ASX / MEDIA RELEASE

4 July 2025

ADDITIONAL HIGH-GRADE GOLD FROM THE REMAINING GRADE CONTROL DRILLING AT CROWN PRINCE GOLD PROJECT

HIGHLIGHTS

High-grade gold assays in this announcement are mostly from the north-western part of the designed pit over the Main and Northern ore bodies (MOB and NOB) and sporadic parts of the South-Eastern Zone (SEB) which were rescheduled in the drilling campaign due to difficult access and ground conditions at the time.

Significant intersections include:

- 7m at 8.55g/t Au from 34m, including 1m at 40.68g/t Au from 37m in GC00500
- 26m at 3.67g/t Au from 23m, including 2m at 42.3g/t Au from 46m in GC00511
- 20m at 15.09g/t Au from 42m, including 4m at 47.08g/t Au from 53m in GC00519
- 7m at 17.64g/t Au from 35m, including 2m at 48.65g/t Au from 39m in GC00524
- 8m at 12.89g/t Au from 45m, including 3m at 31.2g/t Au from 45m in GC00525
- 4m at 20.98g/t Au from 45m, including 1m at 75.73g/t Au from 45m in GC00538
- 4m at 15.75g/t Au from 9m, including 1m at 35.32g/t Au from 9m in GC00549
- 2m at 19.57g/t Au from 47m, including 1m at 36.78g/t Au from 48m in GC00553

New Murchison Gold Limited **(ASX:NMG)** ("**NMG**" or the "**Company**") is pleased to announce additional high-grade gold intercepts from reverse circulation (RC) grade control drilling beneath the cap rock zone at the Crown Prince Gold Project ("**Crown Prince**") (M51/886) at the Company's flagship Garden Gully Gold Project near Meekatharra, Western Australia.

Crown Prince is a high-grade gold deposit within NMG's Garden Gully Project located 22 kilometres northwest of Meekatharra in Western Australia via the Great Northern Highway and the Mt Clere Road (**Figure 1**).

The drilling was designed over the Crown Prince pit design area to a maximum depth of 83m and drilled northerly over the Main Zone and north-westerly over the South-Eastern Zone (SEB). Their distribution over the current pit design is shown in **Figure 2** and the hole details are included in **Table 1**.

Figures 3 displays the recent grade control holes and gold intersections over the Main ore body. Assay results greater than 1g/t Au are included in **Appendix 1**. Pleasingly, this grade control drilling supports the continuity of the mineralised structures at Crown Prince and replicates the grades returned previously from resource drilling.

Alex Passmore, NMG's CEO, commented: "We are pleased to finalise the grade control program over the 0 to 50m vertical depth over Crown Prince ahead of mining. Resource and grade control models are being updated. The grades reported demonstrate a strong finish to the program with better-than-expected results at MOB and NOB. Overall, the grade control program has indicated that there may be an out performance above base case forecast when mining is undertaken."

Registered Address
New Murchison Gold Limited
ACN 085 782 994

Level 2, 5 Ord Street West Perth WA 6005 E: info@newmurchgold.com.au

T: +61 (08) 9389 6927

w: newmurchgold.com.au

<u>Projects</u>
Garden Gully Gold Project

Corporate

Market Cap

Shares on Issue Share Price 10,321m \$0.017 (At 03/07/2025) \$175m

ASX Code NMG

NMG has finalized the grade control drilling program at Crown Prince to infill resource estimation drilling ahead of mining. A total of 342 inclined grade control drill holes were designed to test and better delineate grade below the lateritic cap rock above the Crown Prince ore body.

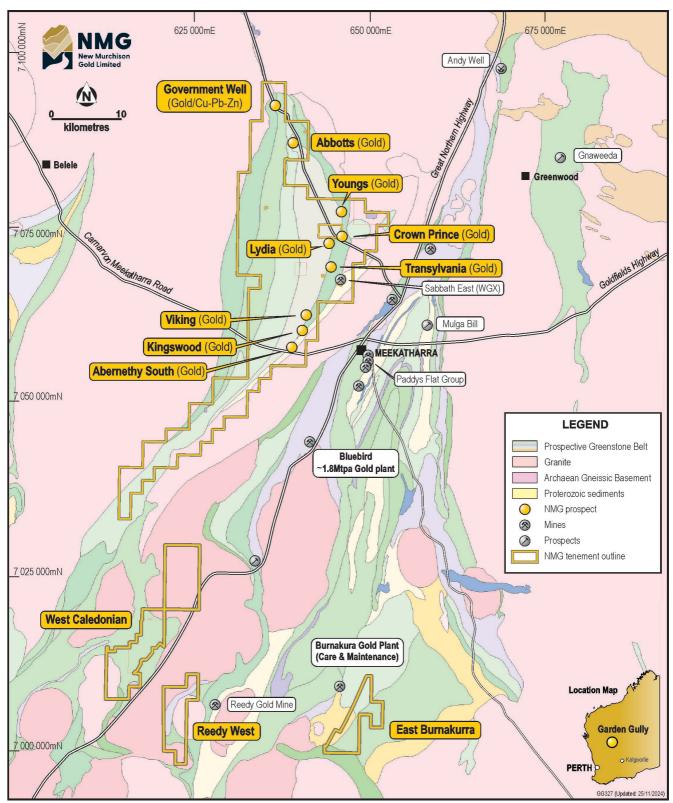


Figure 1: Garden Gully Tenements

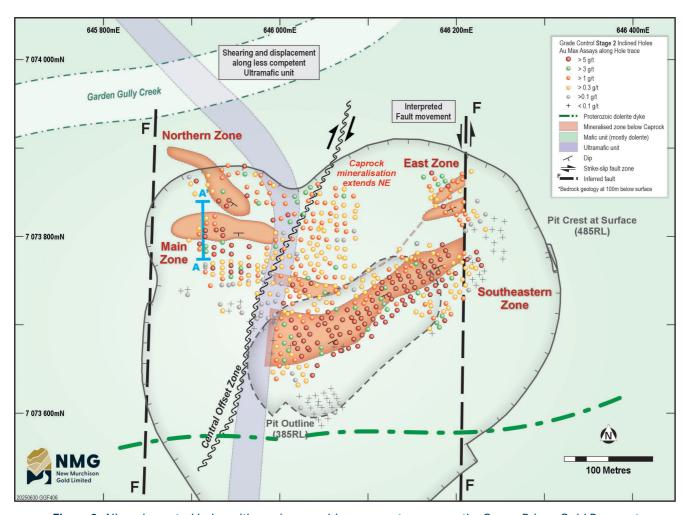


Figure 2: All grade control holes with maximum gold assays on traces over the Crown Prince Gold Prospect

Assay results included in the current announcement follow the previous assays from the 141 holes announced on the June 12, 2025. This includes the remaining 91 holes, most of them over the Main and Northern ore bodies (MOB and NOB) where the drilling was sparse due to significant amounts of voids from the historical mining.

The cross-section in **Figure 3** shows that the recent high-grade gold intersected in GC00511 and GC00519 is going to be mined within the current pit shell.

The Company has designed a new deep drilling program targeting the underground potential over the central and eastern part of the Southern Zone.

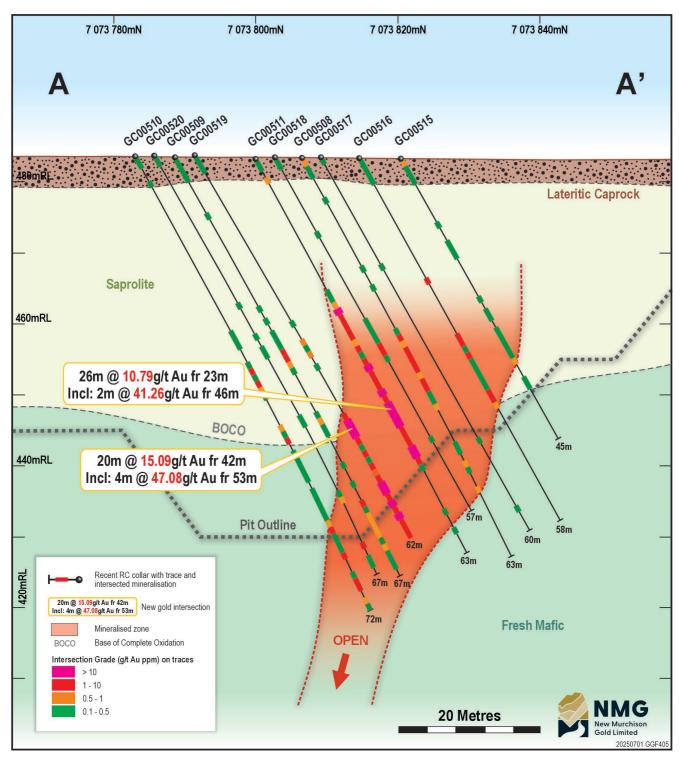


Figure 3: Cross section over the median part of the Main ore body (MOB) looking west.

Authorised for release to ASX by the Board of New Murchison Gold Limited For further information, please contact:

Alex Passmore
Chief Executive Officer
E: info@newmurchgold.com
newmurchgold.com.au

Jane Morgan
Investor and Media Relations
E: jm@janemorganmanagement.com.au

ABOUT NEW MUCHISON GOLD

New Murchison Gold Ltd (ASX:NMG) is a mineral exploration and development company which holds a substantial package of tenements in the prolific Murchison goldfield near Meekatharra, Western Australia.

The Company is focused on the Garden Gully Gold Project which comprises a 677km2 tenure package covering the Abbotts Greenstone Belt and other key regional structures. The project has multiple gold deposits along the belt with the most advanced being the Crown Prince Deposit.

Gold mineralisation in the belt is controlled by major north trending structures and contact zones between felsic and mafic metamorphosed rocks.

NMG updated its Mineral Resource Estimate in November 2024 and reported a maiden Ore Reserve and Feasibility Study for the Crown Prince Deposit in February 2025. This places NMG on track towards becoming a gold producer.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on NMG management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of NMG, which could cause actual results to differ materially from such statements. NMG makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing.

Refer to https://www.newmurchgold.com.au/ for past ASX announcements.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Costica Vieru, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Vieru has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr Vieru is an employee of NMG Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Information in this announcement that relates to Mineral Resources is based upon, and fairly represents, information and supporting documentation compiled by Mr Brian Fitzpatrick MAusIMM (CP). Mr Fitzpatrick is a Principal Geologist with Cube Consulting Pty Ltd and a Member of the Australasian Institute of Mining and Metallurgy with CP accreditation. The Competent Person has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Fitzpatrick consents to the inclusion in this announcement of the matters based upon his input into the information in the form and context in which it appears.

The Competent Person for the Ore Reserve estimate is Mr Mark Chesher, a mining engineer with more than 40 years' experience in the mining industry. Mr. Chesher is a Fellow of the AusIMM, a Chartered Professional, a full-time employee of Chesher Mine Consulting Pty Ltd (CMC) and has sufficient open pit mining activity experience relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the JORC Code. Mr Chesher consents to the inclusion of information relating to the Ore Reserve in the form and context in which it appears.

In reporting the Ore Reserves referred to in this public release, CMC acted as an independent party, has no interest in the outcome of the Crown Prince Gold Project and has no business relationship with New Murchison Gold Ltd other than undertaking those individual technical consulting assignments as engaged, and being paid according to standard per diem rates with reimbursement for out-of-pocket expenses. Therefore, CMC and the Competent Person believe that there is no conflict of interest in undertaking the assignments which are the subject of the statements.

Past Exploration results and Mineral Resource Estimates reported in this announcement were previously prepared and disclosed by NMG in accordance with JORC Code. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.newmurch.com.au for details on past exploration results and Mineral Resource Estimates.

Table 1: Drill hole details

Hole ID	Hole Depth	Easting	Northing	Grid ID	RL	Lease ID	Dip	Azimuth	Prospect	Method	Туре
GC00463	68	646163	7073867	MGA20_50	483.7	M51/886	-60	150	Crown Prince	DGPS	RC
GC00464	38	646183	7073853	MGA20_50	483.9	M51/886	-60	150	Crown Prince	DGPS	RC
GC00465	47	646179	7073859	MGA20_50	484.0	M51/886	-60	150	Crown Prince	DGPS	RC
GC00466	57	646176	7073865	MGA20_50	484.0	M51/886	-60	150	Crown Prince	DGPS	RC
GC00467	68	646172	7073872	MGA20_50	484.1	M51/886	-60	150	Crown Prince	DGPS	RC
GC00468	24	646193	7073853	MGA20_50	484.4	M51/886	-60	150	Crown Prince	DGPS	RC
GC00469	32	646191	7073857	MGA20_50	484.6	M51/886	-60	150	Crown Prince	DGPS	RC
GC00470	26	646201	7073862	MGA20_50	484.6	M51/886	-60	150	Crown Prince	DGPS	RC
GC00471	35	646206	7073871	MGA20_50	484.5	M51/886	-60	150	Crown Prince	DGPS	RC
GC00472	26	646217	7073874	MGA20_50	484.5	M51/886	-60	150	Crown Prince	DGPS	RC
GC00473	44	646233	7073825	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00474	33	646220	7073829	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00475	44	646223	7073823	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00476	54	646227	7073817	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00477	22	646208	7073829	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00478	33	646210	7073825	MGA20_50	484.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00479	44	646213	7073819	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00480	54	646217	7073813	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00481	64	646220	7073808	MGA20_50	485.1	M51/886	-60	330	Crown Prince	DGPS	RC
GC00482	22	646200	7073824	MGA20_50	484.8	M51/886	-60	330	Crown Prince	DGPS	RC
GC00483	33	646203	7073818	MGA20_50	484.9	M51/886	-60	330	Crown Prince	DGPS	RC
GC00484	44	646206	7073813	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00485	52	646210	7073806	MGA20_50	485.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00486	23	645995	7073804	MGA20_50	484.7	M51/886	-60	360	Crown Prince	DGPS	RC
GC00487	34	645995	7073796	MGA20_50	485.0	M51/886	-60	360	Crown Prince	DGPS	RC
GC00488	43	645995	7073789	MGA20_50	485.2	M51/886	-60	360	Crown Prince	DGPS	RC
GC00489	55	645995	7073781	MGA20_50	485.4	M51/886	-60	360	Crown Prince	DGPS	RC
GC00490	45	645985	7073787	MGA20_50	485.2	M51/886	-60	360	Crown Prince	DGPS	RC
GC00491	54	645985	7073780	MGA20_50	485.3	M51/886	-60	360	Crown Prince	DGPS	RC
GC00492	64	645985	7073772	MGA20_50	485.3	M51/886	-60	360	Crown Prince	DGPS	RC
GC00493	72	645975	7073767	MGA20_50	484.7	M51/886	-60	360	Crown Prince	DGPS	RC
GC00494	44	645975	7073762	MGA20_50	484.7	M51/886	-60	360	Crown Prince	DGPS	RC
GC00495	54	645975	7073756	MGA20_50	485.0	M51/886	-60	360	Crown Prince	DGPS	RC
GC00496	65	645975	7073749	MGA20_50	485.0	M51/886	-60	360	Crown Prince	DGPS	RC
GC00497	19	645895	7073740	MGA20_50	484.5	M51/886	-60	360	Crown Prince	DGPS	RC
GC00498	30	645895	7073734	MGA20_50	484.7	M51/886	-60	360	Crown Prince	DGPS	RC
GC00499	19	645888	7073738	MGA20_50	484.6	M51/886	-60	360	Crown Prince	DGPS	RC
GC00500	61	645945	7073790	MGA20_50	484.0	M51/886	-60	360	Crown Prince	DGPS	RC
GC00501	74	645945	7073780	MGA20_50	484.4	M51/886	-60	360	Crown Prince	DGPS	RC
GC00502	46	645935	7073808	MGA20_50	483.8	M51/886	-60	360	Crown Prince	DGPS	RC
GC00503	54	645935	7073801	MGA20_50	484.0	M51/886	-60	360	Crown Prince	DGPS	RC
GC00504	61	645935	7073793	MGA20_50	484.2	M51/886	-60	360	Crown Prince	DGPS	RC
GC00505	71	645935	7073783	MGA20_50	484.4	M51/886	-60	360	Crown Prince	DGPS	RC
GC00506	68	645925	7073788	MGA20_50	484.3	M51/886	-60	360	Crown Prince	DGPS	RC
GC00507	75	645925	7073780	MGA20_50	484.4	M51/886	-60	360	Crown Prince	DGPS	RC
GC00508	63	645916	7073807	MGA20_50	483.0	M51/886	-60	360	Crown Prince	DGPS	RC

										Gold Li	
Hole ID	Hole Depth	Easting	Northing	Grid ID	RL	Lease ID	Dip	Azimuth	Prospect	Method	Туре
GC00509	67	645916	7073789	MGA20_50	483.5	M51/886	-60	360	Crown Prince	DGPS	RC
GC00510	72	645916	7073783	MGA20_50	483.6	M51/886	-60	360	Crown Prince	DGPS	RC
GC00511	63	645915	7073800	MGA20_50	483.3	M51/886	-60	360	Crown Prince	DGPS	RC
GC00512	42	645926	7073823	MGA20_50	482.8	M51/886	-60	360	Crown Prince	DGPS	RC
GC00513	49	645926	7073814	MGA20_50	482.9	M51/886	-60	360	Crown Prince	DGPS	RC
GC00514	58	645928	7073807	MGA20_50	483.2	M51/886	-60	360	Crown Prince	DGPS	RC
GC00515	45	645917	7073821	MGA20_50	483.1	M51/886	-60	360	Crown Prince	DGPS	RC
GC00516	58	645917	7073815	MGA20_50	483.1	M51/886	-60	360	Crown Prince	DGPS	RC
GC00517	60	645908	7073809	MGA20_50	483.3	M51/886	-60	360	Crown Prince	DGPS	RC
GC00518	57	645908	7073803	MGA20_50	483.5	M51/886	-60	360	Crown Prince	DGPS	RC
GC00519	62	645909	7073791	MGA20_50	483.8	M51/886	-60	360	Crown Prince	DGPS	RC
GC00520	67	645909	7073786	MGA20_50	483.9	M51/886	-60	360	Crown Prince	DGPS	RC
GC00521	58	645897	7073796	MGA20_50	483.6	M51/886	-60	360	Crown Prince	DGPS	RC
GC00522	40	645935	7073851	MGA20_50	482.8	M51/886	-60	25	Crown Prince	DGPS	RC
GC00523	56	645931	7073840	MGA20_50	483.2	M51/886	-60	25	Crown Prince	DGPS	RC
GC00524	47	645943	7073841	MGA20_50	483.2	M51/886	-60	25	Crown Prince	DGPS	RC
GC00525	57	645940	7073835	MGA20_50	483.4	M51/886	-60	25	Crown Prince	DGPS	RC
GC00526	38	645973	7073840	MGA20_50	483.4	M51/886	-60	25	Crown Prince	DGPS	RC
GC00527	30	646178	7073842	MGA20_50	468.6	M51/886	-60	150	Crown Prince	DGPS	RC
GC00528	37	646175	7073846	MGA20_50	468.4	M51/886	-60	150	Crown Prince	DGPS	RC
GC00529	46	646172	7073852	MGA20_50	468.2	M51/886	-60	150	Crown Prince	DGPS	RC
GC00530	56	646169	7073857	MGA20_50	468.1	M51/886	-60	150	Crown Prince	DGPS	RC
GC00531	43	646187	7073863	MGA20_50	468.0	M51/886	-60	150	Crown Prince	DGPS	RC
GC00532	56	646184	7073868	MGA20_50	484.0	M51/886	-60	148	Crown Prince	DGPS	RC
GC00533	35	646196	7073863	MGA20_50	484.1	M51/886	-60	145	Crown Prince	DGPS	RC
GC00534	26	646207	7073865	MGA20_50	484.0	M51/886	-60	131	Crown Prince	DGPS	RC
GC00535	20	646224	7073840	MGA20_50	484.3	M51/886	-60	330	Crown Prince	DGPS	RC
GC00536	62	646222	7073782	MGA20_50	484.8	M51/886	-60	310	Crown Prince	DGPS	RC
GC00537	57	646197	7073770	MGA20_50	484.6	M51/886	-60	330	Crown Prince	DGPS	RC
GC00538	65	646199	7073758	MGA20_50	484.9	M51/886	-60	340	Crown Prince	DGPS	RC
GC00539	40	646194	7073737	MGA20_50	485.2	M51/886	-60	320	Crown Prince	DGPS	RC
GC00540	51	646198	7073731	MGA20_50	485.4	M51/886	-60	323	Crown Prince	DGPS	RC
GC00541	45	646185	7073715	MGA20_50	485.5	M51/886	-60	320	Crown Prince	DGPS	RC
GC00542	23	646170	7073726	MGA20_50	485.4	M51/886	-60	360	Crown Prince	DGPS	RC
GC00543	34	646171	7073721	MGA20_50	485.7	M51/886	-60	320	Crown Prince	DGPS	RC
GC00544	20	646154	7073714	MGA20_50	486.0	M51/886	-60	350	Crown Prince	DGPS	RC
GC00545	52	646043	7073768	MGA20_50	484.9	M51/886	-60	335	Crown Prince	DGPS	RC
GC00546	64	646047	7073759	MGA20_50	485.2	M51/886	-60	333	Crown Prince	DGPS	RC
GC00547	53	646066	7073735	MGA20_50	485.5	M51/886	-60	330	Crown Prince	DGPS	RC
GC00548	42	646053	7073725	MGA20_50	485.6	M51/886	-60	320	Crown Prince	DGPS	RC
GC00549	56	646043	7073700	MGA20_50	486.1	M51/886	-60	326	Crown Prince	DGPS	RC
GC00550	70	646034	7073689	MGA20_50	486.4	M51/886	-60	330	Crown Prince	DGPS	RC
GC00551	57	646042	7073679	MGA20_50	486.5	M51/886	-60	325	Crown Prince	DGPS	RC
GC00552	67	646047	7073673	MGA20_50	486.9	M51/886	-60	325	Crown Prince	DGPS	RC
GC00553	60	646031	7073674	MGA20_50	486.0	M51/886	-60	330	Crown Prince	DGPS	RC
GC00554	71	646033	7073672	MGA20_50	486.0	M51/886	-60	334	Crown Prince	DGPS	RC

Appendix 1. Assay results (>1g/t Au) - Fire Assay 50g charge and analysed by ICP-OES at Intertek labs, Perth.

Hole ID	From	To	Interval	Au ppm	Au Rpt	Average	Intersection
	38	39	1	2.314			
GC00463	40	41	1	3.534	3.561	3.5475	
GC00464	30	31	1	2.212	2.194	2.203	
	26	27	1	1.305			
GC00465	37	38	1	3.421	3.466	3.4435	
	27	28	1	1.363			
GC00466	28	29	1	0.724			3m at 1.32g/t Au
	29	30	1	1.884			(27-30m)
	29	30	1	0.699			
	30	31	1	1.513			
	31	32	1	5.665	5.776	5.7205	
GC00467	32	33	1	3.276	3.42	3.348	7m at 2.10g/t Au (29-36m)
	33	34	1	1.104			(29-3611)
	34	35	1	0.888			
	35	36	1	1.437			
GC00468	7	8	1	1.088			
	28	29	1	6.617	7.161	6.889	
GC00469	29	30	1	2.398	2.344	2.371	
	15	16	1	1.338			
GC00470	21	22	1	1.601	1.719	1.66	
	24	25	1	1.078			
GC00471	28	29	1	1.116	0.986	1.051	
	8	9	1	1.311	1.291	1.301	
GC00477	21	22	1	2.532	2.513	2.5225	
	21	22	1	1.262			
	22	23	1	2.294	1.564	1.929	
GC00478	23	24	1	1.311	1.3	1.3055	
	28	29	1	1.122			
	22	23	1	0.4			
00001=0	23	24	1	2.642	2.713	2.6775	
GC00479	24	25	1	1.268			
	25	26	1	1.589	1.482	1.5355	
000000	8	9	1	1.611			
GC00482	17	18	1	1.189			
	21	22	1	1.546			
0000100	22	23	1	1.737	1.957	1.847	4m at 1.65g/t Au
GC00483	23	24	1	2.492	2.535	2.5135	(21-25m)
	24	25	1	0.582	0.813	0.6975	
GC00484	21	22	1	1.24			
GC00487	2	3	1	2.306	2.421	2.3635	

Hole ID	From	То	Interval	Au ppm	Au Rpt	Average	Intersection
Hote ID							IIILEI SECTION
GC00488	0	1	1	3.071	3.188	3.1295	
0000400	1	2	1	2.083	4.000	4.0405	
GC00489	1	2	1	0.995	1.086	1.0405	
GC00490	40	41	1	1.031	1.061	1.046	
GC00495	1	2	1	1.009	1.019	1.014	
	0	1	1	3.899			4m at 3.73g/t Au
	1	2	1	3.325			(0-4m)
	2	3	1	4.919	5.166	5.0425	and
	3	4	1	2.65			
	34	35	1	0.866			
GC00500	35	36	1	0.479			7m at 8.55g/t Au (34-41m)
	36	37	1	39.785	41.576	40.6805	(04 4111)
	37	38	1	6.65	6.384	6.517	incl.
	38	39	1	4.572			1m at 40.68g/t Au
	39	40	1	5.43	5.256	5.343	(37-38m)
	40	41	1	1.365			
	2	3	1	1.128			
	34	35	1	6.509			
	35	36	1	2.497			4m at 2.88g/t Au (34-38m)
	36	37	1	2.045			(34-36111)
	37	38	1	0.472			
GC00501	42	43	1	0.6			4m at 3.46g/t Au
	43	44	1	1.071			(42-46m)
	44	45	1	10.237	11.496	10.8665	incl. 1m at 10.87g/t Au
	45	46	1	1.305			(44-45m)
	58	59	1	9.263	8.827	9.045	
	62	63	1	2.548			
	63	64	1	2.681			4m at 1.64g/t Au
GC00501	64	65	1	0.9			(62-66m)
	65	66	1	0.426			
	69	70	1	1.046			
	39	40	1	1.386			2m at 3.56g/t Au
GC00502	40	41	1	5.736			(39-41m)
	29	30	1	2.062			•
	32	33	1	8.428	8.851	8.6395	
	33	34	1	7.843	7.523	7.683	Am of C AArdt A
GC00503	34	35	1	4.605	7.525	7.000	4m at 6.44g/t Au (32-36m)
600000	35	36	1	4.848			(02 00111)
	45	46	1	4.506			
0000000	46	47	1	1.321			
GC00504	52	53	1	1.862			

Hole ID	From	То	Interval	Au ppm	Au Rpt	Average	Intersection
11010112	53	54	1	4.35	7 tu ript	Titoru _b o	moreouten
	56	57	1	1.796			
	0	1	1	1.195			
	1	2	1	39.732	40.382	40.057	
	2	3	1	13.243	11.571	12.407	5m at 12.02g/t Au
	3	4	1	4.651	11.5/1	12.407	(0-5m)
GC00505	4	5	1	1.791			
000000	29	30	1	2.237			
	57	58	1	2.282			
	63	64	1	1.738			
	64	65	1	1.646			
			1				
	31	32		1.643			
0000500	53	54	1	1.048			
GC00506	54	55	1	2.321	0.000	0.040	4m at 3.55g/t Au (53-57m)
	55	56	1	8.809	9.629	9.219	(33-37111)
	56	57	1	1.618			
	31	32	1	1.478			
	51	52	1	1.221			
	62	63	1	1.124			
GC00507	66	67	1	6.978	7.378	7.178	
	67	68	1	5.258	5.77	5.514	7m at 3.19g/t Au
	68	69	1	4.044			(66-73m)
	69	70	1	2.14			
	70	71	1	1.254			
	71	72	1	1.156			
	72	73	1	1.057			
	28	29	1	1.993			
	29	30	1	0.544			
	30	31	1	1.13			
	31	32	1	5.308	5.563	5.4355	Om at 0.00 = /t t
GC00508	32	33	1	3.914			9m at 2.08g/t Au (28-37m)
	33	34	1	1.399	2.422	1.9105	(==)
	34	35	1	0.684			
	35	36	1	1.046			
	36	37	1	2.032			
	31	32	1	3.85	3.81	3.83	
0000500	32	33	1	1.364			3m at 1.96g/t Au (31-34m)
GC00509	33	34	1	0.661			(21-24111)
	55	56	1	1.255			
0000711	34	35	1	1.115			
GC00510	36	37	1	1.255			

							Gold Limited
Hole ID	From	То	Interval	Au ppm	Au Rpt	Average	Intersection
	44	45	1	1.114	1.221	1.1675	
	59	60	1	3.819	4.003	3.911	
	63	64	1	3.028	2.891	2.9595	
	67	68	1	3.872	3.455	3.6635	
	68	69	1	1.249			
	23	24	1	0.826			
	24	25	1	47.686	45.674	46.68	
	25	26	1	5.097			
	26	27	1	4.499			
	27	28	1	2.315			
	28	29	1	2.64			
	29	30	1	0.978			26m at 10.79/t Au
GC00511	30	31	1	2.978			(23-49m)
	31	32	1	0.473			
	32	33	1	5.313			
	33	34	1	10.95			incl.
	34	35	1	7.787			mot.
	35	36	1	1.487			
	36	37	1	3.301			
	37	38	1	17.946			
	38	39	1	8.114			
	39	40	1	18.705	17.627	18.166	
	40	41	1	16.046			
	41	42	1	11.79			
	42	43	1	18.254			
	43	44	1	3.934			2m at 42.3g/t Au (46-48m)
	44	45	1	2.107			(40-40111)
	45	46	1	3.006			
	46	47	1	47.309	43.723	45.516	
	47	48	1	39.411	38.801	39.106	
	48	49	1	1.117			
0000510	0	1	1	1.385			
GC00512	1	2	1	1.406			
GC00513	37	38	1	2.219			
	0	1	1	1.845			
	1	2	1	2.966			
	2	3	1	1.198			
GC00514	23	24	1	1.821			
	27	28	1	5.481			
	30	31	1	1.484			5m at 3.97g/t Au
	31	32	1	11.109			(30-35m)
I		<u> </u>	1	I .	1	1	

							Gold Limited
Hole ID	From	То	Interval	Au ppm	Au Rpt	Average	Intersection
	32	33	1	5.236			
	33	34	1	0.866			
	34	35	1	1.168			
	45	46	1	3.594			
	28	29	1	1.288			
	29	30	1	1.556	1.68	1.618	
GC00516	31	32	1	1.594	1.601	1.5975	
	37	38	1	2.366	2.334	2.35	
	38	39	1	1.402	1.424	1.413	
GC00518	30	31	1	1.05			
9000518	31	32	1	1.581			
	42	43	1	3.955			
	43	44	1	26.953	27.217	27.085	20m at 15.09g/t Au
0000540	44	45	1	16.23			(42-62m)
GC00519	45	46	1	12.446			incl.
	46	47	1	3.203			
	47	48	1	0.424			
	48	49	1	1.361			
	49	50	1	0.459			
	50	51	1	1.337			
	51	52	1	0.5			
	52	53	1	3.729			
	53	54	1	109.159			
	54	55	1	32.364	33.263	32.8135	4m at 47.08g/t Au
	55	56	1	2.372			(53-57m)
	56	57	1	44.579	43.383	43.981	
	57	58	1	6.288	16.391	11.3395	
	58	59	1	13.657			
	59	60	1	2.307			
	60	61	1	6.017			
	61	62	1	9.367		OPEN	
GC00520	62	63	1	1.165			
-	0	1	1	1.709			
	1	2	1	1.127			
	2	3	1	2.962			
GC00522	29	30	1	3.463			
	31	32	1	0.907			
	32	33	1	0.946			
	33	34	1	1.557			
	0	1	1	1.233			
GC00523	1	2	1	1.421			
1			1	1.421			

Hole ID	From	То	Interval	Au ppm	Au Rpt	Average	Intersection
	35	36	1	1.965			
	42	43	1	7.068			
	43	44	1	13.132	12.507	12.8195	8m at 5.36g/t Au
	44	45	1	0.524			(42-50m)
	45	46	1	1.111			
	46	47	1	1.499			incl.
	47	48	1	0.047			1m at 18.48g/t Au
	48	49	1	1.291			(49-50m)
	49	50	1	18.804	18.165	18.4845	
	30	31	1	1.655			
	35	36	1	4.759			700 04 47 04 4/4 4 4
GC00524	36	37	1	1.947			7m at 17.64g/t Au (35-42m)
	37	38	1	12.775			(00 12.11)
	38	39	1	5.202			incl.
	39	40	1	35.031	38.694	36.8625	
GC00524	40	41	1	14.472	44.31	60.441	2m at 48.65g/t Au
	41	42	1	1.543	1.43	1.4865	(39-41m)
	0	1	1	2.403			
	45	46	1	19.843	27.553	23.698	
	46	47	1	17.867			8m at 12.89g/t Au
	47	48	1	48.912	55.157	52.0345	(45-53m)
GC00525	48	49	1	5.562	5.933	5.7475	
	49	50	1	1.927			incl.
	50	51	1	0.215			3m at 31.2g/t Au
	51	52	1	0.165			(45-48m)
	52	53	1	1.486			
GC00526	0	1	1	2.463			
GC00530	34	35	1	2.518			
	13	14	1	0.626			
	14	15	1	1.128	1.131		
	15	16	1	1.003			
GC00531	16	17	1	0.518			
	28	29	1	0.716			
	29	30	1	3.891	3.398		
	36	37	1	0.588			
GC00532	37	38	1	3.975	3.853		
	38	39	1	0.345			
GC00534	25	26	1	1.125	1.051		
	51	52	1	0.434			
GC00536	52	53	1	9.533	8.854		
	53	54	1	1.713	1.392		

Hole ID	From	То	Interval	Au ppm	Au Rpt	Average	Intersection
Tiote ID	54	55	1	5.852	5.762	Avelage	Intersection
	55	56	1	0.691	5./62		
			1	87.366	64.094	75.73	Am at 00 00 x/t Av
	45 46	46 47	1				4m at 20.98g/t Au (45-49m)
GC00538				4.114	5.537	4.8255	incl.
	47	48	1	0.816	0.050	0.505	1m at 75.73g/t Au
	48	49	1	2.818	2.252	2.535	(45-46m)
	6	7	1	1.365	00.044	05.000	4 4 5 = 10 4
0000540	9	10	1	37.332	33.314	35.323	4m at 15.75g/t Au (9-13m)
GC00549	10	11	1	15.424	11.69	13.557	incl.
	11	12	1	7.184			1m at 35.32g/t Au
	12	13	1	6.952			(9-10m)
	19	20	1	1.262			
GC00549	44	45	1	1.006			
	53	54	1	1.667			
	54	55	1	4.166			
	16	17	1	1.518			
	17	18	1	1.079			8m at 5.85g/t Au
	18	19	1	1.229			(16-24m)
	19	20	1	12.633	14.238	13.4355	incl.
	20	21	1	22.751	21.259	22.005	met.
GC00550	21	22	1	5.63			1m at 22g/t Au
0000550	22	23	1	1.251			(19-20m)
	23	24	1	0.614			
	28	29	1	1.62			
	30	31	1	1.593	1.089	1.341	
	36	37	1	2.512			
	42	43	1	1.153			
	30	31	1	1.68			
	31	32	1	5.985	5.871	5.928	
	32	33	1	2.811			
	33	34	1	1.551			
	34	35	1	0.779			9m at 2.82g/t Au (30-39m)
GC00551	35	36	1	0.435			(30-33111)
	36	37	1	7.673	8.194	7.9335	
	37	38	1	2.108			
	38	39	1	1.114			
	43	44	1	2.859			
	54	55	1	3.2	2.422	2.811	
	8	9	1	1.063			
GC00552	32	33	1	1.755			
	56	57	1	3.106			
	90	5/	1	3.106			

Hole ID	From	То	Interval	Au ppm	Au Rpt	Average	Intersection
	32	33	1	2.68			
	33	34	1	0.815			
	34	35	1	4.124	4.423		
GC00553	35	36	1	6.949	6.589		9m at 3.68g/t Au
600000	36	37	1	4.28	5.622		(32-41m)
	37	38	1	3.726			
	38	39	1	1.289			
	39	40	1	4.46			
	40	41	1	3.558			
	47	48	1	2.36			2m at 19.57g/t Au (47-49m)
GC00553	48	49	1	37.438	36.13	36.784	incl. 1m at 36.78g/t Au (48-49m)
	54	55	1	1.079			
	56	57	1	5.103			
	1	2	1	9.964			
	31	32	1	8.91			
	35	36	1	1.083			
	37	38	1	1.006			
	39	40	1	4.944			
	40	41	1	2.196			
GC00554	41	42	1	4.537			
	58	59	1	5.397	2.797	4.097	
	59	60	1	0.04			
	60	61	1	1.756			5m at 3.61g/t Au (58-63m)
	61	62	1	2.85			(00.00111)
	62	63	1	10.64	7.986	9.313	
	67	68	1	2.486			

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

JORC Table 1 Checklist of Assessment and Reporting Criteria Section 1. Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 New Murchison Gold Limited (NMG) RC sample was collected and split in even metre intervals where sample was dry. Wet sample was speared or on occasion sampled by scooping. RC drill chips from each metre were examined visually and logged by the geologist. Evidence of alteration or the presence of mineralisation was noted on the drill logs. Intervals selected by the site geologist were tested by hand-held XRF and all those with elevated arsenic contents have been bagged and numbered for laboratory analysis. Duplicate samples are submitted at a rate of approximately 10% of total samples taken (ie one duplicate submitted for every 20 samples). The Vanta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 NMG Drilling technique was Reverse Circulation (RC) with a hammer diameter of 5.5" (140 mm) using a KWL700/T685 drill rig and a B7/1000 Atlas Copco booster unit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 NMG Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Samples were collected and dry sample split using a riffle splitter. Based on the relatively small number of assays received to date, there is no evidence of either a recovery/grade relationship or of sample bias.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral	 NMG RC chips are logged visually by qualified geologists. Lithology, and where possible

Criteria	JORC Code Explanation	Commentary
Sub- sampling techniques and sample preparation	Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 structures, textures, colours, alteration types and minerals estimates are recorded. Representative chips are retained in chip trays for each metre interval drilled. The entire length of each drill hole is logged and evaluated. NMG RC samples were collected and dry sample split using a riffle splitter. Material too moist for effective riffle splitting was sampled using a 4cm diameter spear. Sample submitted to the laboratory comprised three spear samples in different directions into the material for each meter interval. The samples were sent to Intertek labs in Perth for Au analysis by FA50 (Fire Assay on 50g charge). Sample preparation techniques are well-established standard industry best practice techniques. Drill chips are dried and crushed and pulverised (whole sample) to 95% of the sample passing -75µm grind size. Field QC procedures include using certified reference materials as assay standards at every 20m. One duplicate sample is submitted for every 20 samples and a blank at 50 samples, approximately. Evaluation of the standards, blanks and duplicate samples assays shows them to be within acceptable limits of variability. Sample representativity and possible relationship between grain size and grade was confirmed following re-sampling and re-assaying of high-grade interval. Sample size follows industry standard best practice and is considered appropriate for these style(s) of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable 	 NMG The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverised to 95% passing -75µm using 50g Fire Assay and analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The handheld XRF equipment used is an Olympus Vanta XRF Analyser and Ora Gold Ltd. follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Ora Gold Ltd. uses

Criteria	JORC Code Explanation	Commentary
	levels of accuracy (ie lack of bias) and precision have been established.	the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay. • The laboratory that carried out the assays is an AQIS registered site and is ISO certified. It conducts its own internal QA/QC processes in addition to the QA/QC implemented by Ora Gold Ltd, as its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory. The laboratory uses check samples and assay standards to complement the duplicate
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 sampling procedures practiced by Ora Gold Ltd. NMG All significant intersections are calculated and verified on screen and are reviewed prior to reporting. The program included no twin holes. Data is collected and recorded initially on handwritten logs with summary data subsequently transcribed in the field to electronic files that are then copied to head office. No adjustment to assay data has been needed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 NMG Drill hole locations have been established using a differential GPS with an accuracy of ±0.3m. Regular surveys were undertaken every 18m using a Gyro survey tool. The map projection applicable to the area is Australian Geodetic GDA2020, Zone 50.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 NMG Drill hole collars were located and oriented to deliver maximum relevant geological information to allow the geological model to be tested and assessed effectively. This is still early-stage exploration and is not sufficiently advanced for this to be applicable. Various composite sampling was applied depending on the geology of the hole. All anomalous sample intervals over 1.0.g/t Au are reported in Appendix 1. Zones where geological logging and/or XRF analyses indicated the presence of mineralised intervals were sampled on one metre intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	NMG This programme is part of the grade control drilling to test the ore bodies of the Crown Prince gold project. All drill holes have been inclined at 60 degrees to a vertical depth of

Criteria	JORC Code Explanation	Commentary
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 50m. Sufficient data has been collected and compiled to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls as no diamond drilling was undertaken. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	 NMG When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 NMG Internal reviews are carried out regularly as a matter of policy. All assay results are considered representative as both the duplicates, standards and blanks from this program have returned satisfactory replicated results.

Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 NMG The Garden Gully project comprises one granted prospecting licence, P51/3009, six granted exploration licences E51/1661, E51/1737, E51/1609, E51/1708, E51/1790, E51/1791 and four mining leases M51/390, M51/567, M51/886 and M51/889, totaling approximately 217 square kilometres. Ora Gold Limited holds a 100% interest in each lease. The project is partially located in the Yoothapina pastoral lease, 15km north of Meekatharra, in the Murchison of WA. The licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 NMG First workings in the Garden Gully area: 1895 - 1901 with the Crown gold mine. 264 tonnes gold at 1.99 oz/t average (~ 56 g/t Au). Maximum depth~24m. Kyarra Gold Mine (1909 – 1917): 18,790 oz gold from quartz veins in "strongly sheared, decomposed, sericite rich country rock".

Criteria JORC Code Explanation Seltrust explored for copper and zinc fr reporting stratigraphically controlled "gossanous" rock from chip sampling a drilling. In 1988, Dominion gold exploration at C defined a > 100ppb gold soil anomaly. F 32m: "no significant mineralisation": d was "sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the strateging the arsenic anomaly. 12m at 5 and from 10m gold exploration at C anomaly. 12m at 5 anomaly 10m gold exploration at C a	end Crown RAB to rilling sation"; 5m. es 30 m
reporting stratigraphically controlled "gossanous" rock from chip sampling a drilling. In 1988, Dominion gold exploration at 0 defined a >100ppb gold soil anomaly. F 32m: "no significant mineralisation": d was "sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from 8 1989 at Lydia: Julia Mines RAB drill hole intervals 100m apart across the shear a targeting the arsenic anomaly. 12m at 8	end Crown RAB to rilling sation"; 5m. es 30 m
"gossanous" rock from chip sampling a drilling. In 1988, Dominion gold exploration at C defined a >100ppb gold soil anomaly. F 32m: "no significant mineralisation": d was "sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the second of the se	Crown RAB to rilling sation"; 5m. es 30 m
drilling. In 1988, Dominion gold exploration at C defined a >100ppb gold soil anomaly. F 32m: "no significant mineralisation": d was "sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the section of the se	Crown RAB to rilling sation"; 5m. es 30 m
 In 1988, Dominion gold exploration at C defined a >100ppb gold soil anomaly. F 32m: "no significant mineralisation": d was "sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the section of the	RAB to rilling sation"; 5m. es 30 m
defined a >100ppb gold soil anomaly. F 32m: "no significant mineralisation": d was "sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from 5 1989 at Lydia: Julia Mines RAB drill hole intervals 100m apart across the shear a targeting the arsenic anomaly. 12m at 5	RAB to rilling sation"; 5m. es 30 m
32m: "no significant mineralisation": d was "sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from 8 1989 at Lydia: Julia Mines RAB drill hole intervals 100m apart across the shear a targeting the arsenic anomaly. 12m at 8	rilling sation"; 5m. es 30 m
was "sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the dip of minerali best intersection: 15m at 2.38g/t from the sub-parallel to the su	sation"; 5m. es 30 m
best intersection: 15m at 2.38g/t from 9 • 1989 at Lydia: Julia Mines RAB drill hole intervals 100m apart across the shear zero targeting the arsenic anomaly. 12m at 9	5m. es 30 m
1989 at Lydia: Julia Mines RAB drill hole intervals 100m apart across the shear z targeting the arsenic anomaly. 12m at 5	es 30 m
intervals 100m apart across the shear z targeting the arsenic anomaly. 12m at 5	
targeting the arsenic anomaly. 12m at 5	
A., fue us 40 us, 0 us at 0 0 A aft A., fue us 40	_
Au from 18m; 6m at 3.04 g/t Au from 18	
samples deeper than 24m due to poor	-
so open at depth in the prospective she	
Julia also drilled shallow air core at Cro	
returned best intersection of 2m at 0.4s	-
from 34m in quartz veins in felsic volca	
In 1989, Matlock Mining explored North	
Well and Nineteenth Hole; best result 8	
g/t Au. Supergene zone: grades to 3.17	g/t Au
and still open.	
• 1993 – 2003: St Barbara Mines: RAB, RO	C on
E51/1661. Gold associated with black s	shale
(best: 1m at 0.64 g/t).	
In 1996, Australian Gold Resources RAI	3 and RC
drilling found Cu, Zn and Ag anomalies	(up to
1800ppm Cu, 1650ppm Zn and 3.8 g/t	Ag)
associated with saprolitic clay and blace	k shales
at 60-80m deep on current E51/1661.	
2001-2002, Gamen (Bellissimo & Red E	3luff
Noms) trenched, sampled, mapped an	d RC
drilled at Crown. Results (up to 0.19 g/t	:Au)
suggest the presence of gold mineralisa	ation
further to the east of Crown Gold Mine.	
2008 – 2009: Accent defined targets N	and S of
Nineteenth Hole from satellite imagery	and
airborne magnetics.	
Geology • Deposit type, geological setting and style of NMG	
mineralisation. • The Garden Gully project comprises no	w most
of the Abbotts Greenstone Belt; compri	sed of
Archaean rocks of the Greensleeves Fo	rmation
(Formerly Gabanintha); a bimodal succ	ession of
komatiitic volcanic mafics and ultrama	fics
overlain by felsic volcanics and volcani	clastic
sediments, black shales and siltstones	and
interlayered with mafic to ultramafic sil	ls.
Regional synclinal succession trending	N-NE
with a northern fold closure postdating	
synform, further transected by NE trend	ding
shear zones, linearity with the NE trend	of the

Criteria	JORC Code Explanation	Commentary
		Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. • The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. • Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• The principal geologic conclusion of the work reported from this program at the Crown Prince prospect confirms the presence of high-grade gold mineralization in what are interpreted to be steep plunging shoots. Extensive primary gold mineralization was also intercepted below the base of oxidation; primary mineralization associated with sulphides, mainly pyrite and arsenopyrite, which offers a very positive outlook for deep potential for the prospect which is to be further tested in follow-up drilling.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 NMG All significant drill intercepts are displayed in Figures 2-4. Full assay data over 1g/t Au are included in Appendix 1. No assay grades have been cut. Arithmetic weighted averages are used. For example, 39m to 41m in GC00502 is reported as 2m at 3.56g/t Au. This comprised 2 samples, each of 1m, calculated as follows: [(1*1.386)+(1*5.736)] = [7.152/2] = 3.56g/t Au. No metal equivalent values are used.

Criteria	JORC Code Explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known'). 	 NMG Sufficient geological data have been collected to allow the geometry of mineralization to be interpreted. Reported intercepts are downhole intercepts and are noted as such.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	 NMG Relevant location maps and figures are included in the body of this announcement (Figures 2-3). One representative cross section is displayed in Figure 3.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 NMG This announcement includes the results of further 91 RC holes drilled at the Crown Prince Prospect. The reporting is comprehensive and thus by definition balanced. It represents the third batch of results of a larger program to investigate the potential for economic mineralization at Garden Gully.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	NMG This announcement includes qualitative data relating to interpretations and potential significance of geological observations made during the program. As additional relevant information becomes available it will be reported and announced to provide context to current and planned programs.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Deeper and inclined grade control holes are going to follow below the depth of 50m vertical depth with the large RC rig.

