

ASX ANNOUNCEMENT

16 July 2025

Extensive Near Surface Laterite Mineralisation Identified at Iguana

Results have confirmed an extensive and shallow gold mineralised zone at the Iguana Gold Project

HIGHLIGHTS

- Beacon has received results from the recent two air core drill programs (232 holes for 2,343 metres) which targeted an extensive mineralised zone to the east of the planned Iguana Pit
- Results confirm the presence of near-surface Laterite hosted gold, at grades suitable for an initial low cost mining operation at Iguana
- Significant 'Laterite' Mineralisation Included:
 - 4 metres @ 1.06g/t gold from 2 metres (IGLT_077)
 - 2 metres @ 1.82g/t gold from 2 metres (IGLT_133)
 - 1 metre @ 3.41g/t gold from 2 metres (IGLT_360)
 - 2 metres @ 1.55 g/t gold from 2 metres (IGLT_339)
 - 2 metres @ 1.50 g/t gold from 4 metres (IGLT_041)
 - 2 metres @ 1.50 g/t gold from 2 metres (IGLT_204)
 - 2 metres @ 1.35 g/t gold from 2 metres (IGLT_225)
 - 2 metres @ 1.27 g/t gold from 2 metres (IGLT_165)
 - 2 metres @ 1.18 g/t gold from 2 metres (IGLT_131)
 - 2 metres @ 1.11 g/t gold from 3 metres (IGLT_292)
 - 2 metres @ 8.10 g/t gold from 2 metres (IGLT_202)
 - 1 metre @ 2.13 g/t gold from 1 metre (IGLT_347)
- Significant 'Laterite' Mineralisation from surface Included:
 - 4 metres @ 4.13 g/t gold from surface (IGLT_229)
 Including 2 metres @ 7.65g/t from 2 metres
 - 2 metres @ 6.06 g/t gold from surface (IGLT_190)
 - 4 metres @ 2.31 g/t gold from surface (IGLT_168)
 Including 2 metres @ 4.55g/t from 2 metres
 - 1 metre @ 8.10 g/t gold from surface (IGLT_124)
 - 4 metres @ 1.78 g/t gold from surface (IGLT_169)
 - 2 metres @ 1.43 g/t gold from surface (IGLT_158)
 - 2 metres @ 1.16 g/t gold from surface (IGLT_063)
 - 2 metres @ 1.15 g/t gold from surface (IGLT_266)
 - 1 metre @ 2.09 g/t gold from surface (IGLT_363)
- Resource Modelling of this extensive zone is ongoing, with assistance from consultants. Results of this Resource Modelling are expected to be released in the September quarter.

Beacon Minerals Executive Chairman and Managing Director Graham McGarry commented:

"We are very pleased with the drill results from the Iguana Laterite drill programs. The mineralisation style and depths provide Beacon Minerals a great opportunity to begin gold production from the Iguana Project in a quick and cost-effective manner as we continue to develop this outstanding project.

"The extent and grade of the laterites further indicate the economic potential present at Iguana".

Beacon Minerals Limited (ASX: BCN) ("Beacon" or "the Company") is pleased to announce the near surface laterite drill program results from the Lady Ida – Iguana Deposit.

Iguana Deposit Overview

The Iguana deposit is a part of the Lady Ida Project, which sits on the inferred extension of the Ida Fault and is a part of the north-south striking Mount Ida Greenstone Belt, comprising predominantly metamorphosed (upper greenschist-amphibolite facies) mafic and ultramafic rocks. The complex structural history provides the space for mineralisation deposition. The mineralisation is controlled by structural and hydrothermal alteration.

On the deposit scale, the depth of weathering increases significantly within shear zones and reaches depths of 90 m in the centre of the deposit. Supergene gold enrichment is apparent from grade control drilling in the upper portion of the existing Jamaican Rock pit (mined by Delta Gold in 2000), where significantly higher grades were mined compared to the current resource model.

Mineralisation at Iguana is defined by two distinct types, being In-Situ and Lateritic mineralisation. The purpose of this release is to highlight results from drilling which targeted the Lateritic mineralisation at Iguana only.

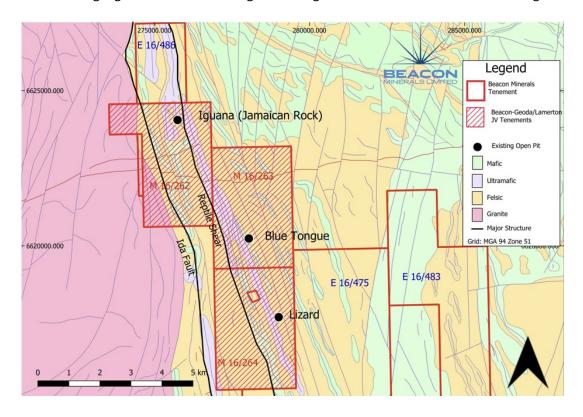


Figure 1: Iguana Local Geology and Tenement Boundaries

Lateritic Mineralisation

The Lateritic material occurs in bands of Iron Pisolites located near surface in the heavily oxidised unit. This mineralisation style provides relatively distinct beds of gold mineralisation which has been weathered from the primary in-situ material. Successful mining of Laterite material at Iguana is well recorded by prior owners. Drilling was conducted in two stages due to the unknown extent of the Laterite mineralisation east of the known Iguana Mineralised Zone. Both drill programs have confirmed this mineralisation is extensive, with further potential to the north along strike which is yet to be tested.

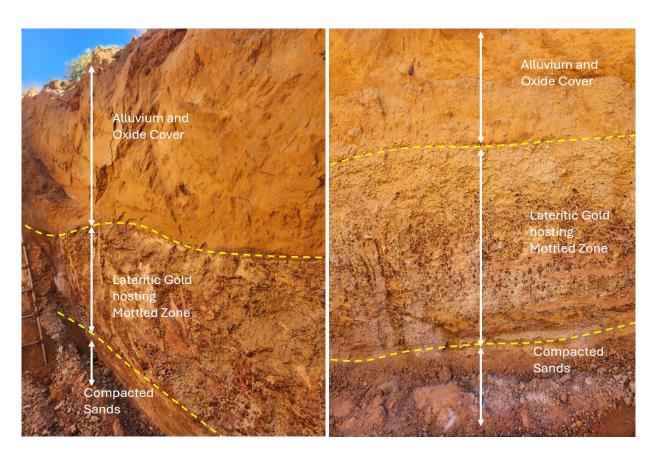


Figure 2: Exposed Laterite Cross Sections annotated with material type

This photo is provided as a visual representation of the geological setting and style of mineralisation being targeted within the tenement. No visible mineralisation is reported in this image, and the photo does not represent any grade or resource estimate.

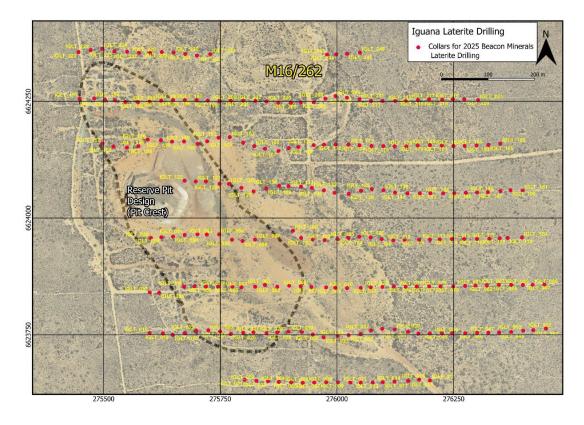


Figure 3: Plan View of Laterite Stage 1 and Stage 2 drill collars

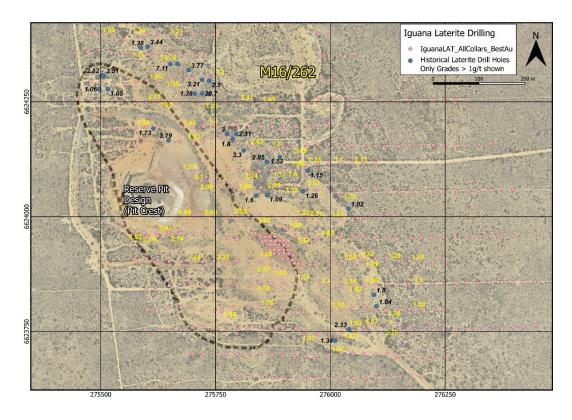


Figure 4: Plan View of Stage 1 and Stage 2 Laterite Drilling, displaying best Au in hole. (Historic holes of grades above 1g/t above current depletion also shown)

About the Lady Ida Project

The Lady Ida Project consist of M16/262 (the Iguana Deposit is located on M16/262), M16/263, M16/264, L15/224, L16/58, L16/62, L16/103, L16/142 and application L16/138 which is the ground the subject of the Earn-In, JV and Tenement Transfer Agreement between the Company, Beacon Mining Pty Ltd, Lamerton Pty Ltd and Geoda Pty Ltd.

For further details in relation to the Earn-In, JV and Tenement Transfer Agreement for the Lady Ida Project refer to ASX releases dated 6 December 2023 entitled "Beacon to Acquire an interest in the Lady Ida Gold Project" and 4 September 2024 "Lady Ida Completes and Appointment of New Director".

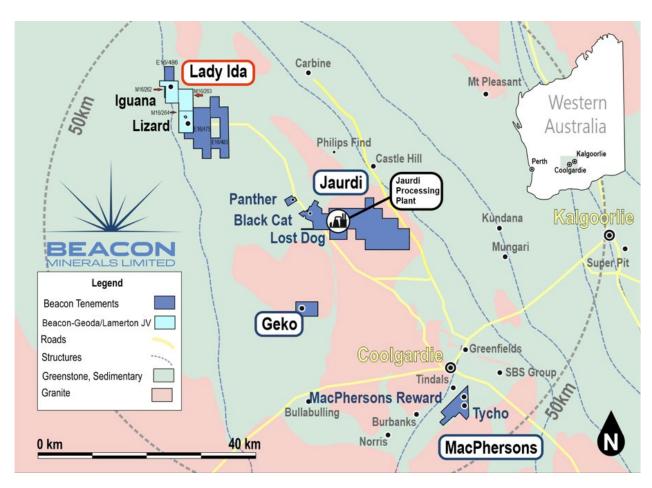


Figure 6: Location of the Lady Ida Project (Iguana Deposit)

Authorised for release by the Board of Beacon Minerals Limited.

For more information contact:

Graham McGarry Managing Director/Chairman Beacon Minerals Ltd M: 0459 240 379 Geoffrey Greenhill Non-Executive Director **Beacon Minerals Ltd** M: 0419 991 713

JORC Compliance Statement

The information in the report relating to the exploration results and targets have been compiled by Lachlan Kenna BSc (Hons) MAusIMM. Mr. Kenna has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Kenna is a full-time employee of Beacon Minerals Limited.

Mr Kenna consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Disclaimer

This ASX announcement (Announcement) has been prepared by Beacon Minerals Limited ("Beacon" or "the Company"). It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this Announcement.

This Announcement contains summary information about Beacon, its subsidiaries and their activities which is current as at the date of this Announcement. The information in this Announcement is of a general nature and does not purport to be complete nor does it contain all the information which a prospective investor may require in evaluating a possible investment in Beacon.

By its very nature exploration for minerals is a high risk business and is not suitable for certain investors. Beacon's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are a number of risks, both specific to Beacon and of a general nature which may affect the future operating and financial performance of Beacon and the value of an investment in Beacon including but not limited to economic conditions, stock market fluctuations, gold price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel.

Certain statements contained in this announcement, including information as to the future financial or operating performance of Beacon and its projects, are forward-looking statements that:

- may include, among other things, statements regarding targets, estimates and assumptions in respect of
 mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices,
 recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates
 related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Beacon, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and,
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Beacon disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements.

All forward looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein

No verification: Although all reasonable care has been undertaken to ensure that the facts and opinions given in this Announcement are accurate, the information provided in this Announcement has not been independently verified.

Appendix 1 Significant Intercepts Table for the Iguana Stage 1 Grade Control program

All intercepts of greater than 0.5g/t, with maximum internal dilution of 1m. The deposit is flat lying, with vertical holes. All depths and widths are in this case also true depths and widths.

	Depth	Depth	Interval	Au	Intercept	Gram
Hole ID	From	To	Width	(g/t)	Description	Metre
IGLT_030	2	4	2	1.03	2.00m @ 1.03 g/t	2.06
IGLT_032	6	10	4	0.29	4.00m @ 0.29 g/t	1.16
IGLT_035	0	4	4	0.83	4.00m @ 0.83 g/t	3.32
IGLT_036	2	4	2	0.75	2.00m @ 0.75 g/t	1.50
IGLT_037	4	6	2	0.67	2.00m @ 0.67 g/t	1.34
IGLT_039	4	6	2	0.50	2.00m @ 0.50 g/t	1.00
IGLT_040	4	7	3	0.51	3.00m @ 0.51 g/t	1.53
IGLT_041	4	6	2	1.50	2.00m @ 1.50 g/t	3.00
IGLT_051	0	2	2	0.26	2.00m @ 0.26 g/t	0.52
IGLT_063	0	2	2	1.16	2.00m @ 1.16 g/t	2.32
IGLT_064	0	2	2	0.75	2.00m @ 0.75 g/t	1.50
IGLT_068	2	4	2	0.76	2.00m @ 0.76 g/t	1.52
IGLT_069	0	1	1	0.59	1.00m @ 0.59 g/t	0.59
IGLT_071	8	10	2	1.53	2.00m @ 1.53 g/t	3.06
IGLT_077	2	6	4	1.06	4.00m @ 1.06 g/t	4.24
IGLT_100	2	4	2	0.88	2.00m @ 0.88 g/t	1.76
IGLT_100	8	10	2	0.65	2.00m @ 0.65 g/t	1.30
IGLT_101	0	2	2	0.29	2.00m @ 0.29 g/t	0.58
IGLT_101	4	8	4	0.53	4.00m @ 0.53 g/t	2.12
IGLT_103	4	6	2	0.84	2.00m @ 0.84 g/t	1.68
IGLT_105	0	2	2	0.61	2.00m @ 0.61 g/t	1.22
IGLT_106	2	4	2	0.80	2.00m @ 0.80 g/t	1.60
IGLT_107	2	4	2	0.50	2.00m @ 0.50 g/t	1.00
IGLT_128	6	8	2	0.74	2.00m @ 0.74 g/t	1.48
IGLT_131	2	4	2	1.18	2.00m @ 1.18 g/t	2.36
IGLT_133	2	4	2	1.82	2.00m @ 1.82 g/t	3.64
IGLT_134	2	4	2	0.95	2.00m @ 0.95 g/t	1.90
IGLT_135	2	4	2	0.63	2.00m @ 0.63 g/t	1.26
IGLT_136	2	4	2	0.82	2.00m @ 0.82 g/t	1.64
IGLT_155	6	7	1	0.57	1.00m @ 0.57 g/t	0.57
IGLT_165	2	4	2	1.27	2.00m @ 1.27 g/t	2.54
IGLT_166	2	4	2	0.61	2.00m @ 0.61 g/t	1.22
IGLT_167	0	4	4	0.49	4.00m @ 0.49 g/t	1.96
IGLT_168	0	4	4	2.31	4.00m @ 2.31 g/t	9.24
IGLT_169	0	4	4	1.78	4.00m @ 1.78 g/t	7.12
IGLT_190	0	2	2	6.06	2.00m @ 6.06 g/t	12.12
IGLT_194	0	4	4	0.66	4.00m @ 0.66 g/t	2.64

IGLT 195	0	2	2	0.52	2.00m @ 0.52 g/t	1.04
IGLT 199	2	4	2	0.68	2.00m @ 0.68 g/t	1.36
IGLT_201	2	4	2	0.54	2.00m @ 0.54 g/t	1.08
IGLT 202	2	4	2	1.07	2.00m @ 1.07 g/t	2.14
IGLT 204	2	4	2	1.50	2.00m @ 1.50 g/t	3.00
IGLT_207	2	4	2	0.84	2.00m @ 0.84 g/t	1.68
IGLT_225	2	4	2	1.35	2.00m @ 1.35 g/t	2.70
IGLT_226	2	4	2	1.15	2.00m @ 1.15 g/t	2.30
IGLT_227	0	4	4	0.92	4.00m @ 0.92 g/t	3.68
IGLT_228	0	2	2	0.86	2.00m @ 0.86 g/t	1.72
IGLT_229	0	4	4	4.13	4.00m @ 4.13 g/t	16.52
IGLT_229	6	8	2	0.58	2.00m @ 0.58 g/t	1.16
IGLT_231	2	4	2	1.01	2.00m @ 1.01 g/t	2.02
IGLT_255	6	7	1	1.10	1.00m @ 1.10 g/t	1.10
IGLT_289	2	3	1	0.38	1.00m @ 0.38 g/t	0.38
IGLT_290	2	3	1	0.45	1.00m @ 0.45 g/t	0.45
IGLT_292	3	5	2	1.11	2.00m @ 1.11 g/t	2.22
IGLT_298	0	2	2	0.29	2.00m @ 0.29 g/t	0.58
IGLT_303	3	4	1	0.86	1.00m @ 0.86 g/t	0.86
IGLT_305	1	2	1	1.92	1.00m @ 1.92 g/t	1.92
IGLT_309	1	2	1	0.39	1.00m @ 0.39 g/t	0.39
IGLT_310	2	3	1	1.30	1.00m @ 1.30 g/t	1.30
IGLT_317	0	2	2	0.64	2.00m @ 0.64 g/t	1.28
IGLT_318	1	2	1	1.69	1.00m @ 1.69 g/t	1.69
IGLT_321	2	3	1	0.97	1.00m @ 0.97 g/t	0.97
IGLT_323	3	4	1	0.90	1.00m @ 0.90 g/t	0.90
IGLT_324	2	3	1	0.49	1.00m @ 0.49 g/t	0.49
IGLT_325	1	2	1	0.35	1.00m @ 0.35 g/t	0.35
IGLT_328	3	4	1	0.39	1.00m @ 0.39 g/t	0.39
IGLT_336	2	3	1	0.56	1.00m @ 0.56 g/t	0.56
IGLT_336	6	7	1	0.96	1.00m @ 0.96 g/t	0.96
IGLT_339	2	4	2	1.55	2.00m @ 1.55 g/t	3.10
IGLT_340	2	4	2	0.38	2.00m @ 0.38 g/t	0.76
IGLT_344	3	4	1	1.35	1.00m @ 1.35 g/t	1.35
IGLT_347	1	2	1	2.13	1.00m @ 2.13 g/t	2.13
IGLT_350	0	2	2	0.32	2.00m @ 0.32 g/t	0.64
IGLT_351	0	1	1	1.23	1.00m @ 1.23 g/t	1.23
IGLT_352	0	1	1	0.98	1.00m @ 0.98 g/t	0.98
IGLT_359	4	5	1	0.30	1.00m @ 0.30 g/t	0.30
IGLT_360	2	3	1	3.41	1.00m @ 3.41 g/t	3.41
IGLT_363	0	1	1	2.09	1.00m @ 2.09 g/t	2.09
IGLT_363	9	10	1	0.71	1.00m @ 0.71 g/t	0.71
IGLT_364	0	1	1	0.65	1.00m @ 0.65 g/t	0.65

IGLT_365	1	1	1	İ	i	1	ı
IGLT_378	IGLT_365	0	1	1	0.61	1.00m @ 0.61 g/t	0.61
IGLT_379	IGLT_370	8	10	2	0.29	2.00m @ 0.29 g/t	0.58
IGLT_385	IGLT_378	3	4	1	0.78	1.00m @ 0.78 g/t	0.78
IGLT_388	IGLT_379	2	3	1	0.82	1.00m @ 0.82 g/t	0.82
IGLT_395	IGLT_385	8	9	1	1.04	1.00m @ 1.04 g/t	1.04
IGLT_396	IGLT_388	2	3	1	0.99	1.00m @ 0.99 g/t	0.99
IGLT_398 6 7 1 0.34 1.00m@ 0.34 g/t 0.34 IGLT_399 6 7 1 0.52 1.00m@ 0.52 g/t 0.52 IGLT_401 6 9 3 0.60 3.00m@ 0.60 g/t 1.80 IGLT_402 4 6 2 0.92 2.00m@ 0.92 g/t 1.84 IGLT_404 3 4 1 0.74 1.00m@ 0.74 g/t 0.74 IGLT_407 3 4 1 0.74 1.00m@ 0.38 g/t 0.38 IGLT_412 1 2 1 0.50 1.00m@ 0.50 g/t 0.50 IGLT_415 0 1 1 0.58 1.00m@ 0.58 g/t 0.58 IGLT_418 2 3 1 0.85 1.00m@ 0.85 g/t 0.85 IGLT_420 2 3 1 0.76 1.00m@ 0.85 g/t 0.85 IGLT_421 2 3 1 0.63 1.00m@ 0.37 g/t 0.63 IGLT_422 3 4	IGLT_395	1	2	1	1.15	1.00m @ 1.15 g/t	1.15
IGLT_399 6 7 1 0.52 1.00m@ 0.52 g/t 0.52 IGLT_401 6 9 3 0.60 3.00m@ 0.60 g/t 1.80 IGLT_402 4 6 2 0.92 2.00m@ 0.92 g/t 1.84 IGLT_404 3 4 1 0.74 1.00m@ 0.74 g/t 0.74 IGLT_407 3 4 1 0.38 1.00m@ 0.38 g/t 0.38 IGLT_412 1 2 1 0.50 1.00m@ 0.50 g/t 0.50 IGLT_415 0 1 1 0.58 1.00m@ 0.58 g/t 0.58 IGLT_418 2 3 1 0.85 1.00m@ 0.58 g/t 0.58 IGLT_420 2 3 1 1.76 1.00m@ 0.85 g/t 0.63 IGLT_421 2 3 1 0.63 1.00m@ 0.63 g/t 0.63 IGLT_422 3 4 1 0.67 1.00m@ 0.67 g/t 0.67 IGLT_424 3 4	IGLT_396	2	4	2	0.34	2.00m @ 0.34 g/t	0.68
IGLT_401	IGLT_398	6	7	1	0.34	1.00m @ 0.34 g/t	0.34
IGLT_402	IGLT_399	6	7	1	0.52	1.00m @ 0.52 g/t	0.52
IGLT_404 3 4 1 0.74 1.00m @ 0.74 g/t 0.74 IGLT_407 3 4 1 0.38 1.00m @ 0.38 g/t 0.38 IGLT_412 1 2 1 0.50 1.00m @ 0.50 g/t 0.50 IGLT_415 0 1 1 0.58 1.00m @ 0.58 g/t 0.58 IGLT_418 2 3 1 0.85 1.00m @ 0.58 g/t 0.85 IGLT_420 2 3 1 1.76 1.00m @ 0.85 g/t 0.85 IGLT_421 2 3 1 1.76 1.00m @ 0.63 g/t 0.63 IGLT_422 3 4 1 0.37 1.00m @ 0.63 g/t 0.63 IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_428 5 <t< td=""><td>IGLT_401</td><td>6</td><td>9</td><td>3</td><td>0.60</td><td>3.00m @ 0.60 g/t</td><td>1.80</td></t<>	IGLT_401	6	9	3	0.60	3.00m @ 0.60 g/t	1.80
IGLT_407 3 4 1 0.38 1.00m @ 0.38 g/t 0.38 IGLT_412 1 2 1 0.50 1.00m @ 0.50 g/t 0.50 IGLT_415 0 1 1 0.58 1.00m @ 0.58 g/t 0.58 IGLT_418 2 3 1 0.85 1.00m @ 0.85 g/t 0.85 IGLT_420 2 3 1 1.76 1.00m @ 1.76 g/t 1.76 IGLT_421 2 3 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_422 3 4 1 0.67 1.00m @ 0.37 g/t 0.37 IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.61 1.00m @ 0.76 g/t 0.76 IGLT_428 5 6 7 1 1.14 1.00m @ 0.61 g/t 0.61 IGLT_430 <t< td=""><td>IGLT_402</td><td>4</td><td>6</td><td>2</td><td>0.92</td><td>2.00m @ 0.92 g/t</td><td>1.84</td></t<>	IGLT_402	4	6	2	0.92	2.00m @ 0.92 g/t	1.84
IGLT_412 1 2 1 0.50 1.00m @ 0.50 g/t 0.50 IGLT_415 0 1 1 0.58 1.00m @ 0.58 g/t 0.58 IGLT_418 2 3 1 0.85 1.00m @ 0.85 g/t 0.85 IGLT_420 2 3 1 1.76 1.00m @ 0.63 g/t 0.63 IGLT_421 2 3 4 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_422 3 4 1 0.67 1.00m @ 0.37 g/t 0.37 IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_428 5 6 7 1 1.14 1.00m @ 0.61 g/t 0.61 IGLT_430 4 5 1 1.78 1.00m @ 0.48 g/t 0.48 IGLT_	IGLT_404	3	4	1	0.74	1.00m @ 0.74 g/t	0.74
IGLT_415 0 1 1 0.58 1.00m @ 0.58 g/t 0.58 IGLT_418 2 3 1 0.85 1.00m @ 0.85 g/t 0.85 IGLT_420 2 3 1 1.76 1.00m @ 1.76 g/t 1.76 IGLT_421 2 3 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_422 3 4 1 0.37 1.00m @ 0.37 g/t 0.37 IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_427 6 7 1 1.14 1.00m @ 0.76 g/t 0.76 IGLT_428 5 6 1 0.61 1.00m @ 0.76 g/t 0.76 IGLT_429 4 5 1 1.78 1.00m @ 0.48 g/t 0.48 IGLT_430 4 <t< td=""><td>IGLT_407</td><td>3</td><td>4</td><td>1</td><td>0.38</td><td>1.00m @ 0.38 g/t</td><td>0.38</td></t<>	IGLT_407	3	4	1	0.38	1.00m @ 0.38 g/t	0.38
IGLT_418 2 3 1 0.85 1.00m @ 0.85 g/t 0.85 IGLT_420 2 3 1 1.76 1.00m @ 1.76 g/t 1.76 IGLT_421 2 3 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_422 3 4 1 0.37 1.00m @ 0.37 g/t 0.37 IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_427 6 7 1 1.14 1.00m @ 0.76 g/t 0.61 IGLT_428 5 6 1 0.61 1.00m @ 0.61 g/t 0.61 IGLT_430 4 5 1 1.78 1.00m @ 1.78 g/t 1.78 IGLT_431 4 5 1 0.77 1.00m @ 0.77 g/t 0.77 IGLT_433 4 <t< td=""><td>IGLT_412</td><td>1</td><td>2</td><td>1</td><td>0.50</td><td>1.00m @ 0.50 g/t</td><td>0.50</td></t<>	IGLT_412	1	2	1	0.50	1.00m @ 0.50 g/t	0.50
IGLT_420 2 3 1 1.76 1.00m @ 1.76 g/t 1.76 IGLT_421 2 3 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_422 3 4 1 0.37 1.00m @ 0.37 g/t 0.37 IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_427 6 7 1 1.14 1.00m @ 0.76 g/t 0.76 IGLT_428 5 6 1 0.61 1.00m @ 0.61 g/t 0.61 IGLT_429 4 5 1 1.78 1.00m @ 1.78 g/t 1.78 IGLT_430 4 5 1 0.48 1.00m @ 0.48 g/t 0.48 IGLT_432 4 5 1 0.77 1.00m @ 0.77 g/t 0.77 IGLT_433 4 <t< td=""><td>IGLT_415</td><td>0</td><td>1</td><td>1</td><td>0.58</td><td>1.00m @ 0.58 g/t</td><td>0.58</td></t<>	IGLT_415	0	1	1	0.58	1.00m @ 0.58 g/t	0.58
IGLT_421 2 3 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_422 3 4 1 0.37 1.00m @ 0.37 g/t 0.37 IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_427 6 7 1 1.14 1.00m @ 0.76 g/t 0.76 IGLT_428 5 6 1 0.61 1.00m @ 0.61 g/t 0.61 IGLT_429 4 5 1 1.78 1.00m @ 0.48 g/t 1.78 IGLT_430 4 5 1 0.48 1.00m @ 0.48 g/t 0.48 IGLT_431 4 5 1 1.08 1.00m @ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m @ 0.93 g/t 0.92 IGLT_440 0 <t< td=""><td>IGLT_418</td><td>2</td><td>3</td><td>1</td><td>0.85</td><td>1.00m @ 0.85 g/t</td><td>0.85</td></t<>	IGLT_418	2	3	1	0.85	1.00m @ 0.85 g/t	0.85
IGLT_422 3 4 1 0.37 1.00m @ 0.37 g/t 0.37 IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_427 6 7 1 1.14 1.00m @ 1.14 g/t 1.14 IGLT_428 5 6 1 0.61 1.00m @ 0.61 g/t 0.61 IGLT_428 5 6 1 1.78 1.00m @ 0.61 g/t 0.61 IGLT_429 4 5 1 1.78 1.00m @ 0.48 g/t 0.48 IGLT_430 4 5 1 0.48 1.00m @ 0.77 g/t 0.77 IGLT_431 4 5 1 1.08 1.00m @ 1.08 g/t 1.08 IGLT_433 4 5 1 1.08 1.00m @ 0.92 g/t 0.92 IGLT_440 0 <t< td=""><td>IGLT_420</td><td>2</td><td>3</td><td>1</td><td>1.76</td><td>1.00m @ 1.76 g/t</td><td>1.76</td></t<>	IGLT_420	2	3	1	1.76	1.00m @ 1.76 g/t	1.76
IGLT_424 3 4 1 0.67 1.00m @ 0.67 g/t 0.67 IGLT_426 8 9 1 0.63 1.00m @ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_427 6 7 1 1.14 1.00m @ 1.14 g/t 1.14 IGLT_428 5 6 1 0.61 1.00m @ 0.61 g/t 0.61 IGLT_429 4 5 1 1.78 1.00m @ 1.78 g/t 1.78 IGLT_430 4 5 1 0.48 1.00m @ 0.48 g/t 0.48 IGLT_431 4 5 1 1.08 1.00m @ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m @ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m @ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_448 3 4 1 1.01 1.00m @ 0.78 g/t 0.78 IGLT_449 <td< td=""><td>IGLT_421</td><td>2</td><td>3</td><td>1</td><td>0.63</td><td>1.00m @ 0.63 g/t</td><td>0.63</td></td<>	IGLT_421	2	3	1	0.63	1.00m @ 0.63 g/t	0.63
IGLT_426 8 9 1 0.63 1.00m@ 0.63 g/t 0.63 IGLT_427 2 3 1 0.76 1.00m@ 0.76 g/t 0.76 IGLT_427 6 7 1 1.14 1.00m@ 1.14 g/t 1.14 IGLT_428 5 6 1 0.61 1.00m@ 0.61 g/t 0.61 IGLT_429 4 5 1 1.78 1.00m@ 1.78 g/t 1.78 IGLT_430 4 5 1 0.48 1.00m@ 0.48 g/t 0.48 IGLT_431 4 5 1 0.77 1.00m@ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m@ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m@ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m@ 0.93 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m@ 1.01 g/t 1.01 IGLT_449 4 5	IGLT_422	3	4	1	0.37	1.00m @ 0.37 g/t	0.37
IGLT_427 2 3 1 0.76 1.00m @ 0.76 g/t 0.76 IGLT_427 6 7 1 1.14 1.00m @ 1.14 g/t 1.14 IGLT_428 5 6 1 0.61 1.00m @ 0.61 g/t 0.61 IGLT_429 4 5 1 1.78 1.00m @ 1.78 g/t 1.78 IGLT_430 4 5 1 0.48 1.00m @ 0.48 g/t 0.48 IGLT_431 4 5 1 0.77 1.00m @ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m @ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m @ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 0.78 g/t 0.78 IGLT_450 3 <t< td=""><td>IGLT_424</td><td>3</td><td>4</td><td>1</td><td>0.67</td><td>1.00m @ 0.67 g/t</td><td>0.67</td></t<>	IGLT_424	3	4	1	0.67	1.00m @ 0.67 g/t	0.67
IGLT_427 6 7 1 1.14 1.00m @ 1.14 g/t 1.14 IGLT_428 5 6 1 0.61 1.00m @ 0.61 g/t 0.61 IGLT_429 4 5 1 1.78 1.00m @ 1.78 g/t 1.78 IGLT_430 4 5 1 0.48 1.00m @ 0.48 g/t 0.48 IGLT_431 4 5 1 0.77 1.00m @ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m @ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m @ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_426	8	9	1	0.63	1.00m @ 0.63 g/t	0.63
IGLT_428 5 6 1 0.61 1.00m @ 0.61 g/t 0.61 IGLT_429 4 5 1 1.78 1.00m @ 1.78 g/t 1.78 IGLT_430 4 5 1 0.48 1.00m @ 0.48 g/t 0.48 IGLT_431 4 5 1 0.77 1.00m @ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m @ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m @ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_427	2	3	1	0.76	1.00m @ 0.76 g/t	0.76
IGLT_429 4 5 1 1.78 1.00m @ 1.78 g/t 1.78 IGLT_430 4 5 1 0.48 1.00m @ 0.48 g/t 0.48 IGLT_431 4 5 1 0.77 1.00m @ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m @ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m @ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_427	6	7	1	1.14	1.00m @ 1.14 g/t	1.14
IGLT_430 4 5 1 0.48 1.00m @ 0.48 g/t 0.48 IGLT_431 4 5 1 0.77 1.00m @ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m @ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m @ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_428	5	6	1	0.61	1.00m @ 0.61 g/t	0.61
IGLT_431 4 5 1 0.77 1.00m @ 0.77 g/t 0.77 IGLT_432 4 5 1 1.08 1.00m @ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m @ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_429	4	5	1	1.78	1.00m @ 1.78 g/t	1.78
IGLT_432 4 5 1 1.08 1.00m@ 1.08 g/t 1.08 IGLT_433 4 5 1 0.92 1.00m@ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m@ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m@ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m@ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m@ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m@ 0.47 g/t 0.94	IGLT_430	4	5	1	0.48	1.00m @ 0.48 g/t	0.48
IGLT_433 4 5 1 0.92 1.00m @ 0.92 g/t 0.92 IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_431	4	5	1	0.77	1.00m @ 0.77 g/t	0.77
IGLT_440 0 1 1 0.93 1.00m @ 0.93 g/t 0.93 IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_432	4	5	1	1.08	1.00m @ 1.08 g/t	1.08
IGLT_447 2 3 1 0.33 1.00m @ 0.33 g/t 0.33 IGLT_448 3 4 1 1.01 1.00m @ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_433	4	5	1	0.92	1.00m @ 0.92 g/t	0.92
IGLT_448 3 4 1 1.01 1.00m@ 1.01 g/t 1.01 IGLT_449 4 5 1 0.78 1.00m@ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m@ 0.47 g/t 0.94	IGLT_440	0	1	1	0.93	1.00m @ 0.93 g/t	0.93
IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_447	2	3	1	0.33	1.00m @ 0.33 g/t	0.33
IGLT_449 4 5 1 0.78 1.00m @ 0.78 g/t 0.78 IGLT_450 3 5 2 0.47 2.00m @ 0.47 g/t 0.94	IGLT_448	3	4	1	1.01	1.00m @ 1.01 g/t	1.01
	IGLT_449	4	5	1	0.78		0.78
IGLT_457 0 2 2 0.32 2.00m@0.32 g/t 0.64	IGLT_450	3	5	2	0.47	2.00m @ 0.47 g/t	0.94
	IGLT_457	0	2	2	0.32	2.00m @ 0.32 g/t	0.64

Appendix 2 Collar Data for Drillholes Included in this ASX Release

All Holes located on Tenement M 16/262

	Hole	Max						
Hole ID	Туре	Depth	Grid ID	Easting	Northing	RL	Azimuth	Dip
IGLT_001	AC	10	MGA94_51	275801.9	6623653.9	519.0	0	90
IGLT_002	AC	10	MGA94_51	275827.2	6623651.5	518.3	0	90
IGLT_003	AC	10	MGA94_51	275852.3	6623650.7	517.6	0	90
IGLT_004	AC	10	MGA94_51	275875.2	6623649.2	517.0	0	90
IGLT_005	AC	10	MGA94_51	275901.8	6623648.3	516.5	0	90
IGLT_006	AC	10	MGA94_51	275926.5	6623647.1	515.9	0	90
IGLT_007	AC	10	MGA94_51	275951.4	6623647.8	515.1	0	90
IGLT_008	AC	10	MGA94_51	275976.8	6623648.4	514.6	0	90
IGLT_009	AC	10	MGA94_51	276002.2	6623648.5	514.3	0	90
IGLT_010	AC	10	MGA94_51	276028.7	6623647.9	513.9	0	90
IGLT_011	AC	10	MGA94_51	276050.8	6623647.9	513.8	0	90
IGLT_012	AC	10	MGA94_51	276076.4	6623648.2	513.1	0	90
IGLT_013	AC	10	MGA94_51	276097.9	6623648.8	512.6	0	90
IGLT_014	AC	10	MGA94_51	276123.3	6623649.9	512.0	0	90
IGLT_015	AC	10	MGA94_51	276152.3	6623651.5	511.3	0	90
IGLT_016	AC	10	MGA94_51	276176.2	6623654.3	510.9	0	90
IGLT_017	AC	10	MGA94_51	276199.1	6623652.4	510.1	0	90
IGLT_018	AC	10	MGA94_51	275598.4	6623753.8	520.7	0	90
IGLT_019	AC	10	MGA94_51	275626.9	6623753.0	520.1	0	90
IGLT_020	AC	10	MGA94_51	275648.3	6623750.0	519.7	0	90
IGLT_021	AC	10	MGA94_51	275674.2	6623753.7	519.5	0	90
IGLT_022	AC	10	MGA94_51	275698.8	6623758.6	519.0	0	90
IGLT_023	AC	10	MGA94_51	275724.2	6623759.7	518.5	0	90
IGLT_024	AC	10	MGA94_51	275749.6	6623757.0	517.8	0	90
IGLT_025	AC	10	MGA94_51	275772.3	6623751.9	517.6	0	90
IGLT_026	AC	10	MGA94_51	275799.1	6623754.3	517.1	0	90
IGLT_027	AC	10	MGA94_51	275821.0	6623755.5	516.9	0	90
IGLT_028	AC	10	MGA94_51	275848.9	6623753.5	516.5	0	90
IGLT_029	AC	10	MGA94_51	275871.8	6623755.2	515.9	0	90
IGLT_030	AC	10	MGA94_51	275895.9	6623757.2	515.4	0	90
IGLT_031	AC	10	MGA94_51	275924.7	6623756.5	514.9	0	90
IGLT_032	AC	10	MGA94_51	275948.2	6623750.7	514.1	0	90
IGLT_033	AC	10	MGA94_51	275971.3	6623744.7	513.2	0	90
IGLT_034	AC	10	MGA94_51	276001.4	6623747.6	511.2	0	90
IGLT_035	AC	10	MGA94_51	276024.8	6623749.3	510.5	0	90
IGLT_036	AC	10	MGA94_51	276050.6	6623751.7	511.2	0	90
IGLT_037	AC	10	MGA94_51	276073.0	6623759.6	511.9	0	90
IGLT_038	AC	10	MGA94_51	276096.8	6623762.9	511.2	0	90

IGLT 039	AC	10	MGA94 51	276123.9	6623761.7	510.6	0	90
IGLT 040	AC	10	MGA94 51	276152.1	6623756.4	510.1	0	90
IGLT 041	AC	10	MGA94 51	276174.5	6623752.9	509.8	0	90
IGLT 042	AC	10	MGA94 51	276198.8	6623752.8	509.2	0	90
IGLT 043	AC	10	MGA94 51	276224.8	6623753.3	508.5	0	90
IGLT 044	AC	10	MGA94_51	276246.7	6623753.5	508.1	0	90
IGLT 045	AC	10	MGA94 51	276274.7	6623753.5	507.4	0	90
IGLT_046	AC	10	MGA94_51	276300.2	6623754.5	507.0	0	90
IGLT_047	AC	10	MGA94_51	276324.1	6623754.4	506.5	0	90
IGLT_048	AC	10	MGA94_51	276347.4	6623754.9	506.0	0	90
IGLT_049	AC	10	MGA94_51	276373.3	6623756.2	505.2	0	90
IGLT_050	AC	10	MGA94_51	276399.1	6623759.1	504.6	0	90
IGLT_051	AC	10	MGA94_51	276420.5	6623760.1	503.9	0	90
IGLT_052	AC	10	MGA94_51	276447.5	6623763.4	503.1	0	90
IGLT_053	AC	10	MGA94_51	275598.7	6623840.8	520.6	0	90
IGLT_054	AC	10	MGA94_51	275618.9	6623840.3	520.4	0	90
IGLT_056	AC	10	MGA94_51	275672.0	6623853.1	520.1	0	90
IGLT_057	AC	10	MGA94_51	275695.2	6623854.3	519.9	0	90
IGLT_058	AC	10	MGA94_51	275719.3	6623853.4	519.4	0	90
IGLT_059	AC	10	MGA94_51	275745.2	6623852.7	518.7	0	90
IGLT_060	AC	10	MGA94_51	275775.9	6623853.0	517.7	0	90
IGLT_061	AC	10	MGA94_51	275795.4	6623851.6	515.6	0	90
IGLT_062	AC	10	MGA94_51	275824.5	6623853.1	514.2	0	90
IGLT_063	AC	10	MGA94_51	275845.7	6623856.7	513.8	0	90
IGLT_064	AC	10	MGA94_51	275871.9	6623853.0	513.9	0	90
IGLT_065	AC	10	MGA94_51	275897.6	6623855.2	512.9	0	90
IGLT_066	AC	10	MGA94_51	275922.3	6623854.1	511.3	0	90
IGLT_067	AC	10	MGA94_51	275945.0	6623852.4	510.7	0	90
IGLT_068	AC	10	MGA94_51	275976.6	6623851.5	512.6	0	90
IGLT_069	AC	10	MGA94_51	275996.2	6623850.9	514.5	0	90
IGLT_070	AC	10	MGA94_51	276021.5	6623849.9	515.7	0	90
IGLT_071	AC	10	MGA94_51	276050.7	6623850.5	515.2	0	90
IGLT_072	AC	10	MGA94_51	276072.5	6623851.5	513.9	0	90
IGLT_073	AC	10	MGA94_51	276097.4	6623852.5	512.0	0	90
IGLT_074	AC	10	MGA94_51	276121.8	6623853.5	510.2	0	90
IGLT_075	AC	10	MGA94_51	276147.0	6623852.9	509.5	0	90
IGLT_076	AC	10	MGA94_51	276171.1	6623853.2	508.9	0	90
IGLT_077	AC	10	MGA94_51	276197.4	6623853.6	508.1	0	90
IGLT_078	AC	10	MGA94_51	276221.7	6623853.7	507.5	0	90
IGLT_079	AC	10	MGA94_51	276249.0	6623853.5	506.8	0	90
IGLT_080	AC	10	MGA94_51	276274.6	6623854.8	506.2	0	90
IGLT_081	AC	10	MGA94_51	276296.8	6623855.6	505.7	0	90
IGLT_082	AC	10	MGA94_51	276321.0	6623855.5	505.1	0	90

IGLT 083	AC	10	MGA94 51	276346.8	6623857.0	504.4	0	90
IGLT 084	AC	10	MGA94 51	276373.2	6623856.9	503.8	0	90
IGLT 085	AC	10	MGA94 51	276398.4	6623856.8	503.1	0	90
IGLT 086	AC	10	MGA94 51	276419.3	6623856.9	502.5	0	90
IGLT_087	AC	10	MGA94 51	276444.6	6623858.1	501.9	0	90
IGLT 088	AC	10	MGA94_51	275600.8	6623957.2	522.5	0	90
IGLT 089	AC	10	MGA94 51	275623.5	6623958.9	520.7	0	90
IGLT_090	AC	10	MGA94_51	275648.7	6623960.5	518.9	0	90
IGLT_091	AC	10	MGA94_51	275673.7	6623963.9	517.6	0	90
IGLT_092	AC	10	MGA94_51	275700.9	6623965.3	516.3	0	90
IGLT_093	AC	10	MGA94_51	275720.9	6623964.8	515.9	0	90
IGLT_094	AC	10	MGA94_51	275747.4	6623965.1	514.9	0	90
IGLT_095	AC	10	MGA94_51	275775.0	6623953.6	514.4	0	90
IGLT_096	AC	10	MGA94_51	275797.4	6623951.0	514.1	0	90
IGLT_097	AC	10	MGA94_51	275824.4	6623954.0	514.1	0	90
IGLT_100	AC	10	MGA94_51	275905.5	6623972.9	518.8	0	90
IGLT_101	AC	10	MGA94_51	275923.0	6623957.5	517.3	0	90
IGLT_102	AC	10	MGA94_51	275948.1	6623954.8	515.3	0	90
IGLT_103	AC	10	MGA94_51	275973.5	6623952.8	514.4	0	90
IGLT_104	AC	10	MGA94_51	276000.9	6623954.9	512.7	0	90
IGLT_105	AC	10	MGA94_51	276024.3	6623957.7	511.7	0	90
IGLT_106	AC	10	MGA94_51	276047.7	6623960.0	511.2	0	90
IGLT_107	AC	10	MGA94_51	276072.0	6623958.2	510.6	0	90
IGLT_108	AC	10	MGA94_51	276095.8	6623954.7	510.0	0	90
IGLT_109	AC	10	MGA94_51	276120.7	6623952.2	509.4	0	90
IGLT_110	AC	10	MGA94_51	276145.1	6623952.2	508.9	0	90
IGLT_111	AC	10	MGA94_51	276175.9	6623953.7	508.1	0	90
IGLT_112	AC	10	MGA94_51	276199.0	6623953.9	507.6	0	90
IGLT_113	AC	10	MGA94_51	276220.0	6623953.9	507.2	0	90
IGLT_114	AC	10	MGA94_51	276246.4	6623955.1	506.6	0	90
IGLT_115	AC	10	MGA94_51	276272.1	6623955.1	506.1	0	90
IGLT_116	AC	10	MGA94_51	276299.7	6623955.3	505.5	0	90
IGLT_117	AC	10	MGA94_51	276326.4	6623955.8	504.9	0	90
IGLT_118	AC	10	MGA94_51	276348.6	6623956.9	504.3	0	90
IGLT_119	AC	10	MGA94_51	276365.6	6623957.5	503.8	0	90
IGLT_120	AC	10	MGA94_51	276396.4	6623958.5	503.0	0	90
IGLT_122	AC	10	MGA94_51	275673.5	6624080.1	516.5	0	90
IGLT_123	AC	10	MGA94_51	275697.1	6624078.3	515.9	0	90
IGLT_124	AC	10	MGA94_51	275719.0	6624078.4	515.6	0	90
IGLT_125	AC	10	MGA94_51	275748.3	6624073.3	515.8	0	90
IGLT_126	AC	10	MGA94_51	275768.2	6624073.1	517.9	0	90
IGLT_127	AC	10	MGA94_51	275795.1	6624064.7	519.2	0	90
IGLT_128	AC	10	MGA94_51	275821.3	6624057.1	519.6	0	90

IGLT 129	AC	10	MGA94 51	275848.3	6624063.1	516.9	0	90
IGLT 130	AC	10	MGA94 51	275875.9	6624069.1	515.2	0	90
IGLT 131	AC	10	MGA94 51	275895.9	6624068.4	514.8	0	90
IGLT 132	AC	10	MGA94 51	275923.0	6624067.4	514.1	0	90
IGLT 133	AC	10	MGA94 51	275946.1	6624064.4	513.8	0	90
IGLT 134	AC	10	MGA94 51	275971.9	6624059.5	512.5	0	90
IGLT 135	AC	10	MGA94 51	275994.6	6624054.0	512.3	0	90
IGLT_136	AC	10	MGA94_51	276025.1	6624052.0	511.8	0	90
IGLT_137	AC	10	MGA94_51	276051.3	6624058.7	511.1	0	90
IGLT_138	AC	10	MGA94_51	276074.7	6624062.0	510.5	0	90
IGLT_139	AC	10	MGA94_51	276099.4	6624059.8	510.1	0	90
IGLT_140	AC	10	MGA94_51	276124.4	6624054.7	509.4	0	90
IGLT_141	AC	10	MGA94_51	276150.9	6624052.8	508.9	0	90
IGLT_142	AC	10	MGA94_51	276177.5	6624053.0	508.2	0	90
IGLT_143	AC	10	MGA94_51	276200.0	6624053.2	507.6	0	90
IGLT_144	AC	10	MGA94_51	276227.6	6624053.1	507.1	0	90
IGLT_145	AC	10	MGA94_51	276251.4	6624053.1	506.5	0	90
IGLT_146	AC	10	MGA94_51	276276.0	6624054.2	506.0	0	90
IGLT_147	AC	10	MGA94_51	276300.0	6624054.8	505.3	0	90
IGLT_148	AC	10	MGA94_51	276323.2	6624055.4	504.7	0	90
IGLT_149	AC	10	MGA94_51	276350.0	6624057.6	503.9	0	90
IGLT_150	AC	10	MGA94_51	276371.7	6624059.7	503.3	0	90
IGLT_151	AC	10	MGA94_51	276397.8	6624058.7	502.6	0	90
IGLT_152	AC	10	MGA94_51	275497.1	6624159.3	525.8	0	90
IGLT_153	AC	10	MGA94_51	275520.7	6624153.4	526.2	0	90
IGLT_154	AC	10	MGA94_51	275549.7	6624150.8	526.7	0	90
IGLT_155	AC	10	MGA94_51	275574.7	6624153.9	527.0	0	90
IGLT_156	AC	10	MGA94_51	275594.3	6624168.0	525.4	0	90
IGLT_157	AC	10	MGA94_51	275622.6	6624166.6	520.9	0	90
IGLT_158	AC	10	MGA94_51	275646.5	6624163.7	517.1	0	90
IGLT_159	AC	10	MGA94_51	275672.2	6624164.1	516.5	0	90
IGLT_160	AC	10	MGA94_51	275701.6	6624158.9	515.9	0	90
IGLT_161	AC	10	MGA94_51	275721.7	6624164.3	516.4	0	90
IGLT_162	AC	10	MGA94_51	275746.0	6624172.0	517.8	0	90
IGLT_163	AC	10	MGA94_51	275770.1	6624173.3	518.9	0	90
IGLT_164	AC	10	MGA94_51	275798.8	6624161.3	518.2	0	90
IGLT_165	AC	10	MGA94_51	275822.7	6624154.1	517.5	0	90
IGLT_166	AC	10	MGA94_51	275845.6	6624148.4	516.4	0	90
IGLT_167	AC	10	MGA94_51	275874.5	6624143.5	515.1	0	90
IGLT_168	AC	10	MGA94_51	275896.4	6624149.7	514.6	0	90
IGLT_169	AC	10	MGA94_51	275917.3	6624152.2	514.4	0	90
IGLT_170	AC	10	MGA94_51	275950.0	6624156.1	514.0	0	90
IGLT_171	AC	10	MGA94_51	275972.2	6624157.1	513.6	0	90

IGLT_172	AC	10	MGA94_51	275997.1	6624157.5	513.3	0	90
IGLT 173	AC	10	MGA94 51	276024.6	6624157.4	512.9	0	90
IGLT 174	AC	10	MGA94 51	276048.0	6624155.7	512.2	0	90
IGLT 175	AC	10	MGA94_51	276073.7	6624154.3	511.3	0	90
IGLT 176	AC	10	MGA94 51	276099.1	6624153.9	510.8	0	90
IGLT 177	AC	10	MGA94 51	276123.7	6624153.5	510.3	0	90
IGLT_178	AC	10	MGA94_51	276148.6	6624153.2	509.8	0	90
IGLT_179	AC	10	MGA94_51	276172.8	6624155.2	509.2	0	90
IGLT_180	AC	10	MGA94_51	276198.9	6624156.2	508.4	0	90
IGLT_181	AC	10	MGA94_51	276224.5	6624155.5	507.7	0	90
IGLT_182	AC	10	MGA94_51	276249.5	6624154.2	507.1	0	90
IGLT_183	AC	10	MGA94_51	276273.5	6624154.3	506.5	0	90
IGLT_184	AC	10	MGA94_51	276299.0	6624155.4	505.8	0	90
IGLT_185	AC	10	MGA94_51	276324.5	6624156.7	505.0	0	90
IGLT_186	AC	10	MGA94_51	276349.7	6624159.2	504.4	0	90
IGLT_187	AC	10	MGA94_51	275448.2	6624255.6	525.5	0	90
IGLT_188	AC	10	MGA94_51	275479.8	6624256.2	525.0	0	90
IGLT_189	AC	10	MGA94_51	275502.9	6624253.3	524.9	0	90
IGLT_190	AC	10	MGA94_51	275524.2	6624252.0	524.9	0	90
IGLT_191	AC	10	MGA94_51	275546.2	6624248.9	525.1	0	90
IGLT_192	AC	10	MGA94_51	275573.4	6624247.9	524.0	0	90
IGLT_193	AC	10	MGA94_51	275598.3	6624249.1	521.7	0	90
IGLT_194	AC	10	MGA94_51	275623.3	6624251.3	519.0	0	90
IGLT_195	AC	10	MGA94_51	275648.7	6624252.7	518.1	0	90
IGLT_196	AC	10	MGA94_51	275673.9	6624252.8	517.8	0	90
IGLT_197	AC	10	MGA94_51	275699.2	6624252.6	518.2	0	90
IGLT_198	AC	10	MGA94_51	275722.9	6624251.5	518.6	0	90
IGLT_199	AC	10	MGA94_51	275748.5	6624249.9	518.7	0	90
IGLT_200	AC	10	MGA94_51	275772.3	6624251.0	518.0	0	90
IGLT_201	AC	10	MGA94_51	275799.1	6624251.4	517.5	0	90
IGLT_202	AC	10	MGA94_51	275825.1	6624250.9	516.9	0	90
IGLT_203	AC	10	MGA94_51	275848.6	6624249.5	516.1	0	90
IGLT_204	AC	10	MGA94_51	275874.0	6624246.8	515.5	0	90
IGLT_205	AC	10	MGA94_51	275900.9	6624246.4	515.3	0	90
IGLT_206	AC	10	MGA94_51	275922.4	6624247.7	515.3	0	90
IGLT_207	AC	10	MGA94_51	275950.2	6624247.5	515.2	0	90
IGLT_208	AC	10	MGA94_51	275974.8	6624255.7	514.9	0	90
IGLT_209	AC	10	MGA94_51	275996.6	6624261.2	514.4	0	90
IGLT_210	AC	10	MGA94_51	276021.3	6624257.7	514.1	0	90
IGLT_211	AC	10	MGA94_51	276048.0	6624254.2	513.2	0	90
IGLT_212	AC	10	MGA94_51	276072.9	6624250.6	512.3	0	90
IGLT_213	AC	9	MGA94_51	276097.3	6624250.7	511.6	0	90
IGLT_214	AC	10	MGA94_51	276124.7	6624250.8	510.9	0	90

IGLT_215	AC	10	MGA94_51	276147.2	6624250.3	510.3	0	90
IGLT_216	AC	10	MGA94_51	276173.1	6624252.4	509.6	0	90
IGLT_217	AC	10	MGA94_51	276197.2	6624254.3	509.0	0	90
IGLT_218	AC	10	MGA94_51	276225.3	6624253.3	508.3	0	90
IGLT_219	AC	10	MGA94_51	276248.2	6624254.4	507.6	0	90
IGLT_220	AC	10	MGA94_51	276272.5	6624254.3	506.9	0	90
IGLT_221	AC	10	MGA94_51	276302.1	6624252.5	506.0	0	90
IGLT_222	AC	12	MGA94_51	275446.2	6624355.3	524.4	0	90
IGLT_223	AC	12	MGA94_51	275471.9	6624359.5	524.0	0	90
IGLT_224	AC	12	MGA94_51	275497.0	6624362.4	523.7	0	90
IGLT_225	AC	12	MGA94_51	275523.0	6624357.0	523.6	0	90
IGLT_226	AC	12	MGA94_51	275550.1	6624356.1	523.1	0	90
IGLT_227	AC	12	MGA94_51	275575.9	6624353.6	522.4	0	90
IGLT_228	AC	12	MGA94_51	275599.5	6624353.3	522.2	0	90
IGLT_229	AC	12	MGA94_51	275624.4	6624355.5	523.2	0	90
IGLT_230	AC	12	MGA94_51	275649.8	6624354.2	522.4	0	90
IGLT_231	AC	12	MGA94_51	275674.6	6624351.1	521.4	0	90
IGLT_232	AC	12	MGA94_51	275700.0	6624348.0	520.4	0	90
IGLT_233	AC	12	MGA94_51	275728.4	6624350.7	519.9	0	90
IGLT_243	AC	10	MGA94_51	275978.6	6624349.7	514.5	0	90
IGLT_244	AC	10	MGA94_51	275998.2	6624350.2	514.0	0	90
IGLT_245	AC	10	MGA94_51	276021.7	6624351.9	513.5	0	90
IGLT_246	AC	10	MGA94_51	276049.1	6624354.2	513.1	0	90

Appendix 3: JORC Tables

Section 1: Sampling Techniques and Data

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Aberfoyle: Reverse circulation (RC), rotary air blast (RAB) and aircore (AC) drilling with 1 m sampling from cyclone (BDRB prefix holes RAB drilling with 2 m sampling). Samples sent to accredited laboratories for drying, crushing and pulverising. Composite samples assayed by aqua regia/atomic absorption spectroscopy (AAS) (except in areas of elevated graphite – fire assay (FA) and those returning greater that 0.2–0.3 g/t were re-assayed as individual metres by FA to ALS Kalgoorlie for 50 g charge FA with 0.01 ppm detection limit. HQ triple diamond (DD) drilling was halved, 50 g charge FA with 0.01 ppm detection limit. EGL: RC samples collected from the riffle or cone splitter directly off rig into calico bags. Splitter maintained on level site to ensure sample representativity. 1 m samples are dried, crushed, pulverised and a 40 g charge is analysed by FA. Roper River Resources: RAB 1 m sampling with blade or hammer. Dried, crushed and pulverised samples analysed by aqua regia/AAS finish with 25 g charge. Monarch: AC, RAB and RC drilling on 1 m sampling basis with RAB samples being composited to 4 m for initial analysis by aqua regia/AAS. Individual AC and RC metres collected from cyclone, riffle split and submitted for aqua regia/AAS and FA/AAS respectively. Siberia Mining Corporation (SMC): 1 m sampling of AC, RAB and RC drilling composites and individual re-assays dispatched for FA. Perilya:

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		5 m composite RAB and AC assayed at Analabs Perth by method P649, 50 g aqua regia, DIBK, Carbon Rod.
		Croesus:
		 RC 1 m samples collected under cyclone. RAB drilling on a 1 m basis. 3.5 kg samples were pulverised to make 50 g charge for analysis by FA/inductively coupled plasma-optical spectrometry (ICP-OS).
		Delta:
		 1 m sampling of AC, RAB and RC. 5 m composites submitted to Genalysis and/or ALS laboratories Kalgoorlie for preparation, followed by aqua regia with 50 g charge with 0.01 ppm detection limit. Composite assays returning values >= 0.1 ppm Au, corresponding single metre samples were collected and submitted.
		Ora Banda Mining Ltd (OBM):
		 1 m RC samples using face sampling hammer with samples collected under cone splitter.
		4 m composite RC samples collected using a PVC spear from the sample piles at the drill site. For drilling up to April 2020, RC samples were submitted for pulverising and 50 g charge FA. 4 m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1 m split samples and submitted to the lab for further analysis. Half-core samples, cut by automated core saw. Core sample intervals selected by geologist and defined by geological boundaries. Samples are crushed, pulverised and a 40 g charge is analysed by FA.
		 A total of 56 holes were drilled by OBM, including three RCDD holes and 53 RC holes.
		Beacon Minerals
		 1m RC Samples using face hammer with samples collected under Cone Splitter
		 4m composite AC samples collected via scoop on sample piles. 4 m composite samples with gold values greater than 0.2 g/t Au were re-sampled as 1 m split samples and submitted to the lab for further analysis

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Diamond Core logged and full hole sampled utilising geology defined sample intervals. Core was halved or quartered depending on use and dispatched to the BV Cunningham facility
		All Assays conducted for Beacon Minerals were performed by BV Cunninham. Samples are crushed, pulverised and a 40 g charge is analysed by FA.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Aberfoyle: No details for early RAB drilling. Later drilling involved RAB drilling using 4–4.25-inch blade or hammer to blade refusal. AC using 3.5-inch blade. RC 5.25–5.5-inch diameter face sampling hammer.
		Undocumented details. Presumably industry standard at the time being 5.5-inch face sampling hammers for RC and 4-inch diameter RAB holes.
		 RC 5.5-inch face sampling hammers. At times, a stepped AC bit was used to drill through sand at beginning of hole which changed to face-sampling hammer when laterite encountered. HQ triple twin DD holes at Lizard. LZD1-3 was oriented.
		EGL: RC 5.25-inch diameter. Roper River Resources:
		 RAB with blade and/or hammer bit. RC drilling with 5.25-inch diameter face sampling hammer.
		 Monarch: RC drilling 5.5-inch diameter with face sampling hammer. RAB 4-inch diameter blade with occasional hammer bit usage. AC details undocumented. SMC:

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		AC, RAB, RC details undocumented. Presumably industry standard at the time being 5.5-inch face sampling hammers for RC and 4-inch diameter RAB holes.
		OBM:
		• 5.25–5.5-inch diameter RC holes using face sampling hammer with samples collected under cone splitter. HQ and HQ3 coring to approx. 40 m, then NQ2 to bottom of hole.
		 Metallurgical and geotechnical core holes drilled using HQ3 exclusively.
		All core oriented by reflex instrument.
		The information presented above is derived from OBM's JORC table for its 2022 Iguana MRE. Snowden Optiro acknowledges that it cannot independently validate the provided information and relies on it for decision-making during the 2024 MRE update.
		Beacon Minerals:
		RC drilling conducted by 115mm Hammer face bit.
		 AC Drilling conducted utilising both Blade and Hammer methods, varying in bit size due to ground conditions
		 All Diamond core drilling was conducted in PQ3 or HQ3. Two holes were collared in PQ3 before casing off at approx. 70m depth to HQ3. Remaining holes were drilled HQ3 from collar.
Drill sample recovery	Method of recording and assessing core and chip sample	Delta:
	recoveries and results assessed.	Recoveries for resource RC drilling made as a subjective
, r	Measures taken to maximise sample recovery and ensure representative nature of the samples.	estimate. Recoveries in resource drilling were generally in excess of 70% (Iguana laterite), 60% (Lizard). Poor recoveries occurred outside mineralised zones.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred	OBM:
	due to preferential loss/gain of fine/coarse material.	 DD drill recoveries are recorded as a percentage calculated from measured core against downhole drilled intervals (core blocks).
		 RC samples are weighed at the laboratory to monitor recoveries.
		Other operators have not captured recovery data.
		There is no known relationship between sample recovery and grade.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		The information presented above is derived from OBM's JORC table for its 2022 Iguana MRE. Snowden Optiro acknowledges that it cannot independently validate the provided information and relies on it for decision-making during the 2024 MRE update Beacon Minerals: Diamond Drilling Recoveries were recorded in logging and sampling processes, with noted core loss existing in upper weathering profiles RC Drilling had recoveries recorded by percentage of material, significant material loss was present near surface due to unconsolidated sands
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	Aberfoyle: Logging on 1 m basis. Qualitative – lithology, oxidation, grain size. Quantitative – quartz. Croesus: Qualitative – lithology, colour, grain size, alteration, oxidation, texture, structures, regolith. Quantitative – estimates are made of quartz veining. Delta: Qualitative – lithology, colour, oxidation, structure, texture, alteration. Quantitative – estimates are made of quartz veining and minerals. EGL: Qualitative – alteration, colour, grain size, lithology, oxidation, mineralogy, structure, texture, vein style, vein assemblage, remarks. Quantitative – mineralisation intensity, vein percent. Roper River Resources:

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		 Qualitative – colour, lithology, oxidation, BOCO, texture, alteration, minerals, sulphides. Quantitative – quartz.
		Monarch:
		Qualitative – lithology, colour, oxidation, grain size, texture, structure, hardness, regolith.
		Quantitative – estimates are made of quartz veining, sulphide percentages.
		SMC:
		Qualitative – lithology, colour, oxidation, alteration.
		Quantitative – estimates are made of quartz veining.
		OBM:
		Field logging was conducted using Geobank Mobile™ software on Panasonic Toughbook CF-31 ruggedised laptop computers.
		Qualitative logging – lithology, colour, oxidation, grain size, texture, structure, hardness, regolith.
		 Quantitative – estimates are made of quartz veining, sulphide and alteration percentages. Core photographed both wet and dry.
		Magnetic susceptibility and rock quality designation (RQD) were also recorded for core holes.
		All holes were geologically logged in their entirety to a level of detail to support Mineral Resource estimation.
Subsampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or	Aberfoyle:
	all core taken.	Early (~1990) drilling – 2 m samples composited to 6m by
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	undocumented method. Results returning >0.2 g/t re-sampled on a 2 m basis.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Subsequent drilling – RAB/AC 2 m surface composites and 4 m composite thereafter. RC 1 m samples riffle split and composited to 4 m samples. Composite assays returning greaters.
	Quality control procedures adopted for all subsampling stages to maximise representativity of samples.	composited to 4 m samples. Composite assays returning greater than 0.2 g/t re-sampled on a metre basis.
	stages to maximise representativity of samples.	Croesus:

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half	 RAB drill samples were collected in buckets below a freestanding cyclone and laid out at 1 m intervals in rows of ten metres adjacent to the drill collar.
	sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Composite analytical samples (~3.5 kg) were initially collected over 5 m intervals for each hole and a 1 m bottom of hole analytical sample. Analytical composite samples were collected by taking a representative scoop through each 1 m drill sample. Composite assays returning greater than 100 ppb Au were resampled on an individual basis by an undocumented method.
		 RC drill samples were riffle split at 1 m intervals off the rig into calico bags whilst excess material was placed on the ground in 1 m piles for logging. The analytical samples were dried, crushed and split to obtain a sample less than 3.5 kg, and then fine pulverised prior to a 50 g sample being taken for analysis.
		Delta:
		• RC: Samples collected on 1 m intervals via a cyclone into green plastic bags. Each bag was riffle split if dry to a 2–3 kg sample and retained on site. A PVC spear sample was taken from residues to create a 5 m composite. If composites returned values >= 0.1 g/t, geologically interesting or had elevated arsenic levels, the original 1 m splits were collected and submitted. Original wet samples were split at this stage using wet triple riffle splitter, washed between samples. Wet samples were rare and usually outside of main mineralisation.
		 RAB: Typically 1 m samples were composited to 5 m (occasionally 10 m) by PVC spear. Significant assay results were re-submitted on a single metre basis.
		DD: Core was halved. Sample length typically 1 m.
		EGL:
		RC samples riffle split into calico bags. Wet or moist samples are noted during sampling. Core was cut with diamond saw and half core sampled. All mineralised zones are sampled, including portions of visibly unmineralised hangingwall and footwall zones. Sample weights range from >1.0 kg to 3.5 kg. Samples weighed by laboratory, dried and split to <3 kg if necessary and pulverised by LM-5. Field duplicates, blanks and standards were submitted for QAQC analysis.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Roper River Resources:
		 RAB and RC holes were composited to 6 m and 4 m respectively with anomalous zones of nickel or gold being resubmitted on a metre basis.
		Monarch:
		• RAB: 2 – 4 m composites scoop sampled.
		AC and RC 1 m splits via riffle splitter.
		RAB samples were composited to 4 m by scoop for initial analysis. Samples were riffle split and prepared with single stage mix and grinding.
		SMC:
		 RAB samples were collected at 1 m intervals from the drillhole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form 4 m or 5 m composite.
		AC: Predominantly 4 m composite samples. Methods unknown.
		 RAB samples were collected at 1 m intervals from the drillhole collar using a plastic bucket and laid on the ground. A scoop sample was taken from each sample to form a 5 m composite.
		AC: Predominantly 4 m composite samples.
		RAB: Predominantly 5 m composite samples.
		OBM:
		 RC samples were submitted either as individual 1 m samples taken onsite from cone splitter or as 4 m composite samples speared from the onsite drill sample piles. Half-core samples, cut by saw. Core sample intervals selected by geologist and defined by geological boundaries.
		 For drilling up to April 2020, RC samples were dried, crushed, split, pulverised and a 50 g charge taken. 4 m composite samples with gold values greater than 0.2 g/t Au were re- sampled as 1 m split samples and submitted to the lab for further analysis.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Field duplicates, blanks and standards were submitted for quality assurance and quality control (QAQC) analysis. Repeat assays were undertaken on pulp samples at the discretion of the laboratory.
		The information presented above is derived from OBM's JORC table for its 2022 Iguana MRE. Snowden Optiro acknowledges that it cannot independently validate the provided information and relies on it for decision-making during the 2024 MRE update
		Beacon Minerals:
		RC samples were submitted either as individual 1 m samples taken onsite from cone splitter or as 4 m composite samples scooped from the onsite drill sample piles. Half-core samples, cut by saw. Core sample intervals selected by geologist and defined by geological boundaries.
		Field duplicates, blanks and standards were submitted for quality assurance and quality control (QAQC) analysis. Repeat assays were undertaken on pulp samples at the discretion of the laboratory.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks)	 Aberfoyle: RC/RAB: composites assayed by aqua regia AAS. Composites returning >0.2-0.3g/t Au re-submitted as 1 m samples by 50 g charge FA. AC: Composites by 50 g charge FA. Composites returning >0.2-0.3g/t Au re-submitted as 1 m samples for FA again. In areas of elevated graphite (Burke Dam), RC composites were assayed by 50 g FA. Assayed at Genalysis. Croesus:
	and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	50 g charge analysed for gold (FA/ICP-Os) by Analabs Kalgoorlie for RC and Ultratrace Perth for RAB. Lab repeats at discretion of laboratory. Delta:

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		RC and RAB: 5 m composites dispatched to Genalysis and/or ALS laboratories Kalgoorlie for aqua regia with 50 g charge with 0.01 ppm detection limit. Composite assays returning values >= 0.1 ppm Au, corresponding single metre samples were collected and despatched to ALS Kalgoorlie for 50 g charge FA with 0.01 ppm detection limit. Core despatched to Genalysis Kalgoorlie for 50 g charge FA with 0.01ppm detection limit. Standards of an undocumented provenance and locally (uncertified) sourced blanks inserted but frequency undocumented. One in 20 pulp duplicate frequency. Blind pulp re-assays performed.
		EGL:
		 Samples were sent to Kalgoorlie Assay Laboratories to be analysed for gold by 40 g FA. Samples were also analysed at Genalysis. Certified reference material (CRM) standards were submitted. Field duplicate samples taken at rate of 1:40.
		Roper River Resources:
		• 25 g sample by aqua regia/AAS finish at MiniLab Kalgoorlie. Lab repeats at discretion of laboratory.
		Monarch:
		RAB and AC: Assayed by aqua regia/AAS with 10 ppb detection limit.
		RC: 50 g charge FA/AAS at SGS Kalgoorlie.
		SMC:
		FA, undocumented charge and laboratory.
		OBM:

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		 Up to April 2020, all samples were sent to an accredited laboratory (Nagrom Laboratories in Perth, Intertek-Genalysis in Kalgoorlie or SGS in Kalgoorlie). The samples have been analysed by firing a 50 g portion of the sample. This is the classical fire assay process and will give total separation of gold. An ICP-OES finish is used. Commercially prepared standard samples and blanks are inserted in the sample stream at a rate of 1:12. Sizing results (percentage of pulverised sample passing a 75 μm mesh) are undertaken on approximately 1 in 40 samples. The accuracy (standards) and precision (repeats) of assaying are acceptable. Standards and blanks were inserted into the sample stream at a rate of approximately 1:12. Duplicates were submitted at a rate of approximately 1:30. FA is considered a total technique, aqua regia is considered partial. This is sourced from the OBM JORC table. Snowden Optiro cannot validate the above information except for the Nagrom laboratory. Snowden Optiro carried out a lab audit at Nagrom laboratory in May 2024. The audit shows no hygiene issue or fatal flaw for the gold FA procedure. Snowden Optiro has access to the field duplicate data for most drilling campaigns, CRMs and blank data for OBM drilling campaign. Snowden Optiro conducted the independent checks for the available QC data. No material issue was identified, and Snowden Optiro considers that the data is of sufficient quality for the MRE work.
		 All assay work was conducted by BV Cunningham utilising FA/AAS analysis with 40g charge. Beacon Minerals submitted QA/QC samples every 20 samples utilising multiple different CRM providers.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Holes are not deliberately twinned in Iguana area. Monarch: Geological and sample data was logged digitally and .csv or .xls files imported into Datashed SQL database with in-built validation. Samples bags were placed into numbered plastic bags and then cable tied. Samples collected daily from site by laboratory.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	Discuss any adjustment to assay data.	EGL:
		 Geological and sample data logged directly into field computer at the core yard using Field Marshall. Data is transferred to Perth via email and imported into Geobank SQL database by the database administrator (DBA). Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary.
		OBM:
		 Geological and sample data logged directly into field computer at the drill rig or core yard using Field Marshall or Geobank Mobile. Data is transferred to Perth via email and imported into Geobank SQL database by the DBA. Assay files are received in .csv format and loaded directly into the database by the DBA. Hardcopy and/or digital copies of data are kept for reference if necessary.
		Data entry, verification and storage protocols for remaining operators is unknown.
		This is sourced from OBM JORC table. Snowden Optiro cannot validate the above information.
		•
		Beacon Minerals:
		Geological and Sampling data was entered directly into a formatted excel file in the field which was then verified. Data was then formatted and imported into Datashed 5 passing through further validation before acceptance into the database.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Aberfoyle: All drilling not surveyed. Collars located on AMG Zone 51 Grid utilised.
	Specification of the grid system used.	Croesus:
	Quality and adequacy of topographic control.	TGRC holes were collar surveyed in AMG Zone 51 Grid. No downhole surveys.
		Delta:
		 All drillholes used for resource definition surveyed by Minecomp. All post-1993 RC and DD holes downhole surveyed using EMS or Eastman single shot where possible. Where not possible, data from proximal holes was used. LAD and LZC, LZD, LAC, and selected G prefixed holes downhole surveyed by undocumented method approximately every 10 m. Many RAB holes appear to be collar surveyed.
		 AMG Zone 51 Grid utilised except for holes in the Nyborgs region where a local grid (Lady Ida) was utilised.
		EGL:
		Collars were surveyed by differential global positioning system (GPS) in MGA Zone 51. No downhole surveying performed.
		Roper River Resources:
		No surveys post drilling. AMG Zone 51 Grid utilised.
		Monarch:
		RC and some AC collars surveyed by differential GPS. All remaining holes surveyed by GPS. MGA Zone 51 Grid utilised. IGRC holes were downhole surveyed by EMS every 5 m. RC drilling was surveyed by Electronic Multi-shot on selected holes.
		SMC:
		No evidence of post drilling surveys, MGA Zone 51 Grid utilised.
		OBM:
		(RC, DD) MGA94, Zone 51. Drillhole collar positions were picked up by a contract surveyor using RTK GPS subsequent to drilling.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Drillhole, downhole surveys are recorded every 30 m using a reflex digital downhole camera. Some RC holes not surveyed if holes short and/or drilling an early-stage exploration project. DD drillholes completed in 2019 and 2020 by OBM were surveyed using a Gyro tool.
		This is sourced from OBM JORC table. Snowden Optiro cannot validate the above information.
		Beacon Minerals:
		Collars were picked up by a qualified surveyor in MGA94 Z 51 format utilising a RTK GPS and appropriately set control. Locations were also cross checked with hand held GPS
		Diamond Holes were surveyed using a Reflex Continuous Gyro system
		RC Holes were surveyed at EOH depth only, with a partial portion of the program surveyed 6m (1 rod) from EOH to avoid loss of instrument or hole collapse
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Exploration results are reported for single holes only.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve	Data spacing highly variable from wide spaced $^{\sim}800$ m x $^{\sim}80$ m regional RAB to close spaced resource drilling $^{\sim}10$ m x $^{\sim}10$ m and grade control drilling at $^{\sim}5$ m.
	estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Drillhole spacing is adequate to establish geological and grade continuity for the Iguana deposit.
		Drill composites have been length weighted, 0.5 g/t lower cut-off, not top cut, maximum 2 m internal dilution.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Deposits in the Lady Ida zone are generally oriented on northwest trends. Once the orientation of mineralisation was established, drilling was mostly oriented towards 90° with Iguana grade control
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	oriented towards 45°. Drilling of laterite mineralisation is almost exclusively vertical in nature.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		The Iguana Deposit presents multiple orientations of mineralisation which include both near vertical sets and shallowly dipping mineralisation zones. Drilling in the Iguana region has primarily been focused on -60° dipping holes, either East or West orientated. Recent drilling by Beacon Minerals replicated prior RC drilling orientations in the region. The selection of eastern orientated drilling is primarily driven by the shallow westerly plunge of the vertical structures present in the region.
Sample security	The measures taken to ensure sample security.	 Unknown for all drilling except for the following: Monarch: Sample calicos were placed into numbered plastic bags and cable tied. Any samples going to SGS were collected daily by the lab. Samples sent to ALS were placed into sample crates and sent via courier on a weekly basis. EGL: Samples were bagged, tied and in a secure yard. Once submitted to the laboratories they are stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. OBM: Samples were bagged, tied and stored in a secure yard on site. Once submitted to the laboratories they were stored in cages within a secure fenced compound. Samples are tracked through the laboratory via their LIMS. Snowden Optiro does not have access to the information related to the above comments from OBM. Therefore, Snowden Optiro cannot verify these comments from OBM. Beacon Minerals: Samples were collected from the field and immediately recorded, and dispatched to BV Cunningham utilising Beacon employees or appropriately qualified contractors
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	OBM has reviewed historical digital data, particularly from the Iguana deposit, and compared it to hardcopy and digital (including WAMEX) records. Snowden Optiro does not have access to the historical digital data, except for the OBM drilling. Therefore, Snowden Optiro cannot verify this comment from OBM.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Lady Ida Project consist of M16/262 (the Iguana Deposit is located on M16/262), M16/263, M16/264, L15/224, L16/58, L16/62, L16/103, L16/142 and application L16/138 which is the ground the subject of the Earn-In, JV and Tenement Transfer Agreement between the Company, Beacon Mining Pty Ltd, Lamerton Pty Ltd and Geoda Pty Ltd.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Drilling, sampling and assay procedures and methods as stated in the database and confirmed from WAMEX reports and hardcopy records are considered acceptable and to industry standards of the time. There is sufficient understanding of drilling, sampling and assay methodologies for the majority of drilling in the Lady Ida area. BCN is confident that previous operators completed work to standards considered acceptable for the time.
Geology	Deposit type, geological setting and style of mineralisation.	The project is located along the inferred trace of the Ida Fault, a north-south trending deep-seated crustal structure juxtaposing batholithic granites and subordinate basalt and banded iron formation of the Southern Cross Province against greenstones of the Eastern Goldfields Province.
		The Eastern Goldfields Province sequences are metamorphosed to amphibolite facies and dominated by tholeitic to komatiitic basalts, tremolite-chlorite rich ultramafics and psammitic to pelitic sediments. The regional stratigraphy trends north-northwest, sub-parallel to the Ida Fault, and the regional dip is sub-vertical. The structural complexity of the area, including inferred thrusts, fault splays and crosscutting shears, presents good potential for additional trap sites.

Criteria	JORC Code explanation	Commentary
		The resource at Iguana is dominantly hosted in a highly sheared, silicamuscovite-carbonate altered, tholeiitic metabasalt and sediments of lower to mid amphibolite facies. It is interpreted as being controlled by imbricate thrusts contained between two north-south trending faults. Ultramafic units lie to the west and the mafic-sedimentary package lies to the east. Post-mineralisation pegmatite dykes attain considerable thickness in places and stope out mineralisation.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following	Refer to the collar information provided in this report for all new Laterite holes conducted at Iguana.
	 information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. 	Beacon Minerals has previously declared a MRE on the Iguana deposit which contains all drillhole data utilised for the current resource estimate. This includes all historic holes.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent	Mineralised intercepts have not been reported in this release as a Mineral Resource is being declared. Metal equivalent calculations are not required as the Iguana project is gold only.
	values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.	Mineral intercepts have been recorded as downhole widths. The vertical drillholes in association with a flat lying orebody means all widths and depths are representative true widths and true depths

Registered Address 144 Vivian Street, Boulder, WA 6432 **Website** <u>www.beaconminerals.com</u> **Phone** 08 9093 2477

Criteria	JORC Code explanation	Commentary
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views.	See plan and cross-section views in the associated Market Release. Pit Shell design showing in collar and best in hole Au imagery refers to the 24 th February 2025 release "Lady Ida Project- Iguana Pre-Feasibility and Ore Reserve".
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Beacon Minerals is reporting only significant intercepts as prior outlined (greater then 0.5g/t zone, with less than 1m of internal dilution). All drillhole zones not tabularised in this report can be interpreted as being insignificant in relation to Au grades.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Iguana has no known reported metallurgical issues. Primary ore was previously mined by Delta in the early 2000s with ore treated at the Greenfields processing plan in Coolgardie. Recovery and reconciliation figures are unknown.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further resource work is ongoing with these Laterite drilling results, with a resource update focused on the Laterite Mineralisation expected in the coming quarter.