

ASX RELEASE 13 AUGUST 2025

Bulk Sample from Cusp and new prospect identified ahead of inaugural drill program

- Ahead of the upcoming drilling campaign, the geology team has collected a 25kg bulk sample from the Cusp Prospect for comprehensive geochemical analysis
- The bulk sample was taken from the HRS004 sample site which previously returned grades¹ of up to 9.97% TREO (including 1.13% Dy₂O₃, 0.18% Tb₄O₇), 25.46% Nb₂O₅ and 4.77% Ta₂O₅
- Assay results from the newly identified Headingley Prospect confirm Rare Earth and Titanium mineralisation within the 2.3 kilometre mineralised corridor along strike from the Cusp, Bobs, Paddington, Westminster, and Old Trafford prospects, with results including:
 - O HRS067: 0.73% TREO (inc 0.031% Dy₂O₃, 0.006% Tb₄O₇)
 - HRS068 and HRS071: 1.8% TiO₂ and 2.3% TiO₂ respectively
- Australia's Rare Earth sector gains momentum with a proposal for a floor price and national offtake agreements positioning the Hart Range Project to benefit from critical minerals initiatives⁴
- NFM has commenced regulatory approvals for its maiden Reverse Circulation (RC) drilling campaign at Harts Range, planned for Q3 FY25

New Frontier Minerals Limited (ASX: **NFM**) ("New Frontier" or "the Company") is pleased to announce the geology team has identified additional high-priority targets for drill-testing at its Harts Range Project, located 140km north-east of Alice Springs in the Northern Territory, Australia.

While waiting for regulatory approval required for inaugural drilling campaign to commence, the Company has collected a 25kg bulk sample from the Cusp Prospect with the sample submitted to Intertek for comprehensive analysis. Additionally, assay results from the July 2025 field program have confirmed a new drill target at the Headingley Prospect, located approximately 620 metres west of the mineralised Bobs Prospect.

Chairman Gerrard Hall commented:

"The collection of this bulk sample marks an important milestone in executing our strategy and commitment to a systematic exploration approach to ensure confidence in the project's potential. This approach not only enhances our understanding of the mineral system but also positions NFM to make a significant discovery. Additionally, assay results from the Headingley Prospect confirm rare earth mineralisation and titanium oxide grades of up to 1.8% and 2.3% within a 2.3 km corridor extending from nearby prospects. The high-grade multi commodities reinforces the mineral potential of the area and underscores the opportunity to unlock value for shareholders as we ramp up exploration activities."

BULK SAMPLE COLLECTED FROM CUSP PROSPECT

The 25 kg bulk sample was collected from the Cusp Prospect within the Harts Range Project (Figures 1a and 1b). The sample was taken from the outcrop which comprised of clustered fragments of mineralised pegmatite containing samarskite which were readily identifiable by weight and colour, enabling efficient bulk sample collection.

Previous surface sampling (HRS004) at the Cusp Prospect has returned high-grade heavy rare earth mineralisation, with assays from earlier campaigns reporting grades ¹ up to 9.97% TREO (including 1.13% Dy₂O₃, 0.18% Tb₄O₇), 25.46% Nb₂O₅ and 4.77% Ta₂O₅ (Figure 2 & 3).

Figures 1a and 1b: Bulk sample collected from Cust Prospect (Location: 507859E, 7447754N, GDA94 MGA Z53)

<u>Visual Estimates ASX Disclosures – Figure 1a and 1b</u>

Figures 1 a) and b) show a 25 kg bulk sample collected from surface to ~0.3 metres deep containing mineralised pegmatite rock and soil, which included small fragments to golf ball and large baseball sized clusters of samarskite material at the Cusp Prospect.

Results from the geochemical analysis will be available in approximately one months' time. More details of these bulk samples are given in Appendix A, which also lists an estimate range of samarskite (1-2%) concentration that will be updated by laboratory assay.

Cautionary Statement

Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations.

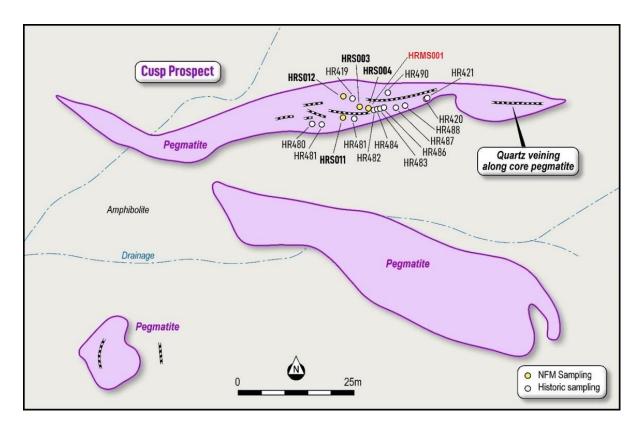


Figure 2: Cusp Prospect rock chip and bulk sample location map (Source: NFM Team)²

SAMPLE	PROSPECT	TREO%	Dy2O3%	Tb4O7%	Nb2O5%	Ta2O5%	HREO: TREO
HR419	CUSP	11.91	1.19	0.21	22.89	11.39	79.27
HR420	CUSP	0.35	0.04	0.01	1.57	0.11	83.45
HR421	CUSP	14.87	1.78	0.29	32.47	6.74	83.14
HR480	CUSP	16.61	1.94	0.31	30.04	8.60	85.75
HR481	CUSP	7.32	0.84	0.12	23.32	13.43	88.79
HR482	CUSP	17.83	2.16	0.34	33.19	7.19	85.81
HR483	CUSP	16.80	2.00	0.32	32.90	8.05	85.40
HR484	CUSP	0.11	0.01	0.00	1.37	0.09	77.61
HR485	CUSP	16.59	2.01	0.32	32.04	7.18	85.14
HR486	CUSP	15.61	1.87	0.30	29.47	5.39	85.12
HR487	CUSP	17.17	2.04	0.32	28.61	6.39	86.37
HR488	CUSP	16.30	1.97	0.31	27.75	5.69	85.49
HR490	CUSP	15.04	1.71	0.28	25.75	7.71	85.04
HRS003	CUSP	11.86	1.29	0.21	29.80	6.26	83.03
HRS004	CUSP	9.97	1.13	0.18	25.46	4.77	85.66
HRS011	CUSP	14.15	1.68	0.26	31.48	5.81	85.73
HRS012	CUSP	12.74	1.25	0.17	19.73	9.13	89.60

Figure 3: Cusp Prospect sample results (Source: NFM Team) 2

DISCOVERY OF NEW DRILL TARGET AT HEADINGLEY PROSPECT

Assay results from the July 2025 field campaign have identified additional heavy rare earth and titanium mineralisation, extending the mineralised corridor along strike from the Cusp, Bobs, Paddington, Westminster and Old Trafford Prospects (Figure 4).

Analysis of the geochemical results from the newly identified Headingley Prospect have confirmed the occurrence of rare earth and titanium mineralisation within a 2.3 kilometre mineralised corridor extending along strike from the Cusp, Bobs, Paddington, Westminster, and Old Trafford prospects. Notable results include HRS067, which returned 0.73% TREO, incorporating 0.031% Dy_2O_3 and 0.006% Tb_4O_7 , and HRS068 and HRS071, which recorded titanium grades of 1.8% TiO_2 and 2.3% TiO_2 respectively.

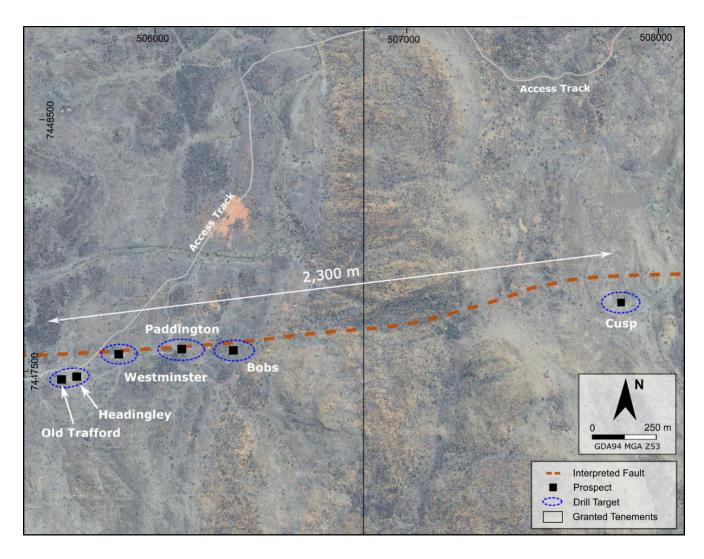


Figure 4: New prospect Headingley discovered from July 2025 Harts Range field program

The newly identified Headingley Prospect located approximately 620 metres west of the Bobs Prospect, is seen to be hosted within a mineralised amphibolite unit. Field observations identified a ferruginous, dark black-green amphibolite unit along a shear zone, in contact with an unmineralised pegmatite. This unit is likely a continuation of the Old Trafford structure, located approximately 70 metres further west.

Rock samples from the site are notably dense and returned readings of approximately 10 μ Sv/h, consistent with mineralisation observed at the Old Trafford Prospect. Preliminary field identification suggests finely disseminated samarskite within the altered amphibolite matrix. The amphibolite unit is oriented in an east-west direction, reinforcing the structural context to the mineralised setting.

Figure 5: Strongly sheared and ferruginous amphibolite outcrop at the Headingley Prospect

Sample HRS069 (Location: 505697E, 7447488N, GDA94 MGA Z53)

AUSTRALIAN GOVERNMENT'S PROPOSED FLOOR PRICE ON RARE EARTHS

The Albanese government is exploring mechanisms to establish a floor price for rare earths and other critical minerals, responding to U.S. efforts to counter China's dominance in the sector⁴. Through a proposed Critical Minerals Strategic Reserve and national offtake agreements, the initiative seeks to ensure price stability, reduce market volatility, and attract private investment.

The focus is on minerals critical for strategic and defence applications, particularly heavy rare earths, where Australia holds a strong global supply position. New Frontier Minerals is well-positioned to benefit, with its Harts Range Project in the Northern Territory hosting significant heavy rare earth mineralisation.

PROPOSED ISSUE OF PERFORMANCE RIGHTS

Subject to shareholder approval at the 2025 AGM, the Board has resolved to issue 17,500,000 Performance Rights to Director and key executives of the Company, on the following terms:

- Exercise price: \$nil
- Vesting conditions:
 - o 50% upon the 20-day VWAP of the Company's Shares being equal to or greater than \$0.02.
 - o 50% upon one of the below milestones being met:
 - Harts Range drill intersect of either:
 - 5m intersect ≥ 0.75% TREO, or
 - 5m intersect ≥ 1% Nb2O5, or
 - 5m intersect ≥ 1% Ta2O5.
- Expiry date: 5 years from the date of issue.

NEXT STEPS

Over the coming weeks and months, New Frontier Minerals will:

- Continue field investigations to define priority drilling targets at the Cusp, Bobs, Paddington, Westminster, Old Trafford and Headingly Prospects.
- Advance regulatory approvals and evaluate quotes from drilling contractors to prepare for the maiden Reverse Circulation (RC) drilling campaign in Q3 FY25.

New Frontier remains committed to delivering value to shareholders through disciplined exploration and development of its key assets.

ENDS

This announcement was approved for release by the Board of New Frontier Minerals Limited.

REFERENCES

- 1) CCZ ASX Release 6 November 2024 (High grade Nb and U assays validate Harts Range Project)
- 2) NFM ASX Release 12 May 2025 (Sampling returns 10.61% TREO with 23.56% Nb2O5 and 15.67% Ta2O5at Harts Range)
- 3) Intertek Assay Results 8 August 2025 (Job Code: 2375.0/2512207)
- 4) <a href="https://www.theaustralian.com.au/business/resources-minister-madeleine-king-flags-rare-earths-floor-price-and-national-offtake-agreements/news-story/55530151bb5276d250ea7aa11cb033d5?giftid=oljE4YbVwc

For further information please contact

New Frontier Minerals	Joel Logan E. jlogan@newfrontierminerals.com
NWR Communications (Australia)	Melissa Tempra
Media & Investor Relations	E. melissa@nwrcommunications.com.au

About New Frontier Minerals

New Frontier Minerals Limited is an Australian-based focussed explorer, with a strategy to develop multi-commodity assets that demonstrate future potential as an economic mining operation. Through the application of disciplined and structured exploration, New Frontier has identified assets deemed core and is actively progressing these interests up the value curve. Current focus will be on advancing exploration activity at the Harts Range Niobium, Uranium and Heavy Rare Earths Project which is circa 140km north-east from Alice Springs in the Northern Territory.

Other interests include the NWQ Copper Project, situated in the copper-belt district circa 150km north of Mt Isa in Queensland and the Broken Hill Project in western New South Wales.

New Frontier Minerals is listed on the LSE and ASX under the ticker "NFM".

Competent Persons Statement

The scientific and technical information in this announcement, which relates to exploration results and the geology of the deposits described, is based on information compiled and approved for release by Mark Biggs. Mark Biggs is a Member of The Australasian Institute of Mining and Metallurgy (AusIMM Member # 107188) and meets the requirements of a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012 Edition). Mark Biggs has 35 years of experience relevant to Rare Earth Elements (REE), industrial mineral copper mineralisation types, as well as expertise in the quality and potential mining methods of the deposits under consideration. Additionally, he has 25 years of experience in the estimation, assessment, and evaluation of exploration results and mineral resource estimates, which are the activities for which he accepts responsibility. He also successfully completed an AusIMM Online Course Certificate in 2012 JORC Code Reporting. Mark Biggs is a consultant with ROM Resources and was engaged by New Frontier Minerals Limited to prepare the documentation for several prospects, specifically those within the Harts Range Prospects upon which the

Report is based. Mr Biggs consents to the inclusion in this announcement of the matters based on his information and supporting documents in the form and context in which it appears.

Furthermore, the full nature of the relationship between himself and New Frontier Minerals Limited has been disclosed, including any potential conflicts of interest. Mark Biggs is a director of ROM Resources, a company that is a shareholder of New Frontier Minerals Limited, and ROM Resources provides occasional geological consultancy services to New Frontier Minerals Limited.

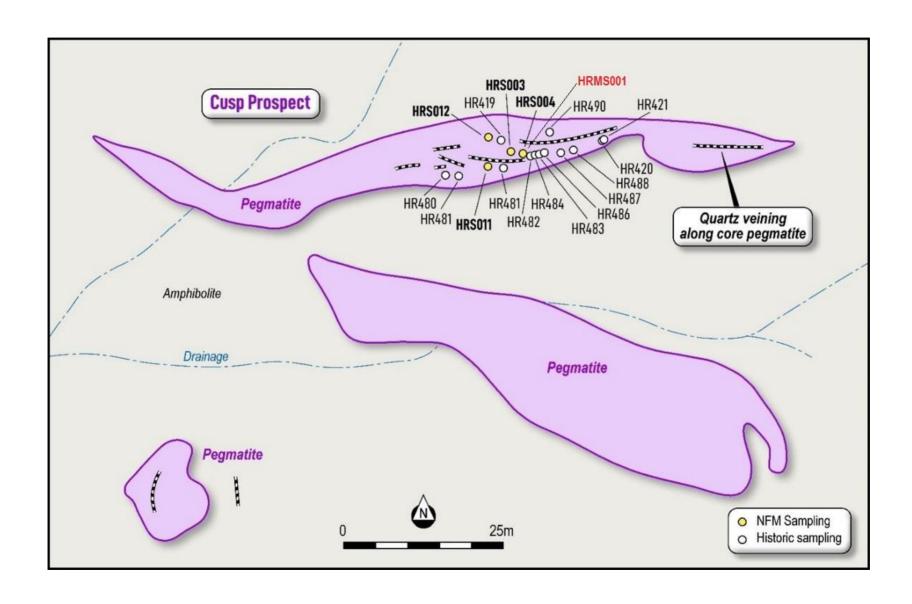
The Report or excerpts referenced in this statement have been reviewed, ensuring that they are based on and accurately reflect, in both form and context, the supporting documentation relating to exploration results and any mineral resource estimates. The release of the Report and this statement has been consented to by the Directors of New Frontier Minerals Limited.

Forward Looking Statements

Certain information in this document refers to the intentions of New Frontier Minerals Ltd, but these are not intended to be forecasts, forward-looking statements, or statements about future matters for the purposes of the Corporations Act or any other applicable law. The occurrence of events in the future is subject to risks, uncertainties and other factors that may cause New Frontier Minerals Ltd's actual results, performance, or achievements to differ from those referred to in this announcement. Accordingly, New Frontier Minerals Ltd, its directors, officers, employees, and agents, do not give any assurance or guarantee that the occurrence of the events referred to in this announcement will occur as contemplated. The interpretations and conclusions reached in this announcement are based on current geological theory and the best evidence available to the authors at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however high these probabilities might be, they make no claim for complete certainty. Any economic decisions that might be taken based on interpretations or conclusions contained in this announcement will therefore carry an element of risk. The announcement may contain forwardlooking statements that involve several risks and uncertainties. These risks include but are not limited to, economic conditions, stock market fluctuations, commodity demand and price movements, access to infrastructure, timing of approvals, regulatory risks, operational risks, reliance on key personnel, Ore Reserve and Mineral Resource estimates, native title, foreign currency fluctuations, exploration risks, mining development, construction, and commissioning risk. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward-looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

ASX Listing Rule 5.23.2

New Frontier Minerals Ltd confirms that it is not aware of any new information or data that materially affects the information included in this market announcement and that all material assumptions and technical parameters underpinning the estimates in this market announcement continue to apply and have not materially changed.


APPENDIX A: NEW SAMPLE DETAILS

25kg bulk sample was collected from the Cusp Prospect for comprehensive testing. Sample details are listed in Figure A1-1 below and their locations shown on the plan as Figure A1-2 following:

FIGURE A1-1: SAMPLE DESCRIPTIONS

Sample No	East (GDA94z53)	North (GDA94z53)	Prospect	Samarskite Estimate Range%	Sample Type	Description	Date Collected
HRMS001	505696	7447485	Cusp	1-2%	Bulk Sample	Using a shovel and geological pick, a 25 kg ferruginous bulk sample was collected from surface to a depth of approximately 0.3 metres at the Cusp Prospect sample site. The sample comprised mineralised, siliceous quartz-rich pegmatite with plagioclase and minor micas, along with associated soil. Included were small fragments through to golf ball- and baseball-sized clusters of samarskite material. The samples have a high bulk density, are, readily identifiable by their distinctive colour, and recorded RadEye readings ranging from approximately 1 µSv/h to 70 µSv/h.	01/08/2025

FIGURE A1-1: NEW BULK SAMPLE LOCATION (CUSP PROSPECT)

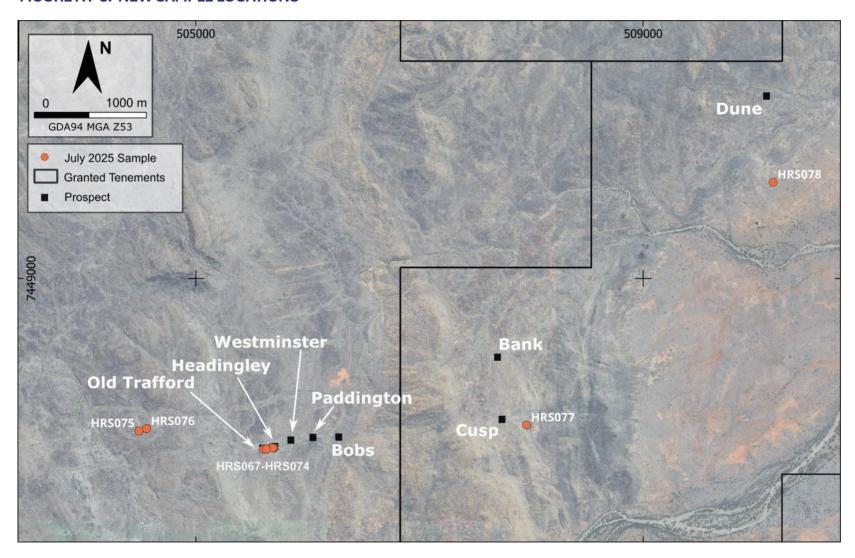

Twelve (12) new rock chip samples were collected at mapping sites and are listed in Figure A1-1 below and their locations shown on the plan as Figure A1-2 following:

FIGURE A1-2: SAMPLE DESCRIPTIONS

Sample No	East (GDA94z53)	North (GDA94z53)	Prospect	Sample Type	Description	Date Collected
HSR067	505696	7447485	Headingley	Rock	Dark black/green amphibolite altered rock. Ferruginous alteration, dark green mineral alteration also. Amphibolite unit occurs along a shear zone next to an unmineralised pegmatite unit which appears to be a continuation of Old Trafford ~70m to the west. Quartz float on western side of outcrop is present. Structurally active zone. Amphibolite/pegmatite and marble are adjacent in mostly altered form. Boxwork textures are evident. Samples are moderately dense, ~ 2 µSv/h. Likely similar form of alteration recorded at Old Trafford, although this time in the amphibolite unit. This new outcrop has been named Headingley.	7/5/2025
HSR068	505697	7447489	Headingley	Rock	Very dark black/green amphibolite altered rock. Ferruginous alteration, dark green mineral alteration also. Amphibolite unit occurs along a shear next to an unmineralised pegmatite unit which appears to be a continuation of Old Trafford ~70m to the west. Quartz float on western side of outcrop. Structurally active zone. Amphibolite/pegmatite and marble are adjacent in mostly altered form. Boxwork texture is evident. Samples are very dense, ~10 µSv/h. Likely similar form of alteration recorded at Old Trafford, although this time in the Amphibolite unit. Appears to be small samarskite mineral disseminated in altered amphibolite matrix. Orientation of amphibolite foliation is 70/075 degrees.	7/5/2025
HSR069	505697	7447488	Headingley	Rock	Strongly sheared amphibolite outcrop. Foliated Bruna Gneiss contact with strongly altered amphibolite. Carbonate and chlorite infill is present along shearing plane.	7/5/2025
HSR070	505678	7447491	Headingley	Rock	Pegmatite outcrop ~15m from HRS068. Large micaceous minerals (up to 1cm), quartz + plagioclase. Weak irregular chlorite alteration.	7/6/2025
HSR071	505686	7447484	Headingley	Rock	Amphibolite unit partially exposed on the southern side of Headingley outcrop. Surrounded by bulky quartz float. Very mafic, ~80% black amphibole minerals comprising sample. ~0.15 µSv/h. Fine grained garnet minerals within quartz and plagioclase parts of the unit.	7/6/2025

HSR072	505630	7447477	Old Trafford	Rock	Old Trafford Pegmatite unit. Na-plagioclase rich Mgr micaceous alteration. Appears barren. Strongly formed Na-plagioclase cleavage planes. Weakly chlorite altered. ~0.20µSv/h.	7/6/2025
HSR073	505603	7447473	Old Trafford	Rock	Large quartz cap. Na-plagioclase rich Mgr micaceous alteration. Appears barren. Strongly formed Na-plagioclase cleavage planes. Minor garnet mineralisation. Black matrix, weakly chlorite altered. ~0.30 µSv/h.	7/6/2025
HSR074	505631	7447476	Old Trafford	Rock	Pegmatite, bladed texture present though bladed minerals have been eroded. Rock appears to be comprised of quartz, plagioclase and garnets. Eroded bladed texture outline eroded spodumene minerals?	7/6/2025
HSR075	504493	7447638	Outcrop near old waste area	Rock	Pegmatite outcrops near the old waste area. Not highlighted in geophysical survey, although worth checking due to size of unit. Na-plagioclase rich with clearly defined cleavage planes, quartz, minor micaceous alt. Sample taken from pegmatite outcrop immediately adjacent to creed-bed filled with amphibolite sands. ~0.20 μSv/h.	7/6/2025
HSR076	504560	7447658	Outcrop near old waste area	Rock	Siliceous pegmatite. Quartz + plagioclase rich. Localised biotite bladed bands present in irregulate manner. These bands are short in width (1-2mm) and as long as 30cm. ~0.60µSv/h.	7/6/2025
HSR077	507957	7447691	Pegmatite East of Cusp	Rock	Na-plagioclase + quartz rich outcrop. Distinct feldspar cleavage planes. Oxidised/brown appearance. Minor biotite and black matrix. Minor chlorite alt. ~0.20µSv/h.	7/7/2025
HSR078	510162	7449860	Outcrop near Dune	Rock	Pegmatite outcrop is not far from Dune. Adjacent to amphibolite unit. This pegmatite is quartz-rich with quartz infill intrusions. Samples of pegmatite appear gossanous. Brown metasomatic texture with green minerals (green minerals potentially olivine. Very brittle). Minor brecciation is evident by what appears to be quartz and carbonate infill veining.	7/7/2025

FIGURE A1-3: NEW SAMPLE LOCATIONS

Notes: Coordinates in GDA94 MGA Z53 Source: NFM Geology Team

APPENDIX B: JORC CODE, 2012 EDITION – TABLE 1

The following JORC Code (2012 Edition) Table 1 is primarily supplied to provide background for geological mapping, and rock chip sampling programs, conducted by New Frontier Minerals Limited geology contractors during early April 2025.

Previous ASX releases have been made about mapping and rock chip sampling at the Harts Range Nb-U-REE Mineral Project.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 The 25 kg bulk sample from the Cusp Prospect was collected using a shovel and geological pick. The sample was collected from surface to a foot deep containing minerlaised pegmatite rock and soil, which included small fragments to golf ball and baseball sized clusters of samarskite material. The sample site was previously sampled (HRS004) and was recorded to have returned heavy rare earth minerlaisation, with assays from earlier campaigns reporting grades up to 9.97% TREO (including 1.13% Dy₂O₃, 0.18% Tb₄O₇), 25.46% Nb₂O₅ and 4.77% Ta₂O₅ (Figure 2 & 3). The samples have high bulk density and easily identifiable by colour with RadEye readings ranging from ~1 μSv/h to 50μSv/h. Rock chip samples were collected from approximately a 3m radius around the recorded coordinate location. The rock chip samples that were collected to make up the sample included fragments that approximately ranged from 2-15cm and 0.2 - 3kg in weight. A total of twelve (12) rock chip samples were collected in calico bags and were progressed for laboratory analysis (sample numbers range from HRS067 to HRS078). Samples were collected from rock outcrops, soils in the vicinity of west to east trending pegmatite dykes. A small percentage of the surface samples contained the U-bearing mineral samarskite.

Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Not Applicable – no exploration drilling results as none were drilled.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Not Applicable – no exploration drilling results as none were drilled.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Descriptions of the 25kg bulk sample, rock chip and soil samples are given in a table contained in Appendix A (Figures A1-1 through to A1-3) of this NFM ASX Announcement dated the 12th of August 2025. Where appropriate strike and dip measurements were taken at several sites, additional to the twelve (12) rock chip sample sites. Measuring bedding is difficult because of the high metamorphically - disturbed rock types.
Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All of the 25kg bulk sample collected was presented for analyses and will be prepared at the independent laboratory Intertek Pty Ltd at Malaga, Perth WA. The 25 kg sample will be crushed and ground to P80 <150 µm Of the 12 rock chip sample collected about 0.3-2kg of rock chip were presented for analyses. Assays will be presented to independent laboratory Intertek Pty Ltd at Malaga, Perth WA. The samples were sorted and dried. Primary preparation was then by crushing the whole sample. The whole sample was pulverised in a vibrating disc pulveriser. All samples were initially crushed to 4 mm then pulverised to 75 microns, with at least 85% passing through 75 microns.

		Standard sample preparation and analyses procedures were performed on all samples and are considered appropriate techniques.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Analytical Methods are described in detail as follows: Au, Pt, Pd The samples have been analysed by firing a 40g (approx.) portion of the sample. This is the classical fire assay process and will give total separation of Gold, Platinum, and Palladium in the sample. These have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. The sample(s) have been digested with a mixture of acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric Acids. This digest approaches a total digest for many elements however some refractory oxides are not completely attacked. The mineral Cassiterite is not efficiently attacked with this digest. If Barium occurs as the Sulphate mineral, then at high levels (more than 4000 ppm) it may re-precipitate after the digest giving seriously low results. Using this digest, some sulphur losses may occur if the samples contain high levels of sulphide. Cu, Zn, Co, Ni, Mn, P, Sc, V, Al, Ca, Na, K, S have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. As, Ag, Ba, Be, Bi, Cd, Ga, Li, Mo, Pb, Sb, Sn, Sr, W, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, Se, In, Te, Cs, Re, TI have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. The samples have been fused with Sodium Peroxide and subsequently the melt has been dissolved in dilute Hydrochloric acid for analysis. Because of the high furnace temperatures, volatile elements are lost. This procedure is particularly efficient for determination of Major

		element composition (Including Silica) in the samples or for the determination of refractory mineral species. B, Cr, Si, Fe, Mg, Ti have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Ge, Ta, Hf, Zr, Nb, Rb have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry. The assay results are expected to be in line with previous rock chip and drilling results obtained since October 2024 at Harts Range.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Independent Laboratory assaying by Intertek has confirmed, within acceptable limits, the occurrences of high-grade Nb, U, and REE from the initial in field XRF readings. Laboratory standards and duplicates were used in accordance with standard procedures for geochemical assaying as noted below. It has met the recommended insertion rates for the company QAQC controls (standards, blanks) with an overall insertion rate of 20%. However, no field duplicates were included in the three (3) batches and is recommended that 3% be included in future sampling programs. Summary of QAQC insertion rates. Both the company standards and blanks were verified for elements Nb, U and Dy and returned results within 2 standard deviations (SD). Field duplicates are not present in the batch therefore were not reviewed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	The spatial location for the bulk sample and rock chip samples collected during the July and August 2025 fieldwork were collected by handheld GPS (-/+ 5m accuracy) [MGA94 Zone53]: The table of reported rock chip locations and descriptions are given in throughout the ASX release, in Appendix a, and in Figure A1-1 (at the end of the section).

Data spacing and distribution

- · Data spacing for reporting of Exploration Results.
- Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- · Whether sample compositing has been applied.

- The Harts Range licenses lie north-west of the Entia Dome and are underlain by the Harts Range Group (Harts Range Metaigneous Complex), which predominantly consists of feldsparbiotite-amphibole-garnet gneisses. The Harts Range region at has undergone repeated and substantial crustal reworking between Proterozoic and Palaeozoic times and is now thought to represent an ancient and strongly altered/metamorphosed version of a continental collision zone.
- Most of the observed mineralisation is related to a swarm of west to east and southeast-trending pegmatite dykes, with an anomalous occurrence of the U-bearing mineral samarskite (refer to Figure A1-1).
- At the Cusp Prospect, niobium-HREE-Tantalum identified in pegmatites running approximately east-west, up to 10 metres thick and over 70 metres long.
- At Bob's Prospect niobium-HREE-Tantalum mineralisation in pegmatites trend east-west and is several metres thick and over 30 metres long, with similar geological setting to the Cusp Prospect.
- 200m west of Bobs (Bobs West), outcropping pegmatite along the same orientation, hosted exclusively within felsic gneiss of the Irindina Gneiss. The pegmatite is semi-continuous for ~300m with a similar geological setting and has notably large green muscovite flakes present.
- Paddington and Westminster Prospects are located approximately 200m and 450m west of the mineralised Bobs Prospect. These new prospects, along with the mineralised prospects Cusp and Bobs, are associated in proximity to an east-west trending structural corridor.
- Old Trafford and Headingley Prospects are located approximately 620m west of the mineralised Bobs Prospect. These new prospects, along with the mineralised prospects Cusp and Bobs, are associated in proximity to an east-west trending structural corridor.

		 The Dune Prospect is another variant with high Niobium results but low in rare earths and uranium. Elevated radiometric located with the scintillometer recorded 1,300 cps within a small historic pit at the top of a knoll. Anomalies appear to correlate with intrusions of porphyritic "granitoid" and granitic gneiss, which are geologically consistent with the pegmatites mapped at Bob's and the Cusp Prospects. The Dune Prospect was previously located via airborne radiometric images. The radiometric anomalies are low order (10 to 20x background) compared to the spot anomalies at Bob's and Cusp (50-200x background). Anomalies appear to correlate with intrusions of porphyritic "granitoid" and granitic gneiss, which presumably are geologically features like the pegmatites at Bob's and the Cusp Prospects.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 In general, the strata of the area surrounding the pegmatite dykes in the Harts Range Meta-Igneous Complex dip steeply (>45 degrees) to the north and strike between east to southeast. Rock chip samples were taken at areas of interest from observed mineralisation along and across strike of the line of lode of the mineralised pegmatite dyke (very generally east west tends, secondary structures, surrounding spoil heaps, and across the four (4) anomalous areas originally identified in the planning stage. However, no modern systematic exploration has been conducted, nor any of the potentially mineralised prospects have ever been drilled.
Sample security	The measures taken to ensure sample security.	The rock chip samples taken during the historical fieldwork were securely locked within the vehicle on site until delivered to Alice Springs by the field personnel for despatch to the laboratory (InterTech in WA) by courier.

Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 The sampling techniques and the data generated from the laboratory assay results have been peer reviewed by consultant geologists independent of New Frontier Minerals Limited (Audax Resources and ROM Resources) familiar with the overall Harts Range Project and deemed to be acceptable. No other external audits sampling techniques and data have yet been planned or undertaken.
-------------------	---	---

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. in the area. 	 The Harts Range Project lies in the south-east of the Northern Territory, roughly 120 kilometres north-east of Alice Springs. Two granted tenements (EL 32046 and 32513) comprising a total 110 km² tenement package is located near essential infrastructure and accessible via the Plenty Highway. A check on the tenures status was completed in the NTGS system 'Strike' on the 10 of October 2024, to validate the currentness of the exploration areas. All are current. The region is serviced by excellent roads (Stuart Highway), train (the famous Ghan rail) and bus links connect the area. Domestic and some international flights are available from Alice Springs (1 hour drive south of Harts Range) while all international flights are available direct from Darwin. As a major regional centre, the town of Alice Springs provides public and private schools. There are churches, supermarkets, speciality shops, hotels, motels, cafés & restaurants, medical centres. There is a professional police and emergency services presence throughout the area. Local professional and trade services support the community and the mining industry. Mobile phone and internet access are good.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historical "Strike"-based mineral exploration reports have been reviewed for historical tenures that cover or partially cover the Project Area in this announcement. Federal and State Government reports supplement the historical mineral exploration reporting (QDEX open file exploration records).

		 Most explorers were searching for either Cu-Au-U, gemstones, or industrial minerals in the 1990's, and proving satellite deposit style extensions to the several small subeconomic uranium or copper deposits. The project is flanked by Independence Group (IGO) to the north, south and west. IGO is exploring for a raft of critical battery minerals.
Geology	Deposit type, geological setting, and style of mineralisation.	 Regional Geology The Harts Range Niobium, Uranium-Heavy Rare Earth Project lies north-west of the Entia Dome (Figure A2-1) and is underlain by the Harts Range Group (Harts Range Meta-igneous Complex), which predominantly consists of feldspar-biotite-amphibole-garnet gneisses. The Harts Range region has undergone repeated and substantial crustal re-working between Proterozoic and Palaeozoic times. As a result, it is now believed to represent an ancient and strongly altered/metamorphosed version of a continental collision zone. Magnetotellurics data interpreted by a team consisting of Adelaide University and NTGS geologists (Selway et al, 2006) suggests the Entia Dome system is a deep-crustal feature that can be shown extending to the mantle. The below maps (Figures A2-2 and A2-3) show a traverse through the Arunta from north to south and skirted around the dome to the east and highlighting a major subduction zone to the north of the dome. The latter diagram shows the distribution of regional stratigraphic units.

FIGURES A2-1: REGIONAL STRUCTURE PLAN

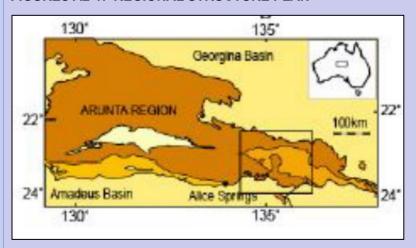
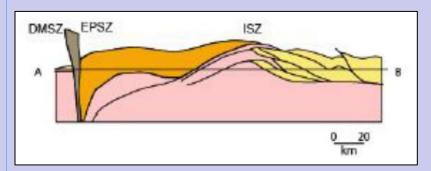



FIGURE A2-2: WEST TO EAST REGIONAL CRUSTAL CROSS-SECTION

Caincoolc Undrix Amadeus Basin Undrix Compina Basin Undrix Compina Basin Undrix Compina Basin Undrix Stangeways Burua Creeks Burua Creeks Burua Creeks Shavanos Gneiss Wember Savanos Gneiss Wember Springs Savanos Gneiss Wember Springs Solvanos Gneiss Wember Solvanos Gneiss Wember

Local Geology

- The main rock types mapped and sampled at various REE Prospects include:
 - Biotite Schist/Granofels: brown-blackish biotite-rich rock; thin (5-10cm) poorly exposed zone on N side of ~6m thick unit/zone of similar rock (e.g. HR398, HR399 sites) (on N side of HR399).
 - Pegmatite, apatite-bearing: scree frags near W end of E-W pegmatite, near intersection with north-south calcite vein; very coarse-grained feldspar-quartz with common coarse apatite pale semi-translucent slightly greenish (rare honey-brown) blocky/tabular/hexagonal, some intergrown with feldspar/quartz.
 - Garnet-Cummingtonite rock: coarse-grained rock; with abundant interstitial pale greenish malachite-magnesite material; small patch of sub-crop amongst scree.

Drillhole	A summary of all information motorial to the understanding	 Gneiss: weathered, moderately banded, fine-to-medium grained quartz-feldspar-hornblende-garnet; some coarser quartz-garnet rock; some brown haematite on fractures; sample below HR444. Ultramafic Rocks: slightly weathered medium grained, greenish/brownish amphibole/olivine-dominated metaultramafic. Amphibolite: grey fine-grained hornblende -quartz rock; (approx. adjacent rough channel samples: HR461 (1m) above HR462 (3m) above HR463 (3m) above HR464 (1m)). Samarskite (or similar), being a dense brittle blackish lustrous radioactive mineral; cluster of 10+ fragments, most over 1cm (or broken weathered larger piece - ca. 5-10 cm) in chalky white feldspar, beside weathered coarse mica beneath soil cover along southern side of quartz vein in a pegmatite core.
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not Applicable – no exploration drilling results presented.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 Independent Laboratory Assay results for the 28 rock chip samples from various Harts Range Prospects were averaged if more than one reading or determination was given. There was no cutting of high-grade REE results as they are directly relatable to high grade mineralisation styles readily visible in the relevant samples. There were no cut-off grades factored into any reporting of the laboratory assay results.

	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The bulk sample was taken at areas of interest from observed mineralisation along the line of lode of the mineralised pegmatite dyke, secondary structures, and surrounding spoil heaps. 25kg rock chip and soil sample was collected from rock faces and/or outcrops The July 2025 rock chip and soil samples were taken at areas of interest from observed mineralisation along the line of lode of the mineralised pegmatite dyke, secondary structures, and surrounding spoil heaps. Twelve (12) rock chip samples collected from rock faces and/or outcrops.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate diagrams are presented in the body and the Appendices of the current ASX Release. Where scales are absent from the diagram, grids have been included and clearly labelled to act as a scale for distance. Maps and Plans presented in the current ASX Release are in GDA94 MGA Zone 53, Eastings (mN), and Northing (mN), unless clearly labelled otherwise.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. 	 Rock chip and bulk samples were taken at areas of interest from observed mineralisation along the line of lode of the mineralised pegmatite dyke, secondary structures, surrounding spoil heaps, to check the validity of the defined six (6) anomalous map areas.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The area is covered by regional airborne government and private radiometric, gravity, magnetic, and hyperspectral surveys. Unfortunately, other than the 2006 radiometric ground survey, no other ground surveys have been undertaken. Substantial historical and current ground geochemical (stream sediment, soil, and rock chip samples have been undertaken and two episodes of shallow drilling, mostly for industrial

		minerals (gemstones and vermiculite) by the various owners of the leases, since 2006.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	A future exploration strategy should encompass the following steps in subsequent field programs:

APPENDIX C: Intertek Assay Results HRS067-HRS078

TREO Calculations

New Frontier Minerals have used the following REEs for the below TREO definitions and ratio calculations:

- 1. TREO = Ce + Dy + Er + Eu + Gd + Ho + La + Lu + Nd + Pr + Sm + Tb = Tm + Y + Yb (as oxides)
- 2. HREO = Ho + Er + Tm + Yb + Lu + Y + Dy + Tb (as oxides)
- 3. HREO/TREO (%) = (Sum of HREOs / Sum of TREOs) × 100

ELEMENTS	Au	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd			Со	Cr	Cs	Cu	Dy	Dy2O3
UNITS	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm			ppm	%	ppm	ppm	ppm	ppm
DETECTION			5 0.01		0 5			1 0			1 0.5		1				0 0.	
METHOD	FA25/MS	FP6/MS	FP6/OE	FP6/MS	FP6/OE	FP6/MS	FP6/MS	FP6/MS	FP6/OE	FP6/MS	FP6/MS	FP6/MS	FP1/MS	FP6/OE	FP6/MS	FP1/OE	FP6/MS	FP6/MS
COMMENTS: 2375.0/2512207 (08/08/2025) CLIENT O/N: 100804 1/1																		
SAMPLE NUMBERS																		
HRS067	X	X	12.59	X	X	380)	5 33	.9 1	4.8 X	1504.7	1848	2	2 X	0.4	1 X	277.	4 318.4
HRS068	X	X	8.77	X	X	98	3	7 18	.6 1	5.8 X	820.5	1008	6	5 X	X	X	313.	1 359.3
HRS069	X	X	9.94	X	X	102	2	1 22	.8 1	3.8 X	63.5	78	17	7 X	0.3	2 X	12.	2 14
HRS070	X	X	7.95	X	X	55	5	7 0	.4	1.2 X	8.4	10	X	X	2.4	1 X	8.3	9.5
HRS071	X	X	5.62	Х	Х	130)	6 1	.1	8.5 X	44.2	54	49	Σ	0.3	3 X	9.	7 11.2
HRS072	X	X	8.03	Х	Х	620)	3 0	.2	0.6 X	1.6	2	2	2 X		1 2	1 4.	9 5.7
HRS073	X	X	11.28	Х	Х	109	1	.7 0	.1	1.3 X	17.4	21	19	Σ	4.4	1 8	7 14.	9 17.1
HRS074	X	X	8.14	Χ	X	253	1	.0 0	.7	2.4 X	4	5	2	2 X	0.3	3 2	1 !	9 10.4
HRS075	X	X	8.13	Х	9	4 307	,	5 0	.3	0.6 X	6.2	8	1	1 X	3.:	1 X	3.	7 4.3
HRS076	X	X	7.93	Х	Х	536	X	0	.2 X	X	0.6	Χ	Х	X	3.3	3 X	0.	5 0.6
HRS077	X	X	8.47	Х	Х	562	2	1 X		0.5 X	1.9	2	Х	X	1.	7 X	0.4	4 0.5
HRS078	Х	X	6.32	Х	Х	103	X	4	.8 1	2.8 X	43.5	53	13	3 X	X	X	3.4	4 3.9
CHECKS																		
HRS075	Х	X	8.06	Х	10	0 314		5 0	.4	D.6 X	6.2	8	1	1 X	3.3	2 X	4.	1 4.7
STANDARDS																		
OREAS 45f	1	8																
OREAS 927b													10	כ		1128	0	
ECRM 683-1																		
OREAS 100a		Х	5.79	Х	Х	414		4 0	.5	1.1 X	489.7	602		Х	2.	5	23.	5 27
OREAS 20b		Х	8.03	Х	Х	1031		3 0	.7	1.8 X	84.1	103		Х	11.3	3	6.4	4 7.3
AMIS0339																		
OREAS 922b													4	1		219	7	
AMIS0516	3	5																
BLANKS																		
Control Blank	X	X	0.02	Х	Х	3	X	0	.2 X	X	X	Χ	X	X	X	X	X	X

ELEMENTS	Er	Er2O3	Eu	Eu2O3	F	Fe	Ga	Gd	Gd2O3	Ge	Hf	Но	Ho2O3	In	K	La	La2O3	Li
UNITS	ppm	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	ppm							
DETECTION	0.1	0.2	0.1	0.2	50	0.01	:	L 0.1	. 0.2	2 1	0.1	0.1	0.2	0.:	0.05	0.2	0.4	1 5
METHOD	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FC7/SIE	FP6/OE	FP6/MS	FP6/MS	FP6/MS	FP1/MS	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/OE	FP6/MS	FP6/MS	FP6/MS
COMMENTS: 2375.0/2512207 (08/08/2025) CLIENT O/N: 100804 1/1																		
SAMPLE NUMBERS																		
HRS067	111.6	127.6	13.9	16.1	122	7.18	95	310	357.4	1 8	13.2	45.9	52.5	0.	7 0.28	685.4	803.8	3 5
HRS068	173.1	198	22.8	26.4	725	6.87	75	204.6	235.8	3 7	50.1	63.4	72.6	0.0	0.14	425.2	498.7	7 5
HRS069	9.7	11.1	1.5	1.8	569	8.07	66	8.7	10) 6	6.4	2.9	3.3	0.5	0.28	31.4	36.9	9 9
HRS070	7.1	8.1	0.5	0.5	214	0.93	35	3.6	4.1	. 2	2.2	2.2	2.5	0.:	1 1.64	4.5	5.3	3 9
HRS071	5.2	6	3	3.4	453	9.94	22	10.3	11.9) 2	3.3	2	2.3	0.2	0.56	15.9	18.6	5 5
HRS072	5.6	6.4	0.3	0.4	54	0.46	20	1.8	3 2	2 2	1.4	1.5	1.7	Х	6.77	1.3	1.5	X
HRS073	11.1	12.7	0.2	0.3	110	1.33	57	7 4.6	5.3	3 4	5.6	3.7	4.2	Х	2.31	5.7	6.6	5 9
HRS074	7.3	8.4	0.2	Х	Х	0.33	19	3.2	3.7	7 2	4.2	2.2	2.5	Х	0.67	2.3	2.7	′ X
HRS075	3.4	3.9	0.4	0.5	Х	0.43	17	7 1.5	1.7	7 2	1.5	1	1.1	Х	6.12	1.6	1.9	X
HRS076	0.4	0.5	0.3	0.4	Х	0.23	1:	0.2	0.2	2 1	. X	0.1	Х	Х	9.25	0.3	Х	Х
HRS077	0.4	0.4	0.2	0.3	Х	0.34	13	0.3	0.3	3 1	. 1.3	0.1	Х	Х	7.6			X
HRS078	2.7	3.1	0.8	0.9	198	6.81	24	1 2.4	2.7	7 3	1.3	0.9	1	0.:	1 0.2	22.8	26.7	′ X
CHECKS																		
HRS075	3.8	4.4	0.3	0.4	Х	0.44	19	1.7	1.9) 2	1.6	1	1.2	Х	6.03	1.7	2	2 X
STANDARDS																		
OREAS 45f																		
OREAS 927b										2								
ECRM 683-1					196													
OREAS 100a	14.8	16.9	3.7	4.3		4.57	19	21.2	24.5	5	15.4	5.2	5.9	Х	3.87	271.4	318.2	2 13
OREAS 20b	3.2	3.7	1.5	1.8		3.03	2:	7.4	8.5	5	7	1.3	1.4	Х	3.04	40.9	48	3 55
AMIS0339					1430													
OREAS 922b										2								
AMIS0516																		
BLANKS																		
Control Blank	Х	Х	Х	Х	Х	0.03	:	L X	Х	Х	Х	Х	Х	Х	X	Х	X	Х

ELEMENTS	Lu	Lu2O3	Mg	Mn	Nb	Nb2O5	Nd	Nd2O3	P	Pb	Pd	Ga2O3	Pr	Pr6O11	Pt	Rb	Rb2O	Re
UNITS	ppm	ppm	%	%	ppm	ppm	ppm	ppm	%	ppm	ppb	ppm	ppm	ppm	ppb	ppm	ppm	ppm
DETECTION	0.1	0.2	0.01	0.	2 10) 20	0.	1 0.2	0.0	1 20	0.5	5 2	0.1	. 0.2	0.5	0.5	.	1 0.3
METHOD	FP6/MS	FP6/MS	FP6/OE	FP6/OE	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/OE	FP6/MS	FA25/MS	FP6/MS	FP6/MS	FP6/MS	FA25/MS	FP6/MS	FP6/MS	FP6/MS
COMMENTS: 2375.0/2512207 (08/08/2025) CLIENT O/N: 100804 1/1																		
SAMPLE NUMBERS																		
HRS067	13	14.8	0.25	0.	2 65	93	778.	5 908	0.0	2 115	X	127	199.1	240.6	X	13.3	3 1	L5 X
HRS068	23.2	26.4	1.55	0.	3 457	653	370.	5 432.2	0.1	2 162	X	101	96.4	116.5	X	2.7	7	3 X
HRS069	2.3	2.7	2.06	0.	3 17	7 25	5 29.	34.5	5 0.	1 43	Х	88	7.8	9.4	X	3.9)	4 X
HRS070	1.3	1.5	0.13	Х	62	2 88	3 3.	7 4.3	3 X	54	X	46	5 1	. 1.2	X	140) 15	53 X
HRS071	0.7	0.8	5.09	Х	X	Х	3	35	0.1	1 X	X	29	6.3	7.6	X	9.3	3 1	10 X
HRS072	1.3	1.4	0.06	Х	18	3 25	5 1.	3 1.5	5 X	141	X	27	0.3	0.4	X	305.6	33	34 X
HRS073	1.7	1.9	0.18	0.	3 83	3 119	6.	7.9	X	107	X	77	1.7	2	X	209.9	23	30 X
HRS074	1.3	1.5	0.03	Х	18	3 26	5 2.	1 2.5	5 X	30	Х	26	0.5	0.6	X	15.4	1 1	L7 X
HRS075	0.7	0.8	0.03	Х	19	2	7 2.	5 2.9	X	114	X	23	0.5	0.6	X	224.4	1 24	15 X
HRS076	Х	X	0.01	Х	X	Х	0.	3 0.4	1 X	131	X	15	X	Χ	X	331.2	2 36	52 X
HRS077	0.1	X	0.02	Х	X	Х	0.	9 :	l X	90	X	18	0.2	0.3	X	254.5	5 27	78 X
HRS078	0.5	0.6	4.34	0.	3 X	X	12.	1 14.1	0.0	8 X	X	32	3.7	4.5	5 X	5.8	3	6 X
CHECKS																		
HRS075	0.8	0.9	0.03	X	21	L 29	9 2.	3 2.7	7 X	116	5 X	25	0.6	0.7	7 X	235.9	25	58 X
STANDARDS																		
OREAS 45f											60.2	2			38.2			
OREAS 927b																		
ECRM 683-1																		
OREAS 100a	2.3	2.6	0.83	X	44	1 63	152.	4 177.8	0.0	5 X		26	47	56.8	3	251.3	3 27	75 X
OREAS 20b	0.4	0.5	0.78	X	14	1 X	38.	3 44.6	0.0	8 26	5	29	9.9	12	2	178.9	9 19	96 X
AMIS0339																		
OREAS 922b																		
AMIS0516											1128.5	5			2460			
BLANKS																		
Control Blank	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

ELEMENTS	S	Sb	Sc	Se	Si	Sm	Sm2O3	Sn	Sr	Та	Ta2O5	Tb	Tb407	Те	Th	Ti	TiO2	TI
UNITS	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm
DETECTION	0.05	0.5	5 2	0 20	0.1	l 0.1	0.2	2	2 20				L 0.2	2	1 0.1	0.0	5 0.	.1 0.
METHOD	FP6/OE	FP6/MS	FP6/OE	FP6/MS	FP6/OE	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/OE	FP6/OE	FP6/MS
COMMENTS: 2375.0/2512207 (08/08/2025) CLIENT O/N: 100804 1/1																		
SAMPLE NUMBERS																		
HRS067	X	1.2	9	1 X	18	3 272.4	315.9	2	0 763	3 56	68.3	52.5	61.7	7 X	735.6	0.22	2 0.	.4 X
HRS068	Х	0.8	3 4	3 X	17.8	122.7	142.3	3 2	2 535	369.1	1 450.7	46	54.1	1 X	381.1	1.0	7 1.	.8 X
HRS069	Х	0.8	3 X	X	19.5	7.4	8.5	5 1	0 595	5 7.1	1 8.7	1.7	7 2	2 X	15.2	0.2	2 0.	.3 X
HRS070	Х	X	2	6 X	35.3	3 1.6	1.8	3	7 61	1 7.3	8.9	1	1.1	1 X	5.6	X	X	X
HRS071	X	X	6	7 X	23.4	1 8.9	10.4	1	8 50	1.6	5 1.9	1.7	7 2	2 X	3.2	1.36	5 2.	.3 X
HRS072	Х	X	X	X	34	1 0.6	0.7	7 X	149	3.2	3.9	0.6	0.7	7 X	2.2	X	X	1.
HRS073	Х	X	X	X	29.6	2.6	3	3	5 76	5 8.4	10.3	1.6	5 1.9	9 X	4	X	X	0.
HRS074	X	Х	Х	X	34.8	3 1.2	1.4	1 X	383	3 12.2	14.9	1	1.1	1 X	6	Х	X	Х
HRS075	X	Х	Х	X	34.9) 1	1.3	L X	118	6.4	7.8	0.4	1 0.5	5 X	3.2	Х	X	
HRS076	X	Х	Х	X	34.3	0.1	Х	Х	162	2 0.3	0.4	Χ	Х	X	0.4	Х	X	1.
HRS077	X	Х	Х	X	32.7	7 0.2	0.3	3 X	175	5 X	X	Х	Х	X	0.7	Х	X	1.
HRS078	X	X	X	X	24.3	3 2.1	2.4	1	3 345	5 0.5	0.7	0.5	0.5	5 X	3.9	0.06	5 X	X
CHECKS																		
HRS075	Х	X	X	X	34.4	1 1	1.3	L X	120	7.6	9.3	0.5	0.6	5 X	3.4	Χ	Х	
STANDARDS																		
OREAS 45f																		
OREAS 927b																		
ECRM 683-1																		
OREAS 100a	X	1.1	X	X	33	3 23.7	27.5	5	8 36	5 3.6	5 4.4	3.6	5 4.2	2 X	50.6	0.23	3 0.	.4
OREAS 20b	0.13	X	X	X	32.9	8	9.2	2	5 162	2 1.1	1.3	1.1	1.3	3 X	16	0.3	7 0.	.6
AMIS0339																		
OREAS 922b																		
AMIS0516																		
BLANKS																		
Control Blank	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0.0	5 X	Х

ELEMENTS	Tm	Tm2O3	U	U3O8	V	W	WO3	WTTOT	Υ	Y2O3	Yb	Yb2O3	Zn	Zr
UNITS	ppm	g	ppm	ppm	ppm	ppm	ppm	ppm						
DETECTION	0.1	0.2	0.1	. 0.2	50)	1	2 0.01	0.5	1	0.1	0.2	20	į
METHOD	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP6/OE	FP6/MS	FP6/MS	WT01	FP6/MS	FP6/MS	FP6/MS	FP6/MS	FP1/OE	FP6/MS
COMMENTS: 2375.0/2512207 (08/08/2025) CLIENT O/N: 100804 1/1														
SAMPLE NUMBERS														
HRS067	14.4	16.5	815.5	961.6	187	2	1 X	1051	1565.4	1988	86.3	98.2	43	173
HRS068	24.1	27.6	2041.2	2407.1	206	5	3	4 1881	2013.3	2557	152.8	174	120	1046
HRS069	1.7	2	97.2	114.6	197	2	1 X	809	92.7	118	13.2	15	116	206
HRS070	1.1	1.3	20	23.6	X		3 1	0 1075	69.4	88	7.9	9	35	45
HRS071	0.7	0.8	6.3	7.4	467	2	1 X	967	50.9	65	4.3	4.8	144	107
HRS072	1	1.2	4.6	5.4	X		2	2 703	45.5	58	7.5	8.5	Χ	17
HRS073	1.8	2.1	6.3	7.4	X		5	7 653	122.9	156	12.4	14.1	24	69
HRS074	1.2	1.4	13.9	16.3	X	X	X	1719	68.7	87	8.8	10	Χ	59
HRS075	0.6	0.7	7.5	8.8	Χ	Х	X	921	30	38	4.5	5.1	Χ	18
HRS076	X	Х	3.5	4.2	X	Х	X	912	3.4	4	0.4	0.5	Х	Х
HRS077	X	Х	1.7	2	X	Χ	X	732	2.8	4	0.6	0.7	Х	29
HRS078	0.4	0.5	13.6	16	120	X	X	1560	27.5	35	2.8	3.2	93	30
CHECKS														
HRS075	0.7	0.8	8.6	10.1	X	X	Х		35	44	4.9	5.6	Х	18
STANDARDS														
OREAS 45f														
OREAS 927b													120	
ECRM 683-1														
OREAS 100a	2.2	2.5	135.8	160.1	X	10) 1	2	135.3	172	14.8	16.8		543
OREAS 20b	0.5	0.5	4.7	5.6	80	13	3 1	7	33.4	42	2.9	3.3		242
AMIS0339														
OREAS 922b													76	
AMIS0516														
BLANKS														
Control Blank	X	Χ	X	X	53	3	1 X		X	X	X	Χ	Χ	(