

Eureka Gold Project, WA

Strong Indicated Resource growth highlights scope for increase in planned production

Indicated Resource rises 27% to 78,678oz, bolstering the near-term mining plan

Highlights

- Updated Mineral Resource Estimate stands at 2.04Mt at 1.69g/t for 110,687oz; Grade increased by 16% from previous MRE
- The updated MRE includes an Indicated Resource of 1.36Mt at 1.8g/t for 78,678oz; A 27% increase on the previous Eureka MRE of 62,000oz
- Mineralisation extends along strike for 1.1km and to 130m below the current pit floor; Eureka mineralisation remains open along strike and down-dip
- The new Indicated Resource takes into account the results of Javelin's successful maiden drilling program during April at Eureka
- Much of the additional Indicated Resource sits below the southern end of the Eureka Pit, where Javelin plans to commence its near-term contract mining operations
- Mining studies have to date focused on approximately 34,000 recoverable ounces within the current area. The recently updated Mineral Resource estimate will now be incorporated into these studies to assess the potential to expand the production profile
- The Eureka Resource is located on a granted Mining Lease, with several processing facilities in close proximity, including the Paddington Mill situated approximately 20km to the south
- The existing open pit remains in good condition and is considered well-suited for the recommencement of mining activities
- Planning is underway for a new drilling program aimed at increasing the overall Mineral Resource, with a focus on testing potential down-dip extensions

Javelin Minerals Limited (ASX: JAV) is pleased to announce that the Indicated Resource at its Eureka Gold Project in WA has increased 27% to 78,678oz, with the total Mineral Resource Estimate (MRE) now standing at 2.04Mt at 1.69g/t for 110,687oz, delivering a material 16% increase in grade to the previous Eureka MRE.

The Company notes that the strong resource upgrade is particularly significant, as a substantial portion of the additional mineral resource is located directly beneath the existing Eureka open pit. This area is a key focus of Javelin's development strategy, which aims to deliver near-term cashflow through the resumption of mining activities at Eureka.

Javelin is advancing its Mining Plan, approvals and studies on mining 34,000 recoverable ounces in the southern end of the Eureka Pit. But in light of this resource update, it will now assess whether any of the additional Indicated ounces from the upgraded MRE should form part of the mining plan.

As part of the near-term Eureka mining plan, Javelin is in discussions with contract mining and processing operators.

Javelin Executive Chairman Brett Mitchell said: "This updated resource is a very strong result which reflects in part the success of our maiden drilling program at Eureka.

"The increased Indicated Resource has positive implications for our near-term mining plan and we will assess the details of the increase of tonnage and grade as part of the studies now underway.

"At the same time, we are planning further exploration drilling with the aim of growing the resource and upgrading more of the inferred ounces to indicated.

"There is now overwhelming evidence that the upside at Eureka is extremely strong, both on the exploration and production fronts, and we have a great opportunity to generate significant shareholder value".

Eureka Gold Project

The Eureka Gold Project is located on 4 granted Mining Leases 50km north of Kalgoorlie and 20km north of the large-scale Paddington Gold Mining Project (owned by Zinjin Mining Group Co.). The Eureka Gold Project previously hosted an existing JORC 2012 Resource of 2.45Mt @ 1.42g/t Au for 112,000 ounces, including 62,000oz classified as an Indicated Resource.

Following completion of this independent review by Alf Gillman, **the new Eureka Gold Project MRE** stands at **2.04Mt at 1.69 g/t Au totalling 110,687 ounces of gold**.

Javelin is currently advancing the Mine Plan, approvals process and economic studies for potential near-term mining of the current ~34,000 recoverable ounces from the Indicated Resource in the southern end of the Eureka Pit.

Recent RC drilling was designed to test for extensions of mineralisation along strike and beneath the existing open pit. The results have confirmed extensive mineralisation beyond the current Resource envelope, with multiple intercepts highlighting both lateral and depth potential. These outcomes support the Company's view that Eureka hosts significant upside and provide a strong foundation for ongoing resource growth and mine planning work.

Figure 1 – The Eureka Gold Project

info@javelinminerals.com.au+61 8 6319 1900

ABN 39 151 900 855 ASX:JAV

Table 1 is a summary of the updated Eureka mineral resource as at July 2025 based on tonnes and grades. The indicated status contains 71% of the total ounces within the Eureka Deposit and the remaining 29% is composited within the Inferred classification. The MRE has been classified as an Indicated category with a 0.5 g/t gold cutoff. Table 2 highlights the bulk of the tonnage and contained ounces are within the primary/fresh hard rock zone. No open pit optimisation work has been carried out and hence the resource is reported on a global basis.

Table 1: Eureka Gold Deposit Mineral Resource Estimate by Indicated/Inferred Zone as of July 2025
(at a 0.5 g/t Au cut-off)

Classification	Volume (m³)	Density	Tonnage (t)	Grade (g/t Au)	Contained Metal ounces Gold
Indicated	525,637	2.59	1,359,500	1.80	78,677
Inferred	251,207	2.72	682,088	1.46	32,010
Total	776,844	2.63	2,041,588	1.69	110,687

Table 2: Eureka Gold Deposit Mineral Resource Estimate by Weathering Zone as of July 2025(at a 0.5 g/t Au cut-off)

Weathering Zone	Volume (m³)	Density	Tonnage (t)	Grade (g/t Au)	Contained Metal ounces Gold
Oxide	128,805	2.20	283,370	1.73	15,774
Transition	140,730	2.40	337,753	1.64	17,812
Fresh	507,309	2.80	1,420,464	1.69	77,101
Total	776,844	2.63	2,041,588	1.69	110,687

Table 3: Eureka Gold Deposit Mineral Resource Estimate by Classification & Weathering Zone as of July 2025(at a 0.5 g/t Au cut-off)

Classification	Weathering Zone	Volume (m³)	Density	Tonnage (t)	Grade (g/t Au)	Contained Metal ounces Gold
Indicated	weathered	110,711	2.20	243,564	1.86	14,562
	transition	114,641	2.40	275,138	1.66	14,676
	fresh	300,285	2.80	840,798	1.83	49,440
Inferred	weathered	18,094	2.20	39,806	0.95	1,212
	transition	26,090	2.40	62,616	1.56	3,136
	fresh	207,023	2.80	579,666	1.48	27,661

Next Steps

Near Term Mining Plans

Javelin is currently advancing mining and economic studies for potential near-term mining of ~34,000 recoverable ounces from the Indicated Resource in the southern end of the Eureka Pit. The Company has commenced discussions with mining contractors and milling operators for mining the Eureka ore in 2026.

Recent RC drilling has confirmed extensive mineralisation beyond the current Resource envelope, with multiple intercepts highlighting both lateral and depth potential. These outcomes support the Company's view that Eureka hosts significant upside and provide a strong foundation for ongoing resource growth and mine planning work. (Figure 4).

Figure 2 – Oblique 3D Image of Eureka outlining the Dimensions & Grade of Mineralised Block Models

Figure 3 – Oblique 3D Image of Eureka outlining the Indicated/Inferred Zones

Eureka Open Pit Extensions Identified

Drilling to the immediate south of the Eureka Pit has confirmed the presence of a zone of thick, nearsurface oxide mineralisation (Figure 4), with the oxide zones what have been previously mined at Eureka. This mineralised zone remains open along strike to the south.

In addition to this, drill hole JVRC004 was drilled to test for the potential of new mineralised zones to the south of the main Eureka mineralisation beneath the existing pit (Figure 4). JVRC004 has now confirmed this opportunity for a new zone of north plunging mineralisation. The mineralisation remains open, up and down plunge and down- dip. In particular, the opportunity exists to test this position closer to surface.

To the immediate north of the Eureka Pit (Figure 4) a series of historical drill intersections highlighted the potential for a new north plunging high-grade shoot of mineralisation. JVRC010 has now confirmed the potential in this position and has opened a new exploration opportunity for Javelin in close proximity to the existing open pit.

Figure 4 – Eureka Project Long section (looking west) with location of completed drillholes and historic significant intercepts

Figure 5 – Location Map showing the Eureka Project Area

Mineral Resource Estimation and Supporting Technical Information Summary

A summary of other material information pursuant to ASX Listing Rules 5.8 is provided below for the updated Eureka Gold Mineral Resource estimate. The Assessment and Reporting Criteria is in accordance with the 2012 JORC Code and Guidelines are presented in Appendix 1 to this announcement.

The Eureka Mineral Resource has been independently estimated by Odessa Resources Pty Ltd (Perth). The estimate has been produced by using Leapfrog Edge software to produce wireframes of the various mineralised lode systems and block grade estimation using an ordinary kriging interpolation. Top cuts were applied to individual lodes as necessary to limit the effect of high-grade outliers. The reporting is compliant with the 2012 JORC Code and Guidelines. Please refer to Tables 1 and JORC Tables 1 to 3 for further details.

The Eureka Gold Deposit Mineral Resource estimate now stands at 2.04Mt @ 1.69 g/t Au totalling 110,687 ounces of gold. The Indicated Resource has been increased to 27% with another increase of 16% to the gold grade from the previous 2021 Mineral Resources Estimate. This can be attributed to the tighter modelling techniques used in the 2025 MRE thus reducing the amount of internal dilution together with the overall tonnage.

The Mineral Resource Estimate (MRE) includes all drilling results received up to 29 May 2025. The drilling database used to define the Mineral Resource comprises 323 drillholes for a total of 38,579m. Further details are available in table 3.

Table 1 is a summary of the updated Eureka mineral resource as of July 2025 based on tonnes and grades. The indicated status contains 71% of the total ounces within the Eureka Deposit and the remaining 29% is composited within the Inferred classification. The MRE has been classified as an Indicated category with a 0.5 g/t gold cut-off.

Table 1: Eureka Gold Deposit Mineral Resource Estimate by Indicated/Inferred Zone as of July 2025(at a 0.5 g/t Au cut-off)

Classification	Volume (m³)	Density	Tonnage (t)	Grade (g/t Au)	Contained Metal ounces Gold
Indicated	525,637	2.59	1,359,500	1.80	78,677
Inferred	251,207	2.72	682,088	1.46	32,010
Total	776,844	2.63	2,041,588	1.69	110,687

Table 2: Eureka Gold Deposit Mineral Resource Estimate by Weathering Zone as of July 2025(at a 0.5 g/t Au cut-off)

Weathering Zone	Volume (m³)	Density	Tonnage (t)	Grade (g/t Au)	Contained Metal ounces Gold
Oxide	128,805	2.20	283,370	1.73	15,774
Transition	140,730	2.40	337,753	1.64	17,812
Fresh	507,309	2.80	1,420,464	1.69	77,101
Total	776,844	2.63	2,041,588	1.69	110,687

Table 3: Eureka Gold Deposit Mineral Resource Estimate by Classification & Weathering Zone as of July 2025(at a 0.5 g/t Au cut-off)

Classification	Weathering Zone	Volume (m³)	Density	Tonnage (t)	Grade (g/t Au)	Contained Metal ounces Gold
Indicated	weathered	110,711	2.20	243,564	1.86	14,562
	transition	114,641	2.40	275,138	1.66	14,676
	fresh	300,285	2.80	840,798	1.83	49,440
Inferred	weathered	18,094	2.20	39,806	0.95	1,212
	transition	26,090	2.40	62,616	1.56	3,136
	fresh	207,023	2.80	579,666	1.48	27,661

1.1 Geology and Geological Interpretation

The Eureka gold deposit is located within the Bardoc Tectonic Zone which hosts the Paddington and Bardoc gold deposits. Gold mineralisation at Eureka occurs as a number of lens-shaped ore shoots up to 10m wide within the shear zone. The gold is hosted in quartz veins and quartz stringers within the altered mafic host rocks.

The mineralisation at Eureka is hosted within basalts and is contained with a zone of shearing and foliation with quartz veining containing quartz, carbonate and low amounts of sulphides with some visible gold and has a variable thickness of up to 20 metres. Mineralisation has been exploited in a 120m deep, 300m long open pit that was developed on a number of lens-shaped shoots up to 10 metre wide within an intensely

sheared zone approximately 30 metres wide. The mineralisation is sub-vertically dipping and strikes in a north south orientation with several offsets and splays forming the main structure

In the vicinity of the Eureka Mine the sequence has a generally easterly dip of 65° to 70°, parallel by the regional foliation. Regional metamorphism of the sequence is lower greenschist facies.

Weathering profile is extensive with the deepest weathering along the main shear zones and contacts causing a weathering trough of highly oxidised rock that extends down the main shear to the bottom of the pit exposures. Both the north end and south end exposures of the pit show massive and blocky clay altered rock masses bounded by narrow, highly sheared zones, commonly containing limonitic quartz veining. The quartz vein hosted shears run parallel or sub-parallel to the main N-S shear trend, and less commonly cross cutting, shallow dipping quartz veins.

High grade gold mineralisation at Eureka is associated with veining within the altered lower mafics. The vein system typically consists of quartz, carbonate and sulphide and has a variable thickness of up to 20m. The mineralisation exploited in the open pit consists of a number of lens shaped shoots up to 10m wide within an intensely sheared zone some 30m wide.

Mineral Resource Estimate

1.1 Sampling and Sub-Sampling Techniques

Overview

The Eureka gold deposit was first discovered in the 1890s, with historical underground mining worked until 1940. Historical information sourced noted that gold mineralisation is associated with shearing and guartz veining within easterly dipping oxidised fine grained mafic rocks. Development to test for underground mineralisation potential at Eureka was started in mid-1996. In 2018, Tyranna Resources Limited also mined 50,600 tonnes of ore grading 3.16 g/t Au producing 5,374 oz of gold. Exploration companies such as TNT Mines Ltd, West Coast Holdings Ltd, CRS, Jasper Mining NL, Sherlock Bay Nickel Corp. Summary of Eureka sample types is provided in Table 4.

Historical drilling reviewed from WAMEX files and carried out from 1982, included Vacuum, Augur, open hole percussion/ RAB, RC and diamond core drilling (mostly NQ, also PQ and HQ). Sampling methods included chip samples collected and split in even 1 metre or 4 metre composite intervals for dry samples. Wet samples were speared or on occasion scoop- sampled. Diamond core was half core sampled at selected intervals where the geologist recorded evidence of the presence of mineralisation.

For the recent drilling, reverse circulation (RC) drill samples are collected from rig mounted cyclone cone splitter at 1m intervals. Duplicate samples are collected from reject bags every 10m (by spear sampling). Calico samples are weighed to ensure minimum size of 2.5kg are collected. Rarely where wet samples were encountered, the samples were speared or on occasion scoop-sampled. RC drill chips from each metre were examined visually and logged by the geologist. Duplicate samples were collected at 1 m intervals by scoop sampling reject bags.

Diamond drill core sampling

The diamond drill core sampling at Eureka has provided high quality samples that were logged for multiple attributes including lithology, structure, geotechnical data, and density. A total of 12 diamond drillholes, totalling 1,968m were completed. The selected drill core was cut in either half or quarters and the respective core section 'split' analysed at a certified assay laboratory. The sample sizes were appropriate to correctly represent the sulphide mineralisation at the Eureka project based on the style of mineralisation, consistency of the intersections, and the sampling methodology. Damond core with HQ size and split as half core with a diamond saw to produce samples for assaying. Intervals vary from 0.5 to 1.2 metres maximum. Sampling intervals were selected with an emphasis on mineralisation and geological control.

Drilling Techniques

A total of 323 holes for 38,579 metres of drilling has been conducted. Several industry standard drilling techniques have been applied in the extraction of the samples, including full length Diamond Drilling and RC drilling, as summarised in Table 4.

Diamond Drill Holes	Metres	RC Drill Homes	RC Metres	Total Drill Holes	Total Metres
12	1,968	311	36.611	323	38,570

Table 4: Summary of collected samples by drill hole type

RC drilling techniques

Percussion drilling was conducted with conventional methods using a standard hammer size from 115 to 140 mm (4.25 - 5.5 inches).

For the 2020-2021 all drilling was completing using RC rigs. The RC rig specs are as follows:

- Schramm T450 RC rig 5 ¹/₂ inch diameter face sampling hammer
- LC36 KWL700 RC rig (for deep holes) 5 inch face sampling hammer
- X350 RC rig 4 ¹/₂ inch diameter face sampling hammer; drilling since May 2021)

The majority of holes are on a grid either infilling within or surrounding historical pit and underground (UG) workings or extending along strike into geochemical or geophysical (areo- mag) anomalies. The recent programs drilled in 2020 and 2021 have all been RC drilling. The majority of drill holes have a dip of -55 or -60° and azimuths mostly drilled to 270° MGA grid.

Historical exploration and drilling at Eureka targeted discrete areas based on surface geochemical and geophysical anomalies, historical workings that identified the location of host mineralisation. Consequently, current drilling is not grid based, but across the historical open pit and UG workings the drill spacing is nominally $10m N \times 10m E$. Extensions to the north and south have been nominally drilled at $20m N \times 20m/10m$ spaced drilling.

1.2 Sample Analysis Method

Drilling by TNT Mines Ltd (TIN), reverse circulation (RC) drill samples are collected from rig mounted cyclone cone splitter at 1m intervals. Duplicate samples are collected from reject bags every 10m (by spear sampling). Calico samples are weighed to ensure minimum size of 2.5kg are collected. Rarely where wet samples were encountered, the samples were speared or on occasion scoop-sampled. RC drill chips from each metre were examined visually and logged by the geologist. Duplicate samples were collected at 1 m intervals by scoop sampling reject bags.

QAQC procedures used for the 2020-2021 RC drilling programs at Eureka and summarised as follows:

- Insertion of CRMs after every 10 samples which represents approximately 5% of total samples. No blanks were inserted for the 2020-2021 RC drilling programs.
- Insertion of field duplicates at a rate of one duplicate submitted for every 10 samples. Duplicates samples represent approximately 5% of total samples.
- Based on the independent statistical analysis of the QAQC results, there is no evidence to suggest the samples are not representative. Analysis of the results to date show an acceptable level of precision and accuracy.

During 2025, all drill sample pulps from Javelin Minerals' drilling program were analysed for gold by Bureau Veritas Laboratories using a 40g fire assay method with an atomic absorption spectroscopy (AAS) finish (method

code FA1). The FA1 technique is a 40g lead collection fire assay with analysis by AAS. A 40g portion of the prepared sample is catch-weighed and mixed with a specially formulated flux. The sample is fused at 1100°C for 45 minutes before being poured to separate the lead button from the slag. The lead button is roasted at 970°C to oxidise the lead and produce a silver prill containing the gold. The prill is dissolved into a solution before being aerosolised for AAS analysis and determination of gold concentration

SAMPLE SECURITY AND LABORATORY ANALYSIS 2

Previously the chain of custody is managed by TNT staff during the periods prior to 2021 at the site office and core storage facility at Eureka. Between 300-400 samples are delivered in a batch directly by TNT personnel to the assay laboratory in Kalgoorlie by light vehicle and trailer with enclosed cage. Samples are securely packed in wire-tied, large hessian bags.

Two laboratories have been used for the 2020-2021 RC drilling, sample preparation and analysis: -

- ALS, Kalgoorlie, certified ISO 9001
- SGS, Kalgoorlie, certified ISO 9001 •

At the commercial laboratory, RC samples are dried at minimum 60° C. If the sample weight is greater than 3 kg, the sample is riffle split. It is then pulverised to a grind size where 85% of the sample passes 75 micron. All samples have been analysed using a 30g fire assay technique with an AAS finish.

Javelin's 2025 drilling program submitted all drill samples to Bureau Veritas in Kalgoorlie, WA. These samples were analysed for Au (10ppb), with 202 selected samples analysed for Cu (1ppm) as well. Au analysis consisted of fire assay of a 40g pulverised sample with an Atomic Absorption Spectrometry (AAS) finish. Sample security methods uslisated involved Poly-weave bags were used for the storage of composite calicos (4 calicos per poly-weave), while green bags were used for the storage of 'A' calicos (5 calicos per green bag).

Upon completion of drilling, poly-weave and green bags were systematically folded and arranged in orderly lines on the pad. Samples designated for laboratory analysis were kept separate. At the end of each day of drilling lab samples were collected and taken to the Bureau Veritas Atbara Street laboratory for analysis. Sample submission forms were submitted via email on the same day as each dispatch.

2.1 Estimation Methodology

Gold grades were estimated by using an Ordinary Kriging using Leapfrog Geo 2025.1.1 software. Separate estimation domains for Au were created using Indicator radial Bias Functions (RBF's).

A structural trend was applied to reflect the broad anticlinal structure that is apparent from an in-the-plane-of the lode perspective. All drill holes were used to define estimation domains.

Data is sourced from the recent and historical drill logging and RC chip logging/ DD core logging, and surface mapping interpretations from previous work. Interpreted projections for structures and local mineralisation trends were made between drill sections and extending along strike and down dip based on a drill spacing down to 10 m x 10 m over the central area, broadening out to a nominal 25mE x 25mN to the north and south of the Main zone. Average extrapolation of the wireframes approximately 20m with a single maximum extrapolation of 90m. The logging and mining information has been used to inform the mineralisation domains used for the estimation.

Weathering surfaces were interpreted for oxide, transitional and primary weathering boundaries from available logging data. This data allowed the density values for the mineral resource estimate to be sub-divided by weathering domains.

Mineralisation continuity in the Main zone mineralisation consisting of 2 main zones in close proximity, following the trend of the main shear. Along the hanging wall and in the North zone, mineralisation is more inconsistent, although many old holes have selective sampling. Several significant gold intersections footwall to the FW graphitic shale were modelled into Au domain and may indicate anomalous Au mineralisation along the footwall sequence.

Drill hole sample data was flagged using domain codes generated from three-dimensional mineralisation domains. Sample data was composited to one-metre downhole lengths using a best fit-method. No residuals were generated. Statistical analysis was carried out on data from all estimated domains, with hard boundary techniques employed within each estimation domain.

Gold grade distributions within the estimation domains were assessed to determine if high grade cuts or distance limiting should be applied. Distance limiting thresholds and the effects of grade capping were reviewed and applied on a domain basis where it was deemed appropriate i.e., for extreme high-grade outliers, high grade clustering or a high coefficient of variation (CV).

The mineralised domain wireframes were used to code the block model and the volume between the wireframe models and the coded block model were checked in order to ensure that the sub-blocking size are appropriate for the interpreted domains. Estimation was carried out on capped and uncapped gold grade. Hard domain boundaries were used between the mineralised domains, meaning only composites within the domain are used to estimate inside that domain. The variogram orientations were used as the orientation of the search ellipse. The variogram and search parameters for well-informed were used to represent the poorly informed domains.

Gold was estimated in two passes – first pass using optimum search distances for each domain (mostly 40 m) as determined through the KNA process, second pass set at longer distances in order to populate all blocks (2nd = max 120 m). A waste domain boundary encompassing the mineralisation domains and within the limits of the drilling and host units was modelled for each deposit and included in the grade estimation runs. This allowed for any isolated zones and any mineralised haloes proximal to the hard boundary mineralised blocks to be estimated for estimation of dilution within pit optimisation limits. Interpolation parameters were set to a minimum number of 6 composites and a maximum number of 16 composites for the estimate. A maximum of 6 samples per hole was used.

The parent block dimensions used in the block model were:

• 10 m N by 5 m E by 5 m RL, with sub-cells of 1.25 m by 2.5 m by 1.25 m.

For the block model definition parameters, the primary block size and sub-blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow zones or terminations, or disrupted zones due to contacts or surface boundaries.

The block model definition parameters included a primary block size and sub-blocking deemed appropriate for the mineralisation and to provide adequate volume definition where there are narrow or complex zones modelled. These dimensions are suitable for block estimation and modelling the selectivity for an open pit operation.

Separate log transformed variograms were modelled for the supergene and primary mineralisation to reflect the horizontal and dipping geometry respectively.

Hard boundaries were used for grade estimation, with each mineralised zone estimated separately (i.e., no data sharing between the primary and supergene mineralisation).

The block model was validated for all variables by checking tonnage-weighted grade estimates against input sample data, semi-local comparisons of model and sample accumulations and estimated grades by using swath plots, and by extensive visual inspection of the block grades and input data on screen. All these methods show that the grade estimates honour the input data satisfactorily.

Dry bulk densities were determined from data collected using the weight in air/weight in water method for selected drill core and is supported by the reconciliation of tonnages from the as-mined pit. Bulk density values have been applied to the block model (across all rock types).

The block model was validated for all variables by checking tonnage-weighted grade estimates against input sample data, semi-local comparisons of model and sample accumulations and estimated grades by using swath plots, and by extensive visual inspection of the block grades and input data on screen. All these methods show that the grade estimates honour the input data satisfactorily. There has been previous open cut mining at the

Eureka deposit, with reconciliation to this current estimate discussed below in the relative accuracy/confidence section.

2.2 Contained metal pricing assumptions

The underlying market pricing assumptions for the contained metals in the resource have been updated to the values stated in Note 1 of the Mineral Resource Statement. The metals pricing is based on the one-year average of the daily market closes for each of the metals, utilising LME London Fix for Au, and calculated as at market close on July 2025.

2.3 Classification Criteria

The MRE block model is classified as either Indicated or Inferred based on drill data spacing and continuity of mineralisation continuity. A review of both the historic and more recent drill techniques and sampling protocols together with a review of the assay QAQC data support a declaration by the Competent person (CP) that MRE is JORC 2012 compliant.

Figure 6 - Longitudinal Section of the Block Model Showing MRE Classification

Cut-off Grades

The mineral resource estimate for Eureka has been reported above an arbitrary cut off of 0.5 ppm cut-off. This cut off is a commonly used cut off for similar deposits at the current gold price, mining and processing costs.

2.4 Resource Classification Criteria

Assessment of confidence in the estimate of gold included guidelines as outlined in JORC (2012):

- Drill data quality and quantity.
- Geological domaining (for mineralised domains).
- The spatial continuity of Au mineralisation.
- Geostatistical measures of Au estimate quality.

In summary, the more quantitative criteria relating to these guidelines include data density and the kriging search pass used, as follows:

- The Indicated Mineral Resource was defined within areas of close spaced diamond and RC drilling of less than 20m by 20m, and where the continuity and predictability of the lode positions is good.
- The Inferred Mineral Resource was assigned to areas of the deposit where drill hole spacing was greater than 20m by 20m.

Wireframe solids were constructed for Indicated and Inferred, resulting in continuous and consistent resource classification.

Mining and Metallurgical Methods, Parameters and other modifying factors considered to date

Surface open cut mining is the most likely method to be used in the extraction of this orebody based on the based on the mine design over Eureka. Grades and geometry are amenable to conventional open cut mining, similar to the previous mining method. Mining assumptions were based on bench marking from industry standard mining operations.

Development of this Mineral Resource assumes mining using standard equipment and methods. The assumed mining method is conventional truck and shovel, open pit mining at an appropriate bench height.

No recent metallurgical testwork and reporting has been reviewed as part of the 2025 MRE. Metallurgical factors have been considered for the pit optimisation analysis. Metallurgical recoveries have taken into consideration the previous mining results and similar gold deposits:

- Oxide and Transition Ore: Process recovery = 95%
- Fresh Ore: Process recovery = 90%

Eureka Gold Project Mineral Resource Estimate

The existing Eureka Gold Project Mineral Resource Estimate (MRE) stands at **2.04Mt at 1.69 g/t Au totalling 110,687 ounces of gold** *(ASX Announcement 16 July 2025: Updated MRE over Eureka Gold Project).* Table 5 showing the Eureka Mineral Resource as of July 2025 based on tonnes and grades.

Table 5: Eureka Gold Deposit Mineral Resource Estimate by Classification as of July 2025(at a 0.5 g/t Au cut-off)

Classification	Tonnage t	<i>Grade</i> g/t Au	<i>Contained Metal</i> (Oz Gold)
Indicated	1,359,500	1.80	78,677
Inferred	682,088	1.46	32,010
Total	2,041,588	1.69	110,687

This ASX announcement has been authorised for release by the Board of Javelin Minerals Limited.

-ENDS-

For further information, please contact: Brett Mitchell Executive Chairman Javelin Minerals Limited info@javelinminerals.com.au

1202 Hay Street West Perth WA 6005
 www.javelinminerals.com.au

Paul Armstrong Investor Relations Consultant Read Corporate paul@readcorporate.com.au

info@javelinminerals.com.au +61 8 6319 1900

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Pedro Kastellorizos. Mr. Kastellorizos is a technical consultant to Javelin Minerals Limited and is a Member of the AusIMM of whom have sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Kastellorizos has verified the data disclosed in this release and consent to the inclusion in this release of the matters based on the information in the form and context in which it appears. Mr Kastellorizos has reviewed all relevant data for the RC and Diamond drilling program and reported the results accordingly.

The information in this report / ASX release that relates to Exploration Results, Exploration Targets and Mineral Resources at Eurekais based on information compiled and reviewed by Mr. Alfred Gillman, Director of independent consulting firm, Odessa Resource Pty Ltd. Mr. Gillman, a Fellow and Chartered Professional of the Australasian Institute of Mining and Metallurgy (the AusIMM) and has sufficient experience relevant to the styles of mineralisation under consideration and to the activity being reported to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets and Mineral Resources. Mr Gillman is a full-time employee of Odessa Resource Pty Ltd, who specialises in mineral resource estimation, evaluation, and exploration. Neither Mr Gillman nor Odessa Resource Pty Ltd holds any interest in Javelin Minerals Limited, its related parties, or in any of the mineral properties that are the subject of this announcement. Mr Gillman consents to the inclusion in this report / ASX release of the matters based on information in the form and context in which it appears. Additionally, Mr Gillman confirms that the entity is not aware of any new information or data that materially affects the information contained in the ASX releases referred to in this report.

Javelin Minerals Limited confirms that it is not aware of any new information or data that materially affects the information included in the original ASX announcements and that all material assumptions and technical parameters underpinning Exploration Results, Exploration Targets and Mineral Resources included in the original ASX announcements continue to apply and have no materially changed, and the forma and context in which the relevant competent person's findings are presented in this report have not been materially modified from the original ASX announcements.

References

Hodgins, J. - Combined Annual Technical Report, Eureka Gold Project M24/189, M24/584, M24/585 and M24/586, 1 January 2017 to 31 December 2017. Combined Report C42-005. Central Iron Ore Ltd.

Revell, N - Combined Annual Technical Report, Eureka Gold Project M24/189, M24/584, M24/585 and M24/586, 1 January 2018 to 31 December 2018. Combined Report C42-005. Tyranna Resources Ltd.

Wilford J.W., Craig M.A., Tapley I. J. and Mauger A.J., 1998. Regolith-Landform Mapping and its Implications for Exploration over the Half Moon Lake region, Gawler Craton, South Australia. CRC LEME Restricted Report 92R / E&M Report 542C. 91 pp. (Unpublished).

For further information, please refer to previous ASX announcement:

ASX Announcement 2 April 2025: Eureka Heritage Survey Completed

ASX Announcement 17 February 2025: Drilling set to start at Eureka Gold Project

ASX Announcement 21 October 2021: Eureka North Exploration Results Including High Grade Gold ASX Announcement 24 June 2021: TNT Mines drilling increases Eureka Resource to 112,000 oz gold

ASX Announcement 15 June 2021: *Eureka Auger Programme delineates extensive Gold Anomaly* ASX Announcement 15 February 2021: *Investor Presentation* – *Eureka and Warriedar Gold Projects* ASX Announcement 9 February 2021: *Strong initial Gold Results Delivered from Eureka South*

ASX Announcement 23 October 2010: TNT acquires Historical Western Australian Gold Projects

ASX Announcement 7 October 2010: Eureka North Exploration Results

ASX Announcement 21 October 2021: Eureka North Exploration Results Including High Grade Gold

ASX Announcement 24 June 2021: TNT Mines drilling increases Eureka Resource to 112,000 oz gold

ASX Announcement 15 June 2021: Eureka Auger Programme delineates extensive Gold Anomaly

ASX Announcement 15 February 2021: Investor Presentation – Eureka and Warriedar Gold Projects

ASX Announcement 9 February 2021: Strong initial Gold Results Delivered from Eureka South

ASX Announcement 23 October 2010: TNT acquires Historical Western Australian Gold Projects

ASX Announcement 7 October 2010: Eureka North Exploration Results

Hole ID	From (m)	To (m)	Interval (m)	Au g/t	True Width (m)	Gold Gram Metres
18EKDD009	121.9	128.1	6.2	2.66	4.53	12.1
18EKDD012	94	104	10	1.50	7.60	11.4
19ERC09	16	22	6	1.77	4.58	8.1
DEK19	112	121.8	9.8	3.55	7.88	28.0
DEK23	232	238.55	6.55	0.82	5.09	4.2
DEK32	194.3	211.8	17.5	1.39	14.30	19.9
DEK42	160.15	167	6.85	5.89	5.24	30.8
DEK43	150	157	7	1.08	5.36	5.8
ERC06	60	72	12	7.88	5.63	44.3
ERC08	144	155	11	1.86	8.27	15.4
ERC10	72	79	7	1.54	4.92	7.6
ERC11	70	79	9	1.86	6.01	11.2
ERC15	27	32	5	0.63	3.59	2.3
ERC15	36	41	5	1.44	3.59	5.2
ERC17	78	83	5	2.40	4.13	9.9
ERC18	60	72	12	5.09	5.07	25.8
ERC29	155	167	12	1.46	8.80	12.9
ERC30	143	148	5	1.30	4.33	5.6
ERC31	129	134	5	1.20	4.30	5.2
ERC31	137	141	4	1.83	3.43	6.3
ERC32	144	154	10	0.70	7.61	5.4
ERC32	155	160	5	0.31	3.80	1.2
ERC34	138	145	7	1.77	5.41	9.6
ERC62	69	76	7	1.03	3.98	4.1
ERC67	72	79	7	6.03	5.90	35.6
ERC69	90	103	13	1.49	9.16	13.6
ERC72	37	44	7	1.39	5.73	8.0
ERC73	59	63	4	2.54	3.05	7.7
JVRC004	245	251	6	2.17	5.29	11.5
JVRC019	264	270	6	1.58	5.14	8.1
WRRC0053	275	279	4	0.84	3.20	2.7
WRRC0081	110	123	13	2.13	7.83	16.7
WRRC0081	127	136	9	3.16	5.51	17.4
WRRC0082	129	136	7	1.27	5.86	7.5
WRRC0123	141	150	9	0.78	6.36	5.0
18EKDD003	170.9	177	6.1	2.40	4.67	11.2
18EKDD009	103	111	8	6.43	5.88	37.8
18EKDD011	106	113	7	1.00	4.58	4.6

Appendix 1 - Significant Drilling Intercept Gold Economic Composite (Cut-off grade of 0.3 g/t Gold)

info@javelinminerals.com.au

2 +61 8 6319 1900

Hole ID	From (m)	To (m)	Interval (m)	Au g/t	True Width (m)	Gold Gram Metres
19ERC04	35	53	18	1.39	13.33	18.5
19ERC08	19	28	9	1.76	3.80	6.7
19ERC14	36	44	8	2.38	5.82	13.9
19ERC17	20	32	12	2.63	8.63	22.7
19ERC18	23	29	6	3.20	4.90	15.7
19ERC19	11	23	12	0.76	8.23	6.3
19ERC21	31	36	5	0.66	4.08	2.7
19ERC23	39	48	9	0.83	6.01	5.0
19ERC26	34	48	14	1.63	11.14	18.1
DEK03	89	109	20	3.01	15.82	47.6
DEK04	112.8	132.5	19.7	3.74	15.61	58.4
DEK06	111	118.45	7.45	2.55	6.09	15.5
DEK13b	99	106.7	7.7	5.65	6.15	34.7
DEK14	112	124	12	2.26	9.77	22.0
DEK17	105.1	112.45	7.35	1.16	5.68	6.6
DEK18	117.2	121.65	4.45	0.30	3.58	1.1
DEK19	99	107	8	1.05	6.42	6.8
DEK20	88	92	4	1.91	3.18	6.1
DEK21	209.65	215.65	6	1.47	4.97	7.3
DEK28	203.7	207.7	4	6.17	3.09	19.1
DEK29	187	192	5	3.56	4.28	15.2
DEK30	137	150.6	13.6	1.31	9.41	12.3
DEK30	152.6	160.3	7.7	2.34	5.32	12.5
DEK31	198.5	203.5	5	0.83	3.89	3.2
DEK33	152.25	167	14.75	5.41	12.31	66.6
DEK40	122	134	12	1.20	9.03	10.8
DEK40	135	143	8	0.44	5.99	2.6
DEK41	147	158	11	2.03	8.77	17.8
ERC01	90	101	11	2.44	7.04	17.2
ERC02	121	132	11	2.12	7.50	15.9
ERC04	58	62	4	5.77	3.03	17.5
ERC05	102	119	17	2.61	15.23	39.7
ERC10	43	56	13	0.77	9.14	7.0
ERC11	56	67	11	1.39	7.34	10.2
ERC12	47	52	5	1.86	3.97	7.4
ERC12	55	61	6	0.49	4.83	2.4
ERC15	4	22	18	2.84	12.92	36.6
ERC16	40	53	13	1.63	9.32	15.2
ERC20	130	137	7	0.82	5.56	4.6
ERC21	162	167	5	0.97	4.34	4.2
ERC22	144	153	9	0.93	3.84	3.6

Hole ID	From (m)	To (m)	Interval (m)	Au g/t	True Width (m)	Gold Gram Metres
ERC30	111	116	5	0.59	4.38	2.6
ERC31	93	97	4	1.27	3.49	4.4
ERC35	57	66	9	0.79	3.80	3.0
JVRC001	67	71	4	0.60	3.30	2.0
JVRC003	66	87	21	1.27	18.12	23.1
JVRC004	227	231	4	0.53	3.50	1.9
JVRC005	255	259	4	1.26	3.51	4.4
PEK09	71	80	9	1.39	7.36	10.2
WRRC0001	75	80	5	1.32	4.11	5.4
WRRC0003	102	107	5	1.66	3.26	5.4
WRRC0011	239	250	11	0.78	8.84	6.9
WRRC0051	244	252	8	1.61	6.31	10.2
WRRC0052	112	120	8	2.16	6.84	14.8
WRRC0053	263	269	6	0.83	4.78	4.0
WRRC0066	178	183	5	1.64	4.40	7.2
WRRC0067	264	272	8	1.04	6.64	6.9
WRRC0075	65	70	5	2.95	4.11	12.1
WRRC0081	69	79	10	0.50	5.97	3.0
WRRC0094	97	102	5	1.19	4.18	5.0
WRRC0109	54	58	4	0.88	3.33	2.9
WRRC0122	92	98	6	0.58	4.82	2.8
WRRC0127	72	81	9	0.96	7.83	7.5
ERC74	50	59	9	1.94	5.57	10.8
JVRC001	45	49	4	3.67	3.30	12.1
JVRC001	55	66	11	1.59	9.07	14.5
WRRC0001	51	65	14	2.09	11.44	23.9
WRRC0003	74	79	5	0.60	3.25	2.0
WRRC0082	74	78	4	6.56	3.39	22.3
WRRC0094	82	86	4	1.39	3.34	4.7
WRRC0121	38	43	5	13.88	4.38	60.9
18EKDD006	65	71	6	0.39	5.02	2.0
18EKDD007	74.1	78.3	4.2	0.46	4.10	1.9
DEK29	170.3	175.7	5.4	1.25	4.61	5.8
ERC36	56	61	5	6.09	4.08	24.9
WRRC0037	46	51	5	0.99	4.01	4.0
WRRC0075	54	58	4	0.82	3.29	2.7
WRRC0106	47	52	5	1.48	4.19	6.2
ERC70	7	13	6	2.09	4.91	10.2
ERC36	103	111	8	2.70	6.53	17.6
JVRC006	259	264	5	4.01	4.18	16.8

Hole ID	From (m)	To (m)	Interval (m)	Au g/t	True Width (m)	Gold Gram Metres
WRRC0051	271	278	7	1.04	5.58	5.8
DEK29	86.7	97.7	11	2.91	9.14	26.6
JVRC006	104	108	4	0.36	3.07	1.1
WRRC0008	148	156	8	2.51	6.35	15.9
WRRC0053	152	164	12	0.78	8.58	6.7
WRRC0106	104	109	5	25.75	4.24	109.3
JVRC003	48	52	4	1.50	3.45	5.2
WRRC0002	3	7	4	0.59	3.45	2.0
ERC25	50	63	13	1.12	5.56	6.2
ERC25	65	73	8	2.20	3.43	7.6
ERC39	23	28	5	0.37	4.08	1.5
ERC49	20	29	9	0.99	7.34	7.3
WRRC0017	8	12	4	0.81	3.25	2.6
WRRC0018	24	29	5	2.88	4.20	12.1
WRRC0019	42	46	4	10.99	3.38	37.1
WRRC0095	48	59	11	2.44	8.97	21.9
WRRC0130	97	107	10	0.61	8.68	5.3
ERC39	53	57	4	134.52	3.26	439.0
ERC40	81	87	6	0.95	4.90	4.6
ERC46	41	49	8	17.20	6.53	112.2
WRRC0135	129	133	4	36.64	3.41	124.8
ERC41	48	55	7	1.27	5.71	7.2
ERC42	82	88	6	0.63	4.90	3.1
JVRC010	8	12	4	0.41	3.23	1.3
WRRC0009	3	12	9	0.63	7.37	4.7
WRRC0027	1	8	7	0.68	5.73	3.9
WRRC0028	5	11	6	1.07	4.90	5.3
WRRC0029	2	7	5	0.87	4.08	3.6
WRRC0030	0	8	8	1.02	6.05	6.2
WRRC0031	0	4	4	0.51	3.27	1.7
WRRC0033	2	10	8	0.91	6.54	5.9
WRRC0035	0	8	8	0.80	6.51	5.2
WRRC0036	3	9	6	0.95	4.90	4.6
WRRC0072	6	10	4	0.36	3.25	1.2
WRRC0073	0	10	10	1.18	8.18	9.7
WRRC0074	1	12	11	0.51	8.97	4.5
WRRC0075	6	11	5	0.38	4.10	1.5

Appendix 2 – Eureka Drilling Collar Table

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
JVRC001	332514	6643455	429	81	-61	270
JVRC002	332500	6643470	429	50	-57	268
JVRC003	332533	6643470	430	120	-55	271
JVRC004	332669	6643500	446	300	-55	270
JVRC005	332716	6643620	447	300	-57	270
JVRC006	332670	6643760	429	270	-61	268
JVRC007	332550	6643842	430	12	-90	0
JVRC008	332560	6643840	430	12	-61	270
JVRC009	332580	6643840	429	12	-90	0
JVRC010	332560	6643880	430	120	-61	270
JVRC011	332552	6644030	428	80	-55	268
JVRC012	332572	6644030	429	114	-55	270
JVRC013	332559	6644060	428	114	-61	271
JVRC014	332358	6644450	426	42	-61	269
JVRC015	332369	6644450	426	54	-61	270
JVRC016	332455	6644443	426	150	-62	268
JVRC017	332498	6644440	427	180	-56	269
JVRC018	332729	6643741	434	360	-60	261
JVRC019	332687	6643702	429	300	-61	269
JVRC020	332361	6644470	426	24	-61	273
JVRC021	332379	6644469	426	30	-61	273
JVRC022	332367	6644433	426	54	-61	272
ERC01	332573	6643784	400.3	150	-77	270
ERC02	332600	6643773	397.2	148	-72	280.5
ERC04	332557	6643769	388.7	132	-65	264
ERC05	332596	6643746	392.5	166	-50	266
ERC06	332534	6643695	329.6	100	-87	270
ERC07	332562	6643626	344.8	97	-60	285
ERC08	332598	6643746	392.5	192	-75	266
ERC10	332553	6643604	343.3	82	-70	268
ERC11	332551	6643596	344.6	79	-73	270
ERC12	332550	6643587	346	70	-68	270
ERC15	332507	6643551	353.1	60	-67	255
ERC16	332523	6643547	369.25	70	-67	270
ERC17	332562	6643624	345.2	94	-55	277

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
ERC18	332534	6643717	330.3	80	-90	0
ERC19	332580	6643926	433.1	150	-60	271
ERC20	332592	6643875	432.98	174	-60	272
ERC21	332628	6643824	431.12	186	-60	274
ERC22	332520	6643480	429.2	174	-90	0
ERC23	332467	6643581	360.5	78	-90	0
ERC24	332457	6643621	364.4	78	-90	0
ERC25	332457	6643630	363.8	78	-90	0
ERC26	332455	6643640	365	78	-90	0
ERC27	332556	6643596	343.2	120	-90	0
ERC28	332539	6643568	344.1	120	-90	0
ERC29	332572	6643495	428.2	174	-65	273.5
ERC30	332570	6643495	428.4	151	-50	273.5
ERC31	332564	6643484	428.5	162	-50	267.5
ERC32	332563	6643484	428.6	168	-65	267.5
ERC33	332555	6643475	428.7	150	-50	270
ERC34	332556	6643475	428.7	156	-65	270
ERC35	332526	6643558	351.5	102	-90	0
ERC36	332571	6643788	400.4	156	-60	271
ERC37	332553	6643801	403	103	-75	293
ERC38	332506	6643922	433.63	115	-60	269
ERC39	332385	6644449	429.91	97	-60	270
ERC39a	332406	6644448	429.62	76	-60	270
ERC40	332425	6644447	430.09	109	-60	270
ERC41	332360	6644360	429.16	78	-60	270
ERC42	332380	6644359	429.71	101	-60	270
ERC43	332401	6644359	429.69	139	-60	270
ERC44	332443	6643983	430.2	115	-60	235
ERC45	332421	6644002	429.61	79	-60	235
ERC46	332375	6644450	429.57	54	-60	270
ERC47	332394	6644449	429.83	66	-60	270
ERC48	332386	6644439	429.41	60	-60	270
ERC49	332384	6644459	430.58	60	-60	270
ERC50	332346	6644358	429.22	90	-60	270
ERC51	332376	6644479	429.96	90	-60	270
ERC52	332374	6644529	430.44	52	-60	270
ERC53	332330	6644451	428.89	114	-60	90

info@javelinminerals.com.au

ABN 39 151 900 855 ASX:JAV

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
ERC54	332385	6644444	429.52	66	-60	270
ERC55	332380	6644450	430.46	66	-60	270
ERC56	332390	6644449	429.64	66	-60	270
ERC57	332385	6644455	430.45	66	-60	270
ERC58	332392	6644528	430.09	65	-60	270
ERC59	332412	6644528	431.09	83	-60	270
ERC60	332376	6644631	431.49	51	-60	270
ERC61	332535	6643695	327	96	-75	233
ERC62	332541	6643683	329.6	102	-75	230
ERC63	332540	6643684	329.2	93	-72	212
ERC65	332602	6643561	400	140	-60	270
ERC66	332569	6643786	400	130	-60	270
ERC67	332566	6643787	400	130	-50	286
ERC68	332569	6643786	400	130	-50	250
ERC69	332569	6643786	401	130	-50	292
ERC70	332569	6643779	384	40	-70	270
ERC71	332529	6643778	385	50	-60	275
ERC72	332539	6643777	386	80	-60	275
ERC73	332553	6643769	388	100	-60	275
ERC74	332552	6643769	388	130	-65	270
ERC75	332570	6643788	400	55	-75	251
ERC76	332344	6644340	429.58	100	-60	270
ERC77	332360	6644340	429.27	100	-60	270
ERC78	332380	6644337	429.85	100	-60	270
ERC79	332403	6644341	430.14	100	-60	270
WRRC0001	332521	6643448	429.45	151	-60	277
WRRC0002	332478	6643455	428.51	100	-55	273
WRRC0003	332530	6643452	429.91	160	-75	275
WRRC0004	332461	6643430	428.22	100	-55	275
WRRC0005	332496	6643428	429.28	120	-55	276
WRRC0006	332442	6643398	425.45	80	-55	272
WRRC0007	332480	6643399	428.48	100	-55	272
WRRC0008	332700	6643806	426.43	340	-63	257
WRRC0009	332531	6643884	430.58	120	-60	273
WRRC0010	332657	6643859	427.86	230	-61	271
WRRC0011	332684	6643695	429.32	330	-56	250
WRRC0013	332554	6643348	444.29	272	-60	272

info@javelinminerals.com.au

ABN 39 151 900 855 ASX:JAV

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
WRRC0014	332867	6642690	421.39	200	-57	274
WRRC0015	332848	6642604	419.31	200	-57	272
WRRC0017	332376	6644448	426.09	75	-60	268
WRRC0018	332391	6644470	426.48	90	-57	273
WRRC0019	332412	6644473	426.65	120	-57	272
WRRC0021	332337	6644400	425.2	120	-57	272
WRRC0022	332373	6644399	425.44	120	-57	266
WRRC0023	332399	6644399	425.94	150	-57	269
WRRC0024	332400	6644436	426.16	141	-51	275
WRRC0025	332411	6643849	431.78	30	-60	270
WRRC0026	332431	6643844	435.06	55	-60	270
WRRC0026	332431	6643844	435.06	55	-60	270
WRRC0027	332454	6643850	434.44	65	-60	270
WRRC0028	332477	6643851	433.32	80	-60	270
WRRC0029	332495	6643847	432.28	90	-60	270
WRRC0030	332518	6643846	431.23	90	-60	245
WRRC0031	332427	6643862	434.1	30	-60	272
WRRC0031	332427	6643862	434.1	30	-60	272
WRRC0032	332444	6643861	435.14	55	-60	270
WRRC0033	332466	6643860	434.18	65	-60	270
WRRC0034	332487	6643859	433.09	90	-60	270
WRRC0035	332509	6643861	431.96	100	-60	273
WRRC0036	332530	6643859	430.82	110	-60	270
WRRC0037	332550	6643857	429.94	120	-61	271
WRRC0038	332600	6643853	429.17	160	-61	273
WRRC0039	332341	6644329	425.95	80	-57	270
WRRC0040	332368	6644328	426.14	100	-57	273
WRRC0041	332341	6644378	425.13	90	-60	270
WRRC0042	332374	6644375	425.61	120	-60	273
WRRC0043	332266	6644550	425.61	100	-57	273
WRRC0044	332317	6644550	426.23	100	-60	270
WRRC0045	332341	6644520	426.34	100	-57	270
WRRC0046	332395	6644501	426.87	100	-60	270
WRRC0047	332446	6644508	427.58	150	-57	270
WRRC0048	332486	6643923	431.25	75	-55	270
WRRC0049	332444	6643984	427.03	80	-60	270
WRRC0051	332673	6643739	429.26	295	-67	274

info@javelinminerals.com.au
 ≁61 8 6319 1900

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
WRRC0051	332673	6643739	429.26	295	-67	274
WRRC0052	332599	6643953	429.88	200	-61	269
WRRC0053	332685	6643695	429.31	330	-66	251
WRRC0054	332552	6643476	428.02	200	-60	290
WRRC0055	332528	6644499	428.3	150	-60	210
WRRC0056	332518	6644418	427.21	150	-60	210
WRRC0057	332278	6644531	425.53	150	-60	200
WRRC0058	332283	6644588	426.11	150	-60	200
WRRC0059	332647	6644120	431.08	130	-60	268
WRRC0061	332993	6642500	417.57	150	-60	270
WRRC0062	333244	6642543	417.25	178	-60	270
WRRC0064	332551	6644302	429.64	250	-61	270
WRRC0065	332426	6644135	427.89	150	-57	267
WRRC0066	332620	6643431	445.49	214	-57	270
WRRC0067	332682	6643485	446.41	290	-62	289
WRRC0070	332437	6643875	434.44	30	-60	269
WRRC0071	332454	6643877	434.59	30	-60	270
WRRC0072	332469	6643876	433.76	80	-60	271
WRRC0073	332494	6643872	432.6	80	-60	270
WRRC0074	332507	6643872	431.94	90	-60	270
WRRC0075	332550	6643878	430.02	110	-60	273
WRRC0077	332350	6644265	427.06	150	-55	272
WRRC0078	332419	6644265	429.29	150	-55	270
WRRC0079	332637	6643803	427.95	192	-55	279
WRRC0080	332660	6643804	427.2	250	-68	275
WRRC0081	332520	6643476	429.35	190	-60	329
WRRC0082	332550	6643475	428.27	170	-52	285
WRRC0083	332559	6643576	350.97	140	-55	200
WRRC0085	332481	6643226	422.89	154	-55	270
WRRC0086	332672	6643002	421.53	200	-55	270
WRRC0087	332361	6644638	427.68	46	-55	271
WRRC0088	332469	6643891	433.52	75	-60	266
WRRC0089	332507	6643894	431.36	85	-60	269
WRRC0090	332515	6643926	429.94	80	-60	269
WRRC0091	332573	6643930	429.63	120	-60	270
WRRC0092	332555	6643399	439.85	180	-60	274
WRRC0093	332518	6643396	435.59	140	-61	273

info@javelinminerals.com.au

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
WRRC0094	332551	6643429	436.69	170	-59	266
WRRC0095	332427	6644481	427.02	100	-61	272
WRRC0096	332416	6644573	428.18	100	-56	270
WRRC0097	332423	6644527	427.59	100	-55	273
WRRC0098	332428	6644501	427.28	100	-61	267
WRRC0099	332507	6643960	427.94	78	-61	276
WRRC0100	332556	6643951	428.32	120	-59	271
WRRC0101	332508	6643999	427.2	60	-59	273
WRRC0102	332556	6644000	428.51	102	-61	271
WRRC0103	332607	6644000	430.47	150	-62	270
WRRC0104	332655	6644000	430.28	192	-60	270
WRRC0105	332530	6644056	427.41	60	-60	270
WRRC0106	332576	6644058	428.69	120	-58	271
WRRC0107	332624	6644058	430.43	150	-60	275
WRRC0108	332675	6644060	430.99	180	-60	275
WRRC0109	332596	6644126	429.91	108	-60	275
WRRC0110	332596	6644194	432.69	102	-60	272
WRRC0111	332655	6644197	432.42	150	-60	273
WRRC0112	332325	6644422	425.22	120	-55	273
WRRC0113	332362	6644421	425.66	120	-55	271
WRRC0114	332401	6644421	425.83	150	-55	272
WRRC0115	332466	6644479	427.34	150	-53	272
WRRC0116	332467	6644501	427.73	156	-55	271
WRRC0117	332482	6644529	428.4	115	-54	271
WRRC0118	332524	6644593	430.51	120	-54	272
WRRC0119	332474	6644557	428.86	150	-53	270
WRRC0120	332455	6644430	426.68	150	-56	272
WRRC0121	332512	6643469	429.01	120	-54	272
WRRC0122	332548	6643471	428.27	150	-60	270
WRRC0123	332554	6643471	428.08	174	-75	271
WRRC0124	332164	6644624	424.51	102	-55	270
WRRC0125	332075	6644471	423.22	60	-55	271
WRRC0126	332115	6644471	423.6	60	-56	268
WRRC0127	332584	6644028	429.35	148	52	268
WRRC0128	332620	6644058	430.22	190	-56	271
WRRC0129	332587	6644079	429.07	130	-56	274
WRRC0130	332485	6644487	427.79	160	-55	270

➢ info@javelinminerals.com.au→ +61 8 6319 1900

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
WRRC0131	332527	6644501	428.33	196	-51	271
WRRC0132	332517	6644529	428.84	178	-54	272
WRRC0133	332500	6644558	429.43	148	-56	272
WRRC0134	332442	6644466	426.94	118	-55	270
WRRC0135	332473	6644441	426.92	148	-57	268
WRRC0136	332500	6644464	427.58	178	-57	268
DEK01	332592	6643527	426.00	169.5	-60	0
DEK02	332535	6643609	425.80	125.0	-60	0
DEK03	332551	6643609	425.70	117.8	-60	0
DEK04	332578	6643607	425.50	136.1	-60	0
DEK05	332541	6643629	425.93	105.0	-60	0
DEK06	332576	6643628	425.68	132.7	-60	0
DEK07	332553	6643649	426.10	110.0	-60	0
DEK08	332580	6643647	425.85	130.1	-60	0
DEK09	332537	6643669	426.45	85.0	-60	0
DEK1	332592	6643527	426.00	169.5	-60	0
DEK10	332598	6643667	425.93	134.0	-60	0
DEK11	332535	6643689	426.90	102.8	-60	0
DEK12	332555	6643688	426.80	133.2	-60	0
DEK13b	332549	6643589	425.00	115.7	-60	0
DEK14	332569	6643588	425.00	130.5	-60	0
DEK15	332524	6643710	428.00	97.3	-60	0
DEK16	332576	6643708	428.00	136.1	-60	0
DEK17	332549	6643577	425.50	122.6	-60	0
DEK18	332567	6643577	425.35	131.3	-60	0
DEK19	332552	6643548	425.40	126.8	-60	0
DEK2	332535	6643609	425.80	125.0	-60	0
DEK20	332552	6643528	425.30	96.7	-60	0
DEK21	332680	6643603	430.00	239.7	-60	0
DEK22	332610	6643776	427.00	150.0	-60	0
DEK23	332639	6643685	430.00	246.7	-60	0
DEK24	332675	6643581	430.00	229.0	-60	0
DEK25	332552	6643719	428.00	129.8	-60	0
DEK26	332583	6643727	427.00	150.0	-60	0
DEK27	332628	6643725	427.00	233.3	-60	0
DEK28	332664	6643774	431.20	220.4	-60	0
DEK29	332674	6643803	429.90	209.1	-60	0

info@javelinminerals.com.au
 ≁61 8 6319 1900

Hole ID	Easting	Northing	Elevation	Depth (m)	Collar Dip	Collar Azi
DEK3	332551	6643609	425.70	117.8	-60	0
DEK30	332598	6643597	430.00	165.2	-60	0
DEK31	332654	6643594	430.00	210.1	-60	0
DEK32	332631	6643696	430.00	216.8	-60	0
DEK33	332643	6643785	431.05	175.0	-60	0
DEK34	332667	6643824	430.40	193.7	-60	0
DEK35	332571	6643738	429.00	153.0	-60	0
DEK36	332611	6643736	430.00	90.0	-60	0
DEK36b	332609	6643806	431.29	209.0	-60	0
DEK37	332559	6643698	427.00	128.0	-60	0
DEK38	332531	6643740	430.00	129.0	-60	0
DEK39	332590	6643597	430.00	126.0	-60	0
DEK4	332578	6643607	425.50	136.1	-60	0
DEK40	332585	6643597	430.00	173.2	-60	0
DEK41	332611	6643746	428.50	203.7	-60	0
DEK42	332594	6643697	430.00	175.0	-60	0
DEK43	332589	6643707	428.00	169.0	-60	0
DEK44	332637	6643600	426.00	200.0	-60	0
DEK45	332567	6643658	426.00	138.5	-60	0
DEK5	332541	6643629	425.93	105.0	-60	0
DEK6	332576	6643628	425.68	132.7	-60	0
DEK7	332553	6643649	426.10	110.0	-60	0
DEK8	332580	6643647	425.85	130.1	-60	0
DEK9	332537	6643669	426.45	85.0	-60	0
19ERC12	332528	6643651	333.86	38	-60	270

JORC CODE, 2012 EDITION - TABLE 1 REPORT

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques Drilling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information.	For the recent reverse circulation (RC) drilling (during April 2025), holes were sampled initially as 4 m "scoop" composites outside of the ore zone, and Im samples within the ore zone. These composites, alongside 1m split samples from within the ore zone, were submitted to Bureau Veritas for Au analysis. These 4m composites and 1m split samples generally weighed between 2.0-2.5kg. Historic drilling by various companies included reverse circulation (RC) drill samples which were collected and split in even metre intervals when sample was dry. Wet samples were speared or on occasion scoop sampled. RC drill chips from each metre were examined visually and logged by the geologist. Duplicate samples were collected at 1 m intervals by scoop sampling reject bags. Based on the historical drilling reviewed from Javelin through WAMEX files, drilling commenced from 1982, which included Vacuum, Augur, open hole percussion/ RAB, RC and diamond core drilling (mostly NQ, also PQ and HQ). Sampling methods included chip samples collected and split in even 1 metre or 4 metre composite intervals for dry samples. Wet samples were speared or on occasion scoop sampled. Diamond core was half core sampled at selected intervals where the geologist recorded. Samples are collected from rig mounted cyclone cone splitter at 1m intervals. Duplicate samples are collected from reject bags every 10m (by spear sampling). Calico samples are weighed to ensure minimum size of 2.5kg are collected. Current QAQC protocols include the analysis of field duplicates and the insertion of appropriate commercial standards (I, e., certified reference material (CRM). Sample protocols where they are described from historical reports sourced from WAMEX followed by historic operators are in line with industry standards at the time. RC drilling was used to obtain 1 m samples from which a 1 m samples (mineralisation zones) or 2m and 4m composite samples (waste zones) of approximately 2.5 to 5kg was also collected. For the most recent drilling (April 2025) the Eure
	open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details	Project was drilled with RC drilling using a 138mm diameter bit.

➢ info@javelinminerals.com.au→ +61 8 6319 1900

Criteria	JORC Code explanation	Commentary
	(e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	For the 2020-2021 drilling the RC rig specs are as follows: Schramm T450 RC rig - 5 ½ inch diameter face sampling hammer LC36 KWL700 RC rig (for deep holes) – 5 inch face sampling hammer
		A350 RC rig - 4 ½ inch diameter face sampling hammer; drilling since May 2021) Historically, the project has been drilled using rotary air blast (RAB), percussion (Perc), reverse circulation
		(RC) and diamond core drilling (DD) over numerous campaigns by several companies. The majority of holes are on a grid either infilling
		within or surrounding historical pit and underground (UG) workings or extending along strike into geochemical or geophysical (areo-mag) anomalies. The recent programs drilled in 2020 and 2021 have all been RC drilling. The majority of drill holes 270° MGA grid.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	For the most recent drilling (April 2025) recovery was monitored while drilling through visual inspection. Minor wet intervals occur and can affect RC sample recovery, although most recent drilling has been with rigs of sufficient capacity to provide dry chip samples. Chip sample recovery is generally not logged.
		Historical RC sample recovery is visually assessed and recorded in drill logs. RC drilling programs showed good recoveries. From WAMEX records, descriptions noted that the majority of DD drilling had good recoveries >90%, although several holes recorded recoveries of ~50% or lower within highly fractured quartz vein intervals, and also where there was intersection of historical UG workings.
		RC samples were visually checked for recovery, moisture, and contamination. A cyclone and splitter were used to provide a uniform sample and these were routinely cleaned. Wet samples and logged barren zone, 4 m composites were speared to obtain the most representative sample possible.
		Sample recoveries are mostly high with only a very small number of wet samples recorded by geologists. No significant sample loss has been recorded with a corresponding increase in Au present. No sample bias is anticipated, and no preferential loss/gain of grade material has been noted
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	Logging has been completed for all DD and RC drilling both recent and historic, including rock type, grain size, texture, colour, foliation, mineralogy, alteration, sulphide and veining, with a detailed

Criteria	JORC Code explanation	Commentary
	appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or	description written for many intervals. All logging was of a level sufficient in detail to support resource estimation.
	channel, etc) photography. The total length and percentage of the relevant intersections logged.	Historical RC chips are geologically logged at 1 metre intervals. RC chip trays have been stored for future reference.
		Detailed logging exists for more recent drilled prior to WRD holes (18EKDD, and 19ERC prefix holes, but most of the historical RC and DD holes drilled do not have the logging digitally recorded in WRD database files provided, although the WAMEX files do contain PDF copies of RC and DD geology logs WRD RC chip logging included the recording of colour, lithology, regolith, oxidation state, colour, alteration, mineralisation, and veining/quartz content. The entire length of each hole was logged. Previous RC and DD drilling completed by previous owners contained similar detailed geological descriptions in PDF logs.
		Remaining core was examined from the 18EKDD drilling program at the Eureka project field office. The remaining core is in good condition but has been poorly labelled, with intervals and hole identification often indistinguishable as no aluminium tags or more permanent markers were used on core blocks or to label the core trays.
		 The percentage of drilling logged that was used in the 2021 MRE are record as follows: 2020-21 RC drilling – WRRC holes = 96% logged, abandoned holes not logged records in WRD DB 19ERC prefix – RC drilling 93% logged records in WRD 18EKDD – RC/DD drilling 88% logged records in WRD DB ERC holes – RC drilling – 4% logged records in WRD DB DEK, WEK – RC/DD drilling – 8% logged records in WRD BD
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality	For the most recent drilling (April 2025) RC samples were split for every metre at 1m intervals with a cone splitter mounted beneath the cyclone. Initial sample submission was for 4m scoop sample composites outside the ore zone, with 1m split sample submitted within the ore zone.
	and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise	Certified Reference Materials (CRMs), RC field duplicates, and blanks, were submitted at a combined ratio of 1:20 with the 1m samples, with 2 CRMs and duplicates each per 100 1m samples and

info@javelinminerals.com.au
 ≁61 8 6319 1900

Criteria	JORC Code explanation	Commentary
	representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	1 blank per 100 1m samples. Additionally, an appropriate CRM was submitted at the end of every 4m composite section submitted. The grade ranges of the submitted CRMs were selected based on the expected grade and economic grade ranges.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Previous companies have conducted diamond drilling; WAMEX records have noted that ½ core sampling was mostly conducted, generally in highly selective intervals based
		RC chips were collected from rig mounted cyclone cone splitter as 1m samples. 2 and 4m composites using a sample scoop were taken from the 1m RC plastic sample bags. The samples were generally dry. 1m RC samples are also speared.
		At the commercial laboratory, RC samples are dried at minimum 60° C. If the sample weight is greater than 3 kg, the sample is riffle split. It is then pulverised to a grind size where 85% of the sample passes 75 micron. Field QAQC procedures included the insertion of CRMs and field duplicates for RC drilling after every 10 samples.
		CRMs represented approximately 5% of total samples.
		Field duplicates were collected during the RC drilling programs in 2020-21.
		Duplicate samples are submitted at a rate of one duplicate submitted for every 10 samples. Duplicates samples represent approximately 5% of total samples.
		Based on statistical analysis of the field duplicate results, there is no evidence to suggest the samples are not representative.
		A sample size of between 2.5 and 5 kg was collected. This size is considered appropriate, and representative of the material being sampled given the width and continuity of the intersections, and the grain size of the material being collected.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers,	Historic 1m split RC samples and all historic diamond core samples have been analysed for Au (10 ppb) and Cu (1 ppm) – for Au, the samples have been analysed by firing a 40g or 50g portion of the sample with an ICP-OES or AAS finish. Copper was determined by 4-acid digest with an ICP-OES finish.

Criteria	JORC Code explanation	Commentary
Ucrification of sampling and	IORC Code explanation	CommentaryThe primary laboratory used for all recent and some historical assaying was Bureau Veritas in Canning Vale, WA.The most recent drilling (2025) submitted its samples to Bureau Veritas in Kalgoorlie, WA. These samples were analysed for Au (10ppb), with 202 selected samples analysed for Cu (1ppm) as well. Au analysis consisted of fire assay of a 40g pulverised sample with an Atomic Absorption Spectrometry (AAS) finish. Cu analysis consisted of a mixed-acid digest with an ICP-OES finishPrevious operators used commercial laboratories such as Amdel, ALS, SGS, Kalgoorlie Assay and Genalysis, and included umpire laboratory checks between these labs.Standards (Certified Reference Materials – CRMs) were submitted with a minimum 3/100 samples, blanks minimum 2/100 samples, duplicates minimum 2/100 samples for RC and DD drilling.Various OREAS Certified Reference Materials are appropriate for the mineralisation grade and style.Analysis of the CRM and filed duplicate data show the sampling is unbiased and suitable for use in mineral resource estimation.All data has been checked internally for correctness
assaying	intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	by senior consultants and contractors. There have been no twinned holes drilled at this point, although there is very closely spaced RC grade control at various orientations drilling that confirms the continuity of mineralisation. Historical drilling was captured using Field Marshall software, with the data loaded directly into the central database. Recent drilling has been recorded using Field Marshall software on field laptops.
		Assay results were loaded electronically, directly from the assay laboratory. All drillhole data has been visually validated prior to resource estimation. All drillhole information is stored graphically and digitally in MS excel and MS access formats. No adjustments have been made to assay data.
location of data points	Accuracy and quality of surveys used to	For drilling completed prior to 2020 and post 2020
	locate drill holes (collar and down-hole	data collars were surveyed using DGPS equipment or
	surveye) tranches mine workings and	by the mine site surveyed using DGF5 equipment of
	surveys), irenches, mine workings and	by the mine site surveyors to sub 0.5 m accuracy.

☑ info@javelinminerals.com.au→ +61 8 6319 1900

Criteria	JORC Code explanation	Commentary
	other locations used in Mineral Resource estimation.	For the recent drilling, holes were set out and picked up using RTK GPS by qualified surveyors.
	Specification of the grid system used.	Datum: Geodetic Datum of Australia 94 (GDA94)
	Quality and adaguagy of tanggraphia	Projection: Map Grid of Australia (MGA)
	control.	Zone: Zone 51
		For recent drilling (2020 onwards) dip and azimuth readings have been completed using a north seeking gyro survey (Reflex or Axis) for all holes where possible. For the Ramelius drilling (~2012 – 2013), deeper holes were surveyed by gyro, with shorter grade control holes using the collar compass and clinometer readings at surface.
		Topographic surfaces have been generated from aerial photogrammetry or detailed surveys. Some older drillhole RL data has been adjusted to match accurate topography.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Historical exploration and drilling at Eureka targeted discrete areas based on surface geochemical and geophysical anomalies, historical workings that identified the location of host mineralisation. Consequently, current drilling is not grid based, but across the historical open pit and UG workings the drill spacing is nominally 10m N x 10m E. Extensions to the north and south have been nominally drilled at 20m N x 20m/10m spaced drilling. The mineralised domains have sufficient continuity in both, and classification applied under the 2012
		JORC Code Four metre composite samples were collected from RC drill holes within the logged barren intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drill hole collars are set-out on the MGA grid and drill lines were generally at E- W direction. Drilling sections are orientated perpendicular to the strike of the overall shear orientation and mineralised host rocks. Several shallow dipping vein structures are noted in the southern pit wall, but overall, the mineralised vein structures appear parallel to sub-parallel with the shear orientation from north to south. The drilling is angled at either -55° or -60° which is
		close to perpendicular to the dip of the shear trend and host units

🖂 info@javelinminerals.com.au 2 +61 8 6319 1900

Criteria	JORC Code explanation	Commentary
		No orientation-based sampling bias has been identified
		in the data at this point.
Sample security	The measures taken to ensure sample security.	Chain of custody was managed by company representatives and is considered appropriate. The laboratory receipts received samples against the sample dispatch documents and issued a reconciliation report for every sample batch.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data is validated by the contract database administrator whilst loading into the Javelin MS Access database.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and Land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Project acquisition comprises 4 mining licences M24/0584, M24/0585, M24/0586 and M24/0189 and 2 prospecting licence P24/5549 and P24/5548. The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Discovery and initial UG workings commenced 1897. UG mining up to 1941 produced 797 oz Au from 809 tonnes at 27g/t Au. More recently, the tenement area has been previously explored by numerous companies including: CSR (1982-83) – included 4.4km of RC drilling West Coast Holdings (WCH) (1984-87) – Surface geochemistry (including Augur drilling), aero-mag surveys, vacuum drilling, Percussion, DC and DD drilling; surface mapping and gridding; evaluation and mining of oxide resources Open Pit) and evaluation of UG resources – open pit mining produced 45,865 tonnes at 4.64g/t Au, for 6,842 oz Au (WCH, 1986). Glengarry Mining NL (1994) – Aeromag Interpretation, RAB Drilling Jasper Mining NL (+ JV partners) (1996-2004) – UG mine refurbishment & trial mining from November 1998 to June 1999 – approx. 400t @ 6g/t Au from 80m Level (JMM, 2000); Project management plan (1998-99) Sherlock Bay Nickel Corp (SBNC) (2004-2006) – Ground Mag survey; gridding; surface mapping; RC drilling (ERC)

Criteria	JORC Code explanation	Commentary
		International Gold P/L (2007-2010) – Mag-radiometric survey, Augur drilling; UG design study (41,000 t @ 10.1 g/t, 13.3k Oz Au)
		Central Iron Ore Ltd (2011-14) – Resource evaluation (451,000y @ 4.4g/t, 64,200 oz Au); Geophysical data review.
Geology	Deposit type, geological setting, and style of mineralisation.	The Eureka gold deposit occurs on the eastern limb of the major south-east plunging Goongarrie-Mt. Pleasant Anticline. The eastern limb consists predominantly of north-north-west trending mafic and ultramafic lithologies, with minor thin mainly interflow sediments, bounded to the west by pre-to syntectonic granitoid forming the core of the regional anticline.
		To the east, the Bardoc-Broad Arrow Synform occurring between the major Goongarrie- Mt. Pleasant and Scotia-Kanowma Anticlines is subject to significant disruption by the broad Bardoc Tectonic Zone.
		This zone consists of multiple shear zones occurring within intercalated felsic, mafic and ultramafic lithologies in the vicinity of the synformal axis. The Bardoc Tectonic Zone is host to the Paddington and Bardoc gold deposits.
		Local Geology and Mineralisation
		The Eureka deposit is located within a sequence of mafic and ultramafic rocks forming part of the Kalgoorlie – Menzies greenstone belt. The layered sequence is approximatley 6 km wide with a northerly trend. The sequence is intruded by east-west trending Proterozoic mafic dykes and is bunded to the east and west by complex granitic plutons.
		In the vicinity of the Eureka Mine the sequence has a generally easterly dip of 65° to 70°, parallel by the regional foliation. Regional metamorphism of the sequence is lower greenschist facies.
		Two distinct shale units are present, the western or footwall unit being the Copper Mine Shale which marks the top of the sill and the hanging wall unit, an interflow unit amongst the basalt.
		Weathering profile is extensive with the deepest weathering along the main shear zones and contacts causing a weathering trough of highly oxidised rock that extends down the main shear to the bottom of the pit exposures. Both the north end and south end exposures of the pit show massive and blocky clay altered rock masses bounded by narrow, highly sheared zones, commonly containing limonitic quartz veining. The quartz vein hosted shears run parallel or sub-parallel to the main N-S shear trend, and less commonly cross cutting, shallow dipping quartz veins.
		High grade gold mineralisation at Eureka is associated with veining within the altered lower mafics. The vein system typically consists of quartz, carbonate and sulphide and has a variable thickness of up to 20m. The mineralisation exploited in the open pit consists of a number of lens shaped shoots up to 10m wide within an intensely sheared zone some 30m wide.

Criteria	JORC Code explanation	Commentary
Drill hole	A summary of all	The drill hole information has been inserted and tubulated within the document
(information material to the	for the drill holes reported. All relevant drill hole details were presented in ASX
Information	understanding of the	release in Appendix 2
	exploration results	
	including a tabulation of the	
	following information for all	
	Material drill holes:	
	\circ easting and northing of	
	the drill hole collar	
	 elevation or RL 	
	(Reduced Level –	
	 elevation above sea 	
	level in metres) of the	
	drill hole collar	
	 dip and azimuth of the 	
	nole	
	intercention denth	
	 hole length. 	
	If the exclusion of this	
	information is justified on	
	the basis that the	
	information is not Material	
	and this exclusion does not	
	detract from the	
	understanding of the report,	
	the Competent Person	
	should clearly explain why	
	this is the case.	
Data aggregation	In reporting Exploration	Top-cuts have not been applied to previously announced drilling results.
methods	Results, weighting	
	averaging techniques,	Aggregated sample assays calculated using a length weighted average.
	maximum and/or minimum	Cold equivalent values were not used for previous reporting of exploration
	grade truncations (e.g.,	results
	cutting of high grades) and	
	cut-off grades are usually	
	Material and should be	
	incorporate chart langths	
	high grade recults and	
	Ingri-graue results and	
	results the procedure used	
	for such aggregation should	
	he stated and some tunical	
	examples of such	
	aggregations should be	
	shown in detail	
	The assumptions used for	
	any reporting of metal	
	equivalent values should	
L		

Criteria	JORC Code explanation	Commentary
	be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known').	The mineralised zones vary in strike between the Main and North prospects. Gold mineralisation is steeply dipping in the Main zone but more shallow drilling in the North prospect. Drill hole orientation reflects the change in strike of the rocks. Reported down hole intersections are believed to approximate true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures in the current announcement
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The results have been sourced from the historical reports and have been substantially documented.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Available open file company airborne geophysical surveys was conducted using the Western Australia Department of Mines, Industry, Regulation and Safety (DMIRS) online systems which provides records of previous geophysical surveys and exploration activities. The search revealed that the project area has been subject to a number of high resolution airborne geophysical surveys. An initial data search over the project area revealed that high resolution "multi- client" aeromagnetic data was available for purchase. This was purchased from Geoimage and delivered directly to CORE. The data was originally flown for Goldfields Exploration in 1995 by Kevron Geophysics. The survey lines were flown at 075-255° with 40m line spacings and a 40m flying height. The data acquired included magnetics, radiometrics and digital terrain (DTM). A listing of the survey specifications are delivered with this memo along with the data purchased from Geoimage.Magnetic and Radiometric and DTM Data

info@javelinminerals.com.au
 → 61 8 6319 1900

Criteria	JORC Code explanation	Commentary
		The aeromagnetic data was processing was to highlight and better define controlling structures, lithological variations and subtle magnetic responses. All magnetic data was reduced to the pole (with the exception of the analytic signal) and are explained further below;
		<u>1VD</u> The first vertical derivative (1VD) is theoretically the rate of change of the magnetic field with increasing height. In practice it has two desirable effects. Firstly, it tends to sharpen and separate magnetic anomalies. Secondly it makes the mean background level of the data equal to zero. The horizontal derivatives were also calculated for the principal orthogonal directions (X+Y). These look at the major signal components in the X (East-West) and Y (North-South) directions and may assist in the better definition of lithological units and structures oriented in these directions.
		<u>2VD</u> The second vertical derivative (2VD) essentially applies the first vertical derivative on the data twice and is the rate of change of the rate of change of the magnetic field with increasing height. It sharpens and separates anomalies even further and is also symmetric about zero.
		<u>AGC</u> Automatic gain control (AGC) was performed on the vertical derivatives in order to enhance magnetic features within the dataset. It is s a process whereby all magnetic anomalies or features within a dataset are reduced/increased to similar amplitudes. This is very useful for extracting fine detail from datasets that are otherwise dominated by one or two high amplitude features, as is sometimes the case where magnetite bodies are present.
		<u>AS</u> Analytic Signal (AS) is the square root of the sum of the square of the derivatives in the three principal component directions i.e. X, Y, Z. The filter essentially converts all magnetic responses to positive features and places the magnetic anomaly directly above the source. This can also be an effective filter where there is remanent magnetisation and it also enhances near surface responses. The downside of this filter is that dip information cannot be readily interpreted from the data.
		$\frac{\text{TDR}}{\text{Tilt Derivative (TDR) normalises data ranges, enhances subtle features and is the result of the difference between the total horizontal derivatives (X,Y) and the vertical derivative (Z). It is a good edge detection filter, but features may not be positioned directly above the source.}$
		<u>RTP</u> Reduction to the Pole (RTP) takes into account the magnetisation due to the earth's field and corrects for this. The result is that the magnetic anomaly is shifted so that it is over the source giving rise to the response. However, the RTP correction is mathematically unstable at low latitudes and results in a smearing or lengthening of north south trending magnetic anomalies.
		Significant processing of the magnetic data has yielded three sets of products. The first set of grids is commonly used in geophysics to enhance structures and features. The second set of grids are advanced combinations of the first set. The third set combines the standard and advanced products using advanced raster image display techniques All products are derived from the Total Magnetic Intensity (TMI) grid.

info@javelinminerals.com.au
 → +61 8 6319 1900

Criteria	JORC Code explanation	Commentary
		Standard 1 st Set (grids maps and images):
		1VD = First Vertical Derivative
		2VD = Second Vertical Derivative
		1XD = First Derivative in the X (90 degrees, +X) direction
		1YD = First Derivative in the Y (0 degrees, +Y) direction
		RTP = Reduction To the Pole (inclination: -64.2, declination 1.1)
		TDR = Tilt Derivative
		AS = Analytic Signal
		AGC = Analytic Gain Control
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Planned further work includes additional drilling to test magnetic anomalies and geochemical trends at depth.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	<i>Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used.</i>	 The Eureka drilling data was supplied to Odessa Resources Pty Ltd (Odessa) in the form of Excel spreadsheets. These included collar, downhole survey and assay data. Odessa compiled the data into text files that were suitable for import to Leapfrog Geo. This database been relied upon as the source of data for the 2025 MRE work. Odessa carried out a database validation review of the supplied drilling data, supplied digital terrain models (DTM) prior to undertaking the resource estimation update. Validation checks completed prior to MRE work for the MRE included the following: Collar duplications, hole collar checks with natural surface topography Downhole survey deviation checks in 3D software Checking for overlapping sample intervals Identification of missing assay intervals – assumed to be unsampled intervals Removal of all negative and character values from the assay database QAQC data checks
🧔 1202 Hay Str	eet West Perth WA 6005	info@javelinminerals.com.au ABN 39 151 900 855 39

Criteria	JORC Code explanation	Commentary
		For historic holes, checks were carried with WAMEX open file records.
Site visits	Site visits Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case.	The Mineral Resource Competent Person has not visited the site.
		Mr. Gillman (CP) will conduct a site visit during the next quarter as part of the ongoing exploration programs.
		The resource has been previously publicly reported on two occasions with site verifications undertaken by the relevant CP at the time. As the database has largely remained unchanged a site visit was deemed unnecessary for the current MRE. However, the CP will endeavor to undertake a site visit when possible.
Geological interpretation	<i>Confidence in (or</i> <i>conversely, the</i> <i>uncertainty of) the</i> <i>geological</i> <i>interpretation of the</i> <i>mineral deposit.</i> <i>Nature of the data</i> <i>used and of any</i> <i>assumptions made.</i> <i>The effect, if any, of</i> <i>alternative</i> <i>interpretations on</i> <i>Minoral Basaurage</i>	The confidence in the geological interpretation of the mineral deposit is good as a result of the close, optimally spaced RC drilling confirming the location and tenor of mineralisation previously intersected by historical RC and DD drilling. Gold mineralisation continuity in the Main zone mineralisation consisting of two main moderately east-dipping zones in close proximity, following the trend of the main shear. Along the hanging wall and in the North zone, mineralisation is more inconsistent, although many old holes have selective sampling.
		Data is sourced from the recent and historical drill logging and RC chip logging/ DD core logging, and geological interpretations from previous work. Interpretations of the current grade domains compared well with the previous work.
	estimation. The use of geology in quiding and controlling	Each grade intercept was assigned or "tagged" a lode ID based on the continuity of mineralisation along strike and down dip.
	guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	Weathering surfaces were interpreted for oxide, transitional and primary weathering boundaries from available logging data. This data allowed the density values for the mineral resource estimate to be sub-divided by weathering domains.
		Interpretations of the current grade domains compared well with the previous interpretations.
		The current grade domain interpretations were carried out using a nominal 0.3 g/t Au cut off.
		Inspection of the previous resource wireframes showed widespread internal dilution ie., inclusion of below cut off grades.
		Although the general geometries of the current and previous models compared well the nature of the Leapfrog modelling process allowed for a more selective interpretation that allowed for the exclusion of excessive internal dilution.
		Drillhole geology logging information containing lithology codes, weathering, quartz vein percentages, and general lithological descriptions were used to assist and guide geology and mineralisation interpretations informing the estimate.
		Previous resource interpretations, which are considered by the CP to be of good quality were used as an initial guide for the current interpretations. The bulk of the mineralisation in the Main zone has been constrained within two main mineralised zones within the overall shear zone striking north to south

Criteria	JORC Code explanation	Commentary
		and dipping to the east at 70° . The parth zone mineralization has a similar strike
		orientation but with a shallower dip averaging 42° to the east .
		Gold mineralisation is mostly restricted in two main parallel to the quartz vein hosted shear orientation.
		A mineralised laterite zone has been modelled horizontally across the north end of the Eureka Pit.
Dimonoiono	The extent and	The recourse erec outends over 0 zenec
Dimensions	variability of the Mineral Resource	Main Zone – approximate strike length of 790m, over a combined width of 150m, extending from surface to a known vertical depth of 300 m
	<i>expressed as length (along strike or otherwise), plan width,</i>	North Zone – discontinuous overall strike length of 180m, over a total width of 30m, extending from surface to a maximum vertical depth of 145 m.
	and depth below surface to the upper and lower limits of the Mineral Resource.	16 mineralisation domains have been modelled for the 2025 MRE, with 12 domains modelled in Main zone or Eureka Pit area, and 3 small domains located in the North zone. The laterite domain covers an approximate area 240m x 110m, immediately north of the open pit where economic mineralisation occurs to a maximum depth of 8m.
Estimation	The nature and appropriateness of the	An Octree block model was constructed to enable gold estimation of all
techniques	estimation technique(s)	
,	applied and key	Estimation Method
	assumptions, including treatment of extreme grade values, domaining, interpolation parameters	An Inverse distance squared (ID ²) interpolation was used to estimate grade as this estimation technique provides for a better local estimation of grade which particularly relevant in high-nugget gold deposits such as Eureka.
	and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen	The data is informed by reasonable quality drilling on regular drill spacing – down to 10m x 10m for the central area, broadening out to a nominal 25mE x 25mN to the north and south of the Main zone. Average extraplotaion of the wireframes approximately 20m with a single maximum extrapolation of 90m.
	include a description of	Domaining and Compositing:
	parameters used. The availability of check	Assay (numeric) values were converted to a category. This allowed for the selection and assignment of grade intervals to separate lode (domain)
	<i>estimates, previous estimates and/or mine</i>	identifiers. 1m composites were extracted separately for each domain.
	production records and	Treatment of Future Orados
	Resource estimate takes appropriate account of	A top cut of 30 g/t Au was applied for all domains.
	such data. The accumptions made	Variography:
	regarding recovery of by-	Variograms were modeled using the 1m composites for two well informed domains (100, 200).
	products. Estimation of deleterious	Variography failed to produce satisfactory results for other domains due to lack of samples.
	elements or other non- grade variables of	Grade Interpolation and Search Parameters:
	economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model	The mineralised domain wireframes were used to code the block model and the volume between the wireframe models and the coded block model were checked in order to ensure that the sub-blocking size are appropriate for the interpreted domains.
	interpolation, the block	Estimation was carried out on capped gold grade. Hard domain boundaries
0 1202 Hay Str	eet West Porth WA 6005	ARN 39 151 900 855

info@javelinminerals.com.a
 +61 8 6319 1900

Criteria	JORC Code explanation		Comn	nentary		
	size in relation to the average sample spacing and the search employed.	were used between the mineralised domains, meaning only composites within the domain are used to estimate inside that domain.				
	Any assumptions behind modelling of selective mining units	Search ellipses, that were oriented in the plane of the lode, of 80x40x10 (max/inter/min) were used.				
	Any assumptions about correlation between	Gold was estimated in one pass.				
	<i>Variables.</i> Description of how the geological interpretation was used to control the	Interpolation parameters v a maximum number of 8 co smearing.	vere set to a i omposites for	minimum num the estimate	ber of 4 com to avoid exce	posites and essive grade
	Discussion of basis for using or not using grade	Software Used: Leapfrog Geo/Edge 2025.	1.1			
	cutting or capping. The process of validation, the checking process	Check Estimates: This est	imate used ar	n Ordinary Krig	ged (OK) est	imation as a
	used, the comparison of model data to drill hole data, and use of	check estimate against tr global estimate results for zone.	the well-info	ation, with no ormed mineral	significant v isation doma	ins for each
	reconciliation data if available.	The variations between the carried out in 2021 are sum	e current estim nmarised belo	nate and the pi w:	revious estim	ate that was
		MRE Attribute	2021	2025	Variance	Variance %
		Tonnage	2,452,000	2,041,588	-410,413	-20
		Grade Total	1.42	1.69	0.27	16
		Contained Gold Total	112,000	110,687	-1,313	-1
		The decrease in tonnage and increase in grade is attributable to the more selective techniques ie., less dilution, used in the current resource estimate. The variance in contained gold is negligible.				
		MRE does not include any	UG depletion	n from historic	al workings.	
		No recovery of by-produc	ts is anticipat	ed.		
		Only gold was interpolated	d into the bloc	ck model.		
		The parent block dimension 10m N by 5m E	ons used in th E by 5m RL, wi	e block model th sub-cells o	were: f 1.25m by 2.	5m by 1.25m.
		For the block model defir blocking deemed approp relatively narrow-lode cros	nition parame riate for the ss-strike dime	ters, the prim mineralisation ensions.	ary block siz n style ie. a	e and sub- ccounts for
		For the block model defir blocking deemed approp relatively narrow-lode cros	nition parame riate for the ss-strike dime	ters, the prim mineralisation ensions.	ary block siz n style ie. a	e and sub- ccounts for
		No correlation analysis ha multi- element samples in	as been unde the database	ertaken due te provided.	o the limited	number of

info@javelinminerals.com.au
 → +61 8 6319 1900

Criteria	JORC Code explanation	Commentary
		The mineralisation domain interpretation was used at all stages to control the estimation. Overall, the mineralisation was constrained by wireframes constructed using a nominal 0.3g/tAu cut-off grade lower threshold within shear-hosted, quartz veins and vein selvedges within a predominantly mafic/interflow sediments host unit. Statistical analysis was carried out for all domains. A top cut of 30g/tAu was applied Visual Inspection Block model validation was conducted by the following means: Visual inspection of block model estimation in relation to raw drill data on a section-by-section basis. Swath Plots Validation runs, in which the ID2 grade estimate is compared to the kriged estimate, were compared against the raw composite data in slices oriented along the Y axis (swath plots). The data indicate that the ID2 has done an adequate job in estimating a global resource grade with no systematic bias towards overestimating the grades. The smoothing effects of the kriging interpolant are consistent with both the inherent nature of the kriging process.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	The tonnages are estimated on a dry tonnes basis. Moisture was not considered in the density assignment.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	A reporting cut-off grade of 0.5 g/t Au was applied to all material below the open pit.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	The MRE is reported on a global ie., no pit optimisation work has been carried out. The 2021 MRE was optimized using gold prices of A\$2,500/oz and A\$2,850/oz together with cost experience for Mining, Processing and Administration. The current MRE conforms to similar spatial extents to the 2021 optimised resource. The current gold price of ~A\$5,000 would likely underpin reasonable prospects for economic extraction.

➢ info@javelinminerals.com.au→ +61 8 6319 1900

Criteria	JORC Code explanation	Comme	entary	
<i>Metallurgical factors or assumptions</i>	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	No recent metallurgical testwork and rep Metallurgical factors and assumption ma styles from examples in Western Australi • Oxide and transition - 95% rec • Fresh - 90% recovery	porting have been conducted ay be based on similar mine a. povery	d. eralisation
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	No environmental factors have been con- The deposit areas have previous been and open pit mining and extensive surface	sidered as part of the May 2 the subject of historical un ce work.	021 MRE. derground
Bulk density	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the	Dry bulk densities were determined from data collected using the weight in air/weight in water method for selected drill core and is supported by the reconciliation of tonnages from the as-mined pit. Bulk density values have been applied to the block model (across all rock types) – oxidised 2.2 t/m ³ , transitional 2.4 t/m ³ and fresh rock 2.8 t/m ³ .		
1202 Hay Street West Perth WA 6005 www.javelinminerals.com.au		Info@javelinminerals.com.au ≁61 8 6319 1900	ABN 39 151 900 855 ASX:JAV	44

Criteria	JORC Code explanation	Commentary
	nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.	No descriptions of any previous BD methodology have been located in order to make assumptions for the 2021 MRE It is assumed that the bulk density will have little variation within the separate material types across the breadth of the project area. Therefore, a single value applied to each material type is considered acceptable.
Classification	The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit.	 The Mineral Resource estimate is reported here in compliance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' by the Joint Ore Reserves Committee (JORC). The resource was classified as Indicated, and Inferred Mineral Resource based on data quality, sample spacing, and lode continuity. The Indicated Mineral Resource was defined within areas of close spaced diamond and RC drilling of less than 20m by 20m, and where the continuity and predictability of the lode positions is good. The Inferred Mineral Resource was assigned to areas of the deposit where drill hole spacing was greater than 20m by 20m. The resource classification is based on the quality of information for the drill spacing and geostatistical measures to provide confidence in the tonnage and grade estimates. The input data is comprehensive in its coverage of mineralisation and does not favour or misrepresent in-situ mineralisation. The definition of mineralised zones is based on high level geological understanding producing a robust model of mineralised domains. Validation of the block model shows good correlation of the input data to the estimated grades. Open hole percussion holes (RAB and Perc) and some older RC holes were excluded from the estimation and data spacing when determining relative confidence for classification.
Audits or reviews	<i>The results of any audits or reviews of Mineral Resource estimates.</i>	No audits have been carried on the MRE.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person.	The MRE is made up predominantly of moderately thick to narrow, very continuous mineralised gold zones hosted within sheared alteration zones containing high grade quartz veining. The close density of drilling supports the classification of 71% of the Mineral Resource to be classified as Indicated (by contained metal). The deposit geometry and continuity has been adequately interpreted to reflect

L

Criteria	JORC Code explanation	Commentary
	For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	the applied level for Indicated and Inferred Mineral Resources. The data quality is good, and the drill holes have detailed logs produced by qualified geologists. Recognised laboratories have been used for all analyses in relation to the Eureka MRE. The MRE is a reasonable representation of the global contained metal but not a local estimation despite the advantages of an ID2 interpolation. Confidence in the MRE is such that it will provide adequate accuracy for global resource evaluation for selective open pit mining. The MRE has been depleted by open pit mining for which accurate open pit mining records are either not available or incomplete. Historic underground gold extraction includes 809 tonnes recovery of 797 oz of gold at an average grade of 27 g/t Au between 1897 to 1940.

