

# ADVANCING STUDIES FOR NEAR TERM EXTRACTION & NEW EXTENSIONS (UPDATED)

**Trigg Minerals Limited (ASX: TMG, OTCQB: TMGLF)** provides an updated version of its announcement released on 23 June 2025 titled *"Advancing Studies for Near Term Extraction & New Extensions"*.

This updated announcement includes a revised Appendix 1, following engagement with ASX, to ensure alignment with Listing Rule 5.7 regarding the disclosure of visual estimates.

The updated announcement is set out in full below.

This announcement was authorised for release by the Board of Trigg Minerals Limited.

#### For more information, please contact:

Andre Booyzen Trigg Minerals Limited Managing Director info@trigg.com.au +61 (08) 6256 4403 Kristin Rowe NWR Communications Investor Relations kristin@nwrcommunications.com.au +61 (0) 404 889 896

TRIGG MINERALS LTD

A Suite 2, 68 Hay Street, Subiaco, Western Australia 6008 T +61 8 6256 4403 E info@trigg.com.au W trigg.com.au

ACN 168 269 752

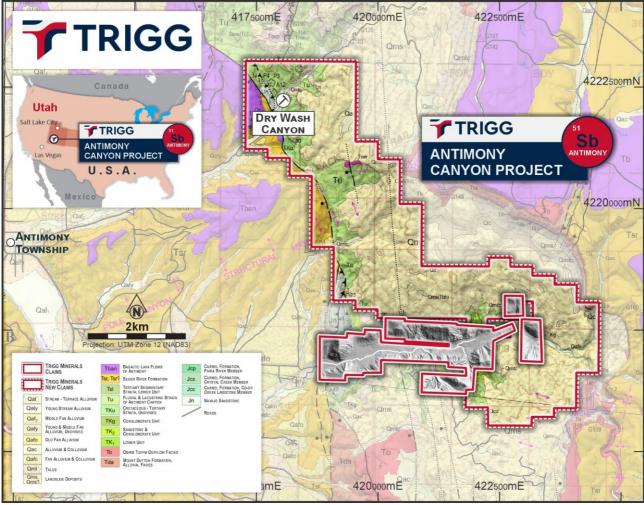


# ADVANCING STUDIES FOR NEAR TERM ANTIMONY EXTRACTION + NEW EXTENSIONS

# **HIGHLIGHTS**

- Trigg Minerals is pleased to announce initiatives for near term pilot scale antimony mining at the Antimony Canyon Project (**ACP**), Utah. This follows the recent appointments of two downstream antimony experts Wiehann Kleynhans and David Fourie.
- The United States currently does not produce any domestic antimony; ACP is strategically positioned to address urgent demand and support national supply chain resilience.
- ACP is located in the town of Antimony, formerly known as Coyote town. The town was renamed 'Antimony' following the discovery of the element and its growing national importance during times of conflict, when the extraction of antimony at ACP became strategically significant.
- The outcropping surface nature mineralisation at ACP enables low-cost, early-stage scalable evaluation, while also providing Trigg the opportunity to progress exploration at depth and in other high-priority, underexplored zones.
- There are over 30 antimony mines and adits at ACP in which mineralisation is **not closed off** and positions the project for rapid development. Additionally, significant quantities of antimony are present in existing waste dumps, **offering further near-term recovery opportunities**.
- In light of the recent rise of global tensions, Trigg has received inbound strategic interest, relating to securing immediate-term and long-term feedstock, and proposals to uplist TMG onto the mainboard NASDAQ/NYSE.

## ACP MINERALISATION EXTENSION & STRATEGIC LAND EXPANSION


- Widespread antimony mineralisation confirmed in areas previously untested by historical resource work at the Antimony Canyon Project, while also confirming antimony mineralisation occurs throughout the vertical profile of the Flagstaff Formation, substantially increasing the potential scale of mineralisation throughout the project tenure.
- Antimony mineralisation confirmed in Dry Wash Canyon, approximately 10 kilometres north of Antimony Canyon.
- Over 250 samples have been sent to the lab, collected from both ACP and the newly expanded Dry Wash Canyon.
- New geological interpretation indicates mineralisation is fundamentally controlled by significant North-South trending structures, which demonstrate both lateral and vertical system continuity.
- These newly identified structures have the potential to link the Antimony Canyon system directly to the Dry Wash Canyon area.
- Much of the intervening area between Antimony Canyon and Dry Wash Canyon is covered by mass flow deposits, obscuring the underlying prospective geology.
- Further low-cost high impact additions of defence metal exposure are likely.

ACN 168 269 752

TRIGG MINERALS LTD



**Trigg Minerals Limited (ASX: TMG, OTCQB: TMGLF)** is pleased to announce a significant advancement in its exploration efforts at the Antimony Canyon Project in Garfield County, Utah, confirming the presence of antimony mineralisation well beyond previously defined limits and strategically expanding its land position.



**Figure 1:** Project location displaying original and extension claim boundaries superimposed on regional geology. The mineralised host unit is depicted in lime green, with additional mineralisation found within the extensive talus slopes beneath the prominent cliffs of Antimony and Dry Wash Canyons.

Recent field reconnaissance and geological mapping have confirmed widespread antimony mineralisation outside the currently defined resource areas. Crucially, this includes new observations approximately 10 kilometres to the north of Antimony Canyon, within the Dry Wash Canyon area. This discovery significantly expands the known mineralised footprint of the project.

Initial geological interpretation indicates that the antimony mineralisation is fundamentally controlled by a series of prominent North-South trending structures. This is a key insight, as these structures demonstrate the potential to form a significant mineralised corridor linking the Antimony Canyon system directly to the newly confirmed mineralisation at Dry Wash Canyon. Much of the intervening area between these two zones is covered by mass flow deposits, which have historically obscured the underlying prospective geology. Trigg Minerals believes these deposits may conceal further extensions of the mineralised system.



In response to these encouraging findings, Trigg Minerals has moved swiftly to secure the prospective ground. The Company has strategically expanded its landholding by staking new claims to the north, extending from Antimony Canyon to Dry Wash Canyon and beyond. Additionally, new claims have been staked to the south of Antimony Canyon, further consolidating Trigg's position in this highly prospective region. This aggressive staking ensures that Trigg Minerals controls the interpreted extensions of the mineralised structures and the potential for a materially larger resource under modern exploration.

**Managing Director, Andre Booyzen,** commented: "We are exceptionally pleased with the rapid direction and response time of our team in capitalising on this opportunity. The confirmation of antimony mineralisation outside our known resource, particularly at Dry Wash Canyon, and the emerging understanding of these controlling North-South structures, is a game-changer for the Antimony Canyon Project. This strategic expansion of our landholding underscores our commitment to establishing a robust presence in the critical minerals sector and positions Trigg Minerals to contribute significantly to America's future antimony production landscape."

The Antimony Canyon Project is currently recognised as one of the largest and highest-grade antimony projects in the USA, with a foreign resource estimate of 12.7 million metric tonnes at 0.79% antimony\*, exceeding 100,000 tonnes of contained antimony, refer to the Company's ASX announcement on 20 May 2025 entitled "Strategic Large Scale USA Antimony Acquisition (Updated)". The Company is not in possession of any new information or data relating to the foreign resource estimate that materially impact on the reliability of the estimate or the Company's ability to verify the foreign estimate as Mineral Resources or Ore Reserves in accordance with the JORC Code. The Company confirms that the supporting information provided in its ASX announcement of 20 May 2025 continues to apply and has not materially changed.

\*Cautionary Statement: The foreign estimate is not reported in accordance with the JORC Code or any other reporting code. A Competent Person has not done sufficient work to classify the foreign estimate as Mineral Resources or Ore Reserves in accordance with the JORC Code, and it is uncertain that, following evaluation and/or further exploration work, the estimates will be able to be reported as Mineral Resources or Ore Reserves in accordance with the JORC Code.

This strategic land acquisition and new geological understanding further strengthen Triggs' antimony strategy, aligning with the Company's focus on open-pit mining opportunities and its commitment to developing secure domestic supplies of critical minerals.

# ADVANCING STUDIES FOR NEAR TERM ANTIMONY EXTRACTION

Trigg has developed a plan to start pilot-scale mining on selected sections of their Antimony Creek claims. This is to aid with metallurgical test work, feasibility input, processing validation. Pilot scale mining will take place from surface using mechanical methods, The antimony will then be crushed on site by means of mobile crushing, and then the antimony will be upgraded using gravity separation, also on site. Antimony that is not recovered will be stockpiled for future recovery via flotation. Trigg makes no assumptions on the economic viability of proposed pilot scale mining initiatives and will have completed financial studies before larger scale mining activities.

Material will be sourced from areas previously sampled during exploration and reported by the United States Bureau of Mines (**USBM**) and Utah Geological Survey (UGS). The activity is not underpinned by a JORC-compliant Ore Reserve, and no economic assessment has been completed. Results will feed into ongoing feasibility and design work. Trigg has initiated plans to convert the USBM foreign resource estimate to a JORC 2012 resource and/or United States SK-1300 compliant resource.



# FIELD MAPPING CONFIRMS BROADER MINERALISED SYSTEM

As part of its ongoing exploration at the Antimony Canyon Project in Utah, Trigg has completed a field prospecting and sampling program targeting high-grade stibnite mineralisation. The program involved detailed site visits to several historical workings, including the Emma, Albion, Gem, Nevada, Stella, Stebinite, and Mammoth mines, with the objective of mapping and verifying mineralisation at and beyond historically defined mining and resource areas.

Sampling focused on structurally controlled vein systems and mineralised breccia zones, with both channel samples and targeted rock chip specimens collected. Numerous stibnite-bearing outcrops were identified outside previously evaluated zones, confirming that mineralisation extends across a broader footprint. Importantly, field observations have verified that antimony mineralisation occurs throughout the vertical profile of the host Flagstaff Formation, demonstrating both the lateral and vertical continuity within the system. Whereas earlier work suggested mineralisation was primarily confined to the basal calcareous sandstone unit overlying a conglomerate, new results show that stibnite mineralisation is distributed vertically throughout the Flagstaff Formation, significantly expanding the prospective stratigraphic window.

Importantly, results confirm that antimony mineralisation is not confined to Antimony Canyon but extends along a broader, north–south trending structural corridor linking Antimony Canyon to Dry Wash Canyon, approximately 10 kilometres to the north. This corridor is defined by a series of steeply dipping faults interpreted to have acted as primary conduits for hydrothermal fluids responsible for antimony deposition. In Dry Wash Canyon, where the weathering profile is notably deeper, sampling of altered, ferruginous horizons exposed in historical cuts has validated the continuation of mineralisation. This structural continuity marks a significant development for Trigg, substantially enlarging the system's potential footprint and opening new corridors for systematic follow-up exploration.

Each of the 250 samples was documented (Appendix 1) and photographed *in situ*, with selected specimens retained for petrophysical analysis. These measurements will inform the design of upcoming geophysical surveys by providing input on conductivity and density contrasts associated with stibnite mineralisation. Assay results are pending and will be used to confirm grade continuity and guide further field programs.

## ENDS

The announcement was authorised for release by the Board of Trigg Minerals Limited.

#### For more information, please contact:

Andre Booyzen Trigg Minerals Limited Managing Director info@trigg.com.au +61 (08) 6256 4403 Kristin Rowe NWR Communications

kristin@nwrcommunications.com.au +61 (0) 404 889 896



# **ABOUT TRIGG MINERALS**

Trigg Minerals Limited (ASX: TMG, OTCQB: TMGLF) is advancing antimony development across two Tier-1 jurisdictions, with a strategic vision to become a vertically integrated, conflict-free supplier to Western economies. Its flagship Antimony Canyon Project in Utah, USA, is one of the country's largest and highest-grade undeveloped antimony systems—historically mined but never subjected to modern exploration. In Australia, the Company's Wild Cattle Creek deposit (Achilles Antimony Project, NSW) hosts a JORC 2012 Mineral Resource of 1.52 Mt at 1.97% Sb, for 29,900 tonnes of contained antimony comprising 0.96 Mt at 2.02% Sb (Indicated) and 0.56 Mt at 1.88% Sb (Inferred), based on a 1% Sb cut-off (refer ASX announcement dated 19 December 2024). With a proven leadership team, active government engagement, and smelter development underway, Trigg is strategically positioned to lead the resurgence of antimony supply from reliable Western sources.

For further information regarding Trigg Minerals Limited, please visit the ASX platform (ASX: TMG) or the Company's website at www.trigg.com.au.

## DISCLAIMERS

#### **Competent Persons Statement**

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information compiled by Mr Jonathan King, a Member of the Australian Institute of Geoscientists (AIG) and a Director of Geoimpact Pty Ltd, with whom Trigg Minerals Limited engages. Mr King has sufficient experience relevant to the style of mineralisation, type of deposit, and activity being undertaken to qualify as a Competent Person under the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Mr King consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

#### **Forward Looking Statements**

This report contains forward-looking statements that involve several risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more risks or uncertainties materialise, or underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward-looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

#### **Previously Reported Information**

The information in this report that references previously reported Mineral Resource at Wild Cattle Creek and exploration results is extracted from the Company's ASX market announcements released on the date noted in the body of the text where that reference appears. The previous market announcements are available to view on the Company's website or the ASX website (www.asx.com.au).

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

#### **Cautionary Statement on Visual Estimates**

This announcement references visual observations of stibnite mineralisation. The Company advises that such observations are preliminary in nature and inherently uncertain. Visual estimates do not quantify grade or economic viability and are not a substitute for laboratory assay data. The presence of stibnite alone does not confirm the continuity, quality or processability of mineralisation. Laboratory analysis is required to determine the concentrations of antimony and to assess whether the mineralisation may be of economic significance.



# **APPENDIX 1:** Rock Chip Sampling, Antimony and Dry Wash Canyons (WGS84 UTM Z12)

#### **Cautionary Statement – Visual Estimates and Pending Assay Results**

The Company advises that any references to visible mineralisation or estimated mineral content in this announcement are based on preliminary visual observations of field samples. These estimates are inherently uncertain and should not be considered a substitute for laboratory analysis.

All samples have been submitted to American Assay Laboratories in Sparks, Nevada for independent geochemical analysis. Results are expected by the end of July 2025. The Company will provide an update to the market once assay data has been received and interpreted.

| Sample  | East<br>WGS84 | North<br>WGS84 | Comments                                                                                                                                                                                                     | Min | %    | Alt          |
|---------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------------|
| 1733801 | 420464        | 4216689        | Float sample, 8 cm banded qtz vein, chalcedony + opal                                                                                                                                                        |     |      | silica       |
| 1733802 | 420464        | 4216699        | Float sample, bright pastel pink, arkosic sandstone with dendritic masses + crystal stibnite,<br>same location as last, just up, 20 ft cliff, fault?                                                         |     |      | Fe-Oxides    |
| 1733803 | 420750        | 4216640        | 1.5m sample in center of little emma pit, stibnite blebs + stringers focused at contact of<br>sandstone - shaler sand interace                                                                               | Sb  | 1-2  | silica       |
| 1733804 | 420750        | 4216650        | 20 cm high grade sample here                                                                                                                                                                                 | Sb  | 5+   | silica       |
| 1733805 | 422891        | 4217769        | sorting pile composite silicified hydrothermal bx with black sb-rich, matrix and phase of<br>crystaline stibnite, drusy qtz cavities                                                                         | Sb  | 3-5  | silica       |
| 1733806 | 422891        | 4217779        | sorting pile composite Sb-ore, breccia phase, poorly healed, FeOx matrix, Sb-rich silicified host sandstone clasts, some drusy pyr? Clasts with ferry stibnite + bright + red vitreous (Cinnabar?), Hg test  | Sb  | 3-5  |              |
| 1733807 | 422883        | 4217864        | Multiple Float sample, at base of Rhyolite, Qtz + Calcite vein with orange + green oxides,<br>layered Qtz + Calcite + clay vein, chunk 10 cm                                                                 |     |      | Qtz-calcite  |
| 1733808 | 422883        | 4217865        | Float 20 cm lump of Qtz, platy replacement of barite, bright green oxide                                                                                                                                     |     |      | Qtz-calcite  |
| 1733809 | 422883        | 4217875        | Massive banded + layered calcite + qtz vein, jasper + chalcedony, around bend from last                                                                                                                      |     |      | silica       |
| 1733810 | 421739        | 4217323        | at basal contact of Canyon - Sb in lower sand Formation, 10 cm chip sample of Sb-rich seam<br>emplaced along strat contact                                                                                   | Sb  | tr-1 | silica       |
| 1733811 | 421736        | 4217273        | 0.8m chip sample, sandstone horizon above FeOx + Sb-Vein contact zone, 1-3% black dot<br>speckled (stibnite?)                                                                                                | Sb  | 1-3  | silica       |
| 1733812 | 421736        | 4217283        | 0.7m chip sample, directly below last FeOx + silicified, Gossan horizon 30-40cm thick, this zone<br>hosts stibnite stringer on trend , sulphur smell                                                         | Sb  | 3-5  | Fe-Oxides    |
| 1733813 | 421932        | 4217486        | 1m chip vertical sample, white sandstone with silicified + ferrugenous blebs + below 0.3m<br>conglomerate                                                                                                    |     |      | silica       |
| 1733814 | 421932        | 4217496        | 0.8m chip, below last - recessive + eroding clay + oxide contact, red + orange-brown FeOx sandstone with silicified gray nodules having local stibnite                                                       | Sb  | tr-1 | Fe-Oxides    |
| 1733815 | 421828        | 4217626        | 1m chip across block of silicified + It yellow-green sandstone, silica breccia zones, possibly fine<br>dissem stibnite                                                                                       | Sb  | tr   | silica       |
| 1733816 | 421797        | 4217691        | Float sample of 15cm black + red Rhyolite brecia with calcite matrix + vein with botryoidal MnOx<br>zones                                                                                                    |     |      | Qtz-calcite  |
| 1733817 | 421813        | 4218140        | 0.7m chip sample, weathers to greenish clay horizon                                                                                                                                                          |     |      | clay         |
| 1733818 | 421815        | 4218144        | Float sample, green silicified tuff with qtz veinlets                                                                                                                                                        |     |      | silica       |
| 1733819 | 422055        | 4218241        | 0.6m chip sample, black, organic-rich, clay-shale horizon                                                                                                                                                    |     |      | clay         |
| 1733820 | 422108        | 4218104        | near base of volcanics, float sample 25cm chunk of banded Qtz + calcite, chalcedony                                                                                                                          |     |      | Qtz-calcite  |
| 1733822 | 422042        | 4217791        | 0.5m sample across agate bed in sandstone, white + black chalcedony                                                                                                                                          |     |      | silica       |
| 1733823 | 422040        | 4217576        | Composite float, bright red jasperoid breccia, Jasper + chalcedony red + black, cobbles up to 0.4m                                                                                                           |     |      | silica       |
| 1733824 | 423790        | 4217219        | 0.8m chip across oxidized contact of dacite + SS cold, brecciated fault? Contact, host destroyed, altered wulfenite to vuggy silica with calcite + sticks+ vugs, Jasper + chalcedony on trend N50E/Vertical? |     |      | Qtz-calcite  |
| 1733825 | 423790        | 4217229        | 0.5m chip relatively unaltered dacite dike, NW adjacent to last, contact at aprox N50E                                                                                                                       |     |      |              |
| 1733826 | 423800        | 4217233        | Grab on trend - Massive calcite replacement of FG intrusive - Vuggy Calcite with late silica<br>coating + calcite - green mimetite? Balls coated by bright white silica phase                                |     |      | Qtz-calcite  |
| 1733827 | 423800        | 4217243        | composite grab, Qtz + calcite breccia vein material here, layered chalcedony and calcite with<br>crosscutting carbonate patches                                                                              |     |      | Qtz-calcite  |
| 1733828 | 423818        | 4217245        | 0.4m chip, bright green calcite + clay vein, weathers dark green, swelling clay                                                                                                                              |     |      | Calcite-clay |
| 1733829 | 423838        | 4217270        | composite chip across 3-5m vein zone layered calcited + chalcedony + Jasper, massive calcite replacing FG Dike within zone, trending N20E                                                                    |     |      | Qtz-calcite  |



| Sample  | East<br>WGS84 | North<br>WGS84 | Comments                                                                                                                                                                                          | Min | %    | Alt         |
|---------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------------|
| 1733830 | 423825        | 4217252        | Composite grab on red + orange Jasper                                                                                                                                                             |     |      | silica      |
| 1733831 | 421052        | 4216249        | 0.2m Chunk of float, bright red gossan with Qtz lattice patches                                                                                                                                   |     |      | Fe-Oxides   |
| 1733832 | 419957        | 4216814        | 0.3m chip on float, polymictic volcaniclastic, popcorn texture, peperite, white clay-ish qtz matrix,<br>clasts of Rhy, Ande, Basalt                                                               |     |      |             |
| 1733833 | 419985        | 4216823        | Composite Float, Qtz + Calcite + Gypsum breccia with orange-brown jasperoid + green-brown<br>chloritic clay, maybe anhydrite? Some banded qtz + calcite                                           |     |      | Qtz-calcite |
| 1733834 | 419985        | 4216833        | Composite chip on Float, orange-brown Jasperoid, gossan material, matrix fill Qtz after calcite,<br>shattered jasperoid with 3+ generations of qtz, calcite, qtz, layered calcite into open space |     |      | silica      |
| 1733835 | 419985        | 4216843        | Float grab on, sample of 10+ cm calcite + gypsum + qtz vein with some layering, open spaces -<br>Rhyodacite breccia, angular clasts with 50% matrix calcite, same place last here                 |     |      | Qtz-calcite |
| 1733836 | 420047        | 4216852        | Sampling line from bottom-up, start above qtz conglomerate, 1.2m chip, red-orange FeOx covered on horizon directly above QC                                                                       |     |      |             |
| 1733837 | 420047        | 4216853        | 1m chip, Tan-Buff sandstone                                                                                                                                                                       |     |      |             |
| 1733838 | 420052        | 4216846        | 1.3m chip, It green + FeOx stained sandstone with gypsum crystals + stibnite flowen                                                                                                               |     |      |             |
| 1733839 | 420053        | 4216843        | 1.2m chip, It tan SS with gypsum                                                                                                                                                                  |     |      |             |
| 1733840 | 420055        | 4216840        | 1.5m chip, It gray SS with good gypsum                                                                                                                                                            |     |      |             |
| 1733842 | 420056        | 4216838        | 2m chip, It tan SS with good gypsum, local FeOx, end of line                                                                                                                                      |     |      | gypsum      |
| 1733843 | 420058        | 4216862        | 1m composite chip, It grey ashy sandstone with 1-2% pyr cubes                                                                                                                                     |     |      |             |
| 1733844 | 420064        | 4216863        | 1m composite chip, brown, yellow, black oxide coloring, pervasive to SS                                                                                                                           |     |      |             |
| 1733845 | 420066        | 4216854        | 1m composite chip on orange-red pervasive oxide mineralization in SS                                                                                                                              |     |      |             |
| 1733846 | 420066        | 4216855        | 0.7m chip vertical in Gem Mine                                                                                                                                                                    |     |      | silica      |
| 1733847 | 420066        | 4216856        | At back of Gem mine, 0.6m chip, massive stibnite with gypsum above gypsum vein, solid silicified pod, lens, manto above gypsum                                                                    | Sb  | 5+   | silica      |
| 1733848 | 420066        | 4216857        | 0.9m chip across other wall, massive stibnite zone + gypsum vein                                                                                                                                  | Sb  | 5+   | silica      |
| 1733849 | 420066        | 4216858        | 20 cm chip on soft sed deformation occurring alongside gypsum bed, halfway in Gem No2                                                                                                             |     |      | gypsum      |
| 1733850 | 420133        | 4216854        | 0.8m chip on natural outcrop of Sb-horizon here at Gem Mine                                                                                                                                       |     |      | Fe-Oxides   |
| 1733851 | 420133        | 4216855        | 0.8m chip on cleaned outcrop - duplicate for last                                                                                                                                                 | Sb  | 1-2  | stkwk       |
| 1733852 | 420132        | 4216855        | 0.8m chip on fresh host rock above adit mouth, adit at 345, about 200ft, same horizon but<br>above tunnel                                                                                         | Sb  | 2-3  | stkwk       |
| 1733853 | 420053        | 4217442        | Composite float on weird intermediate intrusive with dissem red-black oxide grains and black-<br>blue opal+Fluorine? Oxidation                                                                    |     |      | silica      |
| 1733854 | 420090        | 4217406        | 1m chip across red gypsum zone and lower gray-yellow sulphide zone                                                                                                                                |     |      | gypsum      |
| 1733855 | 420101        | 4217402        | 0.7m chip sample across 2 SS beds, both showing stibnite stockwork -photo, It gray host with<br>orange-yellow oxides                                                                              | Sb  | 1-2  | gypsum      |
| 1733856 | 420156        | 4217384        | WA mine tunnel at 020, adit at 420156/4217384, 1m chip across stibnite veinlet zone on tunnel wall, strong oxide + stibnite zone around layer of qtz pebbles in WA mine, 1m past raise            | Sb  | 1-2  |             |
| 1733857 | 420156        | 4217383        | 0.5m chip horizontal across fault, 330/85N + bx zone elevated sporadic oxide veinlets following<br>structure and gypsum veinlet, WA mine raise on this structure                                  | Sb  | tr-1 | gypsum      |
| 1733858 | 420168        | 4217381        | 1.1m chip across strong stockwork outcrop, stockwork shows acicular stibnite                                                                                                                      | Sb  | 1-2  |             |
| 1733859 | 420174        | 4217380        | Float sample of Dacite + Basalt Bx with calcite matrix                                                                                                                                            |     |      | cal         |
| 1733860 | 420174        | 4217381        | 15cm float sample of layered Jasperoid, Chalcedony layered calcite                                                                                                                                |     |      | Qtz-calcite |
| 1733862 | 420214        | 4217407        | Composite chip on Brittle Dike in fault zone here, intermediate volcanic with tr -1% stibnite,<br>possible feeder                                                                                 | Sb  | tr-1 | silica      |
| 1733863 | 420780        | 4216681        | 0.6m chip across sandstone contact above shale bed with gypsum veining + oxides                                                                                                                   |     |      | gypsum      |
| 1733864 | 420692        | 4216666        | 1.2m chip on st red + yellow stockwork in Sandstone                                                                                                                                               |     |      | stkwk       |
| 1733865 | 420647        | 4216694        | Composite sample on R.O.M. ore pile on a cut at little Emma                                                                                                                                       | Sb  | 3-5  | stkwk       |
| 1733866 | 422890        | 4217776        | Start chip samples at Mammoth Mine, 0.9m chip across exposed Bx horizon                                                                                                                           |     |      |             |
| 1733867 | 422889        | 4217775        | Top of line, 0.9m chip in Sandstone                                                                                                                                                               |     |      |             |
| 1733868 | 422888        | 4217774        | 0.8m chip in sandstone with st red oxides                                                                                                                                                         |     |      | Fe-Oxides   |
| 1733869 | 422887        | 4217772        | 0.6m chip in massive stibnite manto                                                                                                                                                               | Sb  | 5+   | silica      |



| Sample  | East<br>WGS84 | North<br>WGS84 | Comments                                                                                     | Min | %   | Alt         |
|---------|---------------|----------------|----------------------------------------------------------------------------------------------|-----|-----|-------------|
| 1733870 | 422886        | 4217771        | 0.5m chip across It tan + green with black blebs silicified Bx vein                          |     |     | Qtz-calcite |
| 1733872 | 422885        | 4217769        | Bottom of line, 0.8m chip on lower stibnite manto of silicified + shatter Bx material        | Sb  | 5+  | silica      |
| 1733873 | 422882        | 4217772        | First underground, all chip samples, 0.6m, top of 3                                          | Sb  | 2-3 |             |
| 1733874 | 422882*       | 4217772*       | All at mammoth mine, XYZ coordinates from lidar scan                                         | Sb  | 5+  |             |
| 1733875 | 422882*       | 4217772*       | Bottom                                                                                       | Sb  | 5+  |             |
| 1733876 | 422882*       | 4217772*       | silicified black volcanic, Bx with stringer of stibnite, top                                 | Sb  | 3-5 |             |
| 1733877 | 422882*       | 4217772*       | Bottom, same as above with higher stibnite content                                           | Sb  | 5+  |             |
| 1733878 | 422882*       | 4217772*       | left to right, N/S, black Bx zone, start                                                     | Sb  | 5+  |             |
| 1733879 | 422882*       | 4217772*       | highly silicified black Bx frags. Mineralized fracture set 110/80S, End                      | Sb  | 5+  |             |
| 1733880 | 422882*       | 4217772*       | 1m vertical chip across pillar, below the last 2                                             | Sb  | 5+  |             |
| 1733882 | 422882*       | 4217772*       | 1.1m chip across mineralized Bx zone                                                         | Sb  | 5+  |             |
| 1733883 | 422882*       | 4217772*       | Top of Bx zone with massive stibnite veinlet, Top                                            | Sb  | 10+ |             |
| 1733884 | 422882*       | 4217772*       | Black silicified Bx, Mid                                                                     | Sb  | 5+  |             |
| 1733885 | 422882*       | 4217772*       | Black sil Bx, Bottom                                                                         | Sb  | 5+  |             |
| 1733886 | 422882*       | 4217772*       | Brown sil Bx, By himself                                                                     | Sb  | 5+  |             |
| 1733887 | 422882*       | 4217772*       | Sandstone above, Top                                                                         | Sb  | 2-3 |             |
| 1733888 | 422882*       | 4217772*       | Green-orange oxidest gypsum, black Bx, Bottom                                                | Sb  | 5+  |             |
| 1733889 | 422882*       | 4217772*       | Тор                                                                                          | Sb  | 2-3 |             |
| 1733890 | 422882*       | 4217772*       | Low horizon with stibnite vein, Bottom                                                       | Sb  | 5+  |             |
| 1733891 | 422882*       | 4217772*       | At back of cross-cut, Top                                                                    | Sb  | 2-3 |             |
| 1733892 | 422882*       | 4217772*       | 0.8m chip across lower horizon Bx, Bottom                                                    | Sb  | 5+  |             |
| 1733893 | 422882*       | 4217772*       | Sandstone with solitary stibnite grains to 5cm, by itself                                    | Sb  | 1-2 |             |
| 1733894 | 422882*       | 4217772*       | 1.1m chip Dk brown silicified sandstone with gypsum                                          | Sb  | 2-3 |             |
| 1733895 | 422882*       | 4217772*       | 1m chip across black Bx zone with stibnite vein, last underground at mammoth mine            | Sb  | 5+  |             |
| 1733896 | 417891        | 4222368        | 1.1m chip across gypsum+FeOx Sb and underlying Dk gray shale with gypsum                     |     |     | gypsum      |
| 1733897 | 417896        | 4222359        | 1.4m chip, mostly sandstone with 0.4m of dk grey shale + gypsum                              |     |     | gypsum      |
| 1733898 | 417896        | 4222360        | 1m chip across st gypsum + FeOx in sandstone; cut face 1m back from outcrop, 3m NW from next |     |     | gypsum      |
| 1733899 | 417902        | 4222359        | 1.6m chip, sandstone + Dk gray shale with gypsum                                             |     |     | gypsum      |
| 1733900 | 417906        | 4222399        | 1.6m chip across tan sandstone with elevated FeOx + yellow oxide coloring with gypsum        |     |     | gypsum      |
| 1945901 | 420504        | 4216784        | Sed wiith dark powder (alt?), grab 20cm. Weathering/alteration.                              |     |     |             |
| 1945902 | 420440        | 4216729        | Bx cld Qtz dark mnx Mn? Sph? Sb? Block                                                       |     |     |             |
| 1945903 | 420421        | 4216735        | Sed with dark particles. Weathering weak                                                     |     |     |             |
| 1945904 | 420428        | 4216795        | Rhyolite alt ox hemt + reddish sone, Fx Vt cld dark                                          |     |     |             |
| 1945905 | 420410        | 4216848        | Cherty orange very fine grained BxFx Vt Cal qtz. Ox hem+/Si +?                               |     |     |             |
| 1945906 | 422222        | 4217692        | Shale friable +++, gray color                                                                |     |     |             |
| 1945907 | 422184        | 4217680        | Sandstone/ quartz rich. Concretion of OxFe to Hem ++ lim.                                    |     |     |             |
| 1945908 | 422159        | 4217709        | Gray soft sand?. Greenish mineral                                                            |     |     |             |
| 1945909 | 422140        | 4217715        | Dark pebble quartz?                                                                          |     |     |             |
| 1945910 | 422106        | 4217803        | Limestone and sulphides?                                                                     |     |     |             |
| 1945911 | 422090        | 4217831        | FxBx clay hem+ Vn Vt Stb                                                                     | Sb  | 3-5 |             |
| 1945912 | 422094        | 4217828        | FxBx clay hem+ Vn Vt Stb                                                                     | Sb  | 2-3 |             |



| Sample  | East<br>WGS84 | North<br>WGS84 | Comments                               | Min | %    | Alt |
|---------|---------------|----------------|----------------------------------------|-----|------|-----|
| 1945913 | 422898        | 4217838        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945914 | 422102        | 4217829        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945915 | 422107        | 4217833        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945916 | 422093        | 4217838        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945917 | 422090        | 4217840        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945918 | 422085        | 4217844        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945919 | 422092        | 4217848        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945920 | 422087        | 4217853        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945921 | 422096        | 4217856        | FxBx clay hem+ Vn Vt Stb               | Sb  | 1-2  |     |
| 1945923 | 422112        | 4217832        | Fx Bx Alt clay, Si+, hem +, Vt stb     | Sb  | 1-2  |     |
| 1945924 | 422107        | 4217832        | FxBx Ox+                               | Sb  | 1-2  |     |
| 1945925 | 422080        | 4217845        | FxBx Ox                                | Sb  | 1-2  |     |
| 1945926 | 422084        | 4217819        | Fx Bx 5mm Vt stb                       | Sb  | 1-2  |     |
| 1945927 | 422063        | 4217831        | Fx Bx Ox Vt stb                        | Sb  | 1-2  |     |
| 1945928 | 422058        | 4217833        | Fx Bx Ox Vt stb                        | Sb  | 1-2  |     |
| 1945929 | 422856        | 4217836        | Fx Bx Ox Vt stb                        | Sb  | 1-2  |     |
| 1945930 | 422060        | 4217841        | Stibinite mine                         | Sb  | 1-2  |     |
| 1945931 | 422104        | 4217817        | Fx Bx Ox + Vt stb                      | Sb  | 1-2  |     |
| 1945932 | 422108        | 4217818        | Fx Bx Ox Vt stb hm+                    | Sb  | 1-2  |     |
| 1945933 | 422119        | 4217793        | Stibinite mine                         | Sb  | tr-1 |     |
| 1945934 | 422119        | 4217793        | Fx Bx Ox hm+                           | Sb  | tr-1 |     |
| 1945935 | 421917        | 4217705        | Ox Vt hm+. Other side                  |     | tr-1 |     |
| 1945936 | 421899        | 4217708        | Sand Fx Bx Ox + hm+                    |     | tr-1 |     |
| 1945937 | 421924        | 4217725        | Fx Bx OX + stb                         | Sb  | tr-1 |     |
| 1945938 | 421924        | 4217724        | Same                                   | Sb  | 1-2  |     |
| 1945939 | 421924        | 4217723        | Same                                   | Sb  | 1-2  |     |
| 1945940 | 421924        | 4217722        | Same                                   | Sb  | 1-2  |     |
| 1945942 | 421916        | 4217725        | Fx Bx alt Si+, clay ++, stb            | Sb  | tr-1 |     |
| 1945943 | 421908        | 4217785        | Sand + FeOx                            |     |      |     |
| 1945944 | 421961        | 4217830        | Sand + FeOx++ hem++                    |     |      |     |
| 1945945 | 421961        | 4217829        | Black mineral                          |     |      |     |
| 1945946 | 419711        | 4217326        | Sand fx hm ++                          |     |      |     |
| 1945947 | 419885        | 4217434        | Volc Fx vt cld OxMn (dark)             |     |      |     |
| 1945948 | 419854        | 4217742        | Sand Fx hem+                           |     |      |     |
| 1945949 | 419855        | 4217747        | Limestone Fx Ox+ hem +                 |     |      |     |
| 1945950 | 419821        | 4217914        | Vt qtz py                              |     |      |     |
| 1945951 | 419820        | 4217927        | Sand Vtt Si+ py +                      |     |      |     |
| 1945952 | 419841        | 4217962        | Sand Vtt Si+ py +                      |     |      |     |
| 1945953 | 419826        | 4217980        | Sand Fx Ox++ hem+                      |     |      |     |
| 1945954 | 419811        | 4218026        | Sand Fx Ox++ hem+                      |     |      |     |
| 1945955 | 419681        | 4218009        | Sand Fx Vt Si-, Ox++ hem++ Vn stb, lim | Sb  | 1-2  |     |



| Sample  | East<br>WGS84 | North<br>WGS84 | Comments                                                                                                                                                             | Min | %    | Alt          |
|---------|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------------|
| 1945956 | 419678        | 4218028        | Sand Fx Ox++ hem++ Vn stb, lim+, vt si+                                                                                                                              | Sb  | 1-2  |              |
| 1945957 | 419684        | 4217997        | Sand Fx Vt Si-, Ox++ hem++ Vn stb, lim                                                                                                                               | Sb  | 1-2  |              |
| 1945958 | 419682        | 4217931        | Sand Fx Ox++ hem++                                                                                                                                                   |     |      |              |
| 1945959 | 419507        | 4217713        | Conglo Fx Ox++ hem+++                                                                                                                                                |     |      |              |
| 1945960 | 420120        | 4216859        | Conglo Fx Ox++ hem++ gypsum++                                                                                                                                        |     |      |              |
| 1945962 | 420134        | 4216866        | Sand OxFx hem++                                                                                                                                                      |     |      |              |
| 1945963 | 420135        | 4216878        | Sand FxOx hem+                                                                                                                                                       |     |      |              |
| 1945964 | 420132        | 4216888        | GEM Mine continuity. Sand alt gray clay alt ox++ Fx hm++, Vt stb                                                                                                     | Sb  | 1-2  |              |
| 1945965 | 420121        | 4216883        | Sandstone Fx Ox++ hm++ lim+ (1m) chip.                                                                                                                               |     |      |              |
| 1945966 | 420068        | 4216951        | Conglo Ox+++ hm++ lim+                                                                                                                                               |     |      |              |
| 1945967 | 420057        | 4216955        | Conglo Ox++ Fx hm++                                                                                                                                                  |     |      |              |
| 1945968 | 420104        | 4216965        | Conglo Ox++ hm++ lim+                                                                                                                                                |     |      |              |
| 1945969 | 421160        | 4216298        | Sed friable (sandstone clay) chl+                                                                                                                                    |     |      |              |
| 1945970 | 417934        | 4222404        | Drywash Canyon                                                                                                                                                       |     |      |              |
| 1945971 | 417914        | 4222395        | Sandstone alt - Fx Ox++ hm++ lim+                                                                                                                                    |     |      |              |
| 1945972 | 417894        | 4222387        | Sand alt Fx Ox++ hm++ lim                                                                                                                                            |     |      |              |
| 1945973 | 417895        | 4222391        | Sandstone alt + Si +/- Ox ++ hm++. Posible mineralization, black mineral, stb?.                                                                                      | Sb  | tr-1 |              |
| 1945974 | 417895        | 4222394        | Sand alt Si++ hm++, stb.                                                                                                                                             | Sb  | 1-2  |              |
| 1945975 | 417885        | 4222398        | Sand alt + Ox++ lim++ hm+                                                                                                                                            |     |      | Dickite      |
| 1945976 | 417874        | 4222476        | Sand FxOx++ hm++lim-                                                                                                                                                 |     |      |              |
| 1945977 | 417817        | 4222489        | Sand alt++ Si++ FxOx- Fx hm++ lim+                                                                                                                                   |     |      |              |
| 1945978 | 417821        | 4222491        | Sand vt cld                                                                                                                                                          |     |      |              |
| 1945979 | 417543        | 4222512        | Bx Si + Ox+++ lim+++ hm+, colluvial?. Si+ with ball boxwork                                                                                                          |     |      |              |
| 1945980 | 417541        | 4222515        | Bx Si+ Ox+++ lim+++ hm+                                                                                                                                              |     |      |              |
| 1979901 | 420130        | 4216843        | Sandstone in fault breccia, stibinite veinlets, 5mm sandstone clast inside the stibinite veinlet                                                                     | Sb  | 1-2  |              |
| 1979902 | 420130        | 4216844        | Sandstone, stibinite veinlets 0.6cm along with gypsum and FeOx. Sample was taken in the adjacent margen to the main entrance (right), near surface. Chip Channel 1m. | Sb  | 3-5  |              |
| 1979903 | 420130        | 4216845        | Veinlets 1.5cm of stibinite, gypsum and FeOx. Sampe was taken in the adjacent margen to the main entrance (middle). Chip Channel 0.5m                                | Sb  | 3-5  |              |
| 1979904 | 420130        | 4216846        | Sandstone altered weakly, veinlets and FeOx patches of sitibinite and gypsum. Sampe was taken in the intersection with the main entrance. Chip Channel 0.7m          | Sb  | 1-2  | gypsum       |
| 1979905 | 420130        | 4216847        | Layer of black mineral, 15cm width. Entrance to the main tunnel of mine Chip channel 0.4m                                                                            | Sb  | 3-5  |              |
| 1979906 | 420132        | 4216848        | Sandstone with stibinite oxides. Chip sampling                                                                                                                       | Sb  | 1-2  |              |
| 1979907 | 420160        | 4216839        | Sandstone, moderate altered, FeOx in fractures and calcite with gypsum. Chip channel 0.1m                                                                            |     |      | Fe-Oxides    |
| 1979908 | 420159        | 4216855        | Sandstone, brown orange oxide, calcite and gypsum. Chip channel 0.2m                                                                                                 |     |      | gypsum       |
| 1979909 | 420152        | 4216855        | Fresh sandstone with patches of FeOx veinlets and layers of calcite. Chip channel 0.5m                                                                               |     |      | Fe-Oxides    |
| 1979910 | 420132        | 4216868        | Ashy sandstone, very soft and oxidized, calcite and gypsum. Chip channel 1m                                                                                          |     |      | gypsum       |
| 1979911 | 420135        | 4216885        | Layer of sandstone within conglomerate, FeOx plus calcite. Chip channel 1m                                                                                           |     |      | Calcite-clay |
| 1979912 | 420135        | 4216886        | Ashy sandstone, orange redish FeOx. Chip channel 1m                                                                                                                  |     |      | Fe-Oxides    |
| 1979913 | 420132        | 4216891        | Altered Sandstone, FeOx and stibinite. Chip channel 0.4m.                                                                                                            | Sb  | 1-2  |              |
| 1979914 | 420140        | 4216906        | Hidden old mine with stibinite in sandstone plus gypsum. Chip channel 1m. Sample taken<br>above the mine.                                                            | Sb  | 2-3  | gypsum       |
| 1979915 | 420125        | 4216909        | Sandstone FeOx orange red, gypsum; below the conglomerate unit. Chip channel 0.3m                                                                                    |     |      | gypsum       |
| 1979916 | 420089        | 4216953        | Initial continuos sampling. Sandstone FeOx. Chip channel 1m                                                                                                          |     |      | Fe-Oxides    |



| Sample  | East<br>WGS84 | North<br>WGS84 | Comments                                                                                                 | Min | %    | Alt       |
|---------|---------------|----------------|----------------------------------------------------------------------------------------------------------|-----|------|-----------|
| 1979917 | 420089        | 4216954        | Sandstone with FeOx veinlets plus gypsum and calcite. Chip channel 1m.                                   |     |      | gypsum    |
| 1979918 | 420089        | 4216955        | Pinkish sandstone, gypsum and calcite. Chip channel 1m                                                   |     |      | gypsum    |
| 1979919 | 419900        | 4217298        | Sandstone, weakly atered, hematite?. Chip sample                                                         |     |      | Fe-Oxides |
| 1979920 | 419895        | 4217312        | Sandstone with FeOx, plus path hematite. Chip sample.                                                    |     |      | Fe-Oxides |
| 1979922 | 419898        | 4217318        | Sandstone plus patches FeOx and sulphides. Chip sample                                                   |     |      | Fe-Oxides |
| 1979923 | 419882        | 4217312        | Sandstone, FeOx plus calcite and minor gypsum. Chip sample                                               |     |      | gypsum    |
| 1979924 | 419876        | 4217322        | Strong altered sandstone plus FeOx. Chip sample.                                                         |     |      | Fe-Oxides |
| 1979925 | 419855        | 4217351        | Ashy sandstone plus FeOx and gypsum with calcite. Chip sample                                            |     |      | gypsum    |
| 1979926 | 419938        | 4217405        | Altered sandstone with FeOx. Chip sample.                                                                |     |      | Fe-Oxides |
| 1979927 | 419967        | 4217412        | Ashy sandstone, FeOx red orange with lithic sands. Chip channel 0.25m                                    |     |      | Fe-Oxides |
| 1979928 | 420902        | 4216273        | Ashy sandstone plus FeOx. Chip sample                                                                    |     |      | Fe-Oxides |
| 1979929 | 420933        | 4216502        | Layer of FeOx in sandstone. Chip sample                                                                  |     |      | Fe-Oxides |
| 1979930 | 421033        | 4216724        | Fresh sandstone with minor oxide patches. Chip sample                                                    |     |      | Fe-Oxides |
| 1979931 | 421051        | 4216757        | Moderatly altered sandstone, FeOx in fractures, intercalations with conglomerate layers. Chip<br>sample. |     |      | Fe-Oxides |
| 1979932 | 421055        | 4216741        | Sandstone with FeOx. Chip sample.                                                                        |     |      | Fe-Oxides |
| 1979933 | 421059        | 4216758        | Sandstone below the conglomerate unit. FeOx orange reddish. Chip sample                                  |     |      | Fe-Oxides |
| 1979934 | 421020        | 4216776        | Sandstone within conglomerate layer, oxidized. Chip sample.                                              |     |      | Fe-Oxides |
| 1979935 | 420973        | 4216797        | Sandstone layer within the conglomerate unit. Weak FeOx. Chip channel.                                   |     |      | Fe-Oxides |
| 1979936 | 420915        | 4216804        | Ashy sandstone with FeOx. Chip sample.                                                                   |     |      | Fe-Oxides |
| 1979937 | 420959        | 4216838        | Old mine. Silicified sandstone, calcite fractures, FeOx and gypsum. Chip channel 0.6m                    |     |      | gypsum    |
| 1979938 | 420966        | 4216841        | Sandstone with FeOx , calcite and gypsum. Next to the old mine.                                          |     |      | gypsum    |
| 1979939 | 420966        | 4216844        | Sandstone with FeOx and sitibinite; calcite and gypsum. Next to the old mine (3m)                        |     |      | gypsum    |
| 1979940 | 420868        | 4216775        | Sandstone with FeOx, gypsum layer 1cm thick and calcite                                                  |     |      | gypsum    |
| 1979942 | 420678        | 4216721        | Sandstone, FeOx and stibinite. Chip sample                                                               | Sb  | 1-2  |           |
| 1979943 | 420635        | 4216711        | Sandstone weakly altered, stibinite veinlet 0.15cm thick. Pit mine.                                      | Sb  | 5+   |           |
| 1979944 | 420635        | 4216714        | Same outcrop previous one, sandstone with FeOx and stibinite. 3m south.                                  | Sb  | 3-5  |           |
| 1979945 | 420631        | 4216714        | Same outcrop previous one, sandstone with FeOx and stibinite. 3m south.                                  | Sb  | 3-5  |           |
| 1979946 | 423787        | 4217217        | Rio dacite outcrop?, gray porphyritic volcanic, fresh. 3m lenght of the sampling. Chip channel           |     |      |           |
| 1979947 | 423787        | 4217218        | 0.7m<br>Weakly altered volcanic outcrop. Same outcrop previous one. Chip channel 0.7m                    |     |      |           |
| 1979948 | 423787        | 4217219        | Modered to strong altered volcanic outcrop. Same outcrop previous one. Chip channel 0.7m.                |     |      |           |
| 1979949 | 423787        | 4217220        | Silicified oxidized sample (weathering alt?). Chip channel 0.7m                                          |     |      | Fe-Oxides |
| 1979950 | 423787        | 4217221        | Altered sandstone, light brown ton. Chip channel 0.7m                                                    |     |      |           |
| 1979951 | 423787        | 4217222        | Gray brownish clays in sand. Same outcrop. Chip channel 0.7m                                             |     |      | clay      |
| 1979952 | 417880        | 4222360        | Sandstone layer with FeOX and stibinite. Chip channel 1m                                                 | Sb  | tr-1 | Fe-Oxides |
| 1979953 | 417880        | 4222362        | 2m next to the previous one, Oxidized sand. Chip channel 1m                                              | Sb  | tr-1 | Fe-Oxides |
| 1979954 | 417880        | 4222364        | 2m next to the previous one, Oxidized sand. Chip channel 1m                                              | Sb  | tr-1 | Fe-Oxides |
| 1979955 | 417880        | 4222369        | 5m next to the previous one, Oxidized and moderate altered sand. Chip channel 1m                         |     | tr-1 | Fe-Oxides |
| 1979956 | 417880        | 4222372        | Strong altered sandstone plus gray dark clays. Chip channel 1.5m.                                        |     |      | clay      |
| 1979957 | 417880        | 4222373        | Layer of shale (black sand). Chip channel 1m                                                             |     |      | organics  |
| 1979958 | 417872        | 4222474        | Weakly altered sandstone, gray layer. Chip channel 1m                                                    |     |      | 5         |
|         | 417862        | 4222456        | Sandstone with FeOx, calcite and gypsum. Chip channel 1m                                                 |     |      | gypsum    |



| Sample  | East<br>WGS84 | North<br>WGS84 | Comments                                                                                                  | Min | % | Alt         |
|---------|---------------|----------------|-----------------------------------------------------------------------------------------------------------|-----|---|-------------|
| 1979960 | 417862        | 4222459        | Greenish dark fine sandstone. 3m down previous one. Chip channel 0.6m                                     |     |   |             |
| 1979962 | 417862        | 4222460        | Layer below previous one. Light gray altered with FeOx veinlet (orange). Chip channel 0.5m                |     |   | Fe-Oxides   |
| 1979963 | 417862        | 4222462        | Gray altered sandstone. 2m down previous one. Chip channel 0.8m                                           |     |   | Fe-Oxides   |
| 1979964 | 417862        | 4222463        | Below previous layer. Sandstone with FeOx. Chip channel 0.8m                                              |     |   |             |
| 1979965 | 417823        | 4222467        | Oxidized sandstone layer. Chip channel 1m.                                                                |     |   | Fe-Oxides   |
| 1979966 | 417823        | 4222468        | Below previous layer. Gray fine grain sandstone, weak altered, gypsum and calcite. Chip<br>channel.       |     |   | gypsum      |
| 1979967 | 417811        | 4222471        | Black sandstone, very altered, gypsum and calcite. 5m next to the previous one. Chip channel 1m           |     |   | gypsum      |
| 1979968 | 417540        | 4222510        | Sandstone, silicified with FeOx orange red. Chip channel 1m                                               |     |   | Fe-Oxides   |
| 1979969 | 417539        | 4222522        | Sandstone, silicified and porous with FeOx. Fault breccia. Selective sample                               |     |   | Fe-Oxides   |
| 1979970 | 417539        | 4222527        | Sandstone with FeOx, fine grain and slightly brecciated. Selective sample.                                |     |   | Fe-Oxides   |
| 1979971 | 417519        | 4222516        | Sandstone with FeOx. Selective sample.                                                                    |     |   | Fe-Oxides   |
| 1939302 | 417914        | 4222688        | fg volcanic silicified tan color outcrop, panel -above seds                                               |     |   | silica      |
| 1939303 | 417922        | 4222768        | outcrop, panel thin flow dome? W/ layered silica sinter + calcite , hot springscell in lacustrine<br>seds |     |   | Qtz-calcite |
| 1939304 | 417906        | 4222812        | buff tan tuff? W/ qtz+calcite veining + carbonate matrix outcrop, panel                                   |     |   | Qtz-calcite |
| 1939305 | 417875        | 4222870        | 0.5m thick bench of travertine w layered sinter, 030/15w                                                  |     |   | Qtz-calcite |
| 1939306 | 417875        | 4222859        | composite sample of subcrop sulphidic jasper                                                              |     |   | silica      |
| 1939307 | 417874        | 4222839        | trace gossan float                                                                                        |     |   | silica      |
| 1939308 | 417856        | 4222888        | Chip panel, carbonate replaced rhyolite glassy qtz eye -perhaps a vent                                    |     |   | Qtz-calcite |
| 1939309 | 417724        | 4222993        | Chip 3.0m block of rhyolite tuff dropped in the seds                                                      |     |   | silica      |
| 1939310 | 417625        | 4223027        | 2.0m chip bench of highly altered rhy? ST feox                                                            |     |   | silica      |
| 1939311 | 417607        | 4223020        | float sample of dk green intrusive w/ dissem sulph+ ST malachite through matrix                           |     |   | cu_ox       |

\*Samples were recorded from underground. As satellite systems cannot accurately determine positions below ground, the GPS coordinates provided correspond to the underground entry points.



# APPENDIX 2: JORC Code, 2012 Edition – Table 1

#### Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The Bureau of Mines selected two areas for detailed sampling in 1941-1942. The first area comprises parts of the Albion, Emma, and Nevada claims, and the second area includes parts of the Stebinite, Stella, and Mammoth claims.</li> <li>Triggs' early field program is focused on these two areas, which will be sampled and mapped in detail.</li> <li>The second phase of the program stepped out from the known mineralisation into the extensional areas, including the adjacent valley, Dry Wash Canyon, where further mineralisation was identified.</li> <li>Rock chip samples, weighing around 0.25-5 kilograms each, were taken from exposed outcrops and weathered areas in the field. It's important to note that these samples may not accurately reflect the potential mineral grade within the project.</li> <li>The samples have been submitted to American Assay Laboratories for assay. The results are scheduled for late July/early August.</li> </ul> |
| Drilling<br>techniques   | <ul> <li>Drill type and details (e.g. core diameter,<br/>triple or standard tube, depth of diamond<br/>tails, face-sampling bit or other type,<br/>whether core is oriented and if so, by what<br/>method, etc).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No drilling performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No drilling performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



| Criteria                                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                     | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>All samples are logged sufficiently for geological interpretation.</li> <li>Estimated mineral contents provide in Appendix 1 in this announcement are based on preliminary visual observations of field samples. These estimates are inherently uncertain and should not be considered a substitute for laboratory analysis.</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |
|                                                             | <ul> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>The samples have been submitted to American Assay<br/>Laboratories for assay. The results are scheduled for<br/>late July/early August.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>No Drilling Completed</li> <li>Sample collection was carried out by Dr Michael Feinstein, Trigg's US Project Manager.</li> <li>All sample were taken from mineralised exposures or historical workings associated with the known mineralisation and the stepping out in the extensional areas. Exposures were excavated <i>in situ</i> by geological hammer and contained within labelled calico bags. Sampling nature is considered appropriate for due diligence and early-exploration work.</li> <li>The samples, with an average size of 2-5 kilograms, were collected for confirmation rather than the assessment of grade in potentially non-representative and weathered samples.</li> </ul> |
| Quality of<br>assay data<br>and<br>laboratory<br>tests      | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</li> </ul>                                                                         | <ul> <li>Standards were inserted at approximately every 20<sup>th</sup> sample. Several duplicate samples were also taken. Note that the standards and duplicate samples have been removed from Appendix 1.</li> <li>Initial samples that will not be used other than to indicate/confirm potentially interesting antimony contents of the variably weathered samples.</li> <li>The field program is complete, with the samples submitted to American Assay Laboratories in Nevada for a broad, multi-element assay stream.</li> <li>Method: Four acid digestion/ICP-OES finish</li> </ul>                                                                                                                   |
| Verification<br>of sampling<br>and assaying                 | <ul> <li>The verification of significant intersections<br/>by either independent or alternative<br/>company personnel.</li> <li>The use of twinned holes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • No verification will be undertaken for these initial samples that will not be used in any resource estimate. The samples are to determine the levels of Sb and other valuable elements in grab samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ul> <li>Documentation of primary data, data entry<br/>procedures, data verification, data storage<br/>(physical and electronic) protocols.</li> </ul>                                                                                                                                                                                                                                             | <ul> <li>The results will be used to inform additional trenching<br/>and drilling across the foreign resource and<br/>extensional areas.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |
|                                                                     | Discuss any adjustment to assay data.                                                                                                                                                                                                                                                                                                                                                              | No assays are being discussed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                              | <ul> <li>Claim area (Figure 1) is in UTM WGS84 (Zone 12) grid system.</li> <li>Sample locations were obtained using a handheld GPS (Garmin 65s), bagged, and labelled.</li> <li>Collected samples, the tagged sample bag, and the sampled outcrop and its location were photographed.</li> <li>In the accuracy of the GPS and Phone GPS is considered sufficient for an early-exploration sampling program.</li> <li>Samples collected from within the Mammoth underground lack GPS coordinates.</li> </ul> |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                 | <ul> <li>No sample compositing has been applied, and no drilling has been conducted.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>The lode systems occur as generally flat-lying lenses<br/>and pods exposed along the bevelled canyon walls.<br/>Sampling was conducted across these exposures.</li> <li>Not applicable for the early-stage exploratory<br/>programs undertaken.</li> <li>No drilling conducted.</li> </ul>                                                                                                                                                                                                         |
| Sample<br>security                                                  | <ul> <li>The measures taken to ensure sample security.</li> </ul>                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Dr Michael Feinstein, Triggs US Projects Manager, carried out sample collection.</li> <li>All samples were bagged, tagged, transported and delivered to AAL in Sparks, Nevada</li> </ul>                                                                                                                                                                                                                                                                                                           |
| Audits or<br>reviews                                                | <ul> <li>The results of any audits or reviews of<br/>sampling techniques and data.</li> </ul>                                                                                                                                                                                                                                                                                                      | <ul> <li>No formal audits or reviews have been conducted.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        |



#### Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting and any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The Antimony Canyon Project comprises 49 unpatented lode claims awaiting adjudication by the Bureau of Land Management.</li> <li>The claims are held by Monamatapa Investments, Inc, a wholley-owned subsidiary of Trigg Minerals.</li> <li>Trigg is not aware of any conflicting claims.</li> <li>The Company can commence non-ground disturbing activity, but claims must be adjudicated before tracks, pads, and drilling ensue</li> </ul>                                                                                                                                                                                                                                      |
| Exploration<br>done by other<br>parties          | <ul> <li>Acknowledgment and appraisal of<br/>exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Apart from some mining activity in 1967 from one of<br/>the historical mines, no work has been performed<br/>since 1942.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>All subsequent studies have relied on the Bureau of<br/>Mines' 1941 and 1942 results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>No formal exploration has been performed since this time.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Geology                                          | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Antimony mineralisation at Antimony Canyon is<br/>primarily hosted within two limey sandstone units<br/>near the centre of the Palaeocene Flagstaff<br/>Formation, forming a sedimentary package<br/>approximately 60 metres. Most high-grade<br/>mineralisation occurs as sub-horizontal, lenticular<br/>orebodies and pods positioned above the lowermost<br/>sandstone-shale unit, within the more massive<br/>overlying sandstone. Antimony mineralisation is now<br/>recognised as existing at several levels throughout<br/>the Flagstaff Formation.</li> </ul>                                                                                                              |
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Antimony mineralisation occurs as irregular lenses, rosettes, and veinlets, typically ranging from just over 1 metre to 7 metres thick. The primary ore mineral is stibnite (Sb<sub>2</sub>S<sub>3</sub>), present as acicular crystals oriented perpendicular to the veinlets and lenses. Gangue minerals include pyrite, realgar, orpiment, fluorite, quartz, kaolinite, and possibly arsenopyrite. This mineral assemblage reflects a hydrothermal origin, with deposition driven by the circulation of mineral-rich fluids through permeable sandstone units. The deposits represent hydrothermal sandy carbonate replacements linked to Tertiary volcanic activity</li> </ul> |
| Drill hole<br>Information                        | • A summary of all information material to the understanding of the exploration results including a tabulation of the                                                                                                                                                                                                                                                                                                                       | <ul> <li>No drilling conducted.</li> <li>All sample locations and descriptions have been provided in Appendix 1.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| Criteria                                  | JORC Code explanation                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                             |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | following information for all Material drill holes:                                                                                                                                                                                                                                                           |                                                                                                                                                        |
|                                           | <ul> <li>o easting and northing of the drill hole collar</li> </ul>                                                                                                                                                                                                                                           |                                                                                                                                                        |
|                                           | $\circ$ elevation or RL (Reduced Level –                                                                                                                                                                                                                                                                      |                                                                                                                                                        |
|                                           | elevation above sea level in metres) of the drill hole collar                                                                                                                                                                                                                                                 |                                                                                                                                                        |
|                                           | $\circ$ dip and azimuth of the hole                                                                                                                                                                                                                                                                           |                                                                                                                                                        |
|                                           | $\circ$ down hole length and interception depth                                                                                                                                                                                                                                                               |                                                                                                                                                        |
|                                           | $\circ$ hole length.                                                                                                                                                                                                                                                                                          |                                                                                                                                                        |
|                                           | <ul> <li>If the exclusion of this information is<br/>justified on the basis that the information<br/>is not Material and this exclusion does not<br/>detract from the understanding of the<br/>report, the Competent Person should<br/>clearly explain why this is the case.</li> </ul>                       |                                                                                                                                                        |
| Data                                      | In reporting Exploration Results, weighting                                                                                                                                                                                                                                                                   | No aggregation methods have been reported.                                                                                                             |
| aggregation<br>methods                    | averaging techniques, maximum and/or<br>minimum grade truncations (e.g. cutting of<br>high grades) and cut-off grades are<br>usually Material and should be stated.                                                                                                                                           | No drilling is being reported.                                                                                                                         |
|                                           | -                                                                                                                                                                                                                                                                                                             |                                                                                                                                                        |
|                                           | <ul> <li>Where aggregate intercepts incorporate<br/>short lengths of high-grade results and<br/>longer lengths of low-grade results, the<br/>procedure used for such aggregation<br/>should be stated and some typical<br/>examples of such aggregations should be<br/>shown in detail.</li> </ul>            |                                                                                                                                                        |
|                                           | <ul> <li>The assumptions used for any reporting of<br/>metal equivalent values should be clearly<br/>stated.</li> </ul>                                                                                                                                                                                       |                                                                                                                                                        |
| Relationship<br>between<br>mineralisation | <ul> <li>These relationships are particularly<br/>important in the reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                                                                           | <ul> <li>No drilling was performed or is being reported on.</li> </ul>                                                                                 |
| widths and<br>intercept<br>lengths        | <ul> <li>If the geometry of the mineralisation with<br/>respect to the drill hole angle is known, its<br/>nature should be reported.</li> </ul>                                                                                                                                                               |                                                                                                                                                        |
|                                           | • If it is not known and only the down hole<br>lengths are reported, there should be a<br>clear statement to this effect (e.g. 'down<br>hole length, true width not known').                                                                                                                                  |                                                                                                                                                        |
| Diagrams                                  | <ul> <li>Appropriate maps and sections (with<br/>scales) and tabulations of intercepts<br/>should be included for any significant<br/>discovery being reported. These should<br/>include but not be limited to a plan view of<br/>drill hole collar locations and appropriate<br/>sectional views.</li> </ul> | <ul> <li>Maps and images are included within the body of text</li> <li>Location information for the samples is contained in<br/>Appendix 1.</li> </ul> |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced<br>reporting                       | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.                                                                                                                                                                                                                   | <ul> <li>All relevant and material exploration data for the target areas discussed have been reported or referenced.</li> <li>Assay information will be reported when the results are returned from the laboratory in around 6 weeks.</li> </ul>                                                                                                                                                                                            |
| Other<br>substantive<br>exploration<br>data | <ul> <li>Other exploration data, if meaningful and<br/>material, should be reported including (but<br/>not limited to): geological observations;<br/>geophysical survey results; geochemical<br/>survey results; bulk samples – size and<br/>method of treatment; metallurgical test<br/>results; bulk density, groundwater,<br/>geotechnical and rock characteristics;<br/>potential deleterious or contaminating<br/>substances.</li> </ul> | <ul> <li>All relevant and material exploration data for the target areas discussed have been reported or referenced.</li> <li>Location information for the samples and visual observations is contained in Appendix 1.</li> </ul>                                                                                                                                                                                                           |
| Further work                                | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                         | <ul> <li>Trigg Minerals will launch a targeted exploration<br/>program at Antimony Canyon, prioritising validation<br/>and conversion of the foreign resource to a<br/>SK1300/JORC-compliant estimate. The program will<br/>include geological mapping, geochemical sampling,<br/>geophysics, trenching and other exploration<br/>approaches to define the full extent of mineralisation<br/>and evaluate development potential.</li> </ul> |