applied to the reported assay results.
aggregation methods	maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No metal equivalent values were reported.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	

Criteria	JORC Code explanation	Commentary		
Relationship between mineralisatio n widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is	The orientation of the drill lines is considered to be roughly perpendicular to the strike of the regional structures controlling the mineralisation (0 degrees). Holes were drilled at -60 degrees towards 090 degrees.		
intercept lengths	known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	All reported intersections are down-hole length – true width not known.		
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the maps included in the text.		
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Clearly stated in body of release		
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data to be reported.		
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially constitue.	Post full assessment of recent drill results and integration with existing data sets, future work programs may include Aircore drilling and/or RC/Diamond drilling to follow up on the results received from this drill program.		