

16th July 2025

Antimony zones over 100m wide with grades up to 1.7% Sb confirmed at Maverick Springs

Extensive Antimony zone in re-assayed historical drill hole MR065, with 66m at 0.12% Sb including 1.5m at 1.7% Sb

Highlights:

- Extensive antimony intercepts confirmed in historical hole MR065, confirming the continued presence of this U.S. critical mineral:
 - MR065 66m at 0.12% Sb from 161m including 23.71m at 0.23% Sb from 181m with 1.5m interval returning 1.74% Sb from 202m.
- Maverick Springs continues to return competitive antimony grades with MR065 returning an interval near double the average grade of the Mineral Resources & Reserves of Perpetua Resources Corp. (Nasdaq: PPTA / TSX: PPTA) Stibnite Project ~0.06%–0.07% Sb¹

Sun Silver Limited (ASX Code: "SS1") ("Sun Silver" or "the Company") is pleased to provide an update on the ongoing developments relating to antimony mineralisation at its Maverick Springs Silver-Gold Project in Nevada, USA, ("Maverick Springs Project" or "the Project"). Results continue to highlight the presence of antimony (Sb) mineralisation, within the existing Silver-Gold Mineral Resource which spans ~2.4km in length and ~1.4km in width. Continued work seeks to expand antimony mineralisation throughout the broader Ag-Au system.

Sun Silver Managing Director, Andrew Dornan, said:

"The presence of broad antimony zones highlights the growing significance of Maverick Springs as a potential U.S. source of this critical mineral. As we continue re-assaying historical drill core, our understanding of the scale and distribution of antimony within the broader silver-gold system is expanding with every result."

Sun Silver Limited

Antimony Re-Assay Program Continuing

As part of a broader strategy to unlock the full multi-commodity potential of the Maverick Springs Project, Sun Silver is continuing a large-scale re-assay program targeting historical drill core and pulps. These samples, originally only assayed for silver and gold, are now undergoing multi-element testing at American Assay Laboratories. The encouraging antimony results received at the Project's southern end, coupled with anomalous intercepts 1km north from 2024 and 2025 drilling, indicates the extensive scale of antimony presence, with the resource remaining open in both directions.

Drillholes MR065, MR069 and MR098 formed part of historical pulps from HQ diamond core submitted to the laboratory for multi-element analysis. The anomalous antimony results are generally within the silver-gold mineralisation system and often have higher grade intervals within a broader lower grade zone as seen in Table 1 below. Missing pulp intervals are designated a 0ppm grade which has the effect of reducing the broad interval total grade. MR065 has missing pulps from ~226 to 276m, with anomalous samples returned above and below the missing 50m interval.

Table 1 - Multi-element Re-assay Result Highlights

Hole	Interval (m)	Sb %	From
MR065	65.9	0.12%	160.9m
Including	23.7m	0.23%	181.4m
and	1.5m	1.74%	202.1m
MR069	112.8m	0.04%	125.6m
Including	11m	0.07%	125.6m
and	0.9m	0.29%	135.6m
Including	27.7m	0.07%	165.8m
and	4.6m	0.1%	174.3m
Including	12.5m	0.05%	202.1m
MR098	40.5m	0.04%	214.9m
Including	4.6m	0.10%	216.4m
Including	5.6m	0.06%	226.5m
Including	3.5m	0.08%	237.5m
Including	2.8m	0.09%	250.3m

By comparison, Perpetua Resources Corp. ("**Perpetua**") Stibnite Project, Mineral Resources & Reserves hosts average grades of ~0.06%–0.07% Sb.

Further results are expected throughout Q3 2025.

Initial 2024 portable X-Ray Fluorescence ("**pXRF**") analysis and laboratory assays of historical drill core and RC chips confirmed antimony mineralisation with values up to 13,199ppm (1.32%)². Mineralisation was identified in all five historic holes tested in 2024 over a 1.3km strike, underscoring the project's broad scale. The Project's multi-commodity potential was reinforced during 2024 drilling with reported assays exceeding 10,001ppm (1%)³.

² Refer to Sun Silver ASX Announcement dated 10 September 2024

³ Refer to Sun Silver ASX Announcement dated 3 December 2024

Currently a total of ~30 historical holes have been submitted for multi-element assay, the Company is advancing its understanding of antimony mineralisation and expanding the potential scale of critical mineral distribution across the Project.

Figure 1 below displays Antimony results received from new reassays along with previous results received. An additional ~25 holes remain outstsanding and are expected to be received throughout Q3 2025.

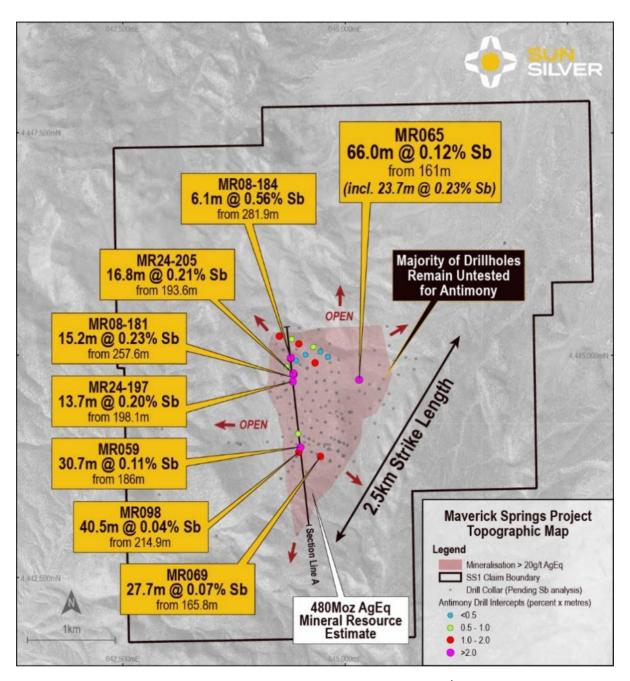


Figure 1: Antimony highlights from drill assays⁴

⁴ For previously released drill intercepts refer to Sun Silver ASX Announcements dated 22 August 2024 (MR08-184 and MR08-181), 31 October 2024 (MR24-1997), 3 December 2024 (MR24-205) and 25 June 2025 (MR059).

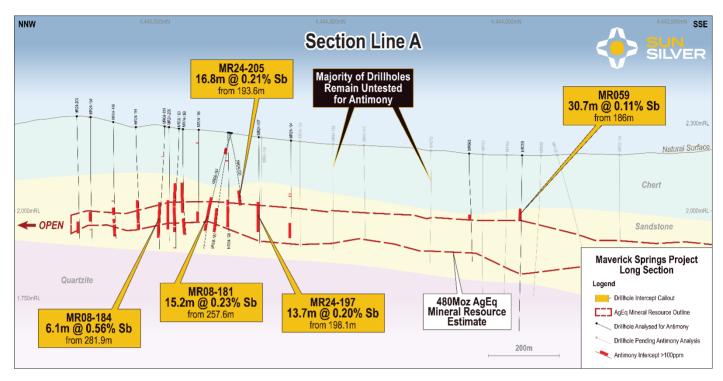


Figure 2 – Section line A detaling key antinmony zones within Mineral Resource

Maverick Springs Project

Sun Silver's cornerstone asset, the Maverick Springs Project, is located 85km from the fully serviced mining town of Elko in Nevada and is surrounded by several world-class gold and silver mining operations including Barrick's Carlin Mine.

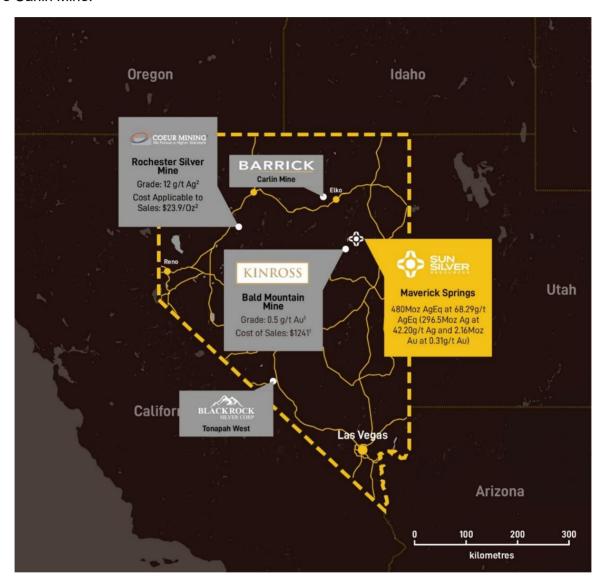


Figure 3 – Sun Silver's Maverick Springs asset location and surrounding operators.

Nevada is a globally recognised mining jurisdiction which was rated as the Number 1 mining jurisdiction in the world by the Fraser Institute in 2022.

The Project, which is proximal to the prolific Carlin Trend, hosts a JORC Inferred Mineral Resource of 218Mt grading 42.2g/t Ag and 0.31g/t Au for 296.5Moz of contained silver and 2.2Moz of contained gold (480Moz of contained silver equivalent)⁵.

The deposit itself remains open along strike and at depth, with multiple mineralised intercepts located outside of the current Resource constrained model.

⁵ For previously reported estimates of mineral resources see Annexure A and the Company's ASX Announcement dated 26 March 2025.

This announcement is authorised for release by the Board of Sun Silver Limited.

ENDS

For more information:

Investors:
Andrew Dornan
Managing Director
Sun Silver
info@sunsilver.com.au

Media:

Nicholas Read Read Corporate P: +61 419 929 046

E: nicholas@readcorporate.com.au

Forward-looking statements

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates or projections in relation to future matters (Forward Statements) that involve risks and uncertainties, and which are provided as a general guide only. Forward Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimate", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and include, but are not limited to, indications of, or guidance or outlook on, future earnings or financial position or performance of the Company. The Company can give no assurance that these expectations will prove to be correct. You are cautioned not to place undue reliance on any forward-looking statements. None of the Company, its directors, employees, agents or advisers represent or warrant that such Forward Statements will be achieved or prove to be correct or gives any warranty, express or implied, as to the accuracy, completeness, likelihood of achievement or reasonableness of any Forward Statement contained in this announcement. Actual results may differ materially from those anticipated in these forward-looking statements due to many important factors, risks and uncertainties. The Company does not undertake any obligation to release publicly any revisions to any "forward-looking statement" to reflect events or circumstances after the date of this announcement, except as may be required under applicable laws.

Competent Person Statement

The Exploration Results reported in this announcement are based on, and fairly represent, information and supporting documentation reviewed, and approved by Mr Brodie Box, MAIG. Mr Box is a consultant geologist at Cadre Geology and Mining and has adequate professional experience with the exploration and geology of the style of mineralisation and types of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Box consents to the form and context in which the Exploration Results are presented in this announcement.

The information in this announcement that relates to previously reported Exploration Results or Estimates of Mineral Resources at the Maverick Springs Project is extracted from the Company's ASX announcements dated 22 August 2024, 3 September 2024, 31 October 2024, 3 December 2024, 26 March 2025 and 25 June 2025 (**Original Announcements**). The Company confirms that it is not aware of any new information or data that materially affects the information contained in the Original Announcements and, in the case of Estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates continue to apply and have not materially changed.

ANNEXURE A - MAVERICK SPRINGS MINERAL RESOURCE

	Classification	Cut-off (g/t AgEq)	Tonnes	AgEq (Moz)	AgEq (g/t)	Ag (Moz)	Ag (g/t)	Au (Moz)	Au (g/t)
Γ	Inferred	30	218,541,000	479.8	68.29	296.5	42.2	2.16	0.31

- 1. Maverick Springs Mineral Resource estimated in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code).
- 2. Refer to the Company's ASX announcement dated 26 March 2025 for further details regarding the Maverick Springs Mineral Resource (**Original Announcement**). The Company confirms that it is not aware of any new information or data that materially affects the information contained in the Original Announcements and that all material assumptions and technical parameters underpinning the mineral resource estimate continue to apply and have not materially changed.
- 3. References to metal equivalents (AgEq) are based on an equivalency ratio of 85, which is derived from a gold price of USD\$2,412.50 and a silver price of USD\$28.40 per ounce, being derived from the average monthly metal pricing from Jan 2024 to Jan 2025, and average metallurgical recovery. This is calculated as follows: AgEq = Silver grade + (Gold Grade x ((Gold Price * Gold Recovery) / (Silver Price * Silver Recovery))) i.e. AgEq (g/t) = Ag (g/t) + (Au (g/t) x ((2412.50 x 0.85) / (28.40 x 0.85))). Metallurgical recoveries of 85% have been assumed for both silver and gold. Preliminary metallurgical recoveries were disclosed in the Company's prospectus dated 17 April 2024, which included a review of metallurgical test work completed by the prior owners of Maverick Springs. Metallurgical recoveries for both gold and silver were recorded in similar ranges, with maximum metallurgical recoveries of up to 97.5% in preliminary historical metallurgical testing in respect of silver and up to 95.8% in respect of gold. Gold recoveries were commonly recorded in the range of 80% 90%, and the midpoint of this range has been adopted at present in respect of both silver and gold. It is the Company's view that both elements referenced in the silver and gold equivalent calculations have a reasonable potential of being recovered and sold.

APPENDIX A - Pulp re-assay results

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR065	HQ pulp	146.61	148.29	1.5	91	63
MR065	HQ pulp	148.29	149.35	1.8	55	51
MR065	HQ pulp	149.35	150.57	0.7	55	47
MR065	No Pulp Sample	150.57	152.4		0	
MR065	HQ pulp	152.4	153.31	0.4	34	32
MR065	HQ pulp	153.31	155.27	0.15	35	34
MR065	HQ pulp	155.27	156.55	1.8	65	59
MR065	HQ pulp	156.55	157.83	1.7	49	41
MR065	HQ pulp	157.83	159.35	2.5	72	48
MR065	HQ pulp	159.35	160.57	0.7	74	33
MR065	No Pulp Sample	160.57	160.93		0	
MR065	HQ pulp	160.93	162.15	0.15	836	288
MR065	HQ pulp	162.15	163.68	0.9	331	100
MR065	HQ pulp	163.68	165.2	1.5	375	256
MR065	HQ pulp	165.2	166.73	3.1	562	84
MR065	HQ pulp	166.73	168.25	1.5	757	216
MR065	HQ pulp	168.25	169.77	2.8	714	80
MR065	HQ pulp	169.77	171.3	2.4	775	109
MR065	No Pulp Sample	171.3	172.82	0		
MR065	HQ pulp	172.82	173.74	7.6	512	134
MR065	HQ pulp	173.74	175.26	4.9	510	319
MR065	HQ pulp	175.26	176.78	8.4	565	961

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR065	HQ pulp	176.78	178.31	20.6	482	647
MR065	No Pulp Sample	178.31	181.36	0		
MR065	HQ pulp	181.36	182.88	13.3	410	1475
MR065	HQ pulp	182.88	184.4	9.5	498	1016
MR065	HQ pulp	184.4	185.93	50.6	440	677
MR065	HQ pulp	185.93	187.15	15.3	828	1607
MR065	HQ pulp	187.15	188.55	18.2	969	2034
MR065	HQ pulp	188.55	190.5	33.4	893	1634
MR065	HQ pulp	190.5	192.27	99.8	1756	1439
MR065	HQ pulp	192.27	193.55	16.5	845	2406
MR065	No Pulp Sample	193.55	195.07		0	
MR065	HQ pulp	195.07	196.6	15.6	737	2684
MR065	HQ pulp	196.6	197.82	65.4	690	1865
MR065	HQ pulp	197.82	198.91	8.3	833	988
MR065	HQ pulp	198.91	199.19	10.2	746	431
MR065	HQ pulp	199.19	200.86	10.4	625	646
MR065	HQ pulp	200.86	201.56	14.4	647	477
MR065	HQ pulp	201.56	202.08	16.9	890	636
MR065	HQ pulp	202.08	203.55	117	1155	17362
MR065	HQ pulp	203.55	205.07	22.1	1539	687
MR065	No Pulp Sample	205.07	206.2		0	•
MR065	HQ pulp	206.2	207.45	30.7	679	1287
MR065	No Pulp Sample	207.45	208.79		0	
MR065	HQ pulp	208.79	210.16	292	1436	1137
MR065	HQ pulp	210.16	211.59	12.3	857	551
MR065	HQ pulp	211.59	213.36	16.5	473	445
MR065	HQ pulp	213.36	214.73	7.7	471	434
MR065	No Pulp Sample	214.73	215.95		0	
MR065	HQ pulp	215.95	216.71	230	1253	558
MR065	HQ pulp	216.71	217.38	38.1	1320	212
MR065	No Pulp Sample	217.38	218.85		0	1
MR065	HQ pulp	218.85	219.3	16.3	284	1557
MR065	HQ pulp	219.3	220.52	5	145	289
MR065	No Pulp Sample	220.52	221.99		0	1
MR065	HQ pulp	221.99	222.96	25.7	644	2102
MR065	HQ pulp	222.96	223.81	26.9	967	3893
MR065	HQ pulp	223.81	224.27	32.4	493	1744
MR065	HQ pulp	224.27	225.86	25.6	626	2474
MR065	HQ pulp	225.86	226.86	34.4	589	1879
MR065	No Pulp Sample	226.86	276.03		0	1
MR065	HQ pulp	276.03	276.76	14.7	779	614
MR065	HQ pulp	276.76	277.22	21.1	344	330

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR065	HQ pulp	277.22	278.65	127	267	329
MR065	No Pulp Sample	278.65	280.42	0	0	0
MR065	HQ pulp	280.42	281.94	11.7	930	84
MR065	HQ pulp	281.94	282.4	13.5	357	55
MR065	HQ pulp	282.4	284.07	7.8	993	82
MR065	HQ pulp	284.07	285.6	5	459	55
MR065	HQ pulp	285.6	287.21	4.8	267	58
MR065	HQ pulp	287.21	288.89	4.7	526	65
MR065	No Pulp Sample	288.89	289.56		0	
MR065	HQ pulp	289.56	291.24	1.2	34	4
MR065	HQ pulp	291.24	292.76	0.5	290	12
MR065	HQ pulp	292.76	294.13	0.15	10	-2
MR065	HQ pulp	294.13	296.05	0.6	41	9
MR065	HQ pulp	296.05	297.48	0.15	9	-2
MR065	HQ pulp	297.48	298.86	0.15	55	9
MR065	HQ pulp	298.86	300.23	0.15	17	3
MR069	HQ pulp	72.54	74.37	0.5	79	73
MR069	HQ pulp	74.37	75.59	0.5	111	62
MR069	HQ pulp	75.59	77.11	0.4	67	65
MR069	HQ pulp	77.11	79.03	0.4	52	104
MR069	HQ pulp	79.03	79.86	0.4	163	171
MR069	HQ pulp	79.86	81.38	0.4	113	77
MR069	HQ pulp	81.38	82.91	0.15	66	21
MR069	HQ pulp	82.91	84.73	0.15	107	12
MR069	HQ pulp	84.73	85.95	0.15	171	28
MR069	HQ pulp	85.95	87.48	0.4	362	46
MR069	HQ pulp	87.48	89	0.4	377	48
MR069	HQ pulp	89	90.53	0.15	1202	162
MR069	HQ pulp	90.53	91.9	0.15	985	51
MR069	HQ pulp	91.9	92.81	0.5	83	3
MR069	HQ pulp	92.81	93.88	0.15	37	-2
MR069	HQ pulp	93.88	95.1	0.6	78	12
MR069	HQ pulp	95.1	96.32	0.5	40	7
MR069	HQ pulp	96.32	97.54	0.9	53	12
MR069	HQ pulp	97.54	98.76	0.15	38	10
MR069	HQ pulp	98.76	99.97	0.6	51	10
MR069	HQ pulp	99.97	101.19	0.8	38	7
MR069	HQ pulp	101.19	102.41	0.6	41	8
MR069	HQ pulp	102.41	103.94	1.2	68	12
MR069	HQ pulp	103.94	105.16	0.15	51	7
MR069	HQ pulp	105.16	106.38	0.15	95	9
MR069	HQ pulp	106.38	107.29	0.15	73	6

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR069	HQ pulp	107.29	108.51	0.4	90	7
MR069	HQ pulp	108.51	109.73	0.4	64	3
MR069	HQ pulp	109.73	110.95	0.15	57	3
MR069	HQ pulp	110.95	112.17	0.5	74	6
MR069	HQ pulp	112.17	113.69	1.3	131	24
MR069	HQ pulp	113.69	115.21	0.5	159	17
MR069	HQ pulp	115.21	117.04	1.9	420	20
MR069	HQ pulp	117.04	118.26	0.9	404	43
MR069	HQ pulp	118.26	119.48	0.6	135	52
MR069	HQ pulp	119.48	120.4	1.2	153	42
MR069	HQ pulp	120.4	121.62	1.1	184	39
MR069	HQ pulp	121.62	122.53	1.1	174	38
MR069	HQ pulp	122.53	124.05	1.1	440	41
MR069	HQ pulp	124.05	125.58	1.3	458	60
MR069	HQ pulp	125.58	127.71	6.4	596	1391
MR069	HQ pulp	127.71	128.63	4.4	307	264
MR069	HQ pulp	128.63	130.15	31.1	848	108
MR069	HQ pulp	130.15	131.67	23.8	1054	111
MR069	HQ pulp	131.67	133.2	187	1838	347
MR069	HQ pulp	133.2	134.72	136	1453	332
MR069	HQ pulp	134.72	135.64	103	2613	150
MR069	HQ pulp	135.64	136.55	353	4246	2868
MR069	HQ pulp	136.55	137.77	67.6	2310	114
MR069	HQ pulp	137.77	138.99	5	1514	124
MR069	HQ pulp	138.99	140.51	4.5	1330	236
MR069	HQ pulp	140.51	142.04	2.5	899	40
MR069	HQ pulp	142.04	143.87	3.5	574	152
MR069	HQ pulp	143.87	145.08	3.8	559	148
MR069	HQ pulp	145.08	146.61	3	961	369
MR069	HQ pulp	146.61	148.13	4.7	574	608
MR069	No Pulp Sample	148.13	149.87		0	
MR069	HQ pulp	149.87	151.18	4.1	1009	138
MR069	HQ pulp	151.18	153.01	4.5	928	111
MR069	HQ pulp	153.01	153.92	2.7	727	198
MR069	HQ pulp	153.92	155.3	2.5	509	53
MR069	HQ pulp	155.3	156.36	3.4	412	108
MR069	HQ pulp	156.36	157.89	3.6	457	57
MR069	HQ pulp	157.89	159.11	4.9	740	122
MR069	HQ pulp	159.11	160.48	4	1019	140
MR069	HQ pulp	160.48	161.85	4.8	795	228
MR069	HQ pulp	161.85	163.07	7.9	628	279
MR069	HQ pulp	163.07	164.59	8.1	660	205

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR069	HQ pulp	164.59	165.81	6.6	497	119
MR069	HQ pulp	165.81	167.34	10.7	726	332
MR069	HQ pulp	167.34	168.86	9.4	601	504
MR069	HQ pulp	168.86	170.38	5.1	518	375
MR069	HQ pulp	170.38	171.91	3.2	565	202
MR069	HQ pulp	171.91	173.43	3.8	566	180
MR069	HQ pulp	173.43	174.35	4.2	528	571
MR069	HQ pulp	174.35	175.56	3.9	609	1105
MR069	HQ pulp	175.56	177.39	4.9	545	972
MR069	HQ pulp	177.39	178.92	7.9	664	1013
MR069	HQ pulp	178.92	179.83	4.7	464	815
MR069	HQ pulp	179.83	181.36	6	414	804
MR069	HQ pulp	181.36	183.18	18.9	577	618
MR069	HQ pulp	183.18	183.79	25.9	250	439
MR069	HQ pulp	183.79	185.01	139	548	622
MR069	HQ pulp	185.01	186.54	25.9	545	909
MR069	HQ pulp	186.54	188.06	11.5	264	776
MR069	HQ pulp	188.06	188.98	16.1	982	967
MR069	HQ pulp	188.98	189.59	7.9	534	328
MR069	HQ pulp	189.59	190.5	32.5	306	1493
MR069	HQ pulp	190.5	192.02	6.7	139	541
MR069	HQ pulp	192.02	193.55	11.5	191	616
MR069	HQ pulp	193.55	194.46	9.2	176	342
MR069	HQ pulp	194.46	195.99	6	106	200
MR069	HQ pulp	195.99	197.51	7.6	230	145
MR069	HQ pulp	197.51	199.03	5	248	312
MR069	HQ pulp	199.03	200.56	4.8	393	226
MR069	HQ pulp	200.56	202.08	3.1	293	242
MR069	HQ pulp	202.08	203.91	9.6	151	559
MR069	HQ pulp	203.91	205.44	8	172	615
MR069	HQ pulp	205.44	206.96	11.5	79	442
MR069	HQ pulp	206.96	208.48	9.3	110	436
MR069	HQ pulp	208.48	210.01	12.9	238	809
MR069	HQ pulp	210.01	211.53	27.8	195	286
MR069	HQ pulp	211.53	213.06	22.4	181	226
MR069	HQ pulp	213.06	214.58	44.4	336	409
MR069	HQ pulp	214.58	216.1	154	492	262
MR069	HQ pulp	216.1	217.32	118	435	364
MR069	HQ pulp	217.32	218.85	52.5	452	206
MR069	HQ pulp	218.85	220.37	83.4	236	143
MR069	HQ pulp	220.37	221.47	11.8	114	109
MR069	HQ pulp	221.47	222.35	10.8	173	149

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR069	HQ pulp	222.35	223.66	12.2	123	106
MR069	HQ pulp	223.66	224.94	7.6	203	84
MR069	HQ pulp	224.94	227.02	13.6	247	102
MR069	HQ pulp	227.02	228.6	20.8	148	84
MR069	HQ pulp	228.6	230.12	20.3	239	127
MR069	HQ pulp	230.12	231.04	12.9	420	299
MR069	HQ pulp	231.04	232.56	5.2	507	175
MR069	HQ pulp	232.56	234.09	7.3	490	182
MR069	HQ pulp	234.09	235.61	121	354	165
MR069	HQ pulp	235.61	236.83	27.2	429	92
MR069	HQ pulp	236.83	238.35	30	227	85
MR069	HQ pulp	238.35	239.88	14.9	208	48
MR069	HQ pulp	239.88	241.4	53	137	60
MR069	HQ pulp	241.4	242.93	14.6	133	33
MR069	HQ pulp	242.93	244.45	10.1	85	38
MR069	HQ pulp	244.45	245.97	7.1	272	93
MR069	HQ pulp	245.97	247.65	48.2	331	148
MR069	HQ pulp	247.65	248.53	7.4	275	66
MR069	HQ pulp	248.53	249.33	5.9	224	22
MR069	HQ pulp	249.33	250.85	6.5	150	71
MR069	HQ pulp	250.85	252.37	3.2	120	49
MR069	HQ pulp	252.37	253.9	1.6	90	56
MR069	HQ pulp	253.9	255.42	1.1	47	24
MR069	HQ pulp	255.42	256.95	1.1	130	41
MR069	HQ pulp	256.95	258.17	3.9	185	48
MR069	HQ pulp	258.17	259.99	6.2	167	119
MR069	HQ pulp	259.99	261.52	2	110	41
MR069	HQ pulp	261.52	263.04	1.1	206	58
MR098	RC pulp	205.74	207.26	0.15	110	3
MR098	RC pulp	207.26	208.79	0.15	53	10
MR098	RC pulp	208.79	210.31	0.15	186	64
MR098	RC pulp	210.31	211.84	0.4	47	13
MR098	RC pulp	211.84	213.36	0.15	69	19
MR098	HQ pulp	213.36	214.88	2.4	214	53
MR098	HQ pulp	214.88	216.41	5.3	255	211
MR098	HQ pulp	216.41	217.93	15.5	225	1745
MR098	HQ pulp	217.93	219.46	9.3	286	864
MR098	HQ pulp	219.46	220.98	4.9	1330	404
MR098	No Pulp Sample	220.98	222.5		0	I.
MR098	HQ pulp	222.5	224.03	9.2	5185	207
MR098	No Pulp Sample	224.03	226.47		0	I.
MR098	HQ pulp	226.47	227.84	29.6	1396	429

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR098	HQ pulp	227.84	229.36	111	1596	838
MR098	HQ pulp	229.36	230.58	233	2298	737
MR098	HQ pulp	230.58	232.11	40.6	1970	386
MR098	HQ pulp	232.11	233.63	6.5	764	225
MR098	HQ pulp	233.63	235.15	8.2	955	132
MR098	HQ pulp	235.15	235.92	15	982	259
MR098	HQ pulp	235.92	236.92	241	749	282
MR098	HQ pulp	236.92	237.23	137	360	228
MR098	HQ pulp	237.23	237.53	123	441	544
MR098	HQ pulp	237.53	238.75	80.4	444	1547
MR098	HQ pulp	238.75	239.88	118	406	488
MR098	HQ pulp	239.88	241.01	103	395	446
MR098	No Pulp Sample	241.01	241.83		0	
MR098	HQ pulp	241.83	241.92	61	1039	198
MR098	HQ pulp	241.92	242.83	121	1146	288
MR098	HQ pulp	242.83	243.23	19.1	318	34
MR098	HQ pulp	243.23	244.14	47.8	479	106
MR098	HQ pulp	244.14	244.91	45.3	282	165
MR098	HQ pulp	244.91	245.36	39.7	350	227
MR098	HQ pulp	245.36	246.89	30.6	705	142
MR098	HQ pulp	246.89	247.8	83.4	754	604
MR098	HQ pulp	247.8	248.41	73.1	1082	512
MR098	No Pulp Sample	248.41	248.72		0	l
MR098	HQ pulp	248.72	249.17	47.7	1068	799
MR098	HQ pulp	249.17	249.63	35.2	1659	126
MR098	HQ pulp	249.63	249.88	28.1	3183	148
MR098	HQ pulp	249.88	250.33	26.5	1339	151
MR098	HQ pulp	250.33	251.03	115	1626	513
MR098	HQ pulp	251.03	251.31	149	697	3296
MR098	HQ pulp	251.31	251.61	145	1330	576
MR098	HQ pulp	251.61	252.19	161	764	403
MR098	HQ pulp	252.19	252.74	50.9	1459	1232
MR098	HQ pulp	252.74	253.14	55.1	1028	586
MR098	HQ pulp	253.14	253.69	88.1	1012	156
MR098	HQ pulp	253.69	254.2	15	278	169
MR098	HQ pulp	254.2	254.81	80.3	550	219
MR098	HQ pulp	254.81	255.33	61.1	633	215
MR098	HQ pulp	255.33	255.73	53.6	615	145
MR098	HQ pulp	255.73	256.03	13.3	260	18
MR098	No Pulp Sample	256.03	256.49		0	1
MR098	HQ pulp	256.49	257.13	105	357	70
MR098	HQ pulp	257.13	257.22	66.3	301	37

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR098	HQ pulp	257.22	257.53	47.8	195	51
MR098	HQ pulp	257.53	257.86	88.2	1663	82
MR098	HQ pulp	257.86	259.35	49.2	732	58
MR098	HQ pulp	259.35	259.38	46.3	828	56
MR098	No Pulp Sample	259.38	259.99		0	
MR098	HQ pulp	259.99	261.15	11.9	732	25
MR098	HQ pulp	261.15	261.73	4	398	22
MR098	HQ pulp	261.73	263.26	4.5	274	23
MR098	No Pulp Sample	263.26	266.3		0	
MR098	HQ pulp	266.3	266.64	6.1	167	19
MR098	No Pulp Sample	266.64	266.7		0	
MR098	HQ pulp	266.7	267.31	36.9	354	236
MR098	HQ pulp	267.31	268.83	6.7	312	120
MR098	HQ pulp	268.83	270.36	7.9	293	48
MR098	HQ pulp	270.36	271.88	7.7	421	54
MR098	HQ pulp	271.88	273.41	19.9	161	36
MR098	HQ pulp	273.41	274.02	51.4	170	89
MR098	HQ pulp	274.02	275.54	21.5	350	56
MR098	HQ pulp	275.54	277.06	28.1	394	40
MR098	HQ pulp	277.06	278.59	20.9	337	51
MR098	HQ pulp	278.59	279.5	41.8	271	51
MR098	HQ pulp	279.5	281.03	21.4	191	56
MR098	HQ pulp	281.03	282.55	32.5	152	114
MR098	HQ pulp	282.55	283.31	17	324	93
MR098	HQ pulp	283.31	284.84	6.2	163	60
MR098	HQ pulp	284.84	286.36	6.5	768	88
MR098	HQ pulp	286.36	287.88	5.8	574	86
MR098	HQ pulp	287.88	289.41	6.8	612	67
MR098	HQ pulp	289.41	291.08	6.9	389	54
MR098	HQ pulp	291.08	292.61	2.2	1016	114
MR098	HQ pulp	292.61	294.13	7.4	428	47
MR098	HQ pulp	294.13	295.66	36	489	30
MR098	HQ pulp	295.66	297.18	43.7	182	31
MR098	HQ pulp	297.18	298.7	89.1	468	34
MR098	HQ pulp	298.7	300.23	8.4	320	22
MR098	HQ pulp	300.23	300.47	11.1	410	21
MR098	No Pulp Sample	300.47	300.81		0	
MR098	HQ pulp	300.81	302.15	4.4	279	32
MR098	HQ pulp	302.15	303.12	4	409	34
MR098	HQ pulp	303.12	303.89	2.6	258	45
MR098	HQ pulp	303.89	304.74	3	320	34
MR098	HQ pulp	304.74	305.78	3.4	304	26

Hole ID	Sample Type	From (m)	To (m)	Ag (ppm)	As (ppm)	Sb (ppm)
MR098	HQ pulp	305.78	306.51	2.2	194	20
MR098	No Pulp Sample	306.51	306.63		0	
MR098	HQ pulp	306.63	307.18	22.2	1888	59
MR098	HQ pulp	307.18	307.6	8.1	1133	38
MR098	HQ pulp	307.6	308.06	5.8	596	29
MR098	HQ pulp	308.06	308.46	4.1	607	17
MR098	No Pulp Sample	308.46	308.61		0	
MR098	HQ pulp	308.61	309.07	26.9	824	45
MR098	HQ pulp	309.07	309.37	6.6	561	25
MR098	HQ pulp	309.37	309.52	4.7	766	32
MR098	HQ pulp	309.52	309.98	2.3	301	21
MR098	HQ pulp	309.98	310.59	2	168	23
MR098	HQ pulp	310.59	310.84	1.8	190	16
MR098	HQ pulp	310.84	311.87	5.9	384	27
MR098	HQ pulp	311.87	312.42	3.9	502	16
MR098	HQ pulp	312.42	313.4	2.9	250	18
MR098	HQ pulp	313.4	313.82	4.9	406	23
MR098	No Pulp Sample	313.82	314.04		0	
MR098	HQ pulp	314.04	314.71	5.7	457	26
MR098	HQ pulp	314.71	315.35	4.6	198	30
MR098	No Pulp Sample	315.35	316.08		0	
MR098	HQ pulp	316.08	316.6	5.3	326	57
MR098	HQ pulp	316.6	317.51	6.6	303	57
MR098	HQ pulp	317.51	318.12	12.1	222	38
MR098	HQ pulp	318.12	319.64	2.9	159	33
MR098	HQ pulp	319.64	321.17	2.1	755	52
MR098	HQ pulp	321.17	322.69	4.4	229	42
MR098	HQ pulp	322.69	323.61	1.1	59	30

JORC Code, 2012 - Table 1

Section 1 Sampling Techniques and Data – Maverick Springs Silver Gold Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Pulp re-assays are based on reanalysis of stored historic pulps from legacy drilling. The related holes in this release refer to HQ diamond drill core or diamond tails drilled by Angst ('89-91)subject to 1 assay ton (AT) fire assay with AA finish. Pulps have been reanalysed by four acid digest (ICP-MS), over limit silver undergoes gravimetric fire assay. Gold has not been re-analysed. Historic Drilling Samples have been assayed at various laboratories through the history of ownership. Pre 2002 NQ core and 'five feet' (1.5m) RC and percussion composite length samples from ~94 drill holes were analysed at Angst Resources' Goldbar Mine laboratory in Beatty, Nevada. Vista's 2002-2006 also utilised 1.5m samples, including wet samples (flocculent mix) and were assayed by AAL in Sparks, Nevada. 2008 RC drilling was analysed by ALS Chemex in Reno and Vancouver. Pre-2002 samples are reported to have been subject to 1 assay ton (AT) fire assay with AA finish, additional tests via cyanide soluble leach were not used in resource calculations. The same analysis is recorded for 2002-2006 drill samples which record typical dry, crush, split, pulverise preparation work. Routine analyses at AAL included 1 assay ton fire with an AA finish for gold and 0.4-gram aquar regia leach with AA finish for silver. Any silver value of 100 parts per million (ppm) or greater was re-run by 1 assay ton fire with a gravimetric finish. Results were reported in ppm with detection limits of 0.005 ppm for gold and 0.05 ppm for silver. 2008 RC drilling utilised fire assay for gold and a 33 element ICP-AES analysis for silver and pathfinder elements. Silver was re-analysed by fire assay if over 100ppm. Assay certificates have not been provided for all drilling. Raw assay certificates have been viewed from AAL for 2003 and 2004 RC drilling should revise for assay and gold and a 33 element ICP-AES analysis for silver and pathfinder elements. Silver was re-analysed by fire assay with ICP-OES finish.

16

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Limited information to the details of historic drilling is recorded. The resampled assays have come from HQ diamond drill holes or tails. (MR069: 324.22m HQ, MR098 (RC to 213.36m, HQ to 458.66m). Not all pulp intervals have been recovered. Stored half core from historic drilling is being catalogued. Core is not oriented due to ground conditions. Drilling is via HQ and NQ diamond coring, RC drilling, conventional rotary and hammer drilling methods. Historic 2002-2003 RC drilling is recorded as via 5 1/8th-5 1/4" inch face sampling hammer and 2004 via 5.5". In some instances a tri-cone bit was used to aid sample recovery. Majority of the open-hole techniques are too shallow to be utilised in the resource estimate and no issues of contamination from these methods are expected. All core is believed to be HQ and NQ, with some RC precollars. 2024 2024 RC drilling is using a 2013 Foremost MPD Explorer track mounted rig drilling 5" holes. Drilling summaries have been expanded for clarity: Drilling of the first two holes tested centre face sampling, vs traditional hammer, vs tricone bit above mineralisation depths with drilling since then and all mineralised intervals sampled via a traditional hammer setup (2ft lead between the bit interface and the sample return) which has shown the most reliable recovery. Water injection is used to maximise sample recovery due to ground conditions and is typical to the area. 2025 2025 RC drilling is using a Foremost Apex 65 track mounted rig drilling 5" holes. Drill intervals sampled via a traditional hammer setup (2ft lead between the bit interface and the sample return) which has shown the most reliable recovery. Water injection is used to maximise sample recovery due to ground conditions and is typical to the area. Diamond drilling is often as diamond tails with RC precollar depths varying.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core is not oriented due to ground conditions. Limited details exist in this regard with historic sampled core and pulp intervals have found to have missing intervals. Pulps are labeled and stored according to sample and depth. Historic Drilling recoveries are not specifically recorded in the logging database and drill recovery issues in RC drilling have been reported through broken ground. 2002-2008 drilling implemented additional procedures to enhance recovery: A rotary wet splitter was used to collect composites which were mixed with a flocculent and large 20-30pound samples taken to minimise loss of fines. This drilling also included using hammers with a cross-over sub and tricone bits. Diamond drilling recovery has not been reported but 2006 reports state that viewing some of the core showed no obvious issues. 2024 2024 drilling utilizes a rotary wet splitter to maximise recovery of drill material and fines with samples in large 20x24" bags with water allowed to seep out through canvas bag before analysis. Poor sample recovery is recorded by visual inspection and laboratory weights. NSR represents No Sample Returned and is generally due to broken ground conditions. Sample recovery does not appear to contribute to a sample bias based on 2024 results. 2025 RC drilling reflects 2024 standards above. Diamond drilling recoveries are measured on drill core and against run lengths. Core loss is recorded as no sample intervals. Core loss is typical in heavily broken ground.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 The logging is qualitative in nature. The historic dataset shows 55% of the total drill holes at the Project have been logged. Legacy data compilation and relogging remains ongoing. 100% of 2024 drilling has been logged. 2025 logging remains ongoing. Logging intervals are in imperial units and are converted to metric.
Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Historic split half HQ core was sampled and assayed at the time of drilling (~1990) for gold and silver only. Pulps kept from this work have been reassayed for multi-element data. 5ft (1.5m) composite samples were taken during percussion drilling (RC, rotary) and drill core was sampled as half core cut longitudinally down its axis at various interval lengths to mineralised/geological boundaries. Core assay intervals range from 0.1 foot (3cm) to 10.7 ft (3.26m). Limited QAQC data exists from the initial sampling. Pulp re-analysis incorporated lab inserted blank, standards and repeat analysis. Re-analysis of pulps is considered appropriate for multi-element data. Historic Drilling RC drilling records are minimal, but reports detail splitting samples fed from a cyclone. Vista/SS 2002-2008 drilling details the use of RC tricone bits and hammers with a cross-over sub to improve recovery. They used wet sampling via 36" rotary wet splitter, mixed with a flocculent and collected into a sample bag before being allowed to dry. This produced ~5kg samples in an attempt to minimise loss of fines. Field duplicates are reported to have been used since the 2002 RC drilling but have not been provided and no records exist from prior drilling. 2008 drilling showed field duplicates, blanks and standards insert every ~20 samples. 2024 Drilling 5ft (1.52m) composite samples were taken during RC drilling. RC drilling utilizes wet drilling with sampling via a rotary wet splitter. Large samples are taken in attempt to minimize loss of fines. Sample sizes are considered to reflect industry standards, be appropriate for the material being sampled and show attempts made to improve recovery. 2024 drilling inserted standards, blanks, and duplicates into the sample stream at approximately 1 in 20 samples near mineralisation, and ~1 in 40 in overburden. 2025 Drilling RC drilling details are considered to refl

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Recent laboratory procedures are considered total (analysis of gold by fire assay, and all other elements by four-acid-digest). Overlimit samples are sent for re-assay by additional laboratory techniques. All silver over 100ppm is analysed by gravimetric fire assay. +10,000ppm Sb undergoes additional over range analysis. Pulps and rock chip samples utilise laboratory inserted QC in the form of blanks, standards, and pulp duplicates for fire assay and four acid digest analysis with satisfactory results received. Historic Drilling QAQC protocols utilising Certified Reference Material (standards), blanks and duplicates have been reported in 2002-2008 drill programs under instruction from Snowden. Results from standards have been reviewed for some drilling but no blanks or duplicates have been. No issues were raised by Snowden, SRK or SGS in previous reports. All samples from 2002-2006 were prepared and assayed by an independent commercial laboratory (AAL), and 2008 drilling by ALS Chemex whose instrumentation are regularly calibrated, utilising appropriate internal checks in QAQC. There is no QC data on drilling prior to 2002. Subsequently this data underwent investigative checks via reassaying pulps by independent laboratories and resulted in a regression calculation of assay results to rectify overestimation. Pre-2002 original assays were subject to reduction by multiplication of 0.806 for Au and 0.842 for Ag. 2024 and 2025 Drilling Internal lab QAQC and field inserted blanks, standards and duplicates inserted into the 2024 sample stream show acceptable results.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Silver analysis for new pulp re-assays is compared to silver assays from the legacy database. Assay data below detection limit is reported as a negative from the lab, this has been converted to a number half the detection limit, so no negative values are in the database for future resource work. Eg0.05 is changed to 0.025. The pulp reanalysis exercise involves recording located pulps samples into excel spreadsheets for incorporating into a database. Reconciliation is ongoing. Assay results have been converted between ppb,ppm and ounce/ton Assay intervals are converted between feet and metres (x0.3048). Historic Significant intercepts have not specifically been verified but Snowden reviewed and re-sampled select intervals from 2002, 2003 and 2006 and reported good correlation with original assays. Bulk historic assays have been re-assayed for verification checks detailed in the Snowden and SGS reports but raw data has not been provided. Primary data and data entry details are not provided for all drill campaigns which has been passed through several operators over the years, but all compiled data has been provided in csv(digital) format which is assumed to have been collected and transcribed accurately from prior operators. Twin holes are not specifically reported but a small number of drill holes within 5-10m from each other can be observed in 3D space and show generally good correlation. The key adjustment to assay data are: Un-assayed intervals were given a composite value of 0.0001 oz/ton Au and Ag for Pre 2002 drilling. Historic oz/ton has been converted to ppm if no raw lab file in ppm is available For 2002-2008 drilling from AAL and ALS assay results for gold and silver were reported in parts per million (ppm). For samples that were assayed a second time, the mean of the two samples was used. A regression of silver and gold values for drilling prior to 2002 was implemented by SGS of: Gold = 0.8

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drilling is logged digitally and uploaded into a database along with digital exports from pXRF and gyro devices. 2024 drilling includes twin drilling of historic drill holes with positive correlations so far and analysis ongoing. Assay data below detection limit is reported as a negative from the lab, this has been converted to a number half the detection limit, so no negative values are in the database for future resource work. Eg0.05 is changed to 0.025. Assay intervals are converted between feet and metres (x0.3048). 2024 twin drilling of historic drill holes (2003-2008) showed a bias towards higher silver grades in the 2024 drilling, but a similar grade distribution for gold. This may be due to 4acid digest over 2 acid digest analysis, or changes in sampling method and warrants further investigation. 2025 core intervals are sampled around core loss. Core loss intervals are designated an assay result of 0 for all elements. 2025 drilling remains ongoing. Drill holes located using handheld GPS, with accuracy to within 5m. 2024 drilling and locatable historic collars have been surveyed by DGPS for accurate pickup and efforts remain ongoing. Post 2002 drilling uses downhole gyro for surveys. A 0.5m DTM is used for topographic control. Historic data has been collected in NAD27, and transformed to the current Grid NAD 83 UTM Zone 11. All new data is recorded in NAD 83 UTM Zone 11.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill holes are generally on 200ft and 400ft spacing which is considered sufficient to establish geological and grade continuity for Mineral Resource classifications. Samples have not been composited. Sample lengths reported reflect down-hole drill sample lengths and aggregates of it (5ft /1.5m).
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The drilling is predominantly conducted at or close to vertical with an average dip of -85°in historic drilling and -88 in 2024 holes. The dip is approximately perpendicular to the flat-lying mineralisation. Angled drilling is being used to investigate cross-cutting mineralised structures or as extensional drilling off existing pads. 2025 angled extensional holes appear to represent true width. The drill orientation is not expected to have introduced any sampling bias with analysis ongoing for each drill hole.
Sample security	The measures taken to ensure sample security.	Assay samples are prepared on site and collected by the laboratory's transport team.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No review undertaken besides documentation of historic activities. Sampling and drilling techniques are being refined for maximum recovery during drilling. Issues with sample recovery in fractured ground may result in missing sample intervals, and recoveries are recorded on a sample-by-sample basis into the drill logging database. Twin drilling will be compared to historic drilling. Pulp samples are not always found in entirety.

Section 2 Reporting of Exploration Results – Maverick Springs Silver Gold Project

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC 2012 Explanation	Comment					
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Maverick Springs property is in northeast Nevada, USA, ~85 km SE of the town of Elko, Nevada. The property currently consists of 327 Maverick, Willow and NMS unpatented lode mining claims registered with the US Department of the Interior Bureau of Land Management ("BLM") with a total area of approximately 6500 acres. The tenements are held in the name of Artemis Exploration Company ("AEC"). Sun Silver holds a 100% interest in the Maverick Springs Project. Gold and Silver Net Smelter Royalties (NSR) to tenement owner AEC of 5.9% which include ongoing advance royalty payments, and to Maverix Metals of 1.5% exists. AEC has additional NSR of 2.9% for all other metals. Archaeological surveys have been undertaken on certain areas of the Project to allow drilling activities. All claims are in good standing and have been legally validated by a US based lawyer specialising in the field 					
Exploration done by other parties.	Acknowledgment and appraisal of exploration by other parties.	 Gold exploration at the Project area has been carried out by three previous explorers - Angst, Inc from 1986-1992, Harrison Western Mining L.L.(Harrison) C in 1996, Newmont in 2001, Vista Gold Corp (Vista) and Silver Standard in 2002-2016. Angst undertook first stage exploration with geochemical surveys, mapping, and drilling 128 drill holes for 39,625m outlining initial mineralisation at the project. Harrison drilled 2 exploration holes in 1998 for 247m. Vista advanced the project significantly drilling 54, mostly deep, RC holes over several years until 2006 which equated to ~15,267m. Silver Standard completed 5 deep RC holes for 1,625m in 2008. Reviews of the historic exploration show it was carried out to industry standards to produce data sufficient for mineral resource calculations. 					
Geology	Deposit type, geological setting and style of mineralisation.	 Previous Technical Reports have identified the Maverick Springs mineralisation as a Carlin-type or sediment/carbonate-hosted disseminated silver-gold deposit. However, the 2022 review by SGS is of the opinion that the deposit has more affinity with a low-sulphidation, epithermal Au-Ag deposit. Recent fieldwork notes similarities to a Carbonate Replacement Deposit (CRD). The definition may be in conjecture, but the geological setting remains the same. The mineralisation is hosted in Permian sediments (limestones, dolomites). The sediments have been intruded locally by Cretaceous acidic to intermediate igneous rocks and overlain by Tertiary volcanics, tuffs and sediments and underlain by Paleozoic sediments. Mineralisation in the silty limestones and calcareous clastic sediments is characterised by pervasive decalcification, weak to intense silicification and weak alunitic argillisation alteration, dominated by micron-sized silver and gold with related pyrite, stibnite and arsenic sulphides associated with intense fracturing and brecciation. 					

Criteria	JORC 2012 Explanation	Comment							
		shall east • Hors	ow plunge to and west from and Grabe	o the south om approxi en features	with the lim mately 120n	ibs of the n below ults and	ne arch v surfac d offset	dipping sha e to depths	d (antiformal) shaped zone with a llowly to moderately at 10-30° to the of over 500m below surface. De present at the Project with the
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Multi element assay data is received but only select elements that are material or have relationships have been reported. Reporting all 28 elements is not practical and their exclusion does not detract from the understanding of the report. Historic hole details have been previously reported but are stated again below for drill holes relevant to this release, details in NAD 83 UTM Zone 11: 							
		Hole ID	Х	Υ	Z	Azi	Dip	Depth(m)	
		MR065	644593	4444051	2166	0	-90	316.99	
		MR069	644723	4443860	2182	0	-90	324.22	
		•MR098	644478	4443907	2160	2	-89	458.66	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length weighted averages are used to report drill results to account for variation in length of diamond drill samples. Aggregate intercepts that include missing samples or unassayed intervals are designated a grade of 0.0001oz/ton or 0.0034ppm for Au and Ag. Sb is designated a grade of 0ppm. Sb intervals are reported with a 100ppm cut-off with internal dilution less than 20m. High grade highlights are generally above 500ppm. References to metal equivalents (AgEq) are based on an equivalency ratio of 85, which is derived from a gold price of USD\$2,412.50 and a silver price of USD\$28.40 per ounce, being derived from the average monthly metal pricing from Jan 2024 to Jan 2025, and average metallurgical recovery. Therefore: AgEq = Silver grade + (Gold Grade x ((Gold Price * Gold Recovery) / (Silver Price * Silver Recovery))) or, AgEq (g/t) = Ag (g/t) + (Au (g/t) x ((2412.50 x 0.85) / (28.40 x 0.85))). Metallurgical recoveries are assumed at 85% for both Gold and Silver from historic test work and therefore negate each other in the metal equivalent calculations. Composites for silver and gold were generated within the mineralised wireframe to a nominal length of 5 ft (1.5 m). Composites were normalised in each interval to create equal length composites. Unassayed intervals in the database have a composite value of 0.0001 oz/ton / 0.0034g/t Au and Ag. 							

22

Criteria	JORC 2012 Explanation	Comment
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Drill hole intersections may not always be true widths but generally thought to be close to based on the flat-lying mineralisation and near to vertical drill holes. Review of drill strings in 3D is used to verify this with any anomalies stated in the report.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Figures are included in the report. Figures include data from historic holes previously reported. Material intercepts are tabulated in the relevant Appendix.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All assay intervals received have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable to this release.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work to include drill testing shallow targets for antimony, silver and gold. Potential to re-assay half core for intervals that are missing historic pulps.