



# EXPANDED GOLD-COPPER DISCOVERY AND RESOURCE EXTENSIONS AT MINYARI DOME

Including 41m at 1.8 g/t gold and 0.18% copper from near surface MINYARI GOLD-COPPER PROJECT

Antipa Minerals Ltd (ASX: **AZY**) (**Antipa** or **the Company**) is pleased to report assay results from the second batch of 54 holes completed as part of the dual-focused CY2025 Phase 1 drill programme at its 100%-owned 4,100km<sup>2</sup> Minyari Gold-Copper Project (**Minyari Project**), located in the world-class Paterson Province of Western Australia (Figure 1).

# **Highlights**

- Step-out success has been confirmed as part of Minyari Dome Deposit Growth Drilling with meaningful extensions to known mineralisation reported at multiple deposit areas, including:
  - 41m at 1.8 g/t gold and 0.18% copper from 98m in 25MYC0697, including:
    - 3m at 11.3 g/t gold, 1.20% copper, 2.3 g/t silver and 0.11% cobalt from 113m
    - 1m at 20.2 g/t gold, 0.30% copper, 0.7 g/t silver and 0.28% cobalt from 137m
  - **1.0m at 35.0 g/t gold, 0.06% copper and 0.30% cobalt** from 258m in 25MYD0538
  - 10m at 3.1 g/t gold and 0.06% copper from 149m in 25MYC0707, including:
    - 1m at 23.4 g/t gold and 0.06% copper from 151m
  - 8m at 2.5 g/t gold and 0.09% copper from 110m in 25MYC0702, including:
    - 1m at 14.0 g/t gold and 0.51% copper from 116m
  - 10.0m at 2.0 g/t gold from 31m in 25MYD0539, including:
    - **2.9m at 6.5 g/t gold** from 35.1m
    - **1.0m at 10.3 g/t gold** from 572m
- Assay results from New Discovery Drilling delivered a significant new mineralised gold-copper zones to the south of Fiama and Rizzo, with notable new intersections that include:
  - 60m at 0.4 g/t gold and 0.15% copper from 4m in 25MYC0750, including:
    - **8m at 1.2 g/t gold, 0.31% copper** and 0.6 g/t silver from 44m
  - 2m at 0.3 g/t gold and 4.4% copper and 4.4 g/t silver from 131m in 25MYC0750
  - 4m at 1.8 g/t gold from 100m in 25MYC0723
- The CY2025 Phase 1 drill programme is complete and comprised a total 304 holes for approximately 34,179m of air core, reverse circulation (**RC**) and diamond core drilling.
- Together, the previously announced first batch and this second batch of assay results account for 53% of total Phase 1 drilling completed.
- Mineralisation remains open at the GEO-01 Main Zone, GEO-01 Central, Fiama, Minella, Minyari South deposit resources, and at multiple prospects and discoveries.
- Outstanding assay results from the remaining Phase 1 holes are expected Q3 CY2025
- Phase 2 drilling is set to commence mid-August and will include one outstanding diamond core hole from Phase 1 plus 25,000 to 35,000m of air core, RC and diamond core drilling.



# Antipa's Managing Director, Roger Mason, commented

"These latest results continue a steady stream of new discoveries that highlight the broader potential of Minyari Dome, with drilling confirming a new gold-copper discovery and materially extending mineralisation across several deposits. The outstanding intercepts at Minyari South and GEO-01 reinforce our view that Minyari Dome has the potential to support a significant, long-life standalone gold development, with additional ounces still to be uncovered. With results from Phase 1 drilling continuing to deliver on both discovery and resource growth fronts, Phase 2 drilling set to commence in the coming weeks, and our Prefeasibility Study advancing in parallel, we look forward to updating our shareholders with a steady stream of news through the remainder of this year."

# CY2025 Phase 1 Minyari Project Outline and Second Batch Results Summary

The CY2025 Phase 1 drill programme comprised a total 304 holes for approximately 34,179m, incorporating air core, RC and diamond core drilling (including diamond core tails). This dual-purpose exploration programme was designed to grow the existing Mineral Resource at multiple Minyari Dome deposits (Minyari Dome Deposit Growth Drilling, refer to Figures 2 to 4 and 7) and to test greenfield targets to deliver new discoveries across the broader 4,100km<sup>2</sup> Minyari Gold-Copper Project tenement package (New Discovery Drilling, refer to Figure 18).

# **Minyari Dome Deposit Growth Drilling**

Phase 1 drilling focused on expanding the existing near-surface Minyari Dome Mineral Resource, which currently stands at 2.4 Moz of gold, including 1.7 Moz at 1.6 g/t gold in the Indicated category<sup>1</sup>. Its focus was on **Minyari South** and the broader **GEO-01 Prospect Area**, covering the Main Zone, Minella, Fiama and Central gold deposits. Mineralisation across these deposits remains open downdip and in some cases along strike.

This component of the programme is now complete and totaled 59 holes for 12,594m, comprising 55 RC holes, two diamond core holes, and two diamond-tailed RC holes. To date, assay results have been returned for approximately 80% of the resource growth portion of the drilling programme. This second batch of assays includes results from 31 RC holes, two diamond core holes and one diamond core tail hole.

To date, results have been received for 50 holes of 59 holes completed (refer to Table 1 and Tables 2ab and Figures 2 to 4 and 6 to 14), with some holes only partially returned.

#### **Minyari South:**

Phase 1 drilling beneath and southwest of Scoping Study open pit tested for both depth and strike extensions of high-grade gold mineralisation beyond the limits of the current open pit design. Fourteen Phase 1 holes were completed (13 RC and one diamond core) and results are available for all holes. Drill hole 25MYC0697 opened up Minyari South's western limb (200 to 300m strike length) as a significant high-grade gold ± copper resource growth opportunity, whilst drill hole 25MYD0538 highlighted high-grade gold potential at depth; both opportunities are to be followed

<sup>&</sup>lt;sup>1</sup> For full details refer to ASX release dated 21 May 2025, "Minyari Project Resource Grows by 100 Koz to 2.5 Moz of Gold".



up during the upcoming Phase 2 drilling programme. Notable second batch intersections (two RC holes and one diamond core hole), include:

- 41m at 1.8 g/t gold and 0.18% copper from 98m down hole in 25MYC0697, including:
  - 3m at 11.3 g/t gold, 1.20% copper, 2.3 g/t silver and 0.11% cobalt from 113m down hole
  - 1m at 20.2 g/t gold, 0.30% copper, 0.7 g/t silver and 0.28% cobalt from 137m down hole
- 6m at 0.5 g/t gold and 0.23% copper from 45m down hole in 25MYC0697, including:
  - 3m at 0.9 g/t gold and 0.17% copper from 48m down hole
- 1.0m at 35.0 g/t gold, 0.06% copper and 0.30% cobalt from 258m down hole in 25MYD0538

# **GEO-01 Prospect Area:**

GEO-01 is located approximately 1.3km south of the Minyari deposit and is defined by a large 1km x 800m mineralised footprint (Figures 2 to 6). Phase 1 drilling focused on extending resources at multiple deposits, where high-grade gold mineralisation remains open down-dip and in some cases along strike (Figures 7 to 14).

#### **Extensional resource targets tested at GEO-01 included:**

- Main Zone: This deposit features shallow gold ± copper mineralisation extending along up to 500m of strike length, up to 250m across strike with Phase 1 drilling extending gold-copper mineralisation from 350 to 480 vertical metres below the surface. The resource remains open down plunge. Three Phase 1 holes were completed (one RC, one diamond core, and one diamond core tailed RC hole), with results received for all three drill holes, with notable second batch intersections, including:
  - 10.0m at 2.0 g/t gold from 31m down hole in 25MYD0539, including:
    - **2.9m at 6.5 g/t gold** from 35.1m down hole
  - 2.5m at 7.3 g/t gold and 0.26% copper from 310.5m down hole in 25MYD0539, including:
    - 1.0m at 17.5 g/t gold and 0.35% copper from 312.0m down hole
  - **15m at 2.0 g/t gold and 0.04% copper** from 336m down hole in 25MYCD0698 (previously reported), including:
    - **1m at 3.4 g/t gold, 0.06% copper** from 336m down hole (previously reported)
    - **1m at 3.1 g/t gold, 0.04% copper** from 345m down hole (previously reported)
    - **1.0m at 10.3 g/t gold** from 572m down hole
- Fiama: Located approximately 330m southeast of the GEO-01 Main Zone, this zone features shallow gold ± copper mineralisation extending along a 300m of strike length, up to 120m across strike with Phase 1 drilling extending gold-copper mineralisation from 220 to 315 vertical metres below the surface. The gold resource remains open in several directions. Seventeen Phase 1 RC holes were completed with complete results received for twelve holes, and partial results received for three holes, with significant second batch intersections, including:
  - 10m at 3.1 g/t gold and 0.06% copper from 149m down hole in 25MYC0707, including:
    - 1m at 23.4 g/t gold and 0.06% copper from 151m down hole
  - 8m at 2.5 g/t gold and 0.09% copper from 110m down hole in 25MYC0702, including:
    - 1m at 14.0 g/t gold and 0.51% copper from 116m down hole
  - 32m at 0.6 g/t gold from 131m down hole in 25MYC0708, including:



- 1m at 4.9 g/t gold and 0.04% copper from 135m down hole
- **10m at 1.0 g/t gold** and 0.03% copper from 150m down hole
- **24m at 0.5 g/t gold** and 0.04% copper from 184m down hole in 25MYC0741
- 8m at 0.50 g/t gold, 0.08% copper and 1.3 g/t silver from 201m down hole in 24MYC0630 (2025 RC tail), with significant second batch intersections, including:
  - 4m at 0.7 g/t gold, 1.3% copper and 2.4 g/t silver from 201m down hole
- Minella: Situated along Fiama's isoclinal fold-hinge, approximately 80m north of its western extent, mineralisation extends along approximately 300m of strike, up to 50m across strike with Phase 1 drilling extending gold-copper mineralisation from 100 to 230 vertical metres below the surface, with the gold resource remaining open in multiple directions. Seven Phase 1 RC holes were completed with full results available for two holes, and partial results for four holes completed, with significant second batch intersections, including:
  - 3m at 1.6 g/t gold and 0.08% copper from 49m down hole in 25MYC0704, including:
    - 1m at 2.6 g/t gold and 0.09% copper from 49m down hole
  - 12m at 0.4 g/t gold and 0.05% copper from 90m down hole in 25MYC0704, including:
    - 2m at 1.0 g/t gold and 0.04% copper from 98m down hole
  - 6m at 0.4 g/t gold and 0.06% copper from 221m down hole in 25MYC0744, including:
    - 2m at 1.0 g/t gold and 0.06% copper from 224m down hole
  - 37m at 0.4 g/t gold and 0.10% copper from 232m down hole in 25MYC0744, including:
    - 1m at 1.1 g/t gold and 0.12% copper from 240m down hole
    - 1m at 4.8 g/t gold and 0.07% copper from 267m down hole
- GEO-01 Central: Situated between Main Zone and Minella, fold limb and contact related gold mineralisation extends along approximately 230m of strike, up to 100m across strike with Phase 1 drilling extending gold-copper mineralisation from 110 to 250 vertical metres below the surface. The gold resource remains open in several directions. Four Phase 1 RC holes were completed and results have been received for all holes, with notable second batch intersections, including:
  - **2m at 0.5 g/t gold** from 58m down hole in 25MYC0736, including:
    - 1m at 0.8 g/t gold and 0.06% copper from 58m down hole
  - 14m at 0.8 g/t gold and 0.08% copper from 146m down hole in 25MYC0736, including:
    - 1m at 1.7 g/t gold and 0.10% copper from 146m down hole
    - 2m at 1.7 g/t gold and 0.18% copper from 151m down hole
    - 1m at 1.0 g/t gold and 0.10% copper from 159m down hole

#### **Additional Resource Growth Targets:**

Additional resource growth targets tested (refer to Figures 2, 3 and 7) as part of the Phase 1 programme included the following three prospect areas:

• Minyari Southeast: Extends southeast from the southeast corner of the Minyari deposit beyond the limits of the current open pit design, with gold mineralisation remaining open down dip. Four Phase 1 RC holes were completed, and results have been received for two holes and no further drilling is envisaged for this area.



- Minyari Northwest, Northeast and Southwest Sectors Inside Scoping Study Open Pit: Focused on historically poorly tested zones within the northeast and southwest regions of the current open pit design. Two Phase 1 RC holes were completed at Minyari Northeast, with results received for both holes and no further drilling is envisaged for this area. One Phase 1 RC hole was completed at Minyari Southwest and the assay results are pending.
- **WACA Extension:** Tests the southeast strike potential of high-grade gold mineralisation beyond the limits of the current open pit design. Four Phase 1 RC holes were completed, with results received for two holes, and the review is ongoing. Notable intersection:
  - 10m at 0.3 g/t gold from 188m down hole in 25MYC0696, including:
    - 1m at 1.7 g/t gold from 196m down hole

# Minyari Dome Development Project Technical Study and Advancement Drilling

In addition to its active exploration drilling programmes, various Pre-feasibility Study (**PFS**) technical and non-technical workstreams have been progressed to further de-risk and refine the development opportunity at Minyari Dome, at the same time as advancing the permitting process. The PFS resource definition (**ResDef**) drilling programme is currently utilising two diamond core rigs and one RC rig and is scheduled for completion during the second half of August 2025.

# **New Discovery Drilling<sup>1</sup>**

The broader discovery-focused component of the CY2025 Phase 1 programme was designed to test greenfield gold-copper targets and existing prospects across Antipa's extensive 4,100km<sup>2</sup> Minyari Project tenement package.

Drilling included 247 holes for 21,605m, comprising 205 air core holes (13,332m), 40 RC holes (7,477m), one diamond core hole (455m ongoing), and one diamond core tail (341m). The RC and air core drilling components of the programme have been completed, with the diamond core hole scheduled for completion during Phase 2 CY2025 drilling.

Key targets tested included the southern extensions to Fiama and Rizzo, the Minyari Depth Repeat and Minyari East Repeat targets, Parklands, PP-GRAV02, AL01, AL02 and the Reaper-Poblano-Serrano (**RPS**) Trend, among others.

Assay results from the first and second batches have been received approximately 40% of the completed drilling. This includes 38 RC holes, one diamond core tail, and 28 air core holes. Assays for the air core bottom-of-hole sample intervals are pending. Refer to Table 1 and Tables 2a-b and Figures 2 to 7, and 15 to 18 for additional detail.

#### South of Fiama and Rizzo:

Follow up of 2024 air core drilling targeted extensions to both Fiama and Rizzo in an area which Antipa's access to was previously prevented by the Paterson IGO Farm-in Project's tenement boundary. Thirty-two Phase 1 holes were completed (18 air core and 14 RC), with results now available for all drill holes. **Phase 1 drilling has discovered shallow gold-copper mineralisation** 

<sup>&</sup>lt;sup>1</sup> Exploration programmes are subject to changes which may be made consequent upon results, field conditions and ongoing review.



# across a large area (800m by 700m) highlighting the potential to materially increase the Minyari Dome Mineral Resource.

Based on highly encouraging Phase 1 first batch assay results, follow up in this area was immediately escalated to incorporate a further 12 RC holes across three 200 metre spaced drill lines, constrained by available heritage clearances. Drill holes were typically 100 metres apart on each drill line which were sub-optimally orientated commonly being parallel to the magnetic structural grain, rendering specific drill testing of prospective contacts problematic.

Notwithstanding these limitations, significant gold and copper mineralisation was intersected. Extensive follow-up RC drilling to investigate the largely untested broader 2km by 800m target area, including magnetic and aerial electromagnetic (**AEM**) conductivity anomalies, is planned for the upcoming Phase 2 drilling programme, with a heritage survey completed early July to eliminate drill programme constraints. Notable second batch Phase 1 intersections in this area include:

- 21m at 1.8 g/t gold and 0.06% copper from 44m down hole in 25MYC0715 (previously reported), including:
  - 4m at 8.6 g/t gold, 0.02% copper and 0.5 g/t silver from 44m down hole
- 60m at 0.4 g/t gold and 0.15% copper from 4m down hole in 25MYC0750, including:
  - 8m at 1.2 g/t gold, 0.31% copper and 0.6 g/t silver from 44m down hole
- 2m at 0.3 g/t gold, 4.4% copper and 4.4 g/t silver from 131m down hole in 25MYC0750
- 4m at 1.8 g/t gold from 100m down hole in 25MYC0723
- 5m at 0.4 g/t gold, 0.58% copper and 3.6 g/t silver from 133m down hole in 25MYC0719, including:
  - 1m at 1.0 g/t gold, 1.3% copper and 6.8 g/t silver from 135m down hole
  - 1m at 0.3 g/t gold, 1.1% copper and 4.3 g/t silver from 136m down hole

#### **Minyari East Repeat Targets:**

Testing of the potential for repetitions of gold-copper mineralisation beyond the eastern limits of the current resource and mine design. One Phase 1 diamond core tail of a 2021 RC hole was completed which refined the geological and structural, including folding, model and modified the Minyari East Repeat target position which will be followed up with RC ± diamond core during the upcoming Phase 2 drilling programme. Notable intersections from the diamond tail include:

- 3.0m at 4.7 g/t gold from 467.0m down hole in 21MYCD0203 (2025 diamond tail), including:
  - **1.0m at 12.9 g/t gold** from 467.0m down hole
- 1.0m at 0.8 g/t gold from 636.0m down hole in 21MYCD0203 (2025 diamond tail)

# **Minyari Depth Repeat:**

Testing of the potential for repetitions of gold-copper mineralisation beyond the depth limits of the current resource and mine design. Drilling of a single diamond core hole was commenced during Phase 1 to test the Minyari Depth (WACA host rock package), considered a repeat target. This hole will be completed during the upcoming Phase 2 programme.

#### **GP05**:

Brownfield air core target, including low-grade gold-copper mineralisation, associated with a magnetic anomaly 250m northeast of the GEO-01 Main Zone deposit. Four Phase 1 RC holes were



completed; assays results have been received and no further drilling is envisaged. Best intersections included:

- **4m at 0.1 g/t gold and 0.04% copper** from 134m down hole in 25MYC0728
- 4m at 0.1 g/t gold and 0.10% copper from 162m down hole in 25MYC0728

#### **Chicane:**

Brownfield RC and air core target, including high-grade gold-copper mineralisation, over a disrupted magnetic anomaly 400m southwest of the Minyari deposit. One Phase 1 RC hole was completed, with assays pending.

#### PP-GRAV02:

Large-scale gold-copper gravity target covering an area of approximately 1.7km x 1.6km and located 10km west-southwest of Minyari. Thirty-one Phase 1 air core holes were completed, with assay results currently received for 10 holes, returning no significant mineralisation. Noting that the assay results for all air core bottom-of-hole sample intervals are pending.

#### AL01:

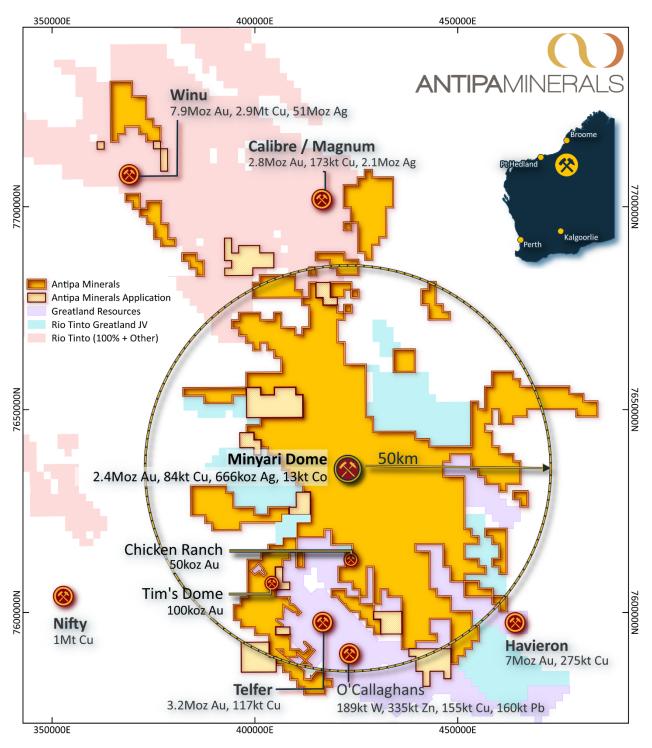
Large-scale air core (2022 and 2023) target, including low-grade gold mineralisation, covering an area of approximately 6.0km x 2.0km and located 18km north of Minyari. Forty-two Phase 1 air core holes were completed, with assays pending.

#### AL02:

Large-scale air core / RAB gold-copper target, covering an area of approximately 3.0km x 1.2km and located 9km north of Minyari. Fourteen Phase 1 air core holes were completed, with assays pending.

#### **Reaper-Poblano-Serrano Trend:**

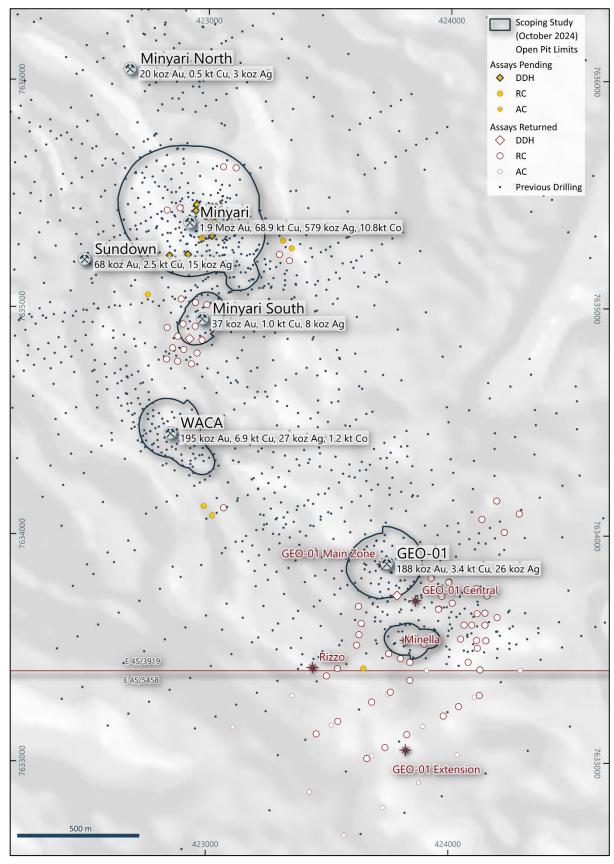
Large-scale magnetic and RC gold-copper target, including high-grade gold mineralisation, covering an area of approximately 4.5km x 1.0km and located 30km north of Minyari. Ninety-six Phase 1 air core holes were completed and assays are pending.


#### Kali-WEM:

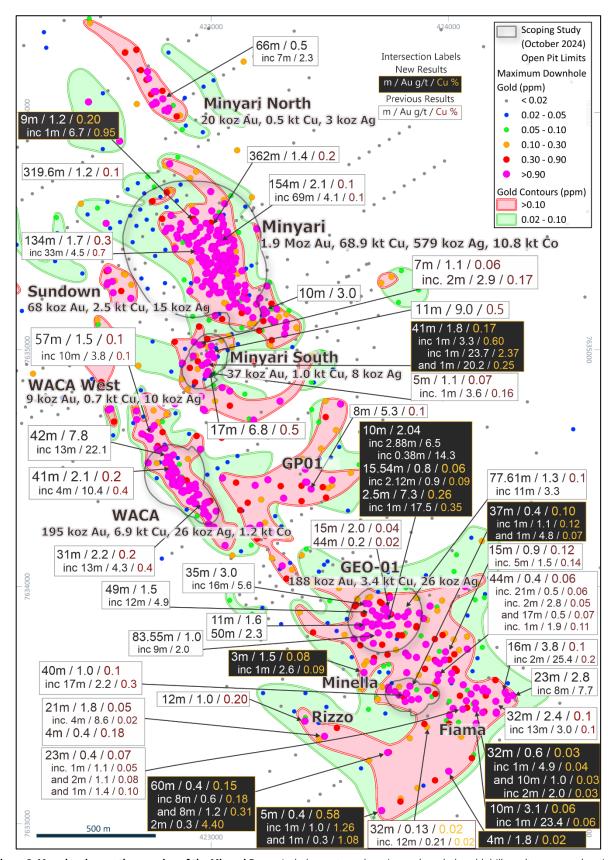
Aeromagnetic and AEM conductivity target covering an area of approximately 2.0km x 600m located 15km southwest of Minyari. Four Phase 1 air core holes were completed, with assays pending.

# **Next Steps**

Phase 1 drill programme assay results remain outstanding for 194 drill holes for 15,873m; including resource growth-focused 14 holes for 2,723m and discovery-focused 180 holes for 13,150m. These outstanding results expected during Q3 CY2025 will further inform the design of the Phase 2 drill programme which is set to commence mid-August. The Phase 2 discovery and resource growth focused programme is currently planned to include 25,000 to 35,000m of air core, RC and diamond core drilling (including the outstanding Phase 1 diamond core hole)<sup>1</sup>.


<sup>&</sup>lt;sup>1</sup> Exploration programmes are subject to changes which may be made consequent upon results, field conditions and ongoing review.




**Figure 1: Plan showing location of Antipas 100%-owned, 4,100km² Minyari Project:** Plan includes Greatland Resources' Telfer Mine, Havieron development project and O'Callaghans deposit, Rio Tinto-Sumitomo's Winu deposit, Rio Tinto's Calibre-Magnum deposits, and Cyprium's Nifty Mine<sup>1</sup>. Regional GDA2020 / MGA Zone 51 co-ordinates, 50km grid.

\_

<sup>&</sup>lt;sup>1</sup> Telfer and Havieron refer to Greatland Gold plc AIM release dated 18 March 2025, "2024 Group Mineral Resource Statement". Winu refer to Rio Tinto Ltd ASX release dated 22 February 2023, "Changes to Ore Reserves and Mineral Resources". O'Callaghans refer to Newmont Corporation ASX release dated 23 February 2024, "PR as issued - 2023 Reserves and Resources". Nifty refer to Cyprium Metals Ltd ASX release dated 14 March 2024, "Updated Nifty MRE Reaches 1M Tonnes Contained Copper". Calibre refer to Antipa release dated 26 August 2024, "Calibre Gold Resource Increases 19% to 2.5 Moz - Citadel JV". Magnum refer to Antipa release dated 23 February 2015, "Calibre and Magnum Deposit Mineral Resource JORC 2012 Updates".



**Figure 2: Map of the southern region of the Minyari Dome:** Showing the 2024 Scoping Study open pit design limits, Mineral Resource locations, prospect locations and the CY2025 Phase 1 RC, air core and diamond core drill hole collar locations and assay status. Note the boundary between tenements E45/3919 and E45/5458; prior to 30 April 2025 Antipa's access to E45/5458 was prevented by the Paterson IGO Farm-in Project. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 1km grid.



**Figure 3: Map showing southern region of the Minyari Dome:** Includes contoured maximum down-hole gold drill results, resource locations, 2024 Scoping Study open pit design limits, and deposit/prospect locations (including Minyari South, GEO-01 Main Zone, Fiama, Minella and Rizzo). Note the gold-copper discovery intersections across a large area (800m by 700m) extending the Rizzo and Fiama mineralisation 500m to the south into an area which Antipa's access to was previously prevented by the Paterson IGO Farm-in Project (tenement) boundary. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 1km grid.

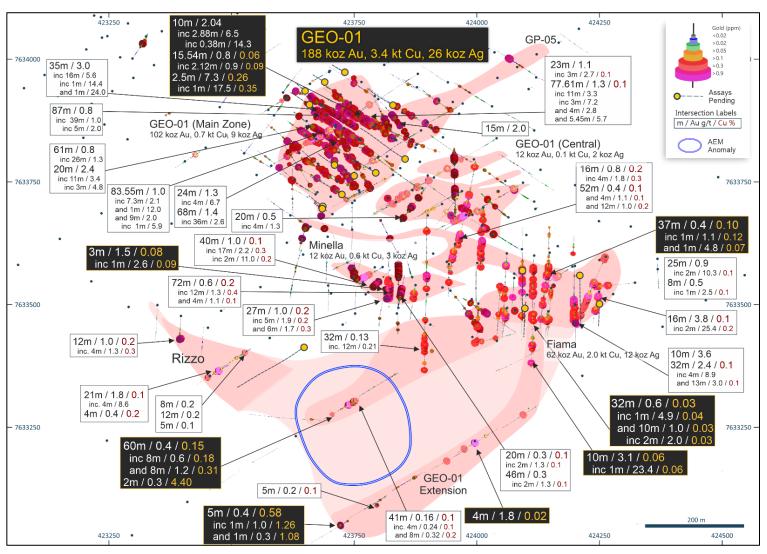



Figure 4: GEO-01, Fiama, Minella and GEO-01 Central deposits and southern discovery extension region plan view showing gold ± copper drill annotation and intersections and interpreted mineralisation envelopes. Folded and/or faulted hard/brittle quartzite and mafic (dolerite) intrusives are preferentially mineralised. Multiple zones of mineralisation remain open, including high-grade. NB: Regional GDA2020 / MGA Zone 51 co-ordinates and 250m grid.

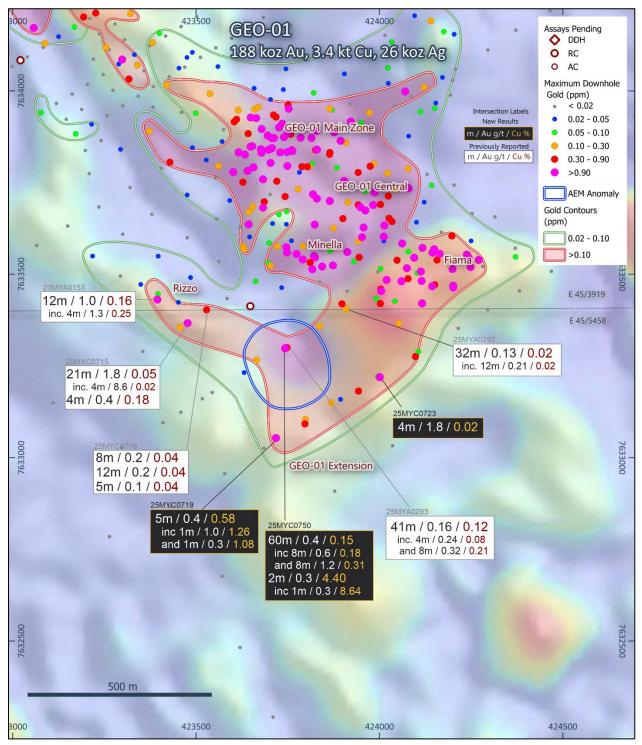
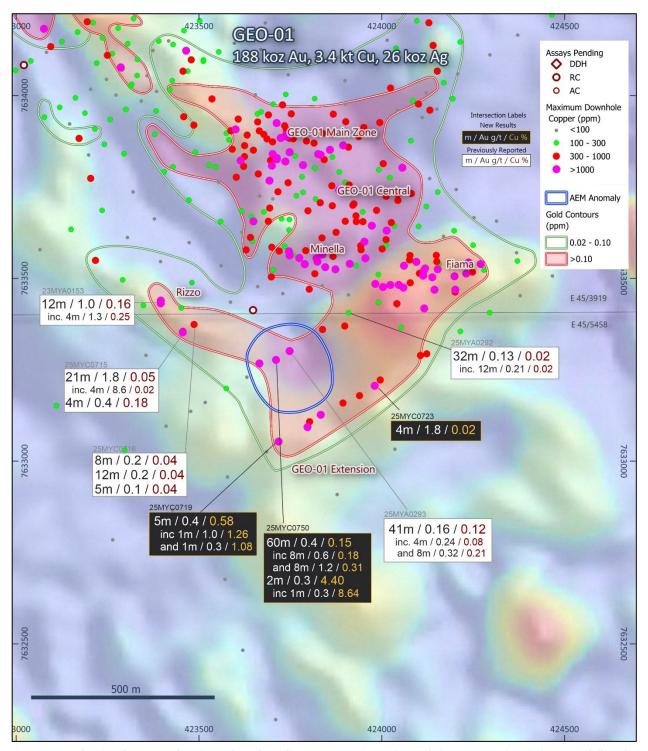




Figure 5: Map showing the GEO-01 deposits and southern discovery extension region: Includes maximum down-hole gold drill results, gold grade contours and the GEO-01 Main Zone, Fiama, Minella and Rizzo deposit locations. Note the gold-copper discovery intersections across a large area (800m by 700m) extending the Rizzo and Fiama mineralisation 500m to the south into an area (tenement E45/5458) which Antipa's access to was previously prevented by the Paterson IGO Farm-in Project (tenement) boundary, highlighting the potential to materially increase the Minyari Dome gold-copper resource. The broader 2km by 800m target area includes magnetic and aerial electromagnetic (AEM) conductivity anomalies remains largely undrilled. NB: Over Airborne magnetic image and Regional GDA2020 / MGA Zone 51 co-ordinates, 500m grid.



**Figure 6: Map showing the GEO-01 deposits and southern discovery extension region:** Includes maximum down-hole copper drill results, gold grade contours and the GEO-01 Main Zone, Fiama, Minella and Rizzo deposit locations. Note the gold-copper discovery intersections across a large area (800m by 700m) extending the Rizzo and Fiama mineralisation 500m to the south into an area (tenement E45/5458) which Antipa's access to was previously prevented by the Paterson IGO Farm-in Project (tenement) boundary, highlighting the potential to materially increase the Minyari Dome resource. The broader 2km by 800m target area includes magnetic and aerial electromagnetic (**AEM**) conductivity anomalies remains largely undrilled. NB: Over Airborne magnetic image and Regional GDA2020 / MGA Zone 51 co-ordinates, 500m grid.

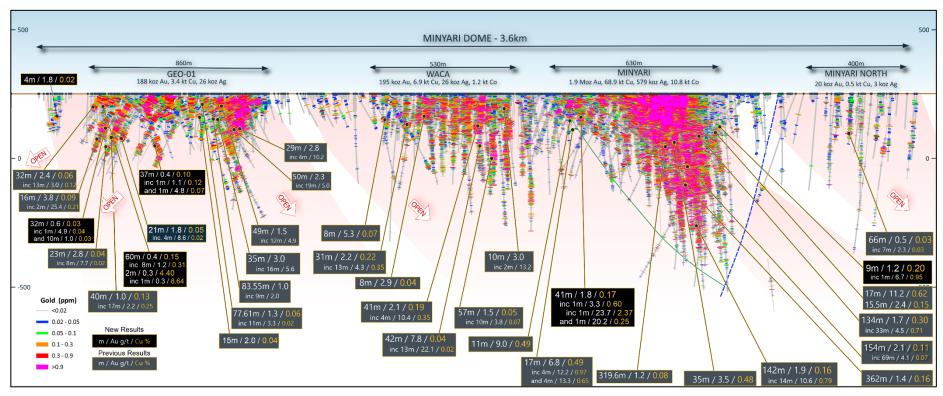



Figure 7: Long Section from south of Fiama to Minyari North: Including the Minyari, WACA, Minyari South, Minyari Southeast and GEO-01 area (i.e. Main Zone, Fiama, Minella and Central) deposits and recently discovered southern extensions to GEO-01, showing gold drill intercepts. Highlights multiple zones of plunging gold-copper resources and mineralisation variously open down dip/plunge from depths below the surface as shallow as 40m to 650m. Note this highly prospective 3.6km trend extends to approximately 5.0km to the Judes copper-silver-gold deposit to the north. NB: 500m elevation (RL), looking toward Local Grid 270° (or 238° MGA Zone 51 Grid).

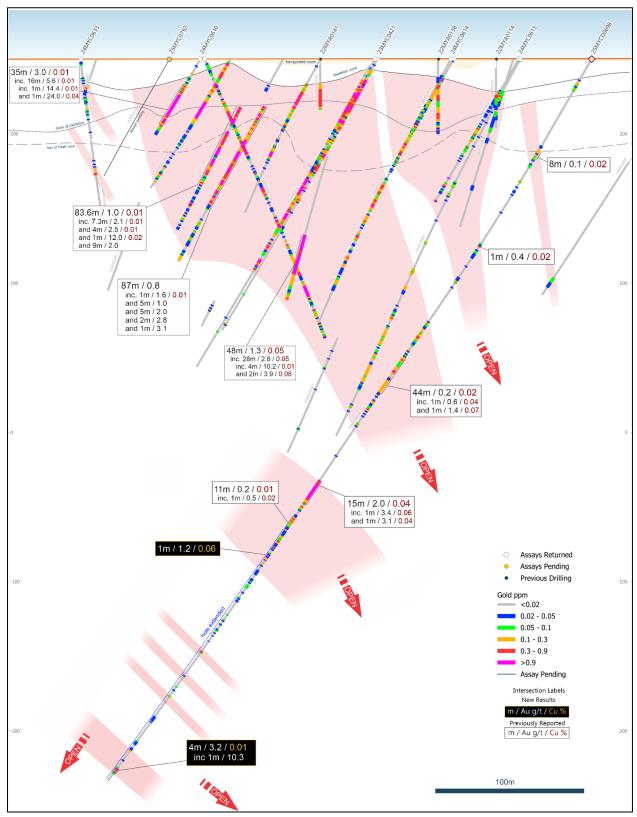
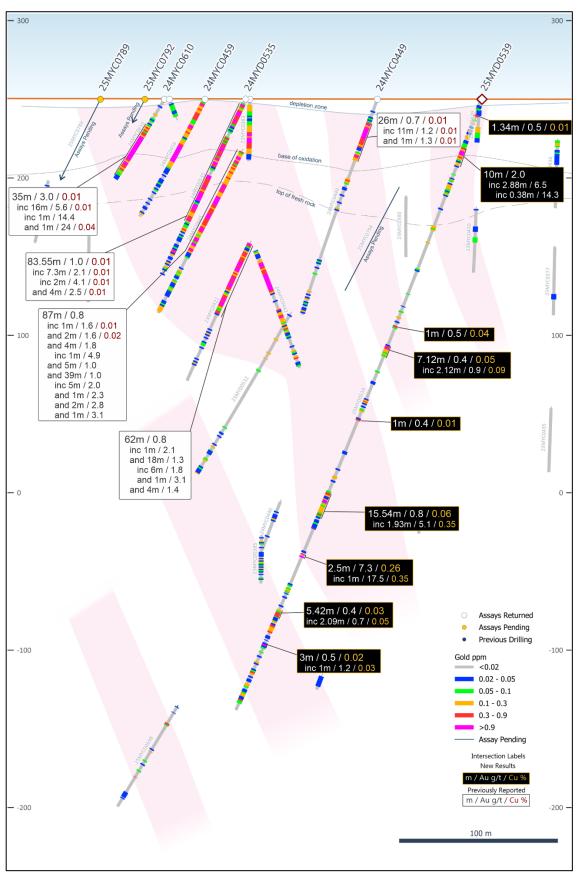




Figure 8: GEO-01 Main Zone deposit NW-SE cross-section showing drill hole 25MYCD0698 gold±copper drill intercepts: This hole successfully targeted depth extensions of high-grade gold mineralisation, with the deposit remaining open down dip and along strike for multiple zones of mineralisation. NB: Refer to Figures 2 to 4 for location and 100m elevation (RL), looking toward 020° GDA2020 / MGA Zone 51 Grid.



**Figure 9: GEO-01 Main Zone deposit NW-SE cross-section showing drill hole 25MYD0539 gold±copper drill intercepts:** This hole successfully targeted depth extensions of high-grade gold mineralisation, with the deposit remaining open down dip and along strike for multiple zones of mineralisation. NB: Refer to Figures 2 to 4 for location and 100m elevation (RL), looking toward 020° GDA2020 / MGA Zone 51 Grid.

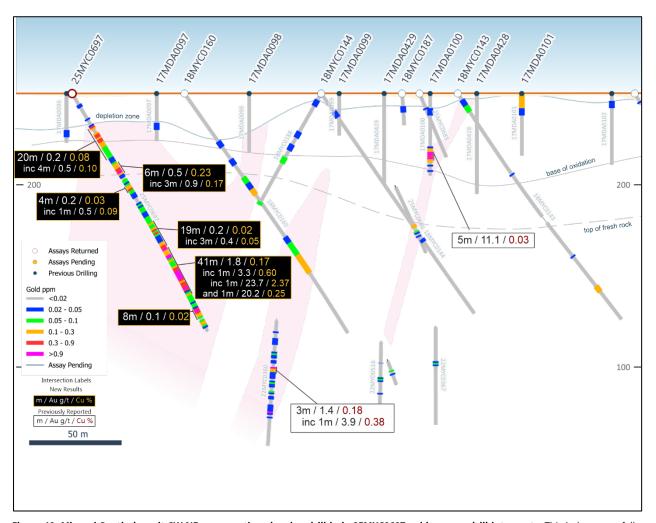
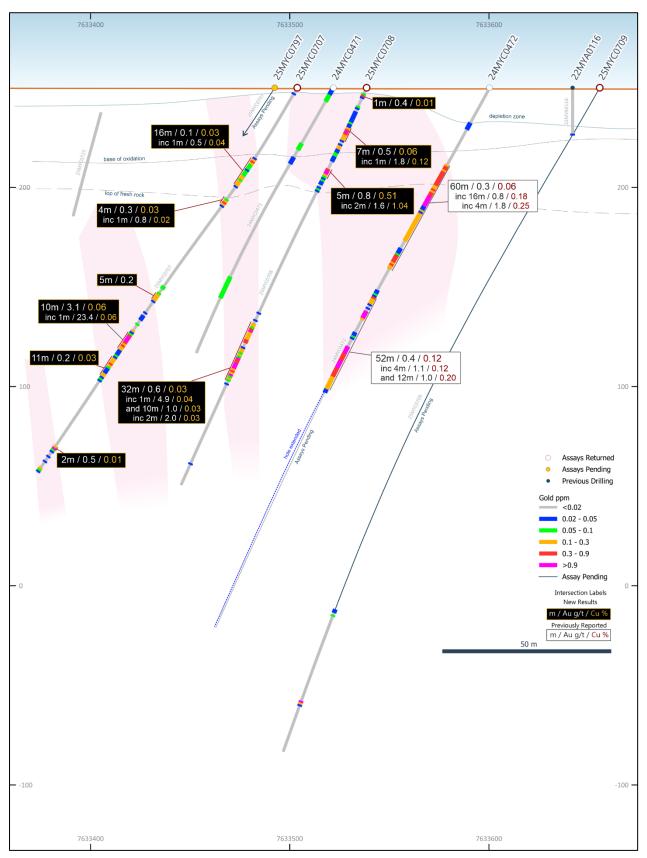
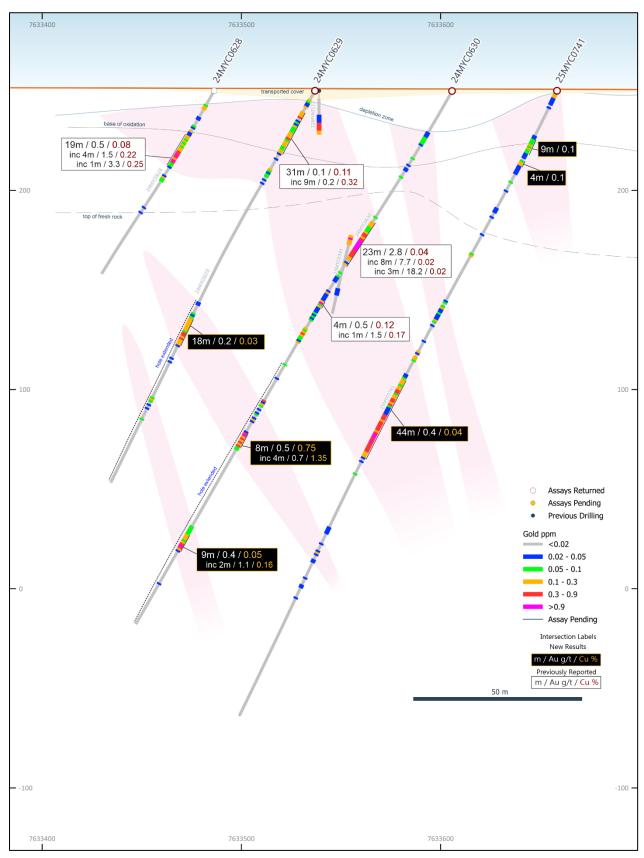





Figure 10: Minyari South deposit SW-NE cross-section showing drill hole 25MYC0697 gold±copper drill intercepts: This hole successfully targeted extensions of high-grade gold mineralisation opening up Minyari South's western limb (200 to 300m strike length), with the deposit remaining open down dip and along strike. NB: Refer to Figures 2 to 4 for location and 100m elevation (RL), looking toward 330° GDA2020 / MGA Zone 51 Grid.



**Figure 11: Fiama deposit N-S cross-section showing several Phase 1 drill hole gold±copper intercepts:** Drilling at Fiama successfully targeted extensions of high-grade gold mineralisation, with the deposit remaining open down dip and along strike to the west/southwest. NB: Refer to Figures 2 to 4 for location and 100m elevation (RL), looking toward 270° GDA2020 / MGA Zone 51 Grid.



**Figure 12: Fiama deposit N-S cross-section showing several Phase 1 drill hole gold±copper intercepts:** Drilling at Fiama successfully targeted extensions of high-grade gold mineralisation, with the deposit remaining open down dip and along strike to the west/southwest. NB: Refer to Figures 2 to 4 for location and 100m elevation (RL), looking toward 270° GDA2020 / MGA Zone 51 Grid.

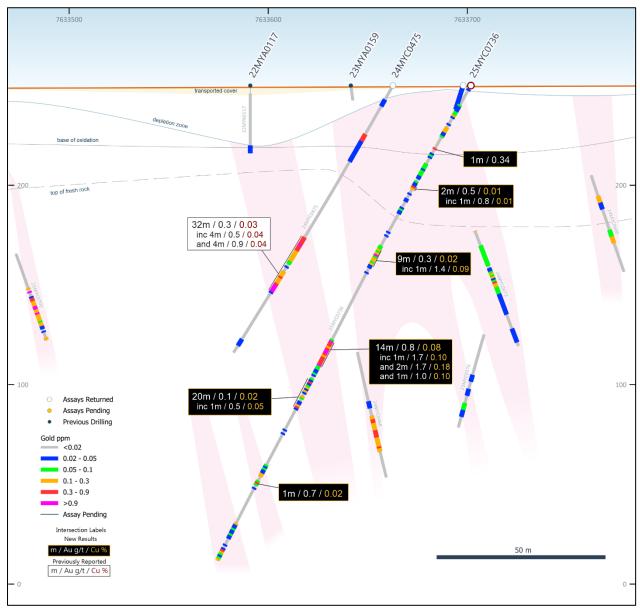
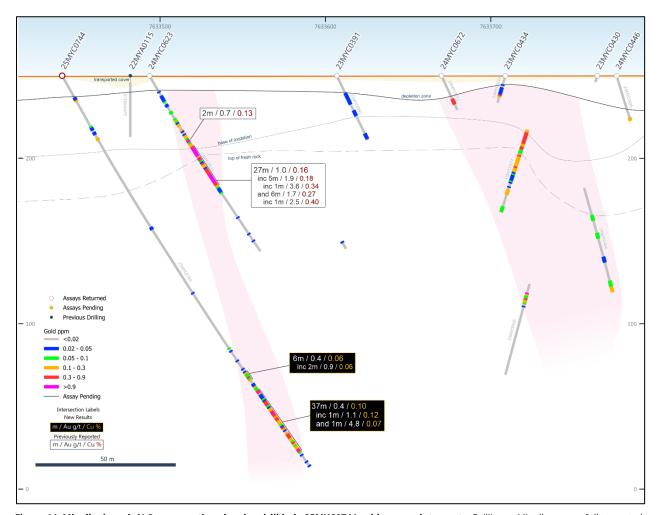




Figure 13: GEO-01 Central deposit N-S cross-section showing drill hole 25MYC0736 gold±copper intercepts: Drilling at GEO-01 Central successfully targeted gold mineralisation extensions, with the deposit remaining open down dip and variably along strike. NB: Refer to Figures 2 to 4 for location and 100m elevation (RL), looking toward 270° GDA2020 / MGA Zone 51 Grid.



**Figure 14: Minella deposit N-S cross-section showing drill hole 25MYC0744 gold±copper intercepts:** Drilling at Minella successfully targeted gold mineralisation extensions, with the deposit remaining open down dip and potentially along strike. NB: Refer to Figures 2 to 4 for location and 100m elevation (RL), looking toward 270° GDA2020 / MGA Zone 51 Grid.

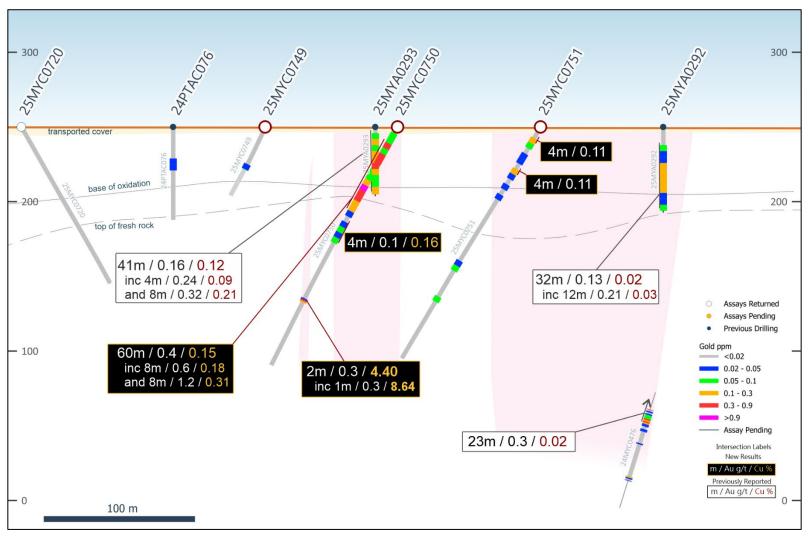



Figure 15: Mineralisation discovery SW-NE cross-section showing drill hole gold±copper drill intercepts: Phase 1 vertical air core and RC holes discovered significant gold-copper mineralisation, which remains open in all directions, within a 400m wide area between the Fiama and Rizzo in an area which Antipa's access to was previously prevented by the Paterson IGO Farm-in Project (tenement) boundary. Drill hole 25MYC0750 is above a 200m sized AEM conductivity anomaly and intersected up t8.64% copper (refer to Figures 5 and 6). NB: Refer to Figures 2 to 6 for location and 100m elevation (RL), looking toward 328° GDA2020 / MGA Zone 51 Grid.




Figure 16: Mineralisation discovery SW-NE cross-section showing drill hole gold±copper drill intercepts: Phase 1 air core and RC holes are distributed on 200 metre spaced drill lines, constrained by available heritage clearances. Drill holes were typically 100 metres apart on each drill line which were sub-optimally orientated commonly being parallel to the magnetic structural grain, rendering specific drill testing of prospective contacts problematic; however, notwithstanding these limitations, significant gold and copper mineralisation was intersected, which remains open in all directions, within a 400m wide area between the Fiama and Rizzo in an area which Antipa's access to was previously prevented by the Paterson IGO Farm-in Project (tenement) boundary. Extensive follow-up RC drilling to investigate the largely untested broader 2km by 800m target area, including magnetic and aerial electromagnetic (AEM) conductivity anomalies, is planned for the upcoming Phase 2 drilling programme, with a heritage survey completed early July to eliminate drill programme constraints. NB: Refer to Figures 2 to 6 for location and 100m elevation (RL), looking toward 328° GDA2020 / MGA Zone 51 Grid.

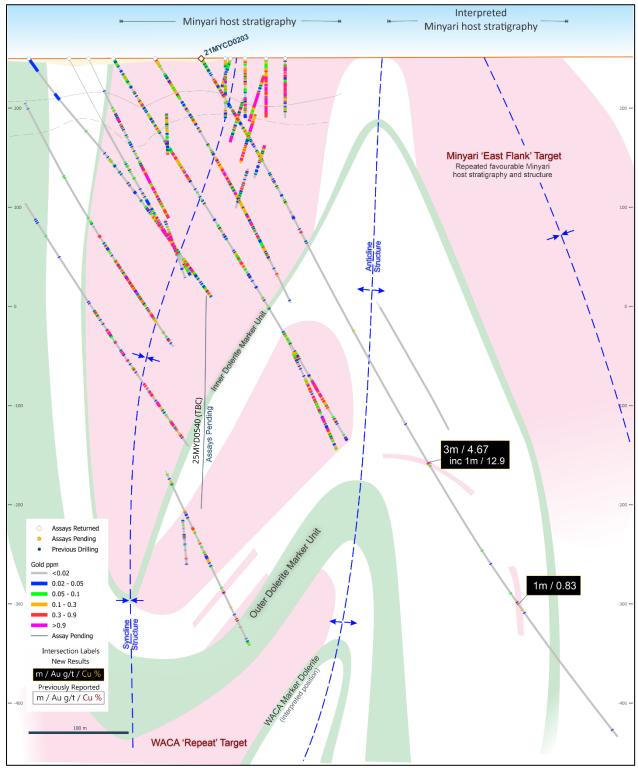
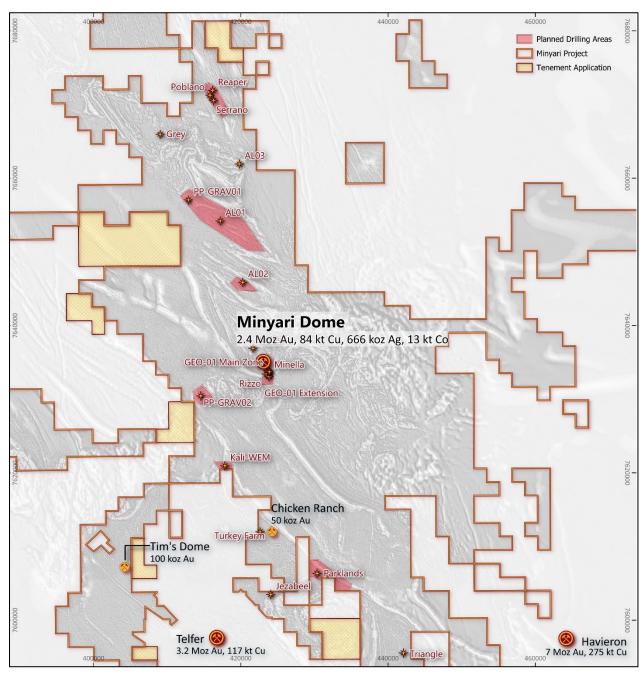




Figure 17: Schematic Minyari E-W cross-section highlighting repeat targets: Showing gold-copper drill intercepts, highlighting the Minyari East Repeat target and Minyari Depth (WACA host rock package) Repeat target. 21MYCD0203 is the Phase 1 diamond core tail of a 2021 RC hole completed to refine the geological and structural, including folding, model in order to refine the Minyari East Repeat target position to be followed up with RC ± diamond core during the upcoming Phase 2 drilling programme. Drilling of diamond core hole 25MYD0540 commenced during Phase 1 to test the Minyari Depth (WACA host rock package), considered a repeat target; this hole will be completed during the upcoming Phase 2 programme. NB: 100m elevation (RL) grid, looking toward 328° GDA2020 / MGA Zone 51 Grid.



**Figure 18: Plan of the central region of Antipa's Minyari Project:** Showing advanced gold ± copper greenfield targets and existing prospects, within a 65km corridor which extends approximately 35km northwest and 30km southeast of the Minyari Dome development opportunity, which have been evaluated during the CY2025 Phase 1 air core ± RC drill programme. This structural domain hosts Greatland Resources' Telfer Mine and Havieron development project<sup>1</sup>, and along trend to the northwest Rio Tinto-Sumitomo's Winu development project and Rio Tinto's Calibre and Magnum deposits. NB: Regional GDA2020 / MGA Zone 51 co-ordinates, 20km grid.

<sup>&</sup>lt;sup>1</sup> Telfer and Havieron refer to Greatland Gold plc AIM release dated 18 March 2025, "2024 Group Mineral Resource Statement".



# **Project Advancement Plan and Forward Activity Schedule**

#### CY2025 Phase 1 Programme:

- The Phase 1 drill programme, targeting further increases to the existing Minyari Dome Mineral Resource, has been completed, with the majority of assays received. Any expansion to the existing 2.4-million-ounce gold, 84,000 tonne copper, 666,000-ounce silver, and 13,000 tonne cobalt MRE¹ is expected to deliver additional strong value enhancement to the existing development opportunity at Minyari Dome².
- An updated MRE incorporating the CY2025 Phase 1 drill results is scheduled for completion September 2025<sup>3</sup>.

#### **Minyari Dome Pre-feasibility Study:**

Based on the highly positive outcomes of the updated Scoping Study<sup>2</sup>, in conjunction with highly favourable gold-copper market conditions, the Board of Directors has formally approved a PFS for Minyari Dome, which is scheduled for completion in June 2026:

- Various PFS technical and non-technical workstreams have been advanced to further de-risk and refine the development opportunity at Minyari Dome whilst advancing the permitting process.
- The PFS ResDef drilling programme is currently utilising two diamond core rigs and one RC rig and is scheduled for completion during the second half of August.
- Recruitment activities are ongoing to expand the Company's in-house Board, technical and study capabilities in alignment with its project advancement plans; including finalisation of the recruitment of highly experienced Study Manger.

#### Release authorised by

Roger Mason
Managing Director and CEO

#### For further information, please visit or contact:

Mark RoddaRoger MasonExecutive ChairpersonManaging Director and CEOAntipa Minerals LtdAntipa Minerals Ltd+61 (0)8 9481 1103+61 (0)8 9481 1103

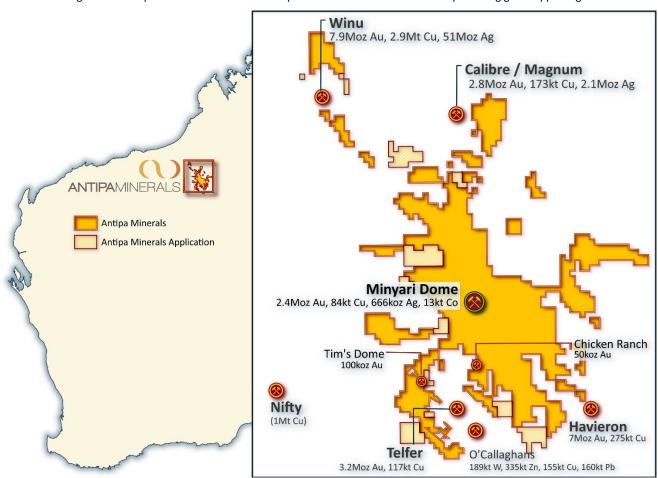
Michael Vaughan Media Relations Fivemark Partners +61 (0)422 602 720

<sup>&</sup>lt;sup>1</sup> For full details refer to ASX release dated 21 May 2025, "Minyari Project Resource Grows by 100 Koz to 2.5 Moz of Gold".

<sup>&</sup>lt;sup>2</sup> Minyari Dome Scoping Study Update release dated 24 October 2024 "Minyari Scoping Study Update Confirms Development Potential".

<sup>&</sup>lt;sup>3</sup> Exploration programmes are subject to changes which may be made consequent upon results, field conditions and ongoing review.




# **About Antipa Minerals Ltd**

Antipa Minerals Ltd (ASX: AZY) (Antipa or the Company) is a leading mineral exploration company with a proven track record of discovering world-class gold-copper deposits in the highly prospective Paterson Province of Western Australia. The Company remains focused on advancing its exploration and development programmes to unlock the full potential of this richly endowed region, which offers substantial opportunities for profitable mining operations. Antipa's tenement holding, known as the Minyari Project, covers over 4,100km² and host total 100%-owned Mineral Resources of 2.5 million ounces (Moz) of gold, 84,000 tonnes (t) of copper, 666 thousand ounces (koz) of silver and 13,000 tonnes of cobalt, situated in a region home to Greatland Resources' Telfer mine and 22Mtpa processing facility, as well as recent large gold-copper discoveries including Rio Tinto-Sumitomo's Winu and Greatland's Havieron.

Antipa's exploration success at Minyari includes the discovery of several significant mineral deposits at its flagship Minyari Dome Gold-Copper precinct. Minyari Dome currently hosts a 2.4Moz gold Mineral Resource at 1.5 grams per tonne (g/t) plus copper, silver, and cobalt (2025 MRE). A 2024 Updated Scoping Study for Minyari Dome indicated the potential for a substantial standalone development opportunity with further upside potential. This year's Minyari Dome drilling programmes are aimed at further rapid and substantial growth of the existing gold-copper resources at Minyari Dome and have been designed to enhance the value of the current development opportunity while also targeting new significant gold-copper discoveries.

At a regional level, Minyari provides access to further tier one gold-copper discovery opportunities. Significant discovery and resource growth drill programmes are envisaged to test a host of exciting high-potential gold ± copper prospects and greenfield targets primed for follow-up or initial drill testing.

Antipa is well-positioned to continue its resource growth and project development trajectory targeting significant value creation for its shareholders through focused exploration and sensible development in one of the world's most promising gold-copper regions.



Forward-Looking Statements: This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Antipa Mineral Ltd's planned exploration programme and other statements that are not historical facts. When used in this document, words such as "could," "plan," "estimate," "expect," "intend," "may," "potential," "should," and similar expressions are forward-looking statements. Although Antipa Minerals Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties, and no assurance can be given that actual results will be consistent with these forward-looking statements.

Telfer and Havieron refer to Greatland Gold plc AIM release dated 18 March 2025, "2024 Group Mineral Resource Statement". Winu refer to Rio Tinto Ltd ASX release dated 22 February 2023, "Changes to Ore Reserves and Mineral Resources". O'Callaghans refer to Newmont Corporation ASX release dated 23 February 2024, "PR as issued - 2023 Reserves and Resources". Nifty refer to Cyprium Metals Ltd ASX release dated 14 March 2024, "Updated Nifty MRE Reaches 1M Tonnes Contained Copper". Calibre refer to Antipa release dated 26 August 2024, "Calibre Gold Resource Increases 19% to 2.5 Moz - Citadel JV". Magnum refer to Antipa release dated 23 February 2015, "Calibre and Magnum Deposit Mineral Resource JORC 2012 Updates".

Table 1: Minyari Project - CY2025 Phase 1 Reverse Circulation and Diamond Drill Results (Batch 2)

| Hole ID                       | Deposit/Prospect               | From<br>(m)           | To<br>(m)             | Interval<br>(m)   | Gold<br>(g/t)       | Copper<br>(ppm)     | Silver<br>(g/t) | Cobalt<br>(ppm) |
|-------------------------------|--------------------------------|-----------------------|-----------------------|-------------------|---------------------|---------------------|-----------------|-----------------|
| 21MYCD0203                    | Minyari East                   | 467.0                 | 470.0                 | 3.0               | 4.67                | 35                  | 0.03            | 8               |
|                               | Including                      | 467.0                 | 468.0                 | 1.0               | 12.85               | 48                  | 0.07            | 11              |
| 21MYCD0203                    | Minyari East                   | 633.0                 | 634.0                 | 1.0               | 0.17                | 2                   | 0.01            | 8               |
| 21MYCD0203                    | Minyari East                   | 636.0                 | 637.0                 | 1.0               | 0.83                | 24                  | 0.07            | 10              |
| 21MYCD0203                    | Minyari East                   | 643.0                 | 644.0                 | 1.0               | 0.20                | 52                  | 0.04            | 20              |
| 21MYCD0203                    | Minyari East                   | 731.26                | 733.00                | 1.74              | 0.01                | 300                 | 0.15            | 46              |
| 21MYCD0203                    | Minyari East                   | 742.0                 | 743.0                 | 1.0               | 0.00                | 36                  | 4.80            | 4               |
| 25MYC0697                     | Minyari South                  | 12.0                  | 21.0                  | 9.0               | 0.02                | 733                 | 0.04            | 24              |
| 25MYC0697                     | Minyari South                  | 21.0                  | 41.0                  | 20.0              | 0.21                | 843                 | 0.08            | 99              |
| 2514760607                    | Including                      | 26.0                  | 30.0                  | 4.0               | 0.45                | 999                 | 0.09            | 221             |
| 25MYC0697                     | Minyari South                  | 41.0                  | 45.0                  | 4.0               | 0.04                | 403                 | 0.09            | 55              |
| 25MYC0697                     | Minyari South                  | 45.0<br>48.0          | 51.0<br>51.0          | 6.0<br>3.0        | 0.53<br>0.87        | 2,315               | 0.27<br>0.29    | 190<br>205      |
|                               | Including                      | 48.0<br>50.0          | 51.0                  | 1.0               |                     | 1,732               | 0.29            | 205             |
| 25MYC0697                     | Also Including                 | 51.0                  | 52.0                  | 1.0               | <b>1.59</b><br>0.19 | <b>1,150</b><br>333 | 0.23            | 77              |
| 25MYC0697                     | Minyari South<br>Minyari South | 52.0                  | 53.0                  | 1.0               | 0.19                | 320                 | 0.09            | 53              |
| 25MYC0697                     | Minyari South                  | 59.0                  | 63.0                  | 4.0               | 0.04                | 347                 | 0.17            | 62              |
| 25W11C0097                    | Including                      | 61.0                  | <b>62.0</b>           | 1.0               | 0.47                | 864                 | 0.08            | 107             |
| 25MYC0697                     | Minyari South                  | 65.0                  | 66.0                  | 1.0               | 0.05                | 312                 | 0.03            | 41              |
| 25MYC0697                     | Minyari South                  | 79.0                  | 98.0                  | 19.0              | 0.05                | 241                 | 0.04            | 47              |
| 231111 00037                  | Including                      | 87.0                  | 90.0                  | 3.0               | 0.43                | 543                 | 0.14            | 88              |
| 25MYC0697                     | Minyari South                  | 98.0                  | 139.0                 | 41.0              | 1.76                | 1,749               | 0.36            | 242             |
|                               | Including                      | 103.0                 | 104.0                 | 1.0               | 3.29                | 6,010               | 1.04            | 148             |
|                               | Including                      | 113.0                 | 116.0                 | 3.0               | 11.34               | 11,777              | 2.32            | 1,071           |
|                               | Also Including                 | 114.0                 | 115.0                 | 1.0               | 23.70               | 23,700              | 4.72            | 2,070           |
|                               | Including                      | 137.0                 | 138.0                 | 1.0               | 20.20               | 2,540               | 0.69            | 2,810           |
| 25MYC0697                     | Minyari South                  | 139.0                 | 147.0                 | 8.0               | 0.12                | 213                 | 0.06            | 59              |
| 25MYC0710                     | Minyari South                  | 36.0                  | 37.0                  | 1.0               | 1.17                | 58                  | 0.03            | 13              |
| 25MYD0538                     | Minyari South                  | 0.0                   | 2.80                  | 2.80              | 0.01                | 71                  | 2.37            | 10              |
| 25MYD0538                     | Minyari South                  | 9.0                   | 10.0                  | 1.0               | 0.01                | 395                 | 0.08            | 34              |
| 25MYD0538                     | Minyari South                  | 13.0                  | 14.0                  | 1.0               | 0.01                | 119                 | 0.77            | 33              |
| 25MYD0538                     | Minyari South                  | 26.0                  | 29.0                  | 3.0               | 0.01                | 141                 | 1.05            | 31              |
| 25MYD0538                     | Minyari South                  | 77.20                 | 77.92                 | 0.72              | 0.03                | 338                 | 0.04            | 41              |
| 25MYD0538                     | Minyari South                  | 208.0                 | 213.0                 | 5.0               | 0.02                | 119                 | 0.04            | 362             |
| 25MYD0538                     | Minyari South                  | 224.0                 | 225.0                 | 1.0               | 0.57                | 317                 | 0.03            | 55              |
| 25MYD0538                     | Minyari South                  | 244.0                 | 248.0                 | 4.0               | 0.11                | 881                 | 0.11            | 212             |
| 25MYD0538                     | Minyari South                  | 258.0                 | 259.0                 | 1.0               | 35.0                | 588                 | 0.07            | 2,960           |
| 25MYD0538                     | Minyari South                  | 262.0                 | 263.0                 | 1.0               | 0.11                | 67                  | 0.01            | 25              |
| 24MYC0476                     | Fiama                          | 115.0                 | 116.0                 | 1.0               | 0.13                | 92                  | 0.01            | 12              |
| 24MYC0476                     | Fiama                          | 156.0                 | 177.0                 | 21.0              | 0.13                | 260                 | 0.03            | 71              |
|                               | Including                      | 176.0                 | 177.0                 | 1.0               | 0.41                | 423                 | 0.09            | 63              |
| 24MYC0476                     | Fiama                          | 186.0                 | 190.0                 | 4.0               | 0.21                | 339                 | 0.16            | 50              |
| 24MYC0476                     | Fiama                          | 197.0                 | 220.0                 | 23.0              | 0.30                | 246                 | 0.08            | 27              |
|                               | Including                      | 198.0                 | 204.0                 | 6.0               | 0.45                | 275                 | 0.09            | 25              |
| 2484460476                    | Including                      | 215.0                 | 216.0                 | 1.0               | 0.43                | 472                 | 0.08            | 36              |
| 24MYC0476                     | Fiama                          | 224.0                 | 231.0                 | 7.0               | 0.20                | 215                 | 0.11            | 24              |
| 24147/00470                   | Including                      | 229.0                 | 230.0                 | 1.0               | 0.44                | 271                 | 0.17            | 20              |
| 24MYC0476<br><b>24MYC0476</b> | Fiama<br><b>Fiama</b>          | 272.0<br><b>298.0</b> | 273.0<br><b>300.0</b> | 1.0<br><b>2.0</b> | 0.29<br><b>0.31</b> | 272<br><b>575</b>   | 0.01<br>0.24    | 39<br>79        |
| 24MYC0627                     | Fiama<br>Fiama                 | 232.0                 | 256.0                 | 24.0              | 0.31                | 282                 | 0.24            | 79<br>25        |
| 271VI 1 CUUZ/                 | Including                      | 232.0<br><b>246.0</b> | <b>247.0</b>          | 1.0               | 0.17                | 313                 | 0.04            | 31              |
|                               | Including                      | 255.0                 | 256.0                 | 1.0               | 0.73                | 510                 | 0.02            | 22              |
| 24MYC0629                     | Fiama                          | 120.0                 | 123.0                 | 3.0               | 0.48                | 712                 | 0.07            | 15              |
| 24MYC0629                     | Fiama                          | 127.0                 | 145.0                 | 18.0              | 0.03                | 320                 | 0.36            | 18              |
| 24MYC0629                     | Fiama                          | 174.0                 | 177.0                 | 3.0               | 0.22                | 146                 | 0.30            | 96              |
| 24MYC0630                     | Fiama                          | 182.0                 | 186.0                 | 4.0               | 0.11                | 84                  | 0.01            | 10              |
| 24MYC0630                     | Fiama                          | 193.0                 | 194.0                 | 1.0               | 0.13                | 84                  | 0.02            | 56              |
| 24MYC0630                     | Fiama                          | 200.0                 | 201.0                 | 1.0               | 0.14                | 942                 | 0.02            | 26              |
|                               |                                |                       |                       |                   |                     |                     |                 |                 |
| 24MYC0630                     | Fiama                          | 201.0                 | 209.0                 | 8.0               | 0.50                | 7,544               | 1.31            | 94              |



| Hole ID                                                                    | Deposit/Prospect                                                              | From<br>(m)                                                                                | To<br>(m)                                                                          | Interval<br>(m)                                                         | Gold<br>(g/t)                                                                        | Copper<br>(ppm)                                                          | Silver<br>(g/t)                                                      | Cobalt<br>(ppm)                                          |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|
|                                                                            | Also Incl.                                                                    | 202.0                                                                                      | 203.0                                                                              | 1.0                                                                     | 1.25                                                                                 | 19,150                                                                   | 3.28                                                                 | 306                                                      |
|                                                                            | Also Incl.                                                                    | 204.0                                                                                      | 205.0                                                                              | 1.0                                                                     | 0.84                                                                                 | 15,800                                                                   | 2.91                                                                 | 88                                                       |
| 24MYC0630                                                                  | Fiama                                                                         | 209.0                                                                                      | 211.0                                                                              | 2.0                                                                     | 0.09                                                                                 | 412                                                                      | 0.05                                                                 | 33                                                       |
| 24MYC0630                                                                  | Fiama                                                                         | 256.0                                                                                      | 257.0                                                                              | 1.0                                                                     | 0.09                                                                                 | 374                                                                      | 0.09                                                                 | 28                                                       |
| 24MYC0630                                                                  | Fiama                                                                         | 260.0                                                                                      | 269.0                                                                              | 9.0                                                                     | 0.39                                                                                 | 498                                                                      | 0.08                                                                 | 20                                                       |
|                                                                            | Including                                                                     | 266.0                                                                                      | 268.0                                                                              | 2.0                                                                     | 1.06                                                                                 | 1,558                                                                    | 0.20                                                                 | 51                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 184.0                                                                                      | 185.0                                                                              | 1.0                                                                     | 0.15                                                                                 | 114                                                                      | 0.05                                                                 | 25                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 187.0                                                                                      | 196.0                                                                              | 9.0                                                                     | 1.25                                                                                 | 1,038                                                                    | 0.21                                                                 | 48                                                       |
|                                                                            | Including                                                                     | 189.0                                                                                      | 191.0                                                                              | 2.0                                                                     | 4.26                                                                                 | 2,785                                                                    | 0.57                                                                 | 35                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 196.0                                                                                      | 198.0                                                                              | 2.0                                                                     | 0.08                                                                                 | 357                                                                      | 0.06                                                                 | 105                                                      |
| 24MYC0632                                                                  | Fiama                                                                         | 200.0                                                                                      | 201.0                                                                              | 1.0                                                                     | 0.36                                                                                 | 431                                                                      | 0.06                                                                 | 23                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 204.0                                                                                      | 205.0                                                                              | 1.0                                                                     | 0.47                                                                                 | 155                                                                      | 0.04                                                                 | 11                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 213.0                                                                                      | 217.0                                                                              | 4.0                                                                     | 0.66                                                                                 | 96                                                                       | 0.03                                                                 | 15                                                       |
|                                                                            | Including                                                                     | 216.0                                                                                      | 217.0                                                                              | 1.0                                                                     | 1.28                                                                                 | 126                                                                      | 0.02                                                                 | 12                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 218.0                                                                                      | 219.0                                                                              | 1.0                                                                     | 0.12                                                                                 | 124                                                                      | 0.02                                                                 | 11                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 232.0                                                                                      | 233.0                                                                              | 1.0                                                                     | 0.45                                                                                 | 105                                                                      | 0.03                                                                 | 11                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 235.0                                                                                      | 236.0                                                                              | 1.0                                                                     | 0.39                                                                                 | 275                                                                      | 0.05                                                                 | 19                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 240.0                                                                                      | 241.0                                                                              | 1.0                                                                     | 0.13                                                                                 | 15                                                                       | 0.02                                                                 | 12                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 252.0                                                                                      | 263.0                                                                              | 11.0                                                                    | 0.35                                                                                 | 199                                                                      | 0.04                                                                 | 12                                                       |
|                                                                            | Including                                                                     | 253.0                                                                                      | 255.0                                                                              | 2.0                                                                     | 0.60                                                                                 | 20                                                                       | 0.03                                                                 | 9                                                        |
|                                                                            | Including                                                                     | 257.0                                                                                      | 258.0                                                                              | 1.0                                                                     | 0.65                                                                                 | 270                                                                      | 0.06                                                                 | 26                                                       |
|                                                                            | And                                                                           | 262.0                                                                                      | 263.0                                                                              | 1.0                                                                     | 0.45                                                                                 | 897                                                                      | 0.13                                                                 | 17                                                       |
| 24MYC0632                                                                  | Fiama                                                                         | 296.0                                                                                      | 297.0                                                                              | 1.0                                                                     | 1.32                                                                                 | 107                                                                      | 0.03                                                                 | 77                                                       |
| 25MYC0701                                                                  | Fiama                                                                         | 9.0                                                                                        | 11.0                                                                               | 2.0                                                                     | 0.02                                                                                 | 470                                                                      | 0.07                                                                 | 10                                                       |
| 25MYC0701                                                                  | Fiama                                                                         | 11.0                                                                                       | 13.0                                                                               | 2.0                                                                     | 0.49                                                                                 | 262                                                                      | 0.08                                                                 | 6                                                        |
|                                                                            | Including                                                                     | 12.0                                                                                       | 13.0                                                                               | 1.0                                                                     | 0.84                                                                                 | 308                                                                      | 0.09                                                                 | 6                                                        |
| 25MYC0701                                                                  | Fiama                                                                         | 16.0                                                                                       | 38.0                                                                               | 22.0                                                                    | 0.11                                                                                 | 282                                                                      | 0.07                                                                 | 10                                                       |
| 25MYC0701                                                                  | Fiama                                                                         | 104.0                                                                                      | 115.0                                                                              | 11.0                                                                    | 0.04                                                                                 | 307                                                                      | 0.06                                                                 | 31                                                       |
|                                                                            | Including                                                                     | 110.0                                                                                      | 111.0                                                                              | 1.0                                                                     | 0.13                                                                                 | 262                                                                      | 0.05                                                                 | 28                                                       |
| 25MYC0701                                                                  | Fiama                                                                         | 116.0                                                                                      | 134.0                                                                              | 18.0                                                                    | 0.10                                                                                 | 442                                                                      | 0.07                                                                 | 22                                                       |
| 05141/00504                                                                | Including                                                                     | 120.0                                                                                      | 121.0                                                                              | 1.0                                                                     | 0.39                                                                                 | 2,140                                                                    | 0.20                                                                 | 23                                                       |
| 25MYC0701                                                                  | Fiama                                                                         | 134.0                                                                                      | 135.0                                                                              | 1.0                                                                     | 0.06                                                                                 | 312                                                                      | 0.03                                                                 | 21                                                       |
| 25MYC0701                                                                  | Fiama                                                                         | 154.0                                                                                      | 155.0                                                                              | 1.0                                                                     | 0.02                                                                                 | 358                                                                      | 0.04                                                                 | 15                                                       |
| 25MYC0702                                                                  | Fiama                                                                         | 32.0                                                                                       | 34.0                                                                               | 2.0                                                                     | 0.18                                                                                 | 49                                                                       | 0.02                                                                 | 25                                                       |
| 25MYC0702                                                                  | Fiama                                                                         | 38.0                                                                                       | 39.0                                                                               | 1.0                                                                     | 0.03                                                                                 | 422                                                                      | 0.08                                                                 | 52                                                       |
| 25MYC0702                                                                  | Fiama                                                                         | 43.0                                                                                       | 44.0                                                                               | 1.0                                                                     | 0.10                                                                                 | 151                                                                      | 0.04                                                                 | 32                                                       |
| 25MYC0702                                                                  | Fiama                                                                         | 48.0                                                                                       | 77.0                                                                               | 29.0                                                                    | 0.21                                                                                 | 297                                                                      | 0.07                                                                 | 36                                                       |
|                                                                            | Including                                                                     | 61.0                                                                                       | 63.0                                                                               | 2.0                                                                     | 0.77                                                                                 | 633                                                                      | 0.10                                                                 | 27                                                       |
| 25MYC0702                                                                  | Including                                                                     | <b>74.0</b><br>99.0                                                                        | <b>75.0</b>                                                                        | <b>1.0</b><br>6.0                                                       | 1.34                                                                                 | 279                                                                      | 0.05                                                                 | 51                                                       |
| 25101100702                                                                | Fiama<br>Including                                                            | 99.0                                                                                       | 105.0<br>100.0                                                                     | 1.0                                                                     | 0.18<br>0.49                                                                         | 75<br>98                                                                 | 0.02<br>0.02                                                         | 26<br>25                                                 |
| 25MYC0702                                                                  | Fiama                                                                         | 110.0                                                                                      | 100.0<br>118.0                                                                     | 8.0                                                                     | 2.45                                                                                 | 90<br><b>912</b>                                                         | 0.02<br><b>0.14</b>                                                  | 91                                                       |
| 25W11C0702                                                                 | Including                                                                     | 116.0                                                                                      | 117.0                                                                              | 1.0                                                                     | 13.95                                                                                | 5,080                                                                    | 0.14                                                                 | 208                                                      |
| 25MYC0702                                                                  | Fiama                                                                         | 118.0                                                                                      | 127.0                                                                              | 9.0                                                                     | 0.09                                                                                 | 214                                                                      | 0.04                                                                 | 39                                                       |
| 25MYC0702                                                                  | Fiama                                                                         | 150.0                                                                                      | 159.0                                                                              | 9.0                                                                     | 0.47                                                                                 | 53                                                                       | 0.01                                                                 | 28                                                       |
| 251111 007 02                                                              | Including                                                                     | 150.0                                                                                      | 151.0                                                                              | 1.0                                                                     | 3.56                                                                                 | 37                                                                       | 0.01                                                                 | 12                                                       |
| 25MYC0702                                                                  | Fiama                                                                         | 224.0                                                                                      | 225.0                                                                              | 1.0                                                                     | 0.07                                                                                 | 578                                                                      | 0.09                                                                 | 28                                                       |
| 231111 007 02                                                              |                                                                               | 22 1.0                                                                                     | 258.0                                                                              | 22.0                                                                    | 0.18                                                                                 | 186                                                                      | 0.04                                                                 | 23                                                       |
| 25MYC0702                                                                  |                                                                               | 236.0                                                                                      |                                                                                    |                                                                         |                                                                                      |                                                                          | 0.0 .                                                                |                                                          |
| 25MYC0702                                                                  | Fiama                                                                         | 236.0<br><b>239.0</b>                                                                      |                                                                                    |                                                                         |                                                                                      |                                                                          | 0.05                                                                 | 24                                                       |
|                                                                            | Fiama<br>Including                                                            | 239.0                                                                                      | 244.0                                                                              | 5.0                                                                     | 0.42                                                                                 | 397                                                                      | 0.05<br>0.01                                                         | 24<br>45                                                 |
| 25MYC0703                                                                  | <b>Fiama</b><br>Including<br>Fiama                                            | <b>239.0</b> 23.0                                                                          | <b>244.0</b> 25.0                                                                  | <b>5.0</b> 2.0                                                          | <b>0.42</b> 0.09                                                                     | <b>397</b><br>53                                                         | 0.01                                                                 | 45                                                       |
| 25MYC0703<br>25MYC0703                                                     | <b>Fiama</b><br><b>Including</b><br>Fiama<br>Fiama                            | <b>239.0</b> 23.0 83.0                                                                     | <b>244.0</b><br>25.0<br>94.0                                                       | <b>5.0</b><br>2.0<br>11.0                                               | <b>0.42</b><br>0.09<br>0.14                                                          | <b>397</b><br>53<br>275                                                  | 0.01<br>0.10                                                         | 45<br>34                                                 |
| 25MYC0703<br>25MYC0703<br>25MYC0703                                        | <b>Fiama</b><br><b>Including</b><br>Fiama<br>Fiama<br>Fiama                   | 239.0<br>23.0<br>83.0<br>130.0                                                             | 244.0<br>25.0<br>94.0<br>131.0                                                     | 5.0<br>2.0<br>11.0<br>1.0                                               | 0.42<br>0.09<br>0.14<br>0.02                                                         | 397<br>53<br>275<br>313                                                  | 0.01<br>0.10<br>0.05                                                 | 45<br>34<br>37                                           |
| 25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703                           | Fiama<br>Including<br>Fiama<br>Fiama<br>Fiama<br>Fiama                        | 239.0<br>23.0<br>83.0<br>130.0<br>142.0                                                    | 244.0<br>25.0<br>94.0<br>131.0<br>152.0                                            | 5.0<br>2.0<br>11.0<br>1.0<br>10.0                                       | 0.42<br>0.09<br>0.14<br>0.02<br>0.14                                                 | 397<br>53<br>275<br>313<br>166                                           | 0.01<br>0.10<br>0.05<br>0.08                                         | 45<br>34<br>37<br>33                                     |
| 25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703              | Fiama Including Fiama Fiama Fiama Fiama Fiama Fiama Fiama                     | 239.0<br>23.0<br>83.0<br>130.0<br>142.0<br>158.0                                           | 244.0<br>25.0<br>94.0<br>131.0<br>152.0<br>160.0                                   | 5.0<br>2.0<br>11.0<br>1.0<br>10.0<br>2.0                                | 0.42<br>0.09<br>0.14<br>0.02<br>0.14<br>0.10                                         | 397<br>53<br>275<br>313<br>166<br>136                                    | 0.01<br>0.10<br>0.05<br>0.08<br>0.07                                 | 45<br>34<br>37<br>33<br>30                               |
| 25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703                           | Fiama Including Fiama Fiama Fiama Fiama Fiama Fiama Fiama Fiama Fiama         | 239.0<br>23.0<br>83.0<br>130.0<br>142.0<br>158.0<br>165.0                                  | 244.0<br>25.0<br>94.0<br>131.0<br>152.0<br>160.0<br>177.0                          | 5.0<br>2.0<br>11.0<br>1.0<br>10.0<br>2.0<br>12.0                        | 0.42<br>0.09<br>0.14<br>0.02<br>0.14<br>0.10<br>0.24                                 | 397<br>53<br>275<br>313<br>166<br>136                                    | 0.01<br>0.10<br>0.05<br>0.08<br>0.07<br>0.04                         | 45<br>34<br>37<br>33<br>30<br>30                         |
| 25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703              | Fiama Including Fiama Fiama Fiama Fiama Fiama Fiama Fiama Including           | 239.0<br>23.0<br>83.0<br>130.0<br>142.0<br>158.0<br>165.0<br>169.0                         | 244.0<br>25.0<br>94.0<br>131.0<br>152.0<br>160.0<br>177.0<br>170.0                 | 5.0<br>2.0<br>11.0<br>1.0<br>10.0<br>2.0<br>12.0                        | 0.42<br>0.09<br>0.14<br>0.02<br>0.14<br>0.10<br>0.24<br>0.58                         | 397<br>53<br>275<br>313<br>166<br>136<br>191<br>340                      | 0.01<br>0.10<br>0.05<br>0.08<br>0.07<br>0.04<br>0.03                 | 45<br>34<br>37<br>33<br>30<br>30                         |
| 25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703 | Fiama Including Fiama Fiama Fiama Fiama Fiama Fiama Including Including       | 239.0<br>23.0<br>83.0<br>130.0<br>142.0<br>158.0<br>165.0<br>169.0<br>174.0                | 244.0<br>25.0<br>94.0<br>131.0<br>152.0<br>160.0<br>177.0<br>170.0                 | 5.0<br>2.0<br>11.0<br>1.0<br>10.0<br>2.0<br>12.0<br>1.0                 | 0.42<br>0.09<br>0.14<br>0.02<br>0.14<br>0.10<br>0.24<br>0.58                         | 397<br>53<br>275<br>313<br>166<br>136<br>191<br>340<br>339               | 0.01<br>0.10<br>0.05<br>0.08<br>0.07<br>0.04<br>0.03<br>0.06         | 45<br>34<br>37<br>33<br>30<br>30<br>37<br>36             |
| 25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703 | Fiama Including Fiama Fiama Fiama Fiama Fiama Fiama Including Including Fiama | 239.0<br>23.0<br>83.0<br>130.0<br>142.0<br>158.0<br>165.0<br>169.0<br>174.0<br>0.0         | 244.0<br>25.0<br>94.0<br>131.0<br>152.0<br>160.0<br>177.0<br>170.0<br>20.0         | 5.0<br>2.0<br>11.0<br>1.0<br>10.0<br>2.0<br>12.0<br>1.0<br>20.0         | 0.42<br>0.09<br>0.14<br>0.02<br>0.14<br>0.10<br>0.24<br>0.58<br>0.86<br>0.01         | 397<br>53<br>275<br>313<br>166<br>136<br>191<br>340<br>339<br>376        | 0.01<br>0.10<br>0.05<br>0.08<br>0.07<br>0.04<br>0.03<br>0.06<br>0.02 | 45<br>34<br>37<br>33<br>30<br>30<br>37<br>36<br>22       |
| 25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703 | Fiama Including Fiama Fiama Fiama Fiama Fiama Including Including Fiama Fiama | 239.0<br>23.0<br>83.0<br>130.0<br>142.0<br>158.0<br>165.0<br>169.0<br>174.0<br>0.0<br>42.0 | 244.0<br>25.0<br>94.0<br>131.0<br>152.0<br>160.0<br>177.0<br>170.0<br>20.0<br>58.0 | 5.0<br>2.0<br>11.0<br>1.0<br>10.0<br>2.0<br>12.0<br>1.0<br>20.0<br>16.0 | 0.42<br>0.09<br>0.14<br>0.02<br>0.14<br>0.10<br>0.24<br>0.58<br>0.86<br>0.01<br>0.15 | 397<br>53<br>275<br>313<br>166<br>136<br>191<br>340<br>339<br>376<br>315 | 0.01<br>0.10<br>0.05<br>0.08<br>0.07<br>0.04<br>0.03<br>0.06<br>0.02 | 45<br>34<br>37<br>33<br>30<br>30<br>37<br>36<br>22<br>28 |
| 25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703<br>25MYC0703 | Fiama Including Fiama Fiama Fiama Fiama Fiama Fiama Including Including Fiama | 239.0<br>23.0<br>83.0<br>130.0<br>142.0<br>158.0<br>165.0<br>169.0<br>174.0<br>0.0         | 244.0<br>25.0<br>94.0<br>131.0<br>152.0<br>160.0<br>177.0<br>170.0<br>20.0         | 5.0<br>2.0<br>11.0<br>1.0<br>10.0<br>2.0<br>12.0<br>1.0<br>20.0         | 0.42<br>0.09<br>0.14<br>0.02<br>0.14<br>0.10<br>0.24<br>0.58<br>0.86<br>0.01         | 397<br>53<br>275<br>313<br>166<br>136<br>191<br>340<br>339<br>376        | 0.01<br>0.10<br>0.05<br>0.08<br>0.07<br>0.04<br>0.03<br>0.06<br>0.02 | 45<br>34<br>37<br>33<br>30<br>30<br>37<br>36<br>22       |



| Hole ID    | Deposit/Prospect | From<br>(m) | To<br>(m) | Interval<br>(m) | Gold<br>(g/t) | Copper<br>(ppm) | Silver<br>(g/t) | Cobalt<br>(ppm) |
|------------|------------------|-------------|-----------|-----------------|---------------|-----------------|-----------------|-----------------|
| 25MYC0707  | Fiama            | 70.0        | 71.0      | 1.0             | 0.05          | 341             | 0.05            | 24              |
| 25MYC0707  | Fiama            | 124.0       | 129.0     | 5.0             | 0.17          | 33              | 0.02            | 6               |
| 25MYC0707  | Fiama            | 147.0       | 148.0     | 1.0             | 0.16          | 123             | 0.07            | 13              |
| 25MYC0707  | Fiama            | 148.0       | 149.0     | 1.0             | 0.04          | 826             | 0.11            | 29              |
| 25MYC0707  | Fiama            | 149.0       | 159.0     | 10.0            | 3.09          | 636             | 0.09            | 28              |
|            | Including        | 151.0       | 152.0     | 1.0             | 23.40         | 617             | 0.13            | 22              |
| 25MYC0707  | Fiama            | 161.0       | 163.0     | 2.0             | 0.05          | 390             | 0.08            | 26              |
| 25MYC0707  | Fiama            | 164.0       | 175.0     | 11.0            | 0.16          | 344             | 0.03            | 26              |
| 25MYC0707  | Fiama            | 217.0       | 219.0     | 2.0             | 0.54          | 67              | 0.03            | 9               |
| 25MYC0707  | Fiama            | 230.0       | 233.0     | 3.0             | 0.10          | 123             | 0.04            | 8               |
| 25MYC0708  | Fiama            | 4.0         | 5.0       | 1.0             | 0.41          | 103             | 0.05            | 20              |
| 25MYC0708  | Fiama            | 5.0         | 10.0      | 5.0             | 0.01          | 743             | 0.02            | 32              |
| 25MYC0708  | Fiama            | 10.0        | 11.0      | 1.0             | 0.10          | 213             | 0.01            | 6               |
| 25MYC0708  | Fiama            | 11.0        | 16.0      | 5.0             | 0.04          | 758             | 0.04            | 48              |
| 25MYC0708  | Fiama            | 22.0        | 29.0      | 7.0             | 0.50          | 570             | 0.13            | 81              |
|            | Including        | 24.0        | 25.0      | 1.0             | 1.82          | 1,215           | 0.29            | 86              |
| 25MYC0708  | Fiama            | 32.0        | 34.0      | 2.0             | 0.19          | 277             | 0.04            | 80              |
| 25MYC0708  | Fiama            | 45.0        | 50.0      | 5.0             | 0.82          | 5,096           | 0.97            | 38              |
|            | Including        | 46.0        | 48.0      | 2.0             | 1.63          | 10,400          | 2.00            | 53              |
| 25MYC0708  | Fiama            | 129.0       | 130.0     | 1.0             | 0.03          | 1,150           | 0.13            | 26              |
| 25MYC0708  | Fiama            | 131.0       | 163.0     | 32.0            | 0.58          | 324             | 0.05            | 25              |
|            | Including        | 135.0       | 136.0     | 1.0             | 4.86          | 437             | 0.09            | 53              |
|            | Including        | 150.0       | 160.0     | 10.0            | 0.97          | 346             | 0.05            | 23              |
|            | Also Including   | 153.0       | 155.0     | 2.0             | 1.97          | 268             | 0.06            | 16              |
| 25MYC0709* | Fiama            | 297.0       | 298.0     | 1.0             | 0.10          | 34              | 0.02            | 27              |
| 25MYC0709* | Fiama            | 343.0       | 345.0     | 2.0             | 1.91          | 1,432           | 0.31            | 25              |
|            | Including        | 343.0       | 344.0     | 1.0             | 3.61          | 2,480           | 0.54            | 33              |
| 25MYC0725  | Fiama            | 200.0       | 201.0     | 1.0             | 0.11          | 202             | 0.02            | 9               |
| 25MYC0738* | Fiama            | 235.0       | 242.0     | 7.0             | 0.73          | 514             | 0.07            | 46              |
|            | Including        | 236.0       | 238.0     | 2.0             | 1.64          | 808             | 0.11            | 65              |
| 25MYC0738* | Fiama            | 248.0       | 249.0     | 1.0             | 0.16          | 253             | 0.04            | 28              |
| 25MYC0738* | Fiama            | 255.0       | 266.0     | 11.0            | 0.29          | 881             | 0.11            | 95              |
|            | Including        | 262.0       | 264.0     | 2.0             | 0.45          | 980             | 0.11            | 101             |
| 25MYC0738* | Fiama            | 267.0       | 268.0     | 1.0             | 0.10          | 262             | 0.04            | 35              |
| 25MYC0738* | Fiama            | 291.0       | 294.0     | 3.0             | 0.10          | 148             | 0.03            | 33              |
| 25MYC0738* | Fiama            | 305.0       | 307.0     | 2.0             | 0.03          | 818             | 0.06            | 38              |
| 25MYC0741  | Fiama            | 0.0         | 4.0       | 4.0             | 0.12          | 560             | 0.13            | 9               |
| 25MYC0741  | Fiama            | 17.0        | 20.0      | 3.0             | 0.01          | 370             | 0.02            | 16              |
| 25MYC0741  | Fiama            | 27.0        | 36.0      | 9.0             | 0.10          | 20              | 0.01            | 8               |
| 25MYC0741  | Fiama            | 39.0        | 43.0      | 4.0             | 0.12          | 54              | 0.02            | 7               |
| 25MYC0741  | Fiama            | 92.0        | 94.0      | 2.0             | 0.12          | 21              | 0.03            | 15              |
| 25MYC0741  | Fiama            | 122.0       | 124.0     | 2.0             | 0.12          | 236             | 0.04            | 48              |
| 25MYC0741  | Fiama            | 130.0       | 131.0     | 1.0             | 0.18          | 86              | 0.04            | 16              |
| 25MYC0741  | Fiama            | 148.0       | 154.0     | 6.0             | 0.11          | 56              | 0.02            | 23              |
| 25MYC0741  | Fiama            | 164.0       | 179.0     | 15.0            | 0.27          | 392             | 0.08            | 33              |
|            | Including        | 170.0       | 172.0     | 2.0             | 0.50          | 585             | 0.10            | 43              |
|            | Including        | 178.0       | 179.0     | 1.0             | 0.66          | 217             | 0.05            | 26              |
| 25MYC0741  | Fiama            | 184.0       | 208.0     | 24.0            | 0.51          | 429             | 0.07            | 32              |
|            | Including        | 195.0       | 200.0     | 5.0             | 0.95          | 461             | 0.09            | 33              |
| 25MYC0741  | Fiama            | 216.0       | 218.0     | 2.0             | 0.04          | 458             | 0.07            | 31              |
| 25MYC0741  | Fiama            | 261.0       | 262.0     | 1.0             | 0.24          | 277             | 0.06            | 73              |
| 25MYC0741  | Fiama            | 280.0       | 281.0     | 1.0             | 0.04          | 400             | 0.05            | 117             |
| 25MYCD0742 | Fiama            | 40.0        | 43.0      | 3.0             | 0.10          | 99              | 0.03            | 24              |
| 25MYCD0742 | Fiama            | 69.0        | 70.0      | 1.0             | 0.34          | 30              | 0.03            | 15              |
| 25MYC0730  | GEO-01 Central   | 11.0        | 13.0      | 2.0             | 0.15          | 138             | 0.05            | 19              |
| 25MYC0730  | GEO-01 Central   | 29.0        | 32.0      | 3.0             | 0.11          | 85              | 0.03            | 22              |
| 25MYC0730  | GEO-01 Central   | 38.0        | 39.0      | 1.0             | 0.15          | 69              | 0.03            | 31              |
| 25MYC0730  | GEO-01 Central   | 100.0       | 106.0     | 6.0             | 0.10          | 67              | 0.05            | 14              |
| 25MYC0730  | GEO-01 Central   | 108.0       | 109.0     | 1.0             | 0.40          | 188             | 0.08            | 17              |
| 25MYC0730  | GEO-01 Central   | 119.0       | 120.0     | 1.0             | 0.29          | 94              | 0.22            | 6               |
| 25MYC0730  | GEO-01 Central   | 158.0       | 161.0     | 3.0             | 0.01          | 364             | 0.16            | 26              |
| 25MYC0730  | GEO-01 Central   | 179.0       | 180.0     | 1.0             | 0.01          | 427             | 0.20            | 33              |



| Hala ID                             | Donosit/Progress                     | From           | То                  | Interval            | Gold                | Copper       | Silver       | Cobalt   |
|-------------------------------------|--------------------------------------|----------------|---------------------|---------------------|---------------------|--------------|--------------|----------|
| Hole ID                             | Deposit/Prospect                     | (m)            | (m)                 | (m)                 | (g/t)               | (ppm)        | (g/t)        | (ppm)    |
| 25MYC0731                           | GEO-01 Central                       | 9.0            | 12.0                | 3.0                 | 0.04                | 394          | 0.02         | 53       |
| 25MYC0731                           | GEO-01 Central                       | 87.0           | 88.0                | 1.0                 | 0.11                | 13           | 0.01         | 11       |
| 25MYC0731                           | GEO-01 Central                       | 92.0           | 93.0                | 1.0                 | 0.00                | 476          | 0.02         | 62       |
| 25MYC0731                           | GEO-01 Central                       | 143.0          | 145.0               | 2.0                 | 0.04                | 1,134        | 0.18         | 58       |
| 25MYC0736                           | GEO-01 Central                       | 15.0           | 18.0                | 3.0                 | 0.12                | 60           | 0.03         | 5        |
| 25MYC0736                           | GEO-01 Central                       | 24.0           | 27.0                | 3.0                 | 0.22                | 170          | 0.08         | 48       |
| 25MYC0736                           | GEO-01 Central                       | 36.0           | 37.0                | 1.0                 | 0.34                | 19           | 0.03         | 16       |
| 25MYC0736                           | GEO-01 Central                       | 58.0           | 60.0                | 2.0                 | 0.45                | 55           | 0.02         | 14       |
|                                     | Including                            | 58.0           | 59.0                | 1.0                 | 0.76                | 70           | 0.02         | 15       |
| 25MYC0736                           | GEO-01 Central                       | 94.0           | 103.0               | 9.0                 | 0.28                | 206          | 0.12         | 251      |
| 25847/00220                         | Including                            | 97.0           | 98.0                | 1.0                 | 1.39                | 866          | 0.50         | 685      |
| 25MYC0736                           | GEO-01 Central                       | 146.0          | 160.0               | 14.0                | 0.75                | 752<br>995   | 0.12         | 34       |
|                                     | Including<br>Including               | 146.0<br>151.0 | 147.0<br>153.0      | 1.0<br>2.0          | 1.70<br>1.67        | 995<br>1,798 | 0.14<br>0.28 | 75<br>56 |
|                                     | Including                            | 159.0          | 160.0               | 1.0                 | 1.02                | 1,035        | 0.28         | 36       |
| 25MYC0736                           | GEO-01 Central                       | 160.0          | 162.0               | 2.0                 | 0.08                | 307          | 0.14         | 29       |
| 25MYC0736                           | GEO-01 Central                       | 164.0          | 184.0               | 20.0                | 0.08                | 178          | 0.08         | 31       |
| 251411 C0750                        | Including                            | 169.0          | 170.0               | 1.0                 | 0.54                | 473          | 0.08         | 32       |
| 25MYC0736                           | GEO-01 Central                       | 221.0          | 223.0               | 2.0                 | 0.17                | 137          | 0.03         | 21       |
| 25MYC0736                           | GEO-01 Central                       | 226.0          | 227.0               | 1.0                 | 0.68                | 196          | 0.02         | 44       |
| 25MYC0736                           | GEO-01 Central                       | 249.0          | 250.0               | 1.0                 | 0.23                | 207          | 0.03         | 52       |
| 25MYC0736                           | GEO-01 Central                       | 264.0          | 270.0               | 6.0                 | 0.18                | 362          | 0.07         | 35       |
|                                     | Including                            | 264.0          | 265.0               | 1.0                 | 0.56                | 86           | 0.04         | 25       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 381.0          | 390.56              | 9.56                | 0.18                | 551          | 0.14         | 39       |
|                                     | Including                            | 385.17         | 386.30              | 1.13                | 0.51                | 496          | 0.16         | 39       |
|                                     | Including                            | 390.07         | 390.56              | 0.49                | 0.60                | 601          | 0.20         | 43       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 395.0          | 396.0               | 1.0                 | 0.08                | 306          | 0.12         | 22       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 397.0          | 398.0               | 1.0                 | 1.17                | 600          | 0.24         | 70       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 399.34         | 400.75              | 1.41                | 0.17                | 1,090        | 0.21         | 52       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 400.75         | 401.32              | 0.57                | 0.03                | 325          | 0.08         | 31       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 403.0          | 404.0               | 1.0                 | 0.13                | 339          | 0.09         | 23       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 404.0          | 405.0               | 1.0                 | 0.02                | 573          | 0.13         | 29       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 417.0          | 424.0               | 7.0                 | 0.05                | 455          | 0.11         | 34       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 436.18         | 437.00              | 0.82                | 0.01                | 480          | 0.07         | 35       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 459.0          | 461.8               | 2.80                | 0.02                | 298          | 0.10         | 34       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 475.11         | 477.12              | 2.01                | 0.35                | 227          | 0.10         | 25       |
|                                     | Including                            | 475.98         | 476.35              | 0.37                | 0.82                | 403          | 0.13         | 40       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 497.21         | 497.78              | 0.57                | 0.17                | 26           | 0.03         | 25       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 512.0          | 513.0               | 1.0                 | 0.07                | 303          | 0.05         | 27       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 517.13         | 517.43              | 0.30                | 0.37                | 82           | 0.04         | 21       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 532.0          | 533.0               | 1.0                 | 0.05                | 439          | 0.11         | 35       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 549.0          | 549.9               | 0.90                | 0.10                | 165          | 0.07         | 45       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 557.0          | 558.0               | 1.0                 | 0.22                | 163          | 0.07         | 29       |
| 25MYCD0698                          | GEO-01 Main Zone                     | 572.0          | 576.0               | 4.0                 | 3.17                | 64           | 0.08         | 31       |
| 2EMAYCD0609                         | Including                            | <b>572.0</b>   | <b>573.0</b>        | 1.0                 | 10.25               | 2            | 0.20         | 28       |
| 25MYCD0698<br>25MYD0539             | GEO-01 Main Zone<br>GEO-01 Main Zone | 576.0<br>0.0   | 577.0<br>3.2        | 1.0<br>3.20         | 0.10                | 179<br>63    | 0.03<br>3.31 | 41<br>20 |
| 25MYD0539                           | GEO-01 Main Zone                     | 10.46          | 3.2<br><b>11.80</b> | 3.20<br><b>1.34</b> | 0.01<br><b>0.51</b> | 53           | 0.08         | 20<br>7  |
| 25MYD0539                           | GEO-01 Main Zone                     | 16.0           | 17.0                | 1.04                | 0.31                | 102          | 0.08         | 13       |
| 25MYD0539                           | GEO-01 Main Zone                     | 21.40          | 22.53               | 1.13                | 0.21                | 73           | 0.08         | 16       |
| 25MYD0539                           | GEO-01 Main Zone                     | 24.85          | 27.00               | 2.15                | 0.17                | 44           | 0.18         | 11       |
| 25MYD0539                           | GEO-01 Main Zone                     | 31.0           | 41.0                | 10.0                | 2.04                | 33           | 0.04         | 10       |
| 251111 00333                        | Including                            | 35.12          | 38.00               | 2.88                | 6.49                | 34           | 0.23         | 11       |
|                                     | Also Including                       | 35.62          | 36.00               | 0.38                | 14.30               | 41           | 1.14         | 12       |
| 25MYD0539                           | GEO-01 Main Zone                     | 43.00          | 45.15               | 2.15                | 0.12                | 30           | 0.04         | 3        |
| 25MYD0539                           | GEO-01 Main Zone                     | 54.36          | 56.00               | 1.64                | 0.11                | 86           | 0.01         | 14       |
| 25MYD0539                           | GEO-01 Main Zone                     | 57.93          | 65.00               | 7.07                | 0.11                | 100          | 0.03         | 23       |
|                                     | GEO-01 Main Zone                     | 77.00          | 77.69               | 0.69                | 0.01                | 29           | 1.47         | 1        |
| 25MYD0539                           |                                      |                |                     | 3.26                | 0.16                | 197          |              | 4        |
| 25MYD0539<br>25MYD0539              | GEO-01 Main Zone                     | 86.00          | 89.26               | 3.20                | 0.10                | 13/          | 0.05         | 4        |
| 25MYD0539<br>25MYD0539<br>25MYD0539 | GEO-01 Main Zone<br>GEO-01 Main Zone | 86.00<br>97.00 | 89.26<br>97.73      | 0.73                | 0.30                | 32           | 0.05<br>0.04 | 6        |
| 25MYD0539                           |                                      |                |                     |                     |                     |              |              |          |



| Hole ID      | Deposit/Prospect       | From<br>(m)    | To<br>(m)      | Interval<br>(m) | Gold<br>(g/t) | Copper<br>(ppm) | Silver<br>(g/t) | Cobalt<br>(ppm) |
|--------------|------------------------|----------------|----------------|-----------------|---------------|-----------------|-----------------|-----------------|
| 25MYD0539    | GEO-01 Main Zone       | 167.88         | 175.0          | 7.12            | 0.38          | 471             | 0.10            | 7               |
|              | Including              | 167.88         | 170.0          | 2.12            | 0.93          | 880             | 0.19            | 8               |
| 25MYD0539    | GEO-01 Main Zone       | 204.88         | 207.0          | 2.12            | 0.25          | 160             | 0.04            | 9               |
|              | Including              | 205.78         | 206.25         | 0.47            | 0.43          | 204             | 0.06            | 11              |
| 25MYD0539    | GEO-01 Main Zone       | 211.0          | 213.0          | 2.0             | 0.10          | 33              | 0.03            | 3               |
| 25MYD0539    | GEO-01 Main Zone       | 218.0          | 219.0          | 1.0             | 0.42          | 62              | 0.06            | 5               |
| 25MYD0539    | GEO-01 Main Zone       | 246.00         | 246.83         | 0.83            | 0.02          | 306             | 0.06            | 18              |
| 25MYD0539    | GEO-01 Main Zone       | 257.00         | 258.76         | 1.76            | 0.15          | 209             | 0.02            | 15              |
| 25MYD0539    | GEO-01 Main Zone       | 260.64         | 261.13         | 0.49            | 0.03          | 445             | 0.03            | 32              |
| 25MYD0539    | GEO-01 Main Zone       | 263.79         | 265.92         | 2.13            | 0.02          | 404             | 0.04            | 27              |
| 25MYD0539    | GEO-01 Main Zone       | 266.67         | 267.16         | 0.49            | 0.01          | 537             | 0.03            | 28              |
| 25MYD0539    | GEO-01 Main Zone       | 268.46         | 284.00         | 15.54           | 0.80          | 555             | 0.20            | 12              |
|              | Including              | 273.48         | 275.41         | 1.93            | 5.07          | 3,535           | 1.30            | 51              |
| 25MYD0539    | GEO-01 Main Zone       | 292.74         | 293.08         | 0.34            | 0.32          | 39              | 0.08            | 12              |
| 25MYD0539    | GEO-01 Main Zone       | 308.46         | 310.50         | 2.04            | 0.03          | 650             | 0.12            | 37              |
| 25MYD0539    | GEO-01 Main Zone       | 310.5          | 313.0          | 2.50            | 7.25          | 2,568           | 0.25            | 36              |
|              | Including              | 312.0          | 313.0          | 1.0             | 17.45         | 3,520           | 0.35            | 44              |
| 25MYD0539    | GEO-01 Main Zone       | 320.0          | 321.0          | 1.0             | 0.01          | 355             | 0.03            | 40              |
| 25MYD0539    | GEO-01 Main Zone       | 332.00         | 337.16         | 5.16            | 0.12          | 180             | 0.04            | 21              |
| 25MYD0539    | GEO-01 Main Zone       | 337.66         | 338.26         | 0.60            | 0.03          | 491             | 0.06            | 98              |
| 25MYD0539    | GEO-01 Main Zone       | 349.00         | 354.42         | 5.42            | 0.37          | 284             | 0.07            | 11              |
|              | Including              | 351.91         | 354.00         | 2.09            | 0.65          | 508             | 0.12            | 19              |
| 25MYD0539    | GEO-01 Main Zone       | 356.63         | 365.00         | 8.37            | 0.26          | 391             | 0.09            | 6               |
|              | Including              | 359.65         | 361.00         | 1.35            | 0.66          | 210             | 0.06            | 5               |
|              | Including              | 364.0          | 365.0          | 1.0             | 0.58          | 1,655           | 0.38            | 8               |
| 25MYD0539    | GEO-01 Main Zone       | 373.0          | 376.0          | 3.0             | 0.45          | 183             | 0.04            | 6               |
|              | Including              | 373.0          | 374.0          | 1.0             | 1.24          | 332             | 0.08            | 12              |
| 25MYD0539    | GEO-01 Main Zone       | 385.0          | 386.0          | 1.0             | 0.19          | 93              | 0.04            | 2               |
| 25MYD0539    | GEO-01 Main Zone       | 391.0          | 394.0          | 3.0             | 0.28          | 89              | 0.02            | 5               |
|              | Including              | 392.0          | 393.0          | 1.0             | 0.51          | 163             | 0.04            | 6               |
| 25MYD0539    | GEO-01 Main Zone       | 400.0          | 414.0          | 14.0            | 0.13          | 51              | 0.05            | 5               |
|              | Including              | 411.0          | 412.0          | 1.0             | 0.54          | 84              | 0.08            | 5               |
| 25MYC0727    | GP05                   | 210.0          | 211.0          | 1.0             | 0.01          | 307             | 0.08            | 49              |
| 25MYC0728    | GP05                   | 16.0           | 28.0           | 12.0            | 0.01          | 340             | 0.04            | 132             |
| 25MYC0728    | GP05                   | 68.0           | 72.0           | 4.0             | 0.01          | 481             | 0.04            | 98              |
| 25MYC0728    | GP05                   | 134.0          | 138.0          | 4.0             | 0.11          | 425             | 0.10            | 9               |
| 25MYC0728    | GP05                   | 162.0          | 166.0          | 4.0             | 0.08          | 987             | 0.20            | 32              |
| 25MYC0704*   | Minella                | 30.0           | 31.0           | 1.0             | 0.19          | 216             | 0.06            | 18              |
| 25MYC0704*   | Minella                | 45.0           | 49.0           | 4.0             | 0.06          | 354             | 0.08            | 11              |
| 25MYC0704*   | Minella                | 49.0           | 52.0           | 3.0             | 1.55          | 756             | 0.42            | 33              |
| 25141/00704* | Including              | 49.0           | 50.0           | 1.0             | 2.62          | 894             | 0.64            | 24              |
| 25MYC0704*   | Minella                | 81.0           | 84.0           | 3.0             | 0.16          | 350             | 0.05            | 25              |
| 25MYC0704*   | Minella                | 90.0           | 102.0          | 12.0            | 0.35          | 457             | 0.06            | 29              |
|              | Including<br>Including | 92.0<br>98.0   | 93.0<br>100.0  | 1.0<br>2.0      | 0.53<br>0.96  | 476<br>421      | 0.06<br>0.05    | 31<br>27        |
| 25MYC0705*   |                        |                |                |                 |               |                 |                 | 33              |
| 25MYC0705*   | Minella<br>Minella     | 13.0<br>104.0  | 14.0<br>105.0  | 1.0<br>1.0      | 0.11<br>0.03  | 112<br>349      | 0.05<br>0.05    | 7               |
| 25MYC0705*   | Minella                | 72.0           | 73.0           | 1.0             | 0.03          | 301             | 0.03            | 19              |
| 25MYC0706*   | Minella                | 115.0          | 116.0          | 1.0             | 0.01          | 156             | 0.08            | 15              |
| 25MYC0706*   | Minella                | 119.0          | 120.0          | 1.0             | 0.11          | 322             | 0.13            | 22              |
| 25MYC0743*   | Minella                | 28.0           | 30.0           | 2.0             | 0.01          | 479             | 0.04            | 10              |
| 25MYC0743*   | Minella                | 32.0           | 33.0           | 1.0             | 0.02          | 345             | 0.02            | 56              |
| 25MYC0743*   | Minella                | 146.0          | 149.0          | 3.0             | 0.25          | 345<br>147      | 0.04            | 45              |
| 25MYC0743*   | Minella                | 155.0          | 156.0          | 1.0             | 0.25          | 455             | 0.04            | 74              |
| 25MYC0744    | Minella                | 17.0           | 18.0           | 1.0             | 0.13          | 113             | 0.03            | 20              |
| 25MYC0744    | Minella                | 43.0           | 45.0           | 2.0             | 0.23          | 404             | 0.04            | 30              |
| 25MYC0744    | Minella                | 193.0          | 194.0          | 1.0             | 0.19          | 52              | 0.10            | 22              |
| 25MYC0744    | Minella                | 211.0          | 217.0          | 6.0             | 0.15          | 718             | 0.02            | 25              |
|              |                        | 211.0<br>214.0 | 217.0<br>215.0 | 1.0             | 0.13          | 2,180           | 0.14            | 28              |
| 20           | Inciliaina             |                |                |                 | U.JO          |                 |                 |                 |
|              | Including<br>Minella   |                |                |                 |               |                 |                 |                 |
| 25MYC0744    | Minella<br>Including   | 221.0<br>224.0 | 227.0<br>226.0 | 6.0             | 0.40<br>0.94  | 551<br>573      | 0.08            | 23<br>21        |



| Hole ID       | Deposit/Prospect | From<br>(m) | To<br>(m)      | Interval<br>(m) | Gold<br>(g/t) | Copper<br>(ppm) | Silver<br>(g/t) | Cobalt<br>(ppm) |
|---------------|------------------|-------------|----------------|-----------------|---------------|-----------------|-----------------|-----------------|
| 25MYC0744     | Minella          | 232.0       | 269.0          | 37.0            | 0.44          | 963             | 0.13            | 41              |
|               | Including        | 240.0       | 241.0          | 1.0             | 1.12          | 1,170           | 0.13            | 75              |
|               | Including        | 267.0       | 268.0          | 1.0             | 4.84          | 666             | 0.32            | 20              |
| 25MYC0744     | Minella          | 279.0       | 280.0          | 1.0             | 0.03          | 449             | 0.04            | 22              |
| 25MYC0696     | WACA             | 51.0        | 53.0           | 2.0             | 0.00          | 9               | 1.04            | 9               |
| 25MYC0696     | WACA             | 74.0        | 84.0           | 10.0            | 0.02          | 368             | 0.05            | 22              |
| 25MYC0696     | WACA             | 188.0       | 198.0          | 10.0            | 0.26          | 88              | 0.03            | 178             |
|               | Including        | 196.0       | 197.0          | 1.0             | 1.68          | 17              | 0.03            | 100             |
| 25MYC0733     | WACA             | 49.0        | 50.0           | 1.0             | 0.11          | 314             | 0.04            | 78              |
| 25MYC0733     | WACA             | 64.0        | 65.0           | 1.0             | 0.10          | 516             | 0.10            | 101             |
| 25MYC0717     | Rizzo            | 8.0         | 16.0           | 8.0             | 0.02          | 745             | 0.12            | 84              |
| 25MYC0717     | Rizzo            | 20.0        | 32.0           | 12.0            | 0.09          | 227             | 0.06            | 54              |
| 25MYC0717     | Rizzo            | 68.0        | 72.0           | 4.0             | 0.02          | 577             | 0.04            | 60              |
| 25MYC0717     | Rizzo            | 104.0       | 116.0          | 12.0            | 0.17          | 603             | 0.11            | 93              |
| 25MYC0718     | Rizzo            | 96.0        | 100.0          | 4.0             | 0.07          | 129             | 0.05            | 537             |
| 25MYC0718     | Rizzo            | 144.0       | 148.0          | 4.0             | 0.16          | 341             | 0.07            | 90              |
| 25MYC0718     | Rizzo            | 156.0       | 160.0          | 4.0             | 0.01          | 610             | 0.07            | 137             |
| 25MYC0719     | Rizzo            | 128.0       | 133.0          | 5.0             | 0.01          | 560             | 0.07            | 64              |
| 25MYC0719     | Rizzo            | 133.0       | 133.0<br>138.0 | 5.0             | 0.16          | <b>5,825</b>    | 3.57            | 125             |
| 25W11CU/19    | Including        | 135.0       |                |                 |               |                 | 6.82            | 188             |
|               | And              | 136.0       | 136.0          | 1.0             | 0.98          | 12,600          | 4.32            |                 |
| 25147/00740   |                  |             | 137.0          | 1.0             | 0.26          | 10,800          |                 | 189             |
| 25MYC0719     | Rizzo            | 138.0       | 140.0          | 2.0             | 0.05          | 391             | 0.24            | 52              |
| 25MYC0719     | Rizzo            | 140.0       | 144.0          | 4.0             | 0.16          | 394             | 0.17            | 58              |
| 25MYC0719     | Rizzo            | 168.0       | 172.0          | 4.0             | 0.14          | 221             | 0.08            | 57              |
| 25MYC0722     | Rizzo            | 87.0        | 89.0           | 2.0             | 0.43          | 254             | 0.04            | 107             |
| 25MYC0722     | Rizzo            | 96.0        | 97.0           | 1.0             | 0.04          | 409             | 0.06            | 65              |
| 25MYC0723     | Rizzo            | 48.0        | 52.0           | 4.0             | 0.23          | 311             | 0.05            | 65              |
| 25MYC0723     | Rizzo            | 100.0       | 104.0          | 4.0             | 1.80          | 240             | 0.05            | 54              |
| 25MYC0723     | Rizzo            | 123.0       | 125.0          | 2.0             | 0.03          | 1,463           | 0.15            | 57              |
| 25MYC0723     | Rizzo            | 153.0       | 155.0          | 2.0             | 0.30          | 1,697           | 0.26            | 142             |
| 25MYC0723     | Rizzo            | 160.0       | 164.0          | 4.0             | 0.03          | 373             | 0.08            | 46              |
| 25MYC0724     | Rizzo            | 8.0         | 12.0           | 4.0             | 0.00          | 503             | 0.05            | 54              |
| 25MYC0724     | Rizzo            | 72.0        | 74.0           | 2.0             | 0.45          | 234             | 0.06            | 80              |
|               | Including        | 72.0        | 73.0           | 1.0             | 0.80          | 253             | 0.08            | 103             |
| 25MYC0749     | Rizzo            | 12.0        | 32.0           | 20.0            | 0.02          | 721             | 0.17            | 19              |
| 25MYC0749     | Rizzo            | 36.0        | 40.0           | 4.0             | 0.18          | 1,325           | 0.25            | 29              |
| 25MYC0750     | Rizzo            | 4.0         | 64.0           | 60.0            | 0.35          | 1,544           | 0.30            | 93              |
|               | Including        | 20.0        | 28.0           | 8.0             | 0.57          | 1,800           | 0.22            | 66              |
|               | Including        | 44.0        | 52.0           | 8.0             | 1.20          | 3,118           | 0.59            | 240             |
| 25MYC0750     | Rizzo            | 64.0        | 84.0           | 20.0            | 0.04          | 557             | 0.10            | 33              |
| 25MYC0750     | Rizzo            | 84.0        | 88.0           | 4.0             | 0.10          | 1,600           | 0.21            | 22              |
| 25MYC0750     | Rizzo            | 130.0       | 131.0          | 1.0             | 0.03          | 1,270           | 0.16            | 23              |
| 25MYC0750     | Rizzo            | 131.0       | 133.0          | 2.0             | 0.29          | 44,015          | 4.35            | 214             |
|               | Including        | 131.0       | 132.0          | 1.0             | 0.33          | 86,400          | 8.45            | 407             |
| 25MYC0750     | Rizzo            | 134.0       | 138.0          | 4.0             | 0.01          | 443             | 0.06            | 18              |
| 25MYC0751     | Rizzo            | 4.0         | 8.0            | 4.0             | 0.02          | 365             | 0.03            | 179             |
| 25MYC0751     | Rizzo            | 8.0         | 12.0           | 4.0             | 0.11          | 325             | 0.03            | 162             |
| 25MYC0751     | Rizzo            | 32.0        | 36.0           | 4.0             | 0.11          | 162             | 0.06            | 17              |
| 231411 (07.31 | MZZO             | 52.0        | 30.0           | 7.0             | 0.11          | 102             | 0.00            | 1,              |
| 25MYC0752     | Minyari NW       | 12.0        | 30.0           | 18.0            | 0.03          | 432             | 0.07            | 113             |
| 23141110732   | Including        | 28.0        | 29.0           | 1.0             | 0.03          | 451             | 0.07            | 157             |
| 25MYC0752     | Minyari NW       | 34.0        | 35.0           | 1.0             | 0.21          | 306             | 0.05            | 185             |
|               | ·                |             |                |                 |               | 199             | 0.06            |                 |
| 25MYC0752     | Minyari NW       | 46.0        | 47.0           | 1.0             | 0.07          |                 |                 | 417             |
| 25MYC0752     | Minyari NW       | 47.0        | 52.0           | 5.0             | 0.04          | 340             | 0.06            | 666             |
| 25MYC0752     | Minyari NW       | 52.0        | 55.0           | 3.0             | 0.10          | 298             | 0.07            | 512             |
| 25MYC0752     | Minyari NW       | 60.0        | 61.0           | 1.0             | 0.37          | 304             | 0.04            | 52              |
| 25MYC0752     | Minyari NW       | 66.0        | 67.0           | 1.0             | 0.10          | 400             | 0.08            | 559             |
| 25MYC0752     | Minyari NW       | 70.0        | 72.0           | 2.0             | 0.08          | 759             | 0.15            | 159             |
| 25MYC0752     | Minyari NW       | 76.0        | 78.0           | 2.0             | 0.10          | 1,715           | 0.20            | 1,370           |
| 25MYC0752     | Minyari NW       | 78.0        | 90.0           | 12.0            | 0.03          | 371             | 0.04            | 129             |
| 25MYC0752     | Minyari NW       | 97.0        | 102.0          | 5.0             | 0.09          | 468<br>381      | 0.11<br>0.05    | 292<br>32       |
| 25MYC0752     | Minyari NW       | 129.0       | 131.0          | 2.0             | 0.02          |                 |                 |                 |



| Hole ID        | Deposit/Prospect | From<br>(m) | To<br>(m) | Interval<br>(m) | Gold<br>(g/t) | Copper<br>(ppm) | Silver<br>(g/t) | Cobalt<br>(ppm) |
|----------------|------------------|-------------|-----------|-----------------|---------------|-----------------|-----------------|-----------------|
| 25MYC0752      | Minyari NW       | 168.0       | 173.0     | 5.0             | 0.03          | 436             | 0.06            | 48              |
| 25MYC0752      | Minyari NW       | 186.0       | 188.0     | 2.0             | 0.05          | 384             | 0.14            | 38              |
| 25MYC0752      | Minyari NW       | 188.0       | 189.0     | 1.0             | 0.19          | 248             | 0.06            | 35              |
| 25MYC0752      | Minyari NW       | 191.0       | 192.0     | 1.0             | 0.08          | 311             | 0.11            | 54              |
| 25MYC0752      | Minyari NW       | 197.0       | 198.0     | 1.0             | 0.49          | 815             | 0.12            | 315             |
| 25MYC0752      | Minyari NW       | 203.0       | 208.0     | 5.0             | 0.24          | 451             | 0.11            | 2,601           |
|                | Including        | 207.0       | 208.0     | 1.0             | 0.47          | 425             | 0.08            | 4,360           |
| 25MYC0752      | Minyari NW       | 211.0       | 213.0     | 2.0             | 0.03          | 466             | 0.04            | 128             |
| 25MYC0752      | Minyari NW       | 215.0       | 233.0     | 18.0            | 0.29          | 996             | 0.29            | 315             |
|                | Including        | 216.0       | 217.0     | 1.0             | 1.24          | 1,080           | 0.28            | 1,515           |
|                | Including        | 229.0       | 233.0     | 4.0             | 0.55          | 2,545           | 0.73            | 421             |
| 25MYC0752      | Minyari NW       | 237.0       | 238.0     | 1.0             | 0.04          | 303             | 0.09            | 271             |
| 25MYC0752      | Minyari NW       | 239.0       | 242.0     | 3.0             | 0.17          | 566             | 0.11            | 302             |
| 25MYC0752      | Minyari NW       | 250.0       | 251.0     | 1.0             | 0.02          | 404             | 0.08            | 46              |
| 25MYC0752      | Minyari NW       | 251.0       | 260.0     | 9.0             | 1.20          | 1,965           | 0.65            | 400             |
|                | Including        | 257.0       | 258.0     | 1.0             | 6.65          | 9,520           | 3.07            | 2,320           |
| 25MYC0752      | Minyari NW       | 260.0       | 263.0     | 3.0             | 0.07          | 462             | 0.11            | 57              |
| 25MYC0755      | Minyari NW       | 6.0         | 7.0       | 1.0             | 0.15          | 73              | 0.04            | 15              |
| 25MYC0755      | Minyari NW       | 61.0        | 63.0      | 2.0             | 0.26          | 102             | 0.08            | 271             |
| 25MYC0755      | Minyari NW       | 68.0        | 69.0      | 1.0             | 0.17          | 225             | 0.07            | 58              |
| 25MYC0755      | Minyari NW       | 114.0       | 118.0     | 4.0             | 0.02          | 41              | 0.03            | 442             |
| 25MYC0755      | Minyari NW       | 118.0       | 120.0     | 2.0             | 0.57          | 426             | 0.12            | 1,690           |
| 25.01.007.55   | Including        | 119.0       | 120.0     | 1.0             | 1.01          | 423             | 0.12            | 1,685           |
| 25MYC0755      | Minyari NW       | 122.0       | 124.0     | 2.0             | 0.23          | 221             | 0.08            | 901             |
| 25MYC0755      | Minyari NW       | 124.0       | 129.0     | 5.0             | 0.04          | 359             | 0.08            | 678             |
| 25MYC0755      | Minyari NW       | 129.0       | 132.0     | 3.0             | 0.64          | 187             | 0.08            | 1,982           |
| 251111 007 55  | Including        | 131.0       | 132.0     | 1.0             | 1.29          | 148             | 0.07            | 2,120           |
| 25MYC0755      | Minyari NW       | 132.0       | 134.0     | 2.0             | 0.04          | 137             | 0.03            | 421             |
| 25MYC0755      | Minyari NW       | 137.0       | 138.0     | 1.0             | 0.56          | 126             | 0.24            | 661             |
| 25MYC0755      | Minyari NW       | 138.0       | 140.0     | 2.0             | 0.05          | 56              | 0.03            | 1,166           |
| 25MYC0755      | Minyari NW       | 146.0       | 157.0     | 11.0            | 0.04          | 123             | 0.03            | 614             |
| 251411 007 55  | Including        | 154.0       | 157.0     | 3.0             | 0.04          | 148             | 0.04            | 1,460           |
| 25MYC0755      | Minyari NW       | 173.0       | 176.0     | 3.0             | 0.04          | 682             | 0.16            | 114             |
| 25MYC0755      | Minyari NW       | 182.0       | 185.0     | 3.0             | 0.64          | 344             | 0.12            | 203             |
| 25.01.007.55   | Including        | 182.0       | 183.0     | 1.0             | 1.70          | 700             | 0.25            | 495             |
| 25MYC0755      | Minyari NW       | 190.0       | 195.0     | 5.0             | 0.28          | 272             | 0.06            | 248             |
| 25.01.007.55   | Including        | 194.0       | 195.0     | 1.0             | 0.60          | 332             | 0.05            | 677             |
| 25MYC0755      | Minyari NW       | 195.0       | 197.0     | 2.0             | 0.08          | 195             | 0.04            | 381             |
| 25MYC0755      | Minyari NW       | 202.0       | 205.0     | 3.0             | 0.21          | 457             | 0.11            | 2,503           |
| 25MYC0755      | Minyari NW       | 207.0       | 210.0     | 3.0             | 0.04          | 391             | 0.05            | 124             |
| 25MYC0755      | Minyari NW       | 210.0       | 218.0     | 8.0             | 0.29          | 2,386           | 0.48            | 940             |
|                | Including        | 210.0       | 211.0     | 1.0             | 1.05          | 3,070           | 0.56            | 1,370           |
| 25MYC0755      | Minyari NW       | 218.0       | 230.0     | 12.0            | 0.04          | 715             | 0.14            | 308             |
| 25MYC0755      | Minyari NW       | 230.0       | 233.0     | 3.0             | 0.13          | 543             | 0.11            | 133             |
| 25MYC0755      | Minyari NW       | 236.0       | 237.0     | 1.0             | 0.09          | 292             | 0.06            | 812             |
| 25MYC0711      | Minyari SE       | 18.0        | 19.0      | 1.0             | 0.02          | 336             | 0.05            | 59              |
| 25MYC0711      | Minyari SE       | 28.0        | 34.0      | 6.0             | 0.02          | 376             | 0.06            | 19              |
| 25MYC0711      | Minyari SE       | 50.0        | 53.0      | 3.0             | 0.03          | 372             | 0.06            | 21              |
| 25MYC0711      | Minyari SE       | 84.0        | 86.0      | 2.0             | 0.02          | 512             | 0.09            | 23              |
| 25MYC0711      | Minyari SE       | 120.0       | 121.0     | 1.0             | 0.05          | 436             | 0.08            | 24              |
| 25MYC0712      | Minyari SE       | 133.0       | 134.0     | 1.0             | 0.18          | 6               | 0.02            | 20              |
| 25MYC0712      | Minyari SE       | 174.0       | 177.0     | 3.0             | 0.03          | 1,353           | 0.14            | 103             |
| 25MYC0713      | Minyari NE       | 57.0        | 58.0      | 1.0             | 0.03          | 368             | 0.14            | 51              |
| 25MYC0714      | Minyari NE       | 24.0        | 25.0      | 1.0             | 0.01          | 355             | 0.11            | 47              |
| 25MYC0714      | Minyari NE       | 127.0       | 128.0     | 1.0             | 0.01          | 464             | 0.13            | 20              |
| 25/VI I CU/ 14 | IVIIII Y AIT INL | 127.0       | 120.0     | 1.0             | 0.01          | 404             | 0.13            | 20              |

#### Notes:

<sup>\*</sup>Drill holes with partial assay results received / further assays pending

Table intersections are length-weighted assay intervals reported using the following criteria:

Intersection Interval = Nominal cut-off grade scenarios:



- $\geq 0.10$  ppm (g/t) gold; and/or
- ≥ 300 ppm (0.03%) copper; and/or
- $\geq 0.70 \text{ ppm (g/t) silver; and/or}$
- ≥ 400 ppm (0.04%) cobalt.
- No top-cutting has been applied to these individual assay intervals.
- Intersections are down hole lengths, true widths not known with certainty, refer to JORC Table 1 Section 2.
- To convert ppm to percent (%) divide ppm by 10,000.

Table 2a: Minyari Project – CY2025 Phase 1 Exploration Programme

# Reverse Circulation (RC) and Diamond Core (DD) Drill Hole Collar Locations (MGA Zone 51/GDA2020)

|           |           |                | Hole | Northing  | Easting | RL  | Hole         | Azimuth | Dip | Assay     |
|-----------|-----------|----------------|------|-----------|---------|-----|--------------|---------|-----|-----------|
| Hole ID   | Programme | Target/Deposit | Туре | (m)       | (m)     | (m) | Depth<br>(m) | (°)     | (°) | Status    |
| 25MYC0685 | Growth    | Minyari South  | RC   | 7,635,013 | 422,997 | 275 | 60.0         | 100     | -61 | Received  |
| 25MYC0686 | Growth    | Minyari South  | RC   | 7,635,022 | 422,949 | 275 | 102.0        | 100     | -60 | Received  |
| 25MYC0687 | Growth    | Minyari South  | RC   | 7,635,037 | 422,891 | 274 | 186.0        | 103     | -58 | Received  |
| 25MYC0688 | Growth    | Minyari South  | RC   | 7,634,918 | 422,949 | 275 | 144.0        | 100     | -60 | Received  |
| 25MYC0689 | Growth    | Minyari South  | RC   | 7,634,927 | 422,899 | 275 | 228.0        | 100     | -60 | Received  |
| 25MYC0690 | Growth    | Minyari South  | RC   | 7,634,856 | 422,977 | 276 | 120.0        | 100     | -60 | Received  |
| 25MYC0691 | Growth    | Minyari South  | RC   | 7,634,873 | 422,877 | 276 | 258.0        | 100     | -62 | Received  |
| 25MYC0692 | Growth    | Minyari South  | RC   | 7,634,799 | 422,957 | 276 | 228.0        | 100     | -60 | Received  |
| 25MYC0693 | Growth    | Minyari South  | RC   | 7,634,815 | 422,902 | 276 | 198.0        | 100     | -61 | Received  |
| 25MYC0694 | Growth    | Minyari South  | RC   | 7,634,822 | 422,856 | 276 | 251.0        | 100     | -60 | Received  |
| 25MYC0695 | Growth    | Minyari South  | RC   | 7,634,752 | 422,934 | 277 | 120.0        | 100     | -61 | Received  |
| 25MYC0696 | Growth    | WACA           | RC   | 7,634,765 | 422,878 | 277 | 210.0        | 100     | -60 | Received  |
| 25MYC0697 | Growth    | Minyari South  | RC   | 7,634,913 | 422,834 | 276 | 150.0        | 058     | -59 | Received  |
| 25MYC0699 | Growth    | GEO-01 MZ      | RC   | 7,633,688 | 423,628 | 276 | 196.0        | 090     | -59 | Received  |
| 25MYC0700 | Growth    | Fiama          | RC   | 7,633,448 | 424,081 | 277 | 226.0        | 300     | -59 | Received  |
| 25MYC0701 | Growth    | Fiama          | RC   | 7,633,547 | 424,050 | 277 | 202.0        | 180     | -60 | Received  |
| 25MYC0702 | Growth    | Fiama          | RC   | 7,633,609 | 424,096 | 278 | 336.0        | 180     | -59 | Received  |
| 25MYC0703 | Growth    | Fiama          | RC   | 7,633,445 | 424,082 | 277 | 184.0        | 255     | -60 | Received  |
| 25MYC0704 | Growth    | Minella        | RC   | 7,633,614 | 423,640 | 276 | 168.0        | 010     | -61 | Received  |
| 25MYC0705 | Growth    | Minella        | RC   | 7,633,565 | 423,631 | 275 | 151.0        | 010     | -60 | Received  |
| 25MYC0706 | Growth    | Minella        | RC   | 7,633,518 | 423,622 | 275 | 258.0        | 010     | -61 | Received  |
| 25MYC0707 | Growth    | Fiama          | RC   | 7,633,507 | 424,120 | 277 | 233.0        | 180     | -60 | Received  |
| 25MYC0708 | Growth    | Fiama          | RC   | 7,633,542 | 424,116 | 277 | 220.0        | 180     | -66 | Received  |
| 25MYC0709 | Growth    | Fiama          | RC   | 7,633,659 | 424,118 | 278 | 370.0        | 180     | -61 | Received* |
| 25MYC0710 | Growth    | Minyari South  | RC   | 7,634,774 | 422,832 | 277 | 222.0        | 100     | -61 | Received  |
| 25MYC0711 | Growth    | Minyari SE     | RC   | 7,635,209 | 423,337 | 276 | 162.0        | 190     | -60 | Received  |
| 25MYC0712 | Growth    | Minyari SE     | RC   | 7,635,236 | 423,296 | 277 | 180.0        | 190     | -60 | Received  |
| 25MYC0713 | Growth    | Minyari NE     | RC   | 7,635,616 | 423,115 | 274 | 162.0        | 100     | -58 | Received  |
| 25MYC0714 | Growth    | Minyari NE     | RC   | 7,635,621 | 423,063 | 274 | 264.0        | 100     | -60 | Received  |
| 25MYC0715 | Discovery | Rizzo          | RC   | 7,633,381 | 423,497 | 275 | 150.0        | 238     | -60 | Received  |
| 25MYC0716 | Discovery | Rizzo          | RC   | 7,633,414 | 423,542 | 275 | 150.0        | 238     | -61 | Received  |
| 25MYC0717 | Discovery | Rizzo          | RC   | 7,633,125 | 423,830 | 275 | 150.0        | 058     | -60 | Received  |
| 25MYC0718 | Discovery | Rizzo          | RC   | 7,633,068 | 423,741 | 274 | 180.0        | 058     | -59 | Received  |
| 25MYC0719 | Discovery | Rizzo          | RC   | 7,633,020 | 423,666 | 274 | 174.0        | 058     | -60 | Received  |
| 25MYC0720 | Discovery | Rizzo          | RC   | 7,633,183 | 423,546 | 275 | 120.0        | 058     | -60 | Received  |
| 25MYC0721 | Discovery | Rizzo          | RC   | 7,633,126 | 423,456 | 278 | 120.0        | 058     | -61 | Received  |



| Hole ID    | Programme | Target/Deposit | Hole<br>Type | Northing<br>(m) | Easting<br>(m) | RL<br>(m) | Hole<br>Depth | Azimuth<br>(°) | Dip<br>(°) | Assay<br>Status |
|------------|-----------|----------------|--------------|-----------------|----------------|-----------|---------------|----------------|------------|-----------------|
| 25MYC0722  | Discovery | Rizzo          | RC           | 7,633,208       | 423,980        | 275       | (m)<br>162.0  | 238            | -60        | Received        |
| 25MYC0723  | Discovery | Rizzo          | RC           | 7,633,250       | 424,043        | 276       | 186.0         | 238            | -61        | Received        |
| 25MYC0724  | Discovery | Rizzo          | RC           | 7,633,299       | 424,129        | 276       | 174.0         | 238            | -60        | Received        |
| 25MYC0725  | Discovery | Fiama          | RC           | 7,633,412       | 424,131        | 277       | 216.0         | 238            | -61        | Received        |
| 25MYC0726  | Discovery | GP05           | RC           | 7,634,074       | 424,136        | 282       | 246.0         | 300            | -60        | Received        |
| 25MYC0727  | Discovery | GP05           | RC           | 7,634,017       | 424,228        | 282       | 228.0         | 300            | -61        | Received        |
| 25MYC0728  | Discovery | GP05           | RC           | 7,634,155       | 424,196        | 283       | 216.0         | 300            | -60        | Received        |
| 25MYC0729  | Discovery | GP05           | RC           | 7,634,099       | 424,290        | 283       | 252.0         | 300            | -59        | Received        |
| 25MYC0730  | Growth    | GEO-01 Central | RC           | 7,633,735       | 423,972        | 277       | 180.0         | 215            | -60        | Received        |
| 25MYC0731  | Growth    | GEO-01 Central | RC           | 7,633,769       | 424,114        | 278       | 162.0         | 300            | -61        | Received        |
| 25MYC0732  | Growth    | GEO-01 Central | RC           | 7,633,737       | 424,159        | 278       | 120.0         | 300            | -60        | Received        |
| 25MYC0733  | Growth    | WACA           | RC           | 7,634,120       | 423,070        | 277       | 150.0         | 058            | -60        | Received        |
| 25MYC0734  | Growth    | WACA           | RC           | 7,634,128       | 422,989        | 277       | 258.0         | 058            | -60        | Pending         |
| 25MYC0735  | Growth    | WACA           | RC           | 7,634,087       | 423,023        | 277       | 252.0         | 058            | -60        | Pending         |
| 25MYC0736  | Growth    | GEO-01 Central | RC           | 7,633,705       | 424,015        | 278       | 270.0         | 180            | -61        | Received        |
| 25MYC0737  | Growth    | Fiama          | RC           | 7,633,796       | 424,000        | 278       | 336.0         | 190            | -55        | Received        |
| 25MYC0738  | Growth    | Fiama          | RC           | 7,633,666       | 424,246        | 278       | 360.0         | 180            | -62        | Received*       |
| 25MYC0739  | Growth    | Minyari SW     | RC           | 7,635,307       | 422,975        | 274       | 297.0         | 200            | -72        | Pending         |
| 25MYC0740  | Growth    | Minyari SE     | RC           | 7,635,296       | 423,309        | 284       | 240.0         | 190            | -60        | Pending         |
| 25MYC0741  | Growth    | Fiama          | RC           | 7,633,662       | 424,150        | 278       | 352.0         | 180            | -65        | Received        |
| 25MYCD0742 | Growth    | Fiama          | RC/DD        | 7,633,642       | 424,200        | 278       | 437.7         | 180            | -61        | Received*       |
| 25MYC0743  | Growth    | Minella        | RC           | 7,633,460       | 423,803        | 275       | 231.0         | 000            | -61        | Received*       |
| 25MYC0744  | Growth    | Minella        | RC           | 7,633,444       | 423,842        | 275       | 280.0         | 000            | -61        | Received        |
| 25MYC0745  | Growth    | Minella        | RC           | 7,633,677       | 423,959        | 277       | 304.0         | 180            | -61        | Received        |
| 25MYC0746  | Growth    | Minyari SE     | RC           | 7,635,264       | 423,346        | 276       | 220.0         | 190            | -60        | Pending         |
| 25MYC0747  | Discovery | Chicane        | RC           | 7,635,057       | 422,753        | 280       | 390.0         | 280            | -61        | Pending         |
| 25MYC0748  | Discovery | Rizzo          | RC           | 7,633,413       | 423,648        | 278       | 354.0         | 238            | -60        | Pending         |
| 25MYC0749  | Discovery | Rizzo          | RC           | 7,633,265       | 423,683        | 278       | 288.0         | 238            | -60        | Received        |
| 25MYC0750  | Discovery | Rizzo          | RC           | 7,633,309       | 423,760        | 278       | 180.0         | 238            | -60        | Received        |
| 25MYC0751  | Discovery | Rizzo          | RC           | 7,633,362       | 423,845        | 278       | 180.0         | 238            | -60        | Received        |
| 25MYC0752  | PFS       | Minyari        | RC           | 7,635,438       | 422,884        | 276       | 264.0         | 029            | -60        | Received        |
| 25MYC0753  | PFS       | Minyari        | RC           | 7,635,405       | 422,861        | 276       | 324.0         | 030            | -60        | Pending         |
| 25MYC0754  | PFS       | Minyari        | RC           | 7,635,462       | 422,850        | 277       | 210.0         | 030            | -60        | Pending         |
| 25MYC0755  | PFS       | Minyari        | RC           | 7,635,428       | 422,831        | 277       | 240.0         | 030            | -61        | Received        |
| 25MYC0756  | PFS       | Minyari        | RC           | 7,635,389       | 422,812        | 277       | 282.0         | 030            | -61        | Pending         |
| 25MYC0757  | PFS       | Minyari        | RC           | 7,635,235       | 423,173        | 278       | 150.0         | 192            | -60        | Pending         |
| 25MYC0758  | PFS       | Minyari        | RC           | 7,635,203       | 423,203        | 279       | 150.0         | 191            | -59        | Pending         |
| 25MYC0759  | PFS       | Minyari        | RC           | 7,635,155       | 423,155        | 278       | 90.0          | 190            | -60        | Pending         |
| 25MYC0760  | PFS       | WACA           | RC           | 7,634,547       | 422,777        | 281       | 120.0         | 062            | -60        | Pending         |
| 25MYC0761  | PFS       | WACA           | RC           | 7,634,411       | 422,886        | 281       | 120.0         | 060            | -56        | Pending         |
| 25MYC0762  | PFS       | WACA           | RC           | 7,634,381       | 422,931        | 281       | 84.0          | 061            | -59        | Pending         |
| 25MYC0763  | PFS       | WACA           | RC           | 7,634,291       | 423,027        | 282       | 120.0         | 240            | -56        | Pending         |
| 25MYC0764  | PFS       | WACA           | RC<br>PC     | 7,634,276       | 423,011        | 282       | 60.0          | 239            | -56        | Pending         |
| 25MYC0765  | PFS       | WACA           | RC           | 7,634,259       | 423,012        | 284       | 42.0          | 060            | -58        | Pending         |



| Hole ID    | Programme | Target/Deposit | Hole<br>Type | Northing<br>(m) | Easting<br>(m) | RL<br>(m) | Hole<br>Depth<br>(m) | Azimuth<br>(°) | Dip<br>(°) | Assay<br>Status |
|------------|-----------|----------------|--------------|-----------------|----------------|-----------|----------------------|----------------|------------|-----------------|
| 25MYC0766  | PFS       | WACA           | RC           | 7,634,350       | 422,969        | 281       | 84.0                 | 060            | -58        | Pending         |
| 25MYC0767  | PFS       | GEO-01 MZ      | RC           | 7,633,702       | 423,687        | 281       | 72.0                 | 307            | -61        | Pending         |
| 25MYC0768  | PFS       | GEO-01 MZ      | RC           | 7,633,697       | 423,686        | 281       | 42.0                 | 303            | -61        | Pending         |
| 25MYC0769  | PFS       | GEO-01 MZ      | RC           | 7,633,726       | 423,726        | 281       | 144.0                | 300            | -61        | Pending         |
| 25MYC0770  | PFS       | GEO-01 MZ      | RC           | 7,633,764       | 423,751        | 281       | 102.0                | 303            | -63        | Pending         |
| 25MYC0771  | PFS       | GEO-01 MZ      | RC           | 7,633,786       | 423,711        | 281       | 90.0                 | 301            | -62        | Pending         |
| 25MYC0772  | PFS       | GEO-01 MZ      | RC           | 7,633,908       | 423,830        | 285       | 120.0                | 301            | -60        | Pending         |
| 25MYC0773  | PFS       | WACA           | RC           | 7,634,531       | 422,755        | 281       | 180.0                | 058            | -60        | Pending         |
| 25MYC0774  | PFS       | WACA           | RC           | 7,634,434       | 422,736        | 282       | 324.0                | 058            | -57        | Pending         |
| 25MYC0775  | PFS       | WACA           | RC           | 7,634,401       | 422,781        | 280       | 282.0                | 060            | -59        | Pending         |
| 25MYC0776  | PFS       | WACA           | RC           | 7,634,370       | 422,775        | 283       | 267.0                | 058            | -57        | Pending         |
| 25MYC0777  | PFS       | WACA           | RC           | 7,634,339       | 423,009        | 281       | 150.0                | 241            | -56        | Pending         |
| 25MYC0778  | PFS       | WACA           | RC           | 7,634,702       | 422,688        | 282       | 60.0                 | 061            | -58        | Pending         |
| 25MYC0779  | PFS       | WACA           | RC           | 7,634,695       | 422,668        | 282       | 102.0                | 063            | -58        | Pending         |
| 25MYC0780  | PFS       | WACA           | RC           | 7,634,621       | 422,664        | 284       | 180.0                | 060            | -58        | Pending         |
| 25MYC0781  | PFS       | WACA           | RC           | 7,634,578       | 422,687        | 283       | 252.0                | 060            | -59        | Pending         |
| 25MYC0782  | PFS       | WACA           | RC           | 7,634,593       | 422,760        | 283       | 102.0                | 058            | -58        | Pending         |
| 25MYC0783  | PFS       | WACA           | RC           | 7,634,574       | 422,723        | 283       | 204.0                | 060            | -58        | Pending         |
| 25MYC0784  | PFS       | WACA           | RC           | 7,634,544       | 422,675        | 283       | 324.0                | 060            | -58        | Pending         |
| 25MYC0785  | PFS       | WACA           | RC           | 7,634,494       | 422,696        | 282       | 360.0                | 060            | -58        | Pending         |
| 25MYC0786  | PFS       | Minyari        | RC           | 7,635,287       | 423,128        | 279       | 210.0                | 192            | -61        | Pending         |
| 25MYC0787  | PFS       | Minyari        | RC           | 7,635,184       | 423,114        | 280       | 60.0                 | 191            | -59        | Pending         |
| 25MYC0788  | PFS       | Minyari        | RC           | 7,635,481       | 422,813        | 274       | 90.0                 | 060            | -60        | Pending         |
| 25MYC0789  | PFS       | GEO-01 MZ      | RC           | 7,633,937       | 423,651        | 277       | 54.0                 | 311            | -62        | Pending         |
| 25MYC0790  | PFS       | GEO-01 MZ      | RC           | 7,633,955       | 423,691        | 283       | 60.0                 | 303            | -61        | Pending         |
| 25MYC0791  | PFS       | GEO-01 MZ      | RC           | 7,633,975       | 423,732        | 283       | 60.0                 | 301            | -60        | Pending         |
| 25MYC0792  | PFS       | GEO-01 MZ      | RC           | 7,633,909       | 423,660        | 280       | 90.0                 | 304            | -60        | Pending         |
| 25MYC0793  | PFS       | GEO-01 MZ      | RC           | 7,633,798       | 423,855        | 281       | 252.0                | 302            | -62        | Pending         |
| 25MYC0794  | PFS       | GEO-01 MZ      | RC           | 7,633,770       | 423,795        | 282       | 140.0                | 302            | -61        | Pending         |
| 25MYC0795  | PFS       | Fiama          | RC           | 7,633,503       | 424,251        | 282       | 90.0                 | 183            | -60        | Pending         |
| 25MYC0796  | PFS       | Fiama          | RC           | 7,633,561       | 424,211        | 282       | 192.0                | 180            | -56        | Pending         |
| 25MYC0797  | PFS       | Fiama          | RC           | 7,633,494       | 424,099        | 282       | 102.0                | 183            | -58        | Pending         |
| 25MYC0798  | PFS       | Fiama          | RC           | 7,633,571       | 424,094        | 282       | 252.0                | 183            | -63        | Pending         |
| 25MYC0799  | PFS       | Fiama          | RC           | 7,633,657       | 424,095        | 282       | 276.0                | 182            | -58        | Pending         |
| 25MYC0800  | PFS       | Fiama          | RC           | 7,633,656       | 424,050        | 282       | 180.0                | 180            | -60        | Pending         |
| 24MYC0472* | Growth    | Minella        | RC           | 7,633,601       | 424,118        | 284       | 304.0                | 178            | -61        | Pending         |
| 24MYC0476* | Growth    | Fiama          | RC           | 7,633,523       | 423,899        | 277       | 300.0                | 181            | -61        | Received        |
| 24MYC0478* | Growth    | Fiama          | RC           | 7,633,683       | 423,899        | 277       | 312.0                | 181            | -60        | Pending         |
| 24MYC0481* | Growth    | Fiama          | RC           | 7,633,479       | 423,754        | 272       | 282.0                | 001            | -60        | Received        |
| 24MYC0627* | Growth    | Fiama          | RC           | 7,633,607       | 424,063        | 277       | 314.0                | 183            | -61        | Received        |
| 24MYC0629* | Growth    | Fiama          | RC           | 7,633,538       | 424,153        | 277       | 222.0                | 182            | -61        | Received        |
| 24MYC0630* | Growth    | Fiama          | RC           | 7,633,606       | 424,149        | 282       | 312.0                | 185            | -61        | Received        |
| 24MYC0632* | Growth    | Fiama          | RC           | 7,633,602       | 424264         | 278       | 300.0                | 202            | -58        | Received        |
| 25MYD0537* | PFS Met   | Minyari        | DD           | 7,635,455       | 422,954        | 274       | 80.0                 | 057            | -65        | N/A             |



| Hole ID         | Programme        | Target/Deposit | Hole<br>Type | Northing<br>(m) | Easting<br>(m) | RL<br>(m) | Hole<br>Depth | Azimuth<br>(°) | Dip<br>(°) | Assay<br>Status |
|-----------------|------------------|----------------|--------------|-----------------|----------------|-----------|---------------|----------------|------------|-----------------|
| 25MYD0538       | Growth           | Minyari South  | DD           | 7,634,865       | 422,927        | 276       | (m)<br>279.0  | 102            | -61        | Received        |
| 25MYD0539       | Growth           | GEO-01 MZ      | DD           | 7,633,737       | 423,788        | 277       | 418.4         | 328            | -70        | Received        |
| 25MYD0540       | Discovery        | Minyari        | DD           | 7,635,377       | 423,028        | 275       | 455.3         | 312            | -86        | Pending         |
| 25MYD0541       | PFS              | Minyari        | DD           | 7,635,444       | 423,017        | 278       | 416.9         | 030            | -61        | Pending         |
| 25MYCD0698      | Growth           | GEO-01 MZ      | RC/DD        | 7,633,815       | 423,927        | 277       | 582.1         | 286            | -60        | Received        |
| 21MYCD0203*     | Discovery        | Minyari        | DD tail      | 7,635,402       | 423,004        | 275       | 804.2         | 066            | -59        | Received        |
| 25MYD0542       | PFS              | Minyari        | DD           | 7,635,234       | 422,918        | 278       | 444.1         | 056            | -67        | Pending         |
| 25MYD0542W1     | PFS              | Minyari        | DD           | -               | -              | -         | 450.0         | 056            | -67        | Pending         |
| 25MYD0543       | PFS              | Minyari        | DD           | 7,635,402       | 422,991        | 278       | 450.1         | 028            | -66        | Pending         |
| 25MYD0544       | PFS              | Minyari        | DD           | 7,635,426       | 422,950        | 279       | 564.2         | 024            | -65        | Pending         |
| 25MYD0545       | PFS              | Minyari        | DD           | 7,635,196       | 422,871        | 276       | 489.6         | 054            | -70        | Pending         |
| 25MYD0546       | PFS              | Minyari        | DD           | 7,635,426       | 422,950        | 279       | 480.2         | 060            | -65        | Pending         |
| 25MYD0547       | PFS              | Minyari        | DD           | 7,635,229       | 422,842        | 280       | 600.0         | 060            | -68        | Pending         |
| 25MYD0548       | PFS              | Minyari        | DD           | 7,635,315       | 423,016        | 279       | 364.5         | 058            | -65        | Pending         |
| 25MYD0549       | PFS              | Minyari        | DD           | 7,635,223       | 423,024        | 278       | 282.0         | 057            | -63        | Pending         |
| 21MYCD0216      | PFS              | Minyari        | DD tail      | 7,635,349       | 422,786        | 277       | 728.2         | 063            | -56        | Pending         |
| 21MYCD0216W1    | PFS              | Minyari        | DD           | -               | -              | -         | 689.9         | 061            | -56        | Pending         |
| Received* = Par | rtially received |                |              |                 |                |           |               |                |            |                 |

Received\* = Partially received

#### Notes:

Drill Hole Collar Table above - Refer to JORC Table 1 Section 1 for full drill hole information; including drill technique, sampling, and analytical technique/s.

 ${\it Resource\ Growth-Focused\ Drill\ Programme=Growth}$ 

Discovery-Focused Drill Programme = Discovery

 ${\it Pre-feasibility Study (PFS) Drill Programme = PFS}$ 

Table 2b: Minyari Project – CY2025 Phase 1 Exploration Programme
Air Core (AC) Drill Hole Collar Locations (MGA Zone 51/GDA2020)

| Hole ID   | Target/Deposit | Hole<br>Type | Northing (m) | Easting (m) | RL (m) | Hole<br>Depth<br>(m) | Azimuth<br>(°) | Dip<br>(°) | Assay Status |
|-----------|----------------|--------------|--------------|-------------|--------|----------------------|----------------|------------|--------------|
| 25MYA0292 | Rizzo          | AC           | 7,633,406    | 423,909     | 280    | 57                   | 000            | -90        | Received*    |
| 25MYA0293 | Rizzo          | AC           | 7,633,300    | 423,748     | 280    | 46                   | 000            | -90        | Received*    |
| 25MYA0294 | Rizzo          | AC           | 7,633,163    | 423,517     | 280    | 65                   | 000            | -90        | Received*    |
| 25MYA0295 | Rizzo          | AC           | 7,632,869    | 423,428     | 280    | 18                   | 000            | -90        | Received*    |
| 25MYA0296 | Rizzo          | AC           | 7,633,028    | 423,685     | 280    | 33                   | 000            | -90        | Received*    |
| 25MYA0297 | Rizzo          | AC           | 7,633,159    | 423,894     | 280    | 48                   | 000            | -90        | Received*    |
| 25MYA0298 | Rizzo          | AC           | 7,633,289    | 424,106     | 280    | 24                   | 000            | -90        | Received*    |
| 25MYA0299 | Rizzo          | AC           | 7,633,406    | 424,295     | 280    | 21                   | 000            | -90        | Received*    |
| 25MYA0300 | Rizzo          | AC           | 7,633,035    | 424,036     | 280    | 56                   | 000            | -90        | Received*    |
| 25MYA0301 | Rizzo          | AC           | 7,632,911    | 423,878     | 280    | 51                   | 000            | -90        | Received*    |
| 25MYA0302 | Rizzo          | AC           | 7,632,801    | 423,730     | 280    | 42                   | 000            | -90        | Received*    |
| 25MYA0303 | Rizzo          | AC           | 7,632,679    | 423,571     | 287    | 60                   | 000            | -90        | Received*    |
| 25MYA0304 | Rizzo          | AC           | 7,632,229    | 422,886     | 280    | 45                   | 000            | -90        | Received*    |
| 25MYA0305 | Rizzo          | AC           | 7,631,825    | 424,297     | 280    | 15                   | 000            | -90        | Received*    |
| 25MYA0306 | Rizzo          | AC           | 7,632,195    | 423,913     | 280    | 29                   | 000            | -90        | Received*    |
|           |                |              |              |             |        |                      |                |            |              |

<sup>\*</sup>CY02021/2024 drill holes were re-entered to hole depth recorded

 $<sup>*25</sup> MYD0537\ was\ drilled\ for\ metallurgical\ test\ work\ purposes\ and\ is\ not\ being\ assayed$ 



| Hole ID                | Target/Deposit         | Hole     | Northing (m)           | Easting (m)        | RL (m)     | Hole<br>Depth | Azimuth | Dip        | Assay Status       |
|------------------------|------------------------|----------|------------------------|--------------------|------------|---------------|---------|------------|--------------------|
| Hole ID                | raiget/ Deposit        | Туре     | Northing (III)         | Lasting (iii)      | NE (III)   | (m)           | (°)     | (°)        | Assay Status       |
| 25MYA0307              | Rizzo                  | AC       | 7,632,485              | 423,620            | 280        | 34            | 000     | -90        | Received*          |
| 25MYA0308              | Rizzo                  | AC       | 7,633,152              | 423,110            | 280        | 96            | 000     | -90        | Received*          |
| 25MYA0309              | Rizzo                  | AC       | 7,633,292              | 423,355            | 289        | 100           | 000     | -90        | Received*          |
| 25MYA0310              | PP-GRAV02<br>PP-GRAV02 | AC       | 7,631,197              | 414,076            | 267        | 59            | 000     | -90        | Received*          |
| 25MYA0311              | PP-GRAV02              | AC       | 7,631,035              | 413,951            | 264        | 42            | 000     | -90        | Received*          |
| 25MYA0312              | PP-GRAV02              | AC       | 7,630,885              | 413,833            | 280        | 51            | 000     | -90        | Received*          |
| 25MYA0313              | PP-GRAV02              | AC       | 7,630,761              | 414,113            | 280        | 61            | 000     | -90        | Received*          |
| 25MYA0314              | PP-GRAV02              | AC       | 7,630,895              | 414,256            | 280        | 72            | 000     | -90        | Received*          |
| 25MYA0315              | PP-GRAV02              | AC       | 7,631,063              | 414,364            | 280        | 39            | 000     | -90        | Received*          |
| 25MYA0316              | PP-GRAV02              | AC       | 7,631,228              | 414,473            | 280        | 33            | 000     | -90        | Received*          |
| 25MYA0317              | PP-GRAV02              | AC       | 7,631,394              | 414,590            | 280        | 64            | 000     | -90        | Received*          |
| 25MYA0318<br>25MYA0319 | PP-GRAV02              | AC<br>AC | 7,631,270<br>7,631,113 | 414,938            | 280        | 58<br>56      | 000     | -90<br>-90 | Pending<br>Pending |
| 25MYA0320              | PP-GRAV02              | AC       | 7,630,959              | 414,810<br>414,687 | 280<br>280 | 42            | 000     | -90        | Pending            |
| 25MYA0321              | PP-GRAV02              | AC       | 7,630,803              | 414,558            | 280        | 21            | 000     | -90        | Pending            |
| 25MYA0321              | PP-GRAV02              | AC       | 7,630,647              | 414,433            | 280        | 63            | 000     | -90        | Pending            |
| 25MYA0323              | PP-GRAV02              | AC       | 7,630,522              | 414,433            | 280        | 54            | 000     | -90        | Pending            |
| 25MYA0324              | PP-GRAV02              | AC       | 7,630,427              | 414,103            | 280        | 60            | 000     | -90        | Pending            |
| 25MYA0325              | PP-GRAV02              | AC       | 7,630,329              | 413,917            | 280        | 63            | 000     | -90        | Received           |
| 25MYA0326              | PP-GRAV02              | AC       | 7,630,246              | 413,745            | 280        | 57            | 000     | -90        | Received           |
| 25MYA0327              | PP-GRAV02              | AC       | 7,630,676              | 413,938            | 280        | 51            | 000     | -90        | Pending            |
| 25MYA0328              | PP-GRAV02              | AC       | 7,630,756              | 415,197            | 280        | 60            | 000     | -90        | Pending            |
| 25MYA0329              | PP-GRAV02              | AC       | 7,630,584              | 415,088            | 280        | 48            | 000     | -90        | Pending            |
| 25MYA0330              | PP-GRAV02              | AC       | 7,630,413              | 414,988            | 280        | 63            | 000     | -90        | Pending            |
| 25MYA0331              | PP-GRAV02              | AC       | 7,630,244              | 414,879            | 280        | 51            | 000     | -90        | Pending            |
| 25MYA0332              | PP-GRAV02              | AC       | 7,630,075              | 414,774            | 280        | 66            | 000     | -90        | Pending            |
| 25MYA0333              | PP-GRAV02              | AC       | 7,629,903              | 414,666            | 280        | 81            | 000     | -90        | Pending            |
| 25MYA0334              | PP-GRAV02              | AC       | 7,629,743              | 414,586            | 280        | 118           | 000     | -90        | Pending            |
| 25MYA0335              | PP-GRAV02              | AC       | 7,629,909              | 414,336            | 280        | 68            | 000     | -90        | Pending            |
| 25MYA0336              | PP-GRAV02              | AC       | 7,630,053              | 415,321            | 280        | 93            | 000     | -90        | Pending            |
| 25MYA0337              | PP-GRAV02              | AC       | 7,630,225              | 415,433            | 280        | 71            | 000     | -90        | Pending            |
| 25MYA0338              | PP-GRAV02              | AC       | 7,630,398              | 415,558            | 280        | 62            | 000     | -90        | Pending            |
| 25MYA0339              | PP-GRAV02              | AC       | 7,630,569              | 415,675            | 280        | 83            | 000     | -90        | Pending            |
| 25MYA0340              | PP-GRAV02              | AC       | 7,631,145              | 416,065            | 280        | 96            | 000     | -90        | Pending            |
| 25MYA0341              | NACA                   | AC       | 7,646,625              | 417,829            | 280        | 36            | 000     | -90        | Pending            |
| 25MYA0342              | NACA                   | AC       | 7,646,983              | 418,075            | 280        | 51            | 000     | -90        | Pending            |
| 25MYA0343              | NACA                   | AC       | 7,645,110              | 420,942            | 280        | 42            | 000     | -90        | Pending            |
| 25MYA0344              | NACA                   | AC       | 7,645,613              | 420,624            | 280        | 33            | 000     | -90        | Pending            |
| 25MYA0345              | NACA                   | AC       | 7,645,366              | 420,382            | 280        | 54            | 000     | -90        | Pending            |
| 25MYA0346              | NACA                   | AC       | 7,645,210              | 420,226            | 280        | 9             | 000     | -90        | Pending            |
| 25MYA0347              | NACA                   | AC       | 7,645,768              | 419,881            | 280        | 31            | 000     | -90        | Pending            |
| 25MYA0348              | NACA                   | AC       | 7,645,463              | 419,554            | 280        | 13            | 000     | -90        | Pending            |
| 25MYA0349              | NACA                   | AC       | 7,646,191              | 419,392            | 280        | 53            | 000     | -90        | Pending            |
| 25MYA0350              | NACA                   | AC       | 7,645,936              | 419,125            | 280        | 28            | 000     | -90        | Pending            |
| 25MYA0351              | NACA                   | AC       | 7,644,244              | 421,129            | 280        | 36            | 000     | -90        | Pending            |



| Hole ID   | Target/Deposit | Hole<br>Type | Northing (m) | Easting (m) | RL (m) | Hole<br>Depth<br>(m) | Azimuth<br>(°) | Dip<br>(°) | Assay Status |
|-----------|----------------|--------------|--------------|-------------|--------|----------------------|----------------|------------|--------------|
| 25MYA0352 | NACA           | AC           | 7,644,376    | 420,791     | 280    | 43                   | 000            | -90        | Pending      |
| 25MYA0353 | NACA           | AC           | 7,644,681    | 420,568     | 280    | 19                   | 000            | -90        | Pending      |
| 25MYA0354 | NACA           | AC           | 7,644,790    | 419,811     | 280    | 9                    | 000            | -90        | Pending      |
| 25MYA0355 | AL15           | AC           | 7,653,181    | 420,270     | 280    | 93                   | 000            | -90        | Pending      |
| 25MYA0356 | AL15           | AC           | 7,653,251    | 420,000     | 280    | 90                   | 000            | -90        | Pending      |
| 25MYA0357 | AL15           | AC           | 7,653,295    | 419,793     | 280    | 102                  | 000            | -90        | Pending      |
| 25MYA0358 | AL15           | AC           | 7,653,335    | 419,580     | 280    | 82                   | 000            | -90        | Pending      |
| 25MYA0359 | AL15           | AC           | 7,653,375    | 419,397     | 280    | 78                   | 000            | -90        | Pending      |
| 25MYA0360 | AL15           | AC           | 7,653,418    | 419,197     | 280    | 76                   | 000            | -90        | Pending      |
| 25MYA0361 | AL15           | AC           | 7,653,464    | 419,004     | 280    | 69                   | 000            | -90        | Pending      |
| 25MYA0362 | AL15           | AC           | 7,653,687    | 419,160     | 280    | 102                  | 000            | -90        | Pending      |
| 25MYA0363 | AL15           | AC           | 7,653,608    | 418,992     | 280    | 66                   | 000            | -90        | Pending      |
| 25MYA0364 | AL15           | AC           | 7,653,508    | 418,802     | 280    | 74                   | 000            | -90        | Pending      |
| 25MYA0365 | AL15           | AC           | 7,653,795    | 419,352     | 280    | 132                  | 000            | -90        | Pending      |
| 25MYA0366 | AL15           | AC           | 7,653,449    | 418,696     | 280    | 88                   | 000            | -90        | Pending      |
| 25MYA0367 | AL15           | AC           | 7,653,378    | 418,567     | 280    | 84                   | 000            | -90        | Pending      |
| 25MYA0368 | AL15           | AC           | 7,653,271    | 418,380     | 280    | 59                   | 000            | -90        | Pending      |
| 25MYA0369 | AL15           | AC           | 7,653,192    | 418,227     | 280    | 72                   | 000            | -90        | Pending      |
| 25MYA0370 | AL15           | AC           | 7,653,680    | 418,080     | 280    | 75                   | 000            | -90        | Pending      |
| 25MYA0371 | AL15           | AC           | 7,654,960    | 414,968     | 280    | 55                   | 000            | -90        | Pending      |
| 25MYA0372 | AL15           | AC           | 7,654,706    | 414,742     | 280    | 57                   | 000            | -90        | Pending      |
| 25MYA0373 | AL15           | AC           | 7,654,692    | 414,970     | 280    | 43                   | 000            | -90        | Pending      |
| 25MYA0374 | AL15           | AC           | 7,654,668    | 415,370     | 280    | 37                   | 000            | -90        | Pending      |
| 25MYA0375 | AL15           | AC           | 7,654,654    | 415,572     | 280    | 18                   | 000            | -90        | Pending      |
| 25MYA0376 | AL15           | AC           | 7,654,646    | 415,769     | 280    | 48                   | 000            | -90        | Pending      |
| 25MYA0377 | AL15           | AC           | 7,654,633    | 415,965     | 280    | 54                   | 000            | -90        | Pending      |
| 25MYA0378 | AL15           | AC           | 7,654,622    | 416,170     | 280    | 45                   | 000            | -90        | Pending      |
| 25MYA0379 | AL15           | AC           | 7,654,597    | 416,563     | 280    | 63                   | 000            | -90        | Pending      |
| 25MYA0380 | AL15           | AC           | 7,654,576    | 416,966     | 280    | 42                   | 000            | -90        | Pending      |
| 25MYA0381 | AL15           | AC           | 7,654,991    | 418,595     | 280    | 126                  | 000            | -90        | Pending      |
| 25MYA0382 | AL15           | AC           | 7,654,992    | 418,387     | 280    | 87                   | 000            | -90        | Pending      |
| 25MYA0383 | AL15           | AC           | 7,655,027    | 418,199     | 280    | 132                  | 000            | -90        | Pending      |
| 25MYA0384 | AL15           | AC           | 7,655,102    | 417,792     | 280    | 60                   | 000            | -90        | Pending      |
| 25MYA0385 | AL15           | AC           | 7,655,133    | 417,596     | 280    | 60                   | 000            | -90        | Pending      |
| 25MYA0386 | AL15           | AC           | 7,655,174    | 417,353     | 280    | 78                   | 000            | -90        | Pending      |
| 25MYA0387 | AL01           | AC           | 7,656,969    | 412,421     | 280    | 53                   | 000            | -90        | Pending      |
| 25MYA0388 | AL01           | AC           | 7,657,207    | 412,433     | 280    | 21                   | 000            | -90        | Pending      |
| 25MYA0389 | AL01           | AC           | 7,657,245    | 412,356     | 280    | 16                   | 000            | -90        | Pending      |
| 25MYA0390 | AL01           | AC           | 7,657,305    | 412,259     | 280    | 33                   | 000            | -90        | Pending      |
| 25MYA0391 | AL01           | AC           | 7,657,192    | 412,228     | 280    | 87                   | 000            | -90        | Pending      |
| 25MYA0392 | AL01           | AC           | 7,657,385    | 412,192     | 280    | 11                   | 000            | -90        | Pending      |
| 25MYA0393 | AL01           | AC           | 7,657,468    | 412,135     | 280    | 11                   | 000            | -90        | Pending      |
| 25MYA0394 | AL01           | AC           | 7,657,535    | 412,244     | 280    | 8                    | 000            | -90        | Pending      |
| 25MYA0395 | AL01           | AC           | 7,657,615    | 412,366     | 280    | 12                   | 000            | -90        | Pending      |
| 25MYA0396 | AL01           | AC           | 7,657,144    | 412,729     | 280    | 35                   | 000            | -90        | Pending      |
|           |                |              |              |             |        |                      |                |            |              |



| Hole ID                | Target/Deposit     | Hole<br>Type | Northing (m)           | Easting (m)        | RL (m) | Hole<br>Depth<br>(m) | Azimuth<br>(°) | Dip<br>(°) | Assay Status       |
|------------------------|--------------------|--------------|------------------------|--------------------|--------|----------------------|----------------|------------|--------------------|
| 25MYA0397              | Kali-WEM           | AC           | 7,621,144              | 417,183            | 280    | 123                  | 000            | -90        | Pending            |
| 25MYA0398              | Kali-WEM           | AC           | 7,620,966              | 417,503            | 280    | 126                  | 000            | -90        | Pending            |
| 25MYA0399              | Kali-WEM           | AC           | 7,620,775              | 417,834            | 280    | 126                  | 000            | -90        | Pending            |
| 25MYA0400              | Kali-WEM           | AC           | 7,620,607              | 418,167            | 280    | 173                  | 000            | -90        | Pending            |
| 25MYA0401              | Serrano            | AC           | 7,670,531              | 415,961            | 280    | 102                  | 000            | -90        | Pending            |
| 25MYA0402              | Serrano            | AC           | 7,670,574              | 416,071            | 280    | 86                   | 000            | -90        | Pending            |
| 25MYA0403              | Serrano            | AC           | 7,670,615              | 416,143            | 280    | 73                   | 000            | -90        | Pending            |
| 25MYA0404              | Serrano            | AC           | 7,670,660              | 416,231            | 280    | 58                   | 000            | -90        | Pending            |
| 25MYA0405              | Serrano            | AC           | 7,670,710              | 416,320            | 280    | 48                   | 000            | -90        | Pending            |
| 25MYA0406              | Serrano            | AC           | 7,670,366              | 416,026            | 280    | 90                   | 000            | -90        | Pending            |
| 25MYA0407              | Serrano            | AC           | 7,670,412              | 416,110            | 280    | 86                   | 000            | -90        | Pending            |
| 25MYA0408              | Serrano            | AC           | 7,670,464              | 416,203            | 280    | 75                   | 000            | -90        | Pending            |
| 25MYA0409              | Serrano            | AC           | 7,670,509              | 416,277            | 280    | 57                   | 000            | -90        | Pending            |
| 25MYA0410              | Serrano            | AC           | 7,670,541              | 416,352            | 280    | 68                   | 000            | -90        | Pending            |
| 25MYA0411              | Serrano            | AC           | 7,670,310              | 416,164            | 280    | 87                   | 000            | -90        | Pending            |
| 25MYA0412              | Serrano            | AC           | 7,670,359              | 416,251            | 280    | 67                   | 000            | -90        | Pending            |
| 25MYA0413              | Serrano            | AC           | 7,670,408              | 416,337            | 280    | 54                   | 000            | -90        | Pending            |
| 25MYA0414              | Serrano            | AC           | 7,670,204              | 416,247            | 280    | 79                   | 000            | -90        | Pending            |
| 25MYA0415              | Serrano            | AC           | 7,670,257              | 416,336            | 280    | 63                   | 000            | -90        | Pending            |
| 25MYA0416<br>25MYA0417 | Serrano            | AC           | 7,670,321              | 416,442            | 280    | 72<br>66             | 000            | -90        | Pending            |
| 25MYA0417              | Serrano<br>Serrano | AC<br>AC     | 7,670,352<br>7,670,120 | 416,506<br>416,415 | 280    | 63                   | 000            | -90<br>-90 | Pending<br>Pending |
| 25MYA0419              | Serrano            | AC           | 7,670,120              | 416,275            | 280    | 57                   | 000            | -90        | Pending            |
| 25MYA0420              | Serrano            | AC           | 7,670,744              | 416,194            | 280    | 61                   | 000            | -90        | Pending            |
| 25MYA0421              | Serrano            | AC           | 7,670,684              | 416,111            | 280    | 68                   | 000            | -90        | Pending            |
| 25MYA0422              | Serrano            | AC           | 7,670,773              | 415,927            | 280    | 64                   | 000            | -90        | Pending            |
| 25MYA0423              | Serrano            | AC           | 7,670,843              | 416,017            | 280    | 64                   | 000            | -90        | Pending            |
| 25MYA0424              | Serrano            | AC           | 7,670,866              | 416,097            | 280    | 60                   | 000            | -90        | Pending            |
| 25MYA0425              | Serrano            | AC           | 7,670,917              | 416,191            | 280    | 47                   | 000            | -90        | Pending            |
| 25MYA0426              | Serrano            | AC           | 7,671,052              | 416,101            | 280    | 54                   | 000            | -90        | Pending            |
| 25MYA0427              | Poblano            | AC           | 7,670,955              | 415,945            | 280    | 66                   | 000            | -90        | Pending            |
| 25MYA0428              | Poblano            | AC           | 7,670,907              | 415,854            | 280    | 66                   | 000            | -90        | Pending            |
| 25MYA0429              | Poblano            | AC           | 7,670,954              | 415,768            | 280    | 66                   | 000            | -90        | Pending            |
| 25MYA0430              | Poblano            | AC           | 7,671,000              | 415,850            | 280    | 65                   | 000            | -90        | Pending            |
| 25MYA0431              | Poblano            | AC           | 7,671,048              | 415,936            | 280    | 66                   | 000            | -90        | Pending            |
| 25MYA0432              | Poblano            | AC           | 7,671,093              | 416,017            | 280    | 69                   | 000            | -90        | Pending            |
| 25MYA0433              | Poblano            | AC           | 7,671,082              | 415,631            | 280    | 66                   | 000            | -90        | Pending            |
| 25MYA0434              | Poblano            | AC           | 7,671,131              | 415,714            | 280    | 75                   | 000            | -90        | Pending            |
| 25MYA0435              | Poblano            | AC           | 7,671,181              | 415,810            | 280    | 78                   | 000            | -90        | Pending            |
| 25MYA0436              | Poblano            | AC           | 7,671,220              | 415,889            | 280    | 65                   | 000            | -90        | Pending            |
| 25MYA0437              | Poblano            | AC           | 7,671,240              | 416,084            | 280    | 42                   | 000            | -90        | Pending            |
| 25MYA0438              | Poblano            | AC           | 7,671,165              | 415,954            | 280    | 93                   | 000            | -90        | Pending            |
| 25MYA0439              | Poblano            | AC           | 7,671,106              | 415,852            | 280    | 79                   | 000            | -90        | Pending            |
| 25MYA0440              | Poblano            | AC           | 7,671,056              | 415,763            | 280    | 84                   | 000            | -90        | Pending            |
| 25MYA0441              | Poblano            | AC           | 7,671,184              | 415,536            | 280    | 63                   | 000            | -90        | Pending            |



|                        |                  |              |                        |                    |            | Uele                 |                |            |                    |
|------------------------|------------------|--------------|------------------------|--------------------|------------|----------------------|----------------|------------|--------------------|
| Hole ID                | Target/Deposit   | Hole<br>Type | Northing (m)           | Easting (m)        | RL (m)     | Hole<br>Depth<br>(m) | Azimuth<br>(°) | Dip<br>(°) | Assay Status       |
| 25MYA0442              | Poblano          | AC           | 7,671,281              | 415,705            | 280        | 102                  | 000            | -90        | Pending            |
| 25MYA0443              | Poblano          | AC           | 7,671,325              | 415,784            | 280        | 81                   | 000            | -90        | Pending            |
| 25MYA0444              | Poblano          | AC           | 7,671,383              | 415,868            | 280        | 85                   | 000            | -90        | Pending            |
| 25MYA0445              | Poblano          | AC           | 7,671,416              | 415,774            | 280        | 74                   | 000            | -90        | Pending            |
| 25MYA0446              | Poblano          | AC           | 7,671,385              | 415,728            | 280        | 90                   | 000            | -90        | Pending            |
| 25MYA0447              | Poblano          | AC           | 7,671,326              | 415,619            | 280        | 116                  | 000            | -90        | Pending            |
| 25MYA0448              | Poblano          | AC           | 7,671,279              | 415,530            | 280        | 96                   | 000            | -90        | Pending            |
| 25MYA0449              | Poblano          | AC           | 7,671,453              | 415,627            | 280        | 104                  | 000            | -90        | Pending            |
| 25MYA0450              | Poblano          | AC           | 7,671,414              | 415,542            | 280        | 78                   | 000            | -90        | Pending            |
| 25MYA0451              | Poblano          | AC           | 7,671,984              | 415,467            | 280        | 94                   | 000            | -90        | Pending            |
| 25MYA0452              | Reaper           | AC           | 7,672,032              | 415,827            | 280        | 54                   | 000            | -90        | Pending            |
| 25MYA0453              | Reaper           | AC           | 7,671,431              | 416,444            | 280        | 54                   | 000            | -90        | Pending            |
| 25MYA0454              | Reaper           | AC           | 7,671,498              | 416,384            | 280        | 44                   | 000            | -90        | Pending            |
| 25MYA0455              | Reaper           | AC           | 7,671,866              | 416,360            | 280        | 68                   | 000            | -90        | Pending            |
| 25MYA0456              | Reaper           | AC           | 7,671,817              | 416,271            | 280        | 77                   | 000            | -90        | Pending            |
| 25MYA0457              | Reaper           | AC           | 7,671,670              | 416,007            | 280        | 42                   | 000            | -90        | Pending            |
| 25MYA0458              | Reaper           | AC           | 7,671,618              | 415,922            | 280        | 60                   | 000            | -90        | Pending            |
| 25MYA0459              | Reaper           | AC           | 7,671,580              | 415,854            | 280        | 64                   | 000            | -90        | Pending            |
| 25MYA0460              | Reaper           | AC           | 7,672,072              | 416,208            | 280        | 51                   | 000            | -90        | Pending            |
| 25MYA0461              | Reaper           | AC           | 7,671,934              | 415,941            | 280        | 62                   | 000            | -90        | Pending            |
| 25MYA0462              | Reaper           | AC           | 7,671,862              | 415,850            | 280        | 59                   | 000            | -90        | Pending            |
| 25MYA0463              | Reaper           | AC           | 7,671,814              | 415,763            | 280        | 63                   | 000            | -90        | Pending            |
| 25MYA0464              | Reaper           | AC           | 7,671,773              | 415,674            | 280        | 65                   | 000            | -90        | Pending            |
| 25MYA0465              | Reaper           | AC           | 7,671,641              | 415,729            | 280        | 74                   | 000            | -90        | Pending            |
| 25MYA0466              | Reaper           | AC           | 7,672,779              | 415,555            | 280        | 80                   | 000            | -90        | Pending            |
| 25MYA0467              | Reaper           | AC           | 7,672,626              | 415,309            | 280        | 46                   | 000            | -90        | Pending            |
| 25MYA0468              | Reaper           | AC           | 7,672,533              | 415,131            | 280        | 55                   | 000            | -90        | Pending            |
| 25MYA0469              | Reaper           | AC           | 7,670,465              | 417,045            | 280        | 129                  | 000            | -90        | Pending            |
| 25MYA0470              | Reaper           | AC           | 7,670,499              | 417,100            | 280        | 111                  | 000            | -90        | Pending            |
| 25MYA0471              | Reaper           | AC           | 7,670,555              | 417,175            | 280        | 110                  | 000            | -90        | Pending            |
| 25MYA0472<br>25MYA0473 | Reaper<br>Reaper | AC<br>AC     | 7,670,651<br>7,670,672 | 417,018<br>417,079 | 280<br>280 | 111<br>105           | 000            | -90<br>-90 | Pending<br>Pending |
| 25MYA0474              | Reaper           | AC           | 7,670,872              | 417,079            | 280        | 126                  | 000            | -90        | Pending            |
| 25MYA0475              | Reaper           | AC           | 7,670,752              | 417,132            | 280        | 111                  | 000            | -90        | Pending            |
| 25MYA0476              | RPS              | AC           | 7,669,902              | 417,289            | 280        | 68                   | 000            | -90        | Pending            |
| 25MYA0477              | RPS              | AC           | 7,669,848              | 417,283            | 280        | 92                   | 000            | -90        | Pending            |
| 25MYA0477              | RPS              | AC           | 7,668,918              | 417,518            | 280        | 43                   | 000            | -90        | Pending            |
| 25MYA0479              | RPS              | AC           | 7,669,409              | 417,447            | 280        | 48                   | 000            | -90        | Pending            |
| 25MYA0480              | RPS              | AC           | 7,668,746              | 417,584            | 280        | 60                   | 000            | -90        | Pending            |
| 25MYA0481              | RPS              | AC           | 7,670,910              | 416,015            | 280        | 75                   | 000            | -90        | Pending            |
| 25MYA0482              | RPS              | AC           | 7,670,957              | 416,099            | 280        | 57                   | 000            | -90        | Pending            |
| 25MYA0483              | RPS              | AC           | 7,670,731              | 416,015            | 280        | 75                   | 000            | -90        | Pending            |
| 25MYA0484              | RPS              | AC           | 7,670,855              | 416,235            | 280        | 54                   | 000            | -90        | Pending            |
| 25MYA0485              | RPS              | AC           | 7,670,904              | 416,322            | 280        | 64                   | 000            | -90        | Pending            |
| 25MYA0486              | RPS              | AC           | 7,670,779              | 416,107            | 280        | 53                   | 000            | -90        | Pending            |
|                        |                  |              | , , , , , , ,          |                    |            |                      |                |            | //10               |



| Hole ID   | Target/Deposit | Hole<br>Type | Northing (m) | Easting (m) | RL (m) | Hole<br>Depth<br>(m) | Azimuth<br>(°) | Dip<br>(°) | Assay Status |
|-----------|----------------|--------------|--------------|-------------|--------|----------------------|----------------|------------|--------------|
| 25MYA0487 | RPS            | AC           | 7,670,052    | 417,250     | 280    | 72                   | 000            | -90        | Pending      |
| 25MYA0488 | RPS            | AC           | 7,670,003    | 417,177     | 280    | 80                   | 000            | -90        | Pending      |
| 25MYA0489 | RPS            | AC           | 7,669,952    | 417,077     | 280    | 80                   | 000            | -90        | Pending      |
| 25MYA0490 | RPS            | AC           | 7,669,836    | 417,530     | 280    | 80                   | 000            | -90        | Pending      |
| 25MYA0491 | RPS            | AC           | 7,669,777    | 417,433     | 280    | 77                   | 000            | -90        | Pending      |
| 25MYA0492 | RPS            | AC           | 7,669,724    | 417,338     | 280    | 38                   | 000            | -90        | Pending      |
| 25MYA0493 | RPS            | AC           | 7,669,200    | 417,359     | 280    | 60                   | 000            | -90        | Pending      |
| 25MYA0494 | RPS            | AC           | 7,669,231    | 417,648     | 280    | 72                   | 000            | -90        | Pending      |
| 25MYA0495 | RPS            | AC           | 7,668,936    | 417,708     | 280    | 84                   | 000            | -90        | Pending      |
| 25MYA0496 | RPS            | AC           | 7,668,746    | 417,584     | 280    | 62                   | 000            | -90        | Pending      |

## Notes:

Drill Hole Collar Table above - Refer to JORC Table 1 Section 1 for full drill hole information; including drill technique, sampling, and analytical technique/s.

<sup>\*</sup> Assay results for all air core bottom-of-hole sample intervals are pending.



Various information in this report which relates to Exploration Results have been extracted from the following announcements lodged on the ASX, where further details, including JORC Code reporting tables, can also be found:

| x, w | nere further details, including JORC Code reporting tables, can also be found:                                                                        |                                  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| •    | North Telfer Project Update on Former NCM Mining Leases                                                                                               | 3 December 2015                  |
| •    | High Grade Gold Mineralisation at Minyari Dome                                                                                                        | 8 February 2016                  |
| •    | Minyari Deposit Drilling to Commence May 2016                                                                                                         | 2 May 2016                       |
| •    | Minyari Phase 1 Drilling Commences                                                                                                                    | 2 June 2016                      |
| •    | Further Historical High-grade Gold Intersections at Minyari                                                                                           | 14 June 2016                     |
| •    | Minyari Phase 1 Drilling Update No. 1                                                                                                                 | 20 July 2016                     |
| •    | Completion of Phase 1 Minyari Deposit RC Drilling Programme                                                                                           | 9 August 2016                    |
| •    | Minyari Drilling Update No. 3                                                                                                                         | 17 August 2016                   |
| •    | Minyari Drilling Update No. 4                                                                                                                         | 29 September 2016                |
| •    | North Telfer and Citadel Exploration Programme Update                                                                                                 | 16 November 2016                 |
| •    | Minyari Dome Drilling Update No. 1                                                                                                                    | 16 December 2016                 |
| •    | Minyari Dome and Citadel – Phase 2 Update                                                                                                             | 9 February 2017                  |
| •    | Minyari Dome Positive Metallurgical Test Work Results                                                                                                 | 13 June 2017                     |
| •    | High-Grade Gold Intersected at North Telfer Project Revised                                                                                           | 21 June 2017                     |
| •    | Drilling Extends High-Grade Gold Mineralisation at WACA                                                                                               | 25 July 2017                     |
| •    | High-Grade Gold Mineralisation Strike Extension at Minyari Deposit                                                                                    | 4 August 2017                    |
| •    | Minyari Dome Phase 1 Final Assay Results                                                                                                              | 31 August 2017                   |
| •    | Air Core Programme Highlights Minyari and WACA Deposit                                                                                                | 5 December 2017                  |
| •    | Minyari Dome 2017 Air Core Drilling Results                                                                                                           | 29 January 2018                  |
| •    | Minyari Dome – Initial Drill Results                                                                                                                  | 1 August 2018                    |
| •    | Thick High-grade Copper Mineralisation Intersected                                                                                                    | 2 October 2018                   |
| •    | Chicken Ranch and Minyari Dome Drilling Update                                                                                                        | 15 November 2018                 |
| •    | Chicken Ranch and Tims Dome Maiden Mineral Resources Boost Antipa 100% Resource to 827000 oz                                                          | 12 May 2019                      |
| •    | 2019 exploration programme update - 100% Owned Paterson Province Tenure                                                                               | 22 August 2019                   |
| •    | High-grade gold & multiple zones of copper-gold mineralisation identified at 100% owned ground                                                        | 18 October 2019                  |
| •    | Antipa delivers strong results from multiple prospects on 100% owned ground                                                                           | 22 November 2019                 |
| •    | Multiple New Gold-Copper Targets on 100% Owned Ground                                                                                                 | 23 December 2019                 |
| •    | Drilling of New Targets Deliver Significant Au Intersections Target Generation Air Core programme extends Poblano mineralised gold zone by 500 metres | 16 February 2021<br>5 March 2021 |
| •    | Wilki JV Project Update – New Targets and 2020 Drill Results                                                                                          | 11 March 2021                    |
| •    | High-Grade Gold Intersected at Minyari & WACA Deposits                                                                                                | 7 April 2021                     |
| •    | Discovery of Significant Zones of High-Grade Gold at Minyari                                                                                          | 15 July 2021                     |
| •    | Further High-Grade Gold Mineralisation at Minyari Deposit                                                                                             | 20 July 2021                     |
| •    | Further High-Grade Gold Results at 100% Minyari Deposit                                                                                               | ,<br>12 August 2021              |
| •    | Outstanding Gold Intersections at 100% Owned Minyari Deposit                                                                                          | 6 September 2021                 |
| •    | Further High-Grade Gold Results at 100% Minyari Deposit                                                                                               | 5 October 2021                   |
| •    | Significant Gold-Copper Discovery at 100% Minyari Project                                                                                             | 19 October 2021                  |
| •    | Further Significant Gold-Copper Discoveries at Minyari                                                                                                | 29 November 2021                 |
| •    | Further High-Grade Gold Results at 100% Minyari Deposit                                                                                               | 6 December 2021                  |
| •    | Wilki and Paterson Farm-in Projects Exploration Update                                                                                                | 20 December 2021                 |
| •    | Further Outstanding High-Grade Gold Results at Minyari                                                                                                | 3 February 2022                  |
| •    | Results Confirm High-Grade Gold-Copper at Depth at Minyari                                                                                            | 3 March 2022                     |
| •    | High-Priority Soil and AC Gold-Copper Targets Identified                                                                                              | 27 May 2022                      |
| •    | Drill Results Confirm High-Grade Gold at Minyari North                                                                                                | 21 July 2022                     |
| •    | Minyari Drilling Identifies Resource Growth Opportunities                                                                                             | 10 November 2022                 |
| •    | Resource Drilling Increases Minyari Deposit Confidence                                                                                                | 2 March 2023                     |
| •    | Two New Discoveries at 100% Owned Minyari Dome Project                                                                                                | 6 March 2023                     |
| •    | Paterson Project and Citadel JV Exploration Results                                                                                                   | 11 May 2023                      |
| •    | Paterson and Wilki Projects - FY2024 Exploration Programme Update<br>Near-Surface High-Grade Gold Discovery at GEO-01 Target                          | 24 July 2023<br>2 August 2023    |
| •    | Final CY2023 Phase 1 Drill Results - Minyari Gold Project                                                                                             | 15 August 2023                   |
| •    | High-Grade Gold Zones at GEO-01 Discovery                                                                                                             | 12 October 2023                  |
| •    | New gold target identified close to Telfer                                                                                                            | 20 December 2023                 |
| •    | Minyari Project - Phase 2 2023 Exploration Drilling                                                                                                   | 21 December 2023                 |
| •    | Minyari Dome Project – Final Assay Results from Phase 2 CY2023 Diamond Drilling                                                                       | 6 February 2024                  |
| •    | Minyari Project - Results from CY2023 Air Core Drilling                                                                                               | 8 March 2024                     |
| •    | Large gold target identified close to Minyari                                                                                                         | 28 March 2024                    |
|      |                                                                                                                                                       |                                  |



| • | High Grade Gold Intersections at GEO-01 – Minyari Dome Project                                       | 14 May 2024       |
|---|------------------------------------------------------------------------------------------------------|-------------------|
| • | GEO-01 Gold Mineralisation Strike Doubled – Minyari Dome Project                                     | 4 June 2024       |
| • | GEO-01 Returns Near-Surface High-Grade Gold - Including 35m at 3.0 g/t Gold from 20m                 | 10 July 2024      |
| • | Gold Mineralisation Confirmed at Pacman                                                              | 30 August 2024    |
| • | 100% Owned Minyari Dome Project Grows by 573,000 Oz of Gold                                          | 17 September 2024 |
| • | Minyari Scoping Study Update Confirms Development Potential                                          | 24 October 2024   |
| • | GEO-01 South Returns Multiple New Zones of Near-Surface Gold, including 23m at 2.8 g/t gold from 77m | 25 November 2024  |
| • | Second surface geochemical gold target identified close to Telfer                                    | 13 December 2024  |
| • | Multiple New Zones of Near-Surface, High-Grade Gold Discovered – Minyari Dome Project                | 16 December 2024  |
| • | Multiple High-Grade Gold and Copper Intersections at Minyari                                         | 29 January 2025   |
| • | Antipa to Retain 100% Ownership of Wilki Project                                                     | 4 March 2025      |
| • | Antipa Retains 100% Ownership of Paterson Project (Amended)                                          | 9 April 2025      |
| • | Resource Growth and Discovery Drilling Commences at Minyari                                          | 16 April 2025     |
| • | Minyari Project Resource Grows by 100 Koz to 2.5 Moz of Gold                                         | 21 May 2025       |
| • | Significant New Gold-Copper Discovery at Minyari Dome                                                | 30 June 2025      |

- Competent Persons Statement Exploration Results: The information in this document that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Roger Mason, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Mason is a full-time employee of the Company. Mr Mason is the Managing Director of Antipa Minerals Limited, is a substantial shareholder of the Company and is an option holder of the Company. Mr Mason has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Mason consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements, and that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements, all of which are available to view on <a href="https://www.asv.com.au">www.asv.com.au</a>. Mr Mason, whose details are set out above, was the Competent Person in respect of the Exploration Results in these original market announcements.
- Competent Persons Statement Mineral Resource Estimations for the Minyari Project Deposits: The information in this document that relates to the estimation and reporting of the GEO-01 Main Zone, Fiama, Minella, GEO-01 Central, Minyari South, Tim's Dome and Chicken Ranch Mineral Resource is extracted from the report entitled "Minyari Project Resource Grows by 100 Koz to 2.5 Moz of Gold" created on 21 May 2025 with Competent Person Victoria Lawns, which is available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.
- The information in this document that relates to the estimation and reporting of the Minyari, Minyari North, Sundown, WACA and WACA West deposits Mineral Resources is extracted from the report entitled "100% Owned Minyari Dome Project Grows by 573,000 Oz of Gold" created on 17 September 2024 with Competent Persons Ian Glacken, Jane Levett, Susan Havlin and Victoria Lawns, which is available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates in the relevant original market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.
- Scoping Study for Minyari Dome: The information in this document that relates to the Scoping Study for Minyari Dome is extracted from the report entitled "Minyari Scoping Study Update Confirms Development Potential" reported on 24 October 2024, which is available to view on www.antipaminerals.com.au and www.asx.com.au. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the study in the relevant original market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.



## Table: Minyari Project May 2025 Mineral Resource Estimate

| Deposit                            | Classification | Tonnes     | Au g/t | Au ounces | Ag g/t | Ag ounces | Cu % | Cu tonnes | Co %  | Co tonnes |
|------------------------------------|----------------|------------|--------|-----------|--------|-----------|------|-----------|-------|-----------|
| Minyari                            | Indicated      | 27,100,000 | 1.75   | 1,505,000 | 0.58   | 507,000   | 0.22 | 59,800    | 0.04  | 9,720     |
| Minyari                            | Inferred       | 6,200,000  | 1.78   | 347,000   | 0.36   | 72,000    | 0.15 | 9,000     | 0.02  | 1,000     |
| Total Minyari                      |                | 33,300,000 | 1.73   | 1,852,000 | 0.54   | 579,000   | 0.21 | 68,900    | 0.03  | 10,800    |
| WACA                               | Indicated      | 1,710,000  | 0.96   | 53,000    | 0.17   | 9,000     | 0.11 | 1,900     | 0.02  | 300       |
| WACA                               | Inferred       | 3,454,000  | 1.27   | 143,000   | 0.16   | 17,000    | 0.14 | 5,000     | 0.02  | 900       |
| Total WACA                         |                | 5,164,000  | 1.18   | 195,000   | 0.16   | 26,000    | 0.13 | 6,900     | 0.02  | 1,200     |
| WACA West                          | Inferred       | 403,000    | 0.73   | 9,400     | 0.77   | 10,010    | 0.19 | 750       | 0.03  | 101       |
| Total WACA<br>West                 |                | 403,000    | 0.73   | 9,400     | 0.77   | 10,010    | 0.19 | 750       | 0.03  | 101       |
| Minyari South                      | Inferred       | 481,000    | 2.4    | 37,000    | 0.55   | 8,000     | 0.21 | 1,000     | 0.03  | 130       |
| Total Minyari<br>South             |                | 481,000    | 2.4    | 37,000    | 0.55   | 8,000     | 0.21 | 1,000     | 0.03  | 130       |
| Sundown                            | Indicated      | 442,000    | 1.31   | 19,000    | 0.55   | 8,000     | 0.27 | 1,200     | 0.03  | 100       |
| Sundown                            | Inferred       | 828,000    | 1.84   | 49,000    | 0.27   | 7,000     | 0.16 | 1,300     | 0.06  | 500       |
| Total Sundown                      |                | 1,270,000  | 1.65   | 68,000    | 0.37   | 15,000    | 0.19 | 2,500     | 0.05  | 600       |
| GEO-01                             | Indicated      | 3,121,000  | 0.89   | 89,000    | 0.1    | 10,250    | 0.03 | 1,060     | 0.002 | 75        |
| GEO-01                             | Inferred       | 3,419,000  | 0.9    | 99,000    | 0.14   | 15,600    | 0.07 | 2,370     | 0.003 | 220       |
| Total GEO-01                       |                | 6,540,000  | 0.89   | 188,000   | 0.12   | 25,850    | 0.05 | 3,430     | 0.003 | 220       |
| Minyari North                      | Inferred       | 587,000    | 1.07   | 20,000    | 0.15   | 3,000     | 0.09 | 500       | 0.01  | 60        |
| Total Minyari<br>North             |                | 587,000    | 1.07   | 20,000    | 0.15   | 3,000     | 0.09 | 500       | 0.01  | 60        |
| Total Indicated                    |                | 32,370,000 | 1.6    | 1,670,000 | 0.51   | 533,000   | 0.20 | 64,000    | 0.03  | 10,000    |
| Total Inferred                     |                | 15,370,000 | 1.42   | 704,000   | 0.27   | 133,000   | 0.13 | 20,000    | 0.01  | 3,000     |
| Total Minyari Dom                  | е              | 48,000,000 | 1.54   | 2,400,000 | 0.43   | 666,000   | 0.18 | 84,000    | 0.02  | 13,000    |
| Satellite Deposits <sup>4</sup>    | ,5             |            |        |           |        |           |      |           |       |           |
| Chicken Ranch                      | Inferred       | 4,206,000  | 0.76   | 100,000   |        |           |      |           |       |           |
| Tims Dome                          | Inferred       | 1,158,000  | 1.34   | 50,000    |        |           |      |           |       |           |
| Total Satellite Dep                | osits          | 5,360,000  | 0.87   | 150,000   |        |           |      |           |       |           |
| Total Indicated                    |                | 32,370,000 | 1.6    | 1,670,000 | 0.51   | 533,000   | 0.20 | 64,000    | 0.03  | 10,000    |
| Total Inferred                     |                | 20,700,000 | 1.28   | 854,000   | 0.27   | 133,000   | 0.13 | 20,000    | 0.02  | 3,000     |
| GRAND TOTA<br>RESOU<br>INDICATED + | JRCE           | 53,000,000 | 1.48   | 2,520,000 | 0.43   | 666,000   | 0.18 | 84,000    | 0.02  | 13,000    |

## Notes to Minyari Project MRE Table above:

- 1. Discrepancies in totals may exist due to rounding.
- 2. The Minyari Dome Mineral Resource has been reported at cut-off grades above 0.4 g/t and 1.5 g/t gold equivalent (Aueq); the calculation of the metal equivalent is documented below.
- The 0.4 g/t and 1.5 g/t Aueq cut-off grades assume open pit and underground mining, respectively.
- 4. The Satellite Deposit Mineral Resource has been reported at a cut-off grade above 0.4 g/t g/t gold (Au).
- 5. The 0.4 g/t Au cut-off assumes open pit mining.
- 6. The Minyari Project and its Mineral Resource are 100% owned by Antipa Minerals.

#### Gold Metal Equivalent Information - Minyari Dome Mineral Resource Gold Equivalent reporting cut-off grade:

The 0.4 g/t and 1.5 g/t Aueq cut-off grades assume open pit and underground mining, respectively.

A gold equivalent grade (**Aueq**) has been calculated from individual gold, copper, silver, and cobalt grades. This equivalent grade has been calculated and declared in accordance with Clause 50 of the JORC Code (2012) that it is the Company's opinion that all metals included in this metal equivalent calculation have reasonable potential to be recovered and sold, using the following parameters:

- The metal prices used for the calculation are as follows:
  - US\$ 2,030 /oz gold
  - US\$ 4.06 / lb copper
  - US\$ 24.50 /oz silver
  - US\$ 49,701 per tonne cobalt



- An exchange rate (A\$:US\$) of 0.700 was assumed.
- Metallurgical recoveries for by-product metals, based upon Antipa test-work in 2017 and 2018, are assumed as follows:
  - Gold = 88.0% Copper = 85.0%, Silver = 85%, Cobalt = 68%
- The gold equivalent formula, based upon the above commodity prices, exchange rate and recoveries, is thus:
  - Aueq = (Au g/t) + (Ag g/t \* 0.012) + (Cu % \* 1.32) + (Co % \* 5.88)



# **ANTIPA MINERALS LTD - MINYARI PROJECT**

CY2025 Phase 1 Growth, Discovery and Pre-feasibility Study Drill Programmes - Reverse Circulation, Air Core and Diamond Core JORC Code 2012 Edition:

Table 1 - Section 1 Sampling Techniques and Data (Criteria in this section shall apply to all succeeding sections)

| Criteria            | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling techniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Various prospects and targets were sampled for growth and discovery purposes by 95 RC holes for a total of 18,899 metres, with an average hole depth of 205m.</li> <li>Various deposits were sampled for Pre-feasibility Study (PFS) purposes by 53 RC drill holes for a total of 8,423 metres, with an average hole depth of 160m.</li> <li>Of these, a total of 140 RC holes were drilled from surface for a total of 26,266m; and</li> <li>eight CY2024 RC drill holes were depth extended during this Phase 1 CY2025 programme for a total of 1,056m.</li> <li>In total, assay results have now been received for 80 RC holes and partially received for six holes.</li> <li>RC Sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice.</li> <li>All RC samples were drilled using a 140mm diameter face sampling hammer with samples taken on one metre intervals.</li> <li>Individual one metre (2 to 3kg) samples or two to four metre composite samples (2 to 3kg) were submitted for laboratory analysis.</li> <li>If warranted and based on anomalous laboratory assay results of (2 to 4m) composite samples, additional individual one metre samples may also be collected and submitted for laboratory analysis.</li> <li>Diamond Core Drill (DD) Sampling</li> <li>Three diamond core drill holes were completed for growth and discovery purposes for a total of 1,152.2 metres.</li> </ul> |



| Criteria | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                       | <ul> <li>14 diamond core holes were completed for PFS purposes for a total of 4,784.4 metres.</li> <li>Three diamond core tails were completed for Resource Growth and Discovery purposes, one at Minyari, and one each at GEO-01 Main Zone and Fiama, for a total of 795.8 metres.</li> <li>One diamond core tail was completed at Minyari for PFS purposes for a total of 109.8 metres.</li> <li>Assay results have been received for two diamond core drill holes and two diamond core tails, for a total of 1,241.5m.</li> <li>Diamond core sampling was carried out under Antipa protocols and QAQC procedures as per industry best practice.</li> <li>All drill core was geologically, structurally, and geotechnically logged and photographed prior to cutting.</li> <li>Quarter core and half core samples were taken from diamond core holes using an automatic core saw.</li> <li>The drill core was sampled nominally as one metre samples with adjustments for major geological boundaries, with sample lengths ranging between 0.3m and 1.2m.</li> <li>Drill core samples are submitted to the lab for assay.</li> </ul> |
|          |                       | Air Core Sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                       | <ul> <li>A large area, including several targets, was systematically sampled by 205 air core drill holes totaling 13,332m with an average drill hole depth of 65m.</li> <li>Assays results have been received for 28 air core holes, with bottom of hole samples still pending analysis.</li> <li>Air core drill holes were generally drilled on a range of hole spacings along line and across line, predominantly testing soil geochemical ± geophysical (GAIP ± AEM ± aeromagnetic) targets.</li> <li>Locations and orientations for these air core drill holes are tabulated in the body of this report.</li> <li>One metre samples were collected from a cyclone into a plastic bucket and then laid out on the ground in rows of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |



| Criteria            | JORC Code Explanation                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                                                                                                                                                                                         | <ul> <li>15.</li> <li>Air core sample piles representing 1m intervals were spear sampled to accumulate 4m composite samples for analysis, with a total of 2 to 3 kg collected into pre-numbered calico bags.</li> <li>The final metre of each hole was spear sampled to collect a total of 2 to 3 kg of cuttings into a pre-numbered calico bag.</li> <li>All samples are pulverised at the laboratory to produce material for assay.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Drilling techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | <ul> <li>All RC drill holes were completed using 140mm RC face sampling hammer drill bit from surface to total drill hole depths of between 42m to 390m.</li> <li>Diamond Core Drilling</li> <li>All diamond core drill holes were completed with standard tube with a PQ diameter equipment at the start of hole to a designated depth depending on ground conditions and/or drill hole requirements. This is followed by HQ to a designated depth, then NQ to the end of hole.</li> <li>Total drill hole depth ranges from 80m (PFS metallurgical test work hole) to 689.1m.</li> <li>Four diamond core tails were drilled in total. Two diamond core tails were completed to depths of 582.1m (203.1m of DD) at GEO-01 Main Zone and 437.7m (251.7m if DD) at Fiama. Two diamond core tails were completed at Minyari, to depths of 804.2m (340.97m of DD) and 728.2m (109.8m od DD).</li> <li>All diamond core was orientated using a north-seeking gyro electronic orientation tool.</li> <li>Air Core Drilling</li> <li>All air core holes were drilled by a Mantis 300 rig equipped with a 600cfm/200psi compressor owned and operated by Wallis Drilling Pty Ltd.</li> </ul> |



| Criteria              | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                      | All drill holes were completed using an 85mm air core blade bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Drill sample recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                           | <ul> <li>RC and Air Core</li> <li>RC and air core sample recovery was recorded via visual estimation of sample volume, typically ranging from 90% to 100%, with only very occasional samples with less than 70% recovery.</li> <li>RC and air core sample recovery was maximized by endeavoring to maintain dry drilling conditions as much as practicable; the majority of RC samples were dry.</li> <li>All RC samples were split using the drill rig's mounted cone splitter. Adjustments were made to ensure representative 2 to 3 kg sample were collected.</li> <li>Relationships between recovery and grade are not evident and are not expected given the generally excellent and consistently high sample recovery.</li> <li>Diamond Core</li> <li>Core recovery is recorded as a percentage. Overall core</li> </ul> |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>recoveries averaged over 99.5% and there are no core loss issues or significant sample recovery problems except for occasional very localised/limited regions.</li> <li>Drillers used appropriate measures to maximise diamond core sample recovery.</li> <li>There is no relationship between sample recovery and/or mineralisation grade as the diamond core recovery was consistently high.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                             |
| Logging               | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul> | <ul> <li>Geological logging of all RC, air core and DD intervals was carried out recording colour, weathering, lithology, mineralogy, alteration, veining, and sulphides.</li> <li>Logging includes both qualitative and quantitative components.</li> <li>Logging was completed for 100% of all drill holes.</li> <li>All RC, air core and DD intervals were measured for magnetic susceptibility using a handheld Magnetic Susceptibility meter.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |



| Sub-sampling techniques and sample preparation  • If core, whether cut or sawn and whether quarter, half or all core taken. • If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. • For all sample types, the nature, quality and appropriateness of the sample preparation technique. • Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.  • Core was either quarter core sample or half core sampled in HQ and NQ on nominal 1.0m sample interval within and on 0.3 to 1.2m intervals within the flastic bucket and then laid out on the samples were collected finals to be samples.                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> <li>Core was either quarter core sample or half core sampled in HQ and NQ of nominal 1.0m sample interval within and on 0.3 to 1.2m intervals within the composite samples.</li> <li>Air Core Samples</li> <li>One metre samples were collected as 1m splits cones splitter.</li> <li>Samples were collected as 1m splits cone splitter.</li> <li>Field duplicate samples were collected.</li> <li>Individual (one) metre (2 to 3kg) sam metre composite samples (2 to 3kg) laboratory analysis.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Compositing air core samples of between undertaken via combining 'Spear' sato generate a 2 kg (average) sample.</li> <li>Sample Preparation</li> <li>Each sample was pulverised at the lamaterial for assay.</li> <li>Sample preparation was carried out standard crush and/or pulverizing te includes over drying and pulverizing using Essa LM5 grinding mill to a grid 75 μm.</li> <li>The sample sizes are considered app</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | from the rig mounted sed for all RC drill holes. Ty. Imples or two to four were submitted for sed in PQ diameter core, diameter core at a numineralised zones the mineralised zones. From a cyclone into a she ground in rows of semples of the intervals semples of the intervals semples. In the produce set ALS using industry exchangues. Preparation of the entire sample d size of 85% passing |



| Criteria                                   | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of assay data and laboratory tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</li> </ul> | <ul> <li>of mineralisation across the Minyari Project.</li> <li>All drill samples were submitted to ALS in Perth for preparation and analysis.</li> <li>All samples were dried, crushed, pulverised, and split to produce a sub–sample for laboratory analysis.</li> <li>RC and Diamond Core Sample Analysis</li> <li>Each sub-sample is digested and refluxed with hydrofluoric, nitric, hydrochloric and perchloric acids ("four acid digest"). This digest is considered to approach a total dissolution for most minerals. Analytical analysis is performed using a either ICP-AES or ICP-MS. Resource Definition suite (ICP-AES): Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W and Zn. Targeted exploration suite (ICP-MS): Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, M, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr</li> <li>A lead collection fire assay on a 50g sample with Atomic Absorption Spectroscopy was undertaken to determine gold content with a detection limit of 0.01ppm.</li> <li>Air Core Sample Analysis</li> </ul> |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Each composite sub—sample was digested in a mixture of 3 parts hydrochloric acid and 1-part nitric acid ('aqua regia digest'), suitable for weathered air core samples. Aqua regia can digest many different mineral types including most oxides, sulphides and carbonates but will not totally digest refractory or silicate minerals. Analytical methods used were both ICP—AES and ICP—MS (Au, Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr).</li> <li>End of hole sub-samples were analysed using a Multi-Element Ultra Trace method combining a four-acid digestion with ICP-MS instrumentation. A four-acid digest is performed on 0.25g of sample to quantitatively dissolve</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    |



| Criteria                              | JORC Code Explanation                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>most geological materials. Analytical analysis performed with a combination of ICP-AES and ICP-MS. Four acid digestions quantitatively dissolve nearly all minerals (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W and Zn).</li> <li>A lead collection fire assay on a 50g sample with an ICP-AES finish was undertaken on end of hole samples to determine gold content with a detection limit of 0.001ppm.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                 | RC, Diamond Core and Air Core samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Additional ore-grade analysis was performed as required for other elements reporting out of range.</li> <li>Field QC procedures involve the use of commercial certified reference material (CRM) for assay standards and blanks. Standards are inserted every 25 samples. The grade of the inserted standard is not revealed to the laboratory.</li> <li>Field duplicates/repeat QC samples was utilised during the drill programmes with nominally 1 in 30 duplicate samples submitted for laboratory assay for each drill hole, with additional duplicate samples submitted in mineralized zones.</li> <li>Inter laboratory cross-checks analysis programmes have not been conducted at this stage.</li> <li>In addition to Antipa supplied CRM's, ALS includes in each sample batch assayed certified reference materials, blanks and up to 10% replicates.</li> <li>If necessary, anomalous results are redigested to confirm results.</li> </ul> |
| Verification of sampling and assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul> | <ul> <li>Significant drill intersections have been visually verified by multiple members of the Antipa geology team, including the Exploration Manager.</li> <li>All logging is entered directly into a notebook computer using the Antipa Proprietary Logging System which is based on Microsoft Excel. The logging system uses standard look-up tables that does not allow invalid logging codes to be entered. Further data validation is carried out during</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria                | JORC Code Explanation                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                                                                                                                       | <ul> <li>upload to Antipa's master SQL database.</li> <li>No adjustments or calibrations have been made to any laboratory assay data collected.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Location of data points | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul> | <ul> <li>km = kilometre; m = metre; mm = millimetre.</li> <li>When possible, drill hole collar locations have been recorded using a differential GPS with a stated accuracy of +/- 0.5m. Otherwise drill hole collar locations are recorded using a standard handheld GPS which has a stated accuracy of +/- 5-10m.</li> <li>The drilling co-ordinates are in GDA2020 MGA Zone 51 co-ordinates.</li> <li>The Company has adopted and referenced one specific local grid across the Minyari Dome region ("Minyari" Local Grid) which is defined below. References in the text and the Minyari deposit diagrams are all in this specific Minyari Local Grid.</li> <li>Minyari Local Grid 2-Point Transformation Data: <ul> <li>Minyari Local Grid 47,400m east is 421,462.154m east in GDA94 / MGA Zone 51;</li> <li>Minyari Local Grid 99,000m north is 7,632,467.588 m north in GDA94 / MGA Zone 51;</li> <li>Minyari Local Grid 113,000m north is 7,644,356.108m north in GDA94 / MGA Zone 51;</li> <li>Minyari Local Grid North (360°) is equal to 328.2° in GDA94 / MGA Zone 51;</li> <li>Minyari Local Grid elevation is equal to GDA20 / MGA Zone 51;</li> </ul> </li> <li>The topographic surface has been compiled using the drill hole collar coordinates and drone survey surface elevation values.</li> <li>Surveys were completed upon hole completion using a Reflex Gyro downhole survey instrument.</li> <li>Surveys were checked by the supervising Geologist for consistency. If required, readings were re-surveyed or</li> </ul> |
|                         |                                                                                                                                                                                                                                                                                                       | smoothed in the database if unreliable azimuth readings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Criteria                                                | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>were apparent.</li> <li>Survey details included drill hole dip (±0.25° accuracy) and drill hole azimuth (±0.35° accuracy), Total Magnetic field and temperature.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Data spacing and distribution                           | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                 | <ul> <li>Targeted exploration drill hole collar locations are typically drilled on a range of hole spacings testing geophysical targets (e.g. magnetic, induced polarisation, electromagnetic, gravity) and/or air core targets and/or surface sampling (soil) geochemical anomalies.</li> <li>Mineral Resource definition and/or extension drill holes are typically drilled on a specified drill hole spacing to increase confidence appropriate to Mineral Resource classification. Across the Minyari Project deposits, these generally occur as either 25m or 50m grids.</li> <li>At Minyari, Minyari South, WACA and GEO-01 Area Deposits drill hole spacing of the RC ± diamond core drilling is sufficient to establish the geological and grade continuity suitable for Mineral Resource estimation.</li> <li>The current drill hole spacing at generated exploration targets, including the Rizzo Prospect, is not sufficient for Mineral Resource estimation.</li> <li>Reported intersections were aggregated using downhole length weighting of consecutive drill hole sample laboratory assay results.</li> </ul> |
| Orientation of data in relation to geological structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>The location and orientation of the Minyari Project drilling is appropriate given the strike, dip, and morphology of the mineralisation.</li> <li>No consistent and/or material sampling bias resulting from a structural orientation has been identified across the Minyari Project at this stage; however, folding, and multiple vein directions have been recorded via surface mapping and (orientated) diamond core.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sample security                                         | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Chain of sample custody is managed by Antipa to ensure appropriate levels of sample security.</li> <li>Samples are stored on site and delivered by Antipa or their representatives to Port Hedland and subsequently by Toll</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Criteria          | JORC Code Explanation                                                 | Commentary                                                                                                                                                                                                                                                                                                                   |
|-------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                       | Ipec Transport from Port Hedland to the assay laboratory in Perth.                                                                                                                                                                                                                                                           |
| Audits or reviews | The results of any audits or reviews of sampling techniques and data. | Sampling techniques and procedures are regularly reviewed internally, as is all data.     Consultants Snowden, during completion of the 2013 Calibre Mineral Resource estimate, undertook a desktop review of the Company's sampling techniques and data management and found them to be consistent with industry standards. |

Table 1 - Section 2 - Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section)

| Criteria                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement and land tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul> | <ul> <li>The listed Exploration Licences forming the Minyari Project covering a total area of approximately 4,100 km² were applied for by Antipa Resources Ptd Ltd (or its wholly owned subsidiaries):</li> <li>E45/2519, E45/2524, E45/2525, E45/2526, E45/2527, E45/2528, E45/2529, E45/3917, E45/3918, E45/3919, E45/3925, E45/4459, E45/4460, E45/4518, E45/4565, E45/4567, E45/4614, E45/4618, E45/4652, E45/4784, E45/4812, E45/4839, E45/4840, E45/4867, E45/4886, E45/5078, E45/5079, E45/5135, E45/5147, E45/5148, E45/5149, E45/5150, E45/5151, E45/5152, E45/5153, E45/5149, E45/5155, E45/5151, E45/5152, E45/5158, E45/5309, E45/5310, E45/5311, E45/5312, E45/5313, E45/5413, E45/5414, E45/5458, E45/5459, E45/5671, E45/5781, E45/5782.</li> <li>Drill holes completed in the CY2025 Phase 1 Growth, Discovery and PFS programme were drilled on the following tenements:</li> <li>E45/3917, E45/3918, E45/3919, E45/5157, E45/5458 and E45/5460 and E45/5462.</li> <li>Antipa Minerals Ltd's interests in the Exploration Licences</li> </ul> |



| Criteria                          | JORC Code explanation                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                               | <ul> <li>detailed above are not subject to any third-party Farm-in or Joint Venture agreements.</li> <li>A 1.5% net smelter royalty is payable to Newcrest Operations Ltd (a wholly owned subsidiary of Greatland Resources Ltd) on the sale of all metals on Exploration Licences E45/4812, E45/5079, E45/5147, and E45/5148.</li> <li>A 1.0% net smelter royalty is payable to Sandstorm Gold Ltd on the sale of all metals (excluding uranium) on Exploration Licences E45/3918 and E45/3919.</li> <li>A Split Commodity Agreement exists with Paladin Energy whereby it owns the rights to uranium on Exploration Licences E45/3918 and E45/3919.</li> <li>The Minyari, WACA, GEO-01 Area, WACA West, Minyari South, Minyari North and Sundown Mineral Resources are located wholly within Exploration Licence E45/3919.</li> <li>The Tim's Dome Mineral Resource is located within Exploration Licences E45/4565 and E45/2526.</li> <li>The Chicken Ranch Mineral Resource is located within Exploration license E45/4867.</li> <li>These tenements are contained completely within land where the Martu People have been determined to hold Native Title rights. To the Company's knowledge no historical or environmentally sensitive sites have been identified in the area being actively explored and reported herein.</li> <li>The tenements are in good standing and no known impediments exist.</li> </ul> |
| Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | <ul> <li>The Minyari and WACA deposits were greenfield discoveries by the Western Mining Corporation Ltd during the early 1980's.</li> <li>Exploration of the Minyari Dome region has involved the following companies:         <ul> <li>Western Mining Corporation Ltd (1980 to 1983);</li> <li>Newmont Holdings Pty Ltd (1984 to 1990);</li> <li>MIM Exploration Pty Ltd (1990 to 1991);</li> <li>Newcrest Mining Limited (1991 to 2015); and</li> <li>Antipa Minerals Ltd (2016 onwards).</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria | JORC Code explanation                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                               | <ul> <li>Exploration across various regions within the remainder of the Minyari Project has been conducted by the following companies:</li> <li>Carr Boyd Minerals Ltd (1973 to 1975);</li> <li>Geopeko Limited (JV with Carr Boyd) (1978);</li> <li>Marathon Petroleum Australia Limited (1979);</li> <li>Western Mining Corporation Limited (WMC) (1980);</li> <li>Duval Mining (Australia) Limited (Carr Boyd JV with Picon Exploration Pty Ltd) (1984 to 1986);</li> <li>Newmont (1984 to 1989);</li> <li>Mount Burgess Gold Mining Company N.L. (1989 to 2001);</li> <li>Carpentaria - MIM JV with Mount Burgess (1990 to 1996);</li> <li>BHP Australia (1991 to 1998);</li> <li>Mount Isa Mines Exploration (1993 to 1998);</li> <li>Normandy - JV with Mount Burgess (1998 to 2000);</li> <li>MIM Exploration Pty Ltd (1990 to 1993);</li> <li>Newcrest (1987 to 2015);</li> <li>Quantum Resources Limited (2012 to 2016);</li> <li>IGO Ltd - former Farm-In JV with Antipa (July 2020 to April 2025);</li> <li>Newcrest Mining Ltd - Former Farm-In JV with Antipa (March 2020 to Nov 2023); and</li> <li>Newmont Corporation - Former Farm-In JV with Antipa (Nov 2023 - May 2025).</li> </ul> |
| Geology  | Deposit type, geological setting and style of mineralisation. | <ul> <li>The geological setting is Paterson Province Proterozoic aged meta-sediment and meta-mafic hosted hydrothermal shear, fault and strata/contact controlled precious and/or base metal mineralisation which is typically sulphide bearing.</li> <li>The Paterson Province is a low grade metamorphic terrane but local hydrothermal alteration and/or contact metamorphic mineral assemblages and styles are indicative of a moderate to high-temperature local environment.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The mineralisation in the region is interpreted to be intrusion related. Typical mineralisation styles include vein, stockwork, breccia and skarns.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drill hole Information                                           | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</li> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>A summary of all available information material to the understanding of the Minyari Project exploration results can be found in previous WA DEMIRS publicly available reports.</li> <li>All the various technical Minyari Project exploration reports are publicly accessible via the DEMIRS' online WAMEX system.</li> <li>The specific WAMEX and other reports related to the exploration information the subject of this public disclosure have been referenced in previous public reports.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                        |
| Data aggregation methods                                         | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                                                 | <ul> <li>Drill hole intersections consisting of more than one sample were aggregated using downhole length weighting of consecutive drill hole sample laboratory assay results.</li> <li>No top-cuts to gold, copper, silver, or cobalt have been applied (unless specified otherwise).</li> <li>A nominal 0.1 g/t gold, 300 ppm copper, 0.7 g/t silver and 400 ppm cobalt lower cut-off grades have been applied during data aggregation of RC and DD results.</li> <li>For Air Core, a nominal 30ppb gold, 200pm copper, 0.5 g/t silver, 100ppm cobalt and 200ppm zinc lower cut-off grades have been applied during data aggregation methods.</li> <li>Higher grade intervals of mineralisation internal to broader zones of mineralisation are reported as included intervals.</li> <li>Metal equivalence has not been used in the reporting of these drill intersections.</li> </ul> |
| Relationship between mineralisation widths and intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>At this stage the reported intersection lengths are down hole in nature and the true width, which will be dependent on the local mineralisation geometry/setting, is not always known.</li> <li>Mineralisation at the various deposits and greenfield</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| Criteria           | JORC Code explanation                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | reported, there should be a clear statement to this effect<br>(e.g. 'down hole length, true width not known').                                                                                                                                                     | prospects across the Minyari Project consist of metasediment hosted plus lesser mafic and felsic intrusion hosted intrusion related hydrothermal alteration, breccia, and vein style gold-copper-silver-cobalt mineralisation.  For the Minyari Dome deposits, drill holes are designed to intersect the mineralisation orthogonally based on current mineralisation interpretations. Therefore, the reported downhole mineralisation intercepts for a number of these specific drill holes are considered to more reliably represent approximate true widths.  Based on limited drilling information, mineralisation at the greenfields prospects is interpreted to be generally steeply dipping and striking between approximately 320° to 350°, with pre-mineralisation folding resulting in local variations in geometry.                                                                                                                                                                                     |
| Diagrams           | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | <ul> <li>Appropriate plans and sections (cross-section/s and long section/s) (with scales) for any significant/material discovery, Mineral Resource extension or Mineral Resource definition results being reported and tabulations of intercepts are provided in the body of this report or have previously been publicly reported or can sometimes be found in WA DEMIRS WAMEX publicly available reports.</li> <li>Cross-sections are not provided for any drill hole/s which are not considered significant/material in relation to discoveries, Mineral Resource definition/extension, and/or where all analytical data is not currently available.</li> <li>All notable drill intersections are included in Table 1.</li> <li>Antipa Minerals Ltd publicly disclosed reports provide maps and sections (cross-sections and long section/s) (with scales) and tabulations of intercepts generated by the Company since 2011; these reports are all available to view on www.antipaminerals.com.au</li> </ul> |
| Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                          | All significant results are reported or can sometimes be found in WA DEMIRS WAMEX publicly available reports.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



| Criteria                           | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                 |   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | • | All meaningful and material information has been included in the body of the text or can sometimes be found in WA DEMIRS WAMEX publicly available reports.  The details of the Minyari Dome region historic Induced Polarisation (IP) survey, including IP Chargeability and resistivity anomalies, can be found in WA DEMIRS publicly available WAMEX reports A81227 (2008), A86106 (2009) and A89687 (2010).                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                       | • | The details of the Company's reprocessing, review, and modelling of the Minyari Dome region historic Induced Polarisation survey, including IP Chargeability and resistivity anomalies, can be found in the Company's ASX report titled "Minyari Reprocessed IP Survey Results" created on 5 July 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                       | • | Zones of mineralisation and associated waste material have not been measured for their bulk density; however, Specific Gravity ("Density") measurements continue to be taken from diamond drill core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                       | • | Multi element laboratory assaying was conducted variously for a suite of potentially deleterious elements including arsenic, sulfur, lead, zinc, and magnesium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                       | • | Downhole "logging" of a selection of Minyari deposit RC drill holes was undertaken as part of the 2016 and 2021 drill programs using an OBI40 Optical Televiewer which generated an oriented 360-degree image of the drill hole wall via a CCD camera recorded digital image. The OBI40 system utilised also included a North Seeking Gyro-scope to measure drill hole location/deviation, and the downhole survey also measured rock density, magnetic susceptibility, natural gamma and included a borehole caliper device for measuring drill hole diameter. The combined dataset collected via the OBI40 Optical Televiewer downhole survey data has multiple geological and geotechnical uses, including but not limited to the detection and determination of in-situ lithological, structural and |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                       |   | mineralisation feature orientations (i.e. dip and strike), determination and orientation of fracture frequency, general ground conditions/stability, oxidation conditions,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



| Criteria | JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria | JORC Code explanation | ground-water table, and clarity, etc.  Information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material derived mainly from diamond drill core is stored in the Company's technical SQL database.  No information on structure type, dip, dip direction, alpha angle, beta angle, gamma angle, texture and fill material were obtained from the WAMEX reports.  Preliminary metallurgical test-work results are available for both the Minyari and WACA gold-copper-silver-cobalt deposits, these 13 June 2017 and 27 August 2018 metallurgical reports are available to view on www.antipaminerals.com.au:  (https://antipaminerals.com.au/upload/documents/investors/asx-announcements/201129233150 2017-06-13-31.pdf and https://antipaminerals.com.au/upload/documents/investors/asx-announcements/201129233150 2017-06-13-31.pdf) and www.asx.com.au.  This preliminary metallurgical test-work was completed at the Bureau Veritas Minerals Pty Ltd laboratories in Perth, Western Australia under the management of metallurgical consultants Strategic Metallurgy Pty Ltd in conjunction with Bureau Veritas metallurgists and Antipa's Managing Director.  The 2017 metallurgical test-work demonstrated excellent gold recoveries for both oxide and primary mineralisation from the Minyari and WACA deposits, with the 2018 metallurgical test-work confirming the potential for the Minyari and WACA to produce copper-gold concentrate and cobalt-gold concentrate product with extremely favourable results. Optimisation of metallurgical performance is expected via additional test-work.  In addition, the following information in relation to metallurgy was obtained from WA DEMIRS WAMEX reports:  Newmont Holdings Pty Ltd collected two bulk (8 tonnes |
|          |                       | each) metallurgical samples of oxide mineralisation in<br>1987 (i.e. WAMEX 1987 report A24464) from a 120m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Criteria     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                       | long costean across the Minyari deposit. The bulk samples were 8 tonnes grading 1.5 g/t gold and 8 tonnes grading 3.57 g/t gold from below shallow cover in the costean. However, it would appear the Newmont metallurgical test-work for these two bulk samples was never undertaken/competed as no results were subsequently reported to the WA DEMIRS;  Newmont Holdings Pty Ltd also collected drill hole metallurgical samples for Minyari deposit oxide and primary mineralisation (i.e. WAMEX 1986 report A19770); however, subsequent reporting of any results to the WA DEMIRS could not be located suggesting that the metallurgical test-work was never undertaken/competed.  Newcrest Mining Ltd describe the Minyari deposit gold-copper mineralisation as being typical of the Telfer gold-copper mineralisation. In 2004 and 2005 (WAMEX reports A71875 and A74417) Newcrest commenced metallurgical studies for the Telfer Mine and due to the similarities with the Minyari mineralisation a portion of this Telfer metallurgical test-work expenditure was apportioned to the then Newcrest Minyari tenements. Whilst Telfer metallurgical results are not publicly available, the Telfer Mining operation (including ore processing facility) was materially expanded in the mid-2000's and continues to operate with viable metallurgical recoveries (for both oxide and primary mineralisation). |
| Further work | <ul> <li>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul> | <ul> <li>Additional potential exploration activities are outlined in the body of this report.</li> <li>Appropriate plans and sections (cross-sections and long section/s) (with scales) and tabulations of intercepts are provided in the body of this report or have previously been publicly or previously reported by Antipa or can sometimes be found in WA DEMIRS WAMEX publicly available reports.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |