ASX ANNOUNCEMENT RELEASED 14 AUGUST 2025 ASX: WCN; OTCQB: WCMLF # Sediment Hosted Copper Discovery at Rae Copper Project White Cliff Minerals Limited ("WCN" or the "Company") (ASX: WCN; OTCQB: WCMLF) is pleased to announce the discovery of sediment hosted copper during the maiden drilling program at the Rae Copper Project ("Rae" or "Project"). The discovery of sediment hosted copper is accompanied by semi-massive sulphide veining directly beneath the copper-bearing sediments. Cautionary Statement: The Company cautions that, with respect to any visual mineralisation indicators, visual observations and estimates of mineral abundance and uncertain in nature and should not be taken as a substitute or proxy for appropriate laboratory analysis. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results from the drilling and sampling programmes will be required to understand the grade and extent of mineralisation. Initial assay results are expected in the September quarter. - Discovery diamond drillhole STK25001 has intercepted a broad zone of sulphide mineralisation within the lower Rae Group sediments, representing the first confirmed sediment-hosted copper system at the Rae Copper Project: - Drillhole observations include 16m of chalcopyrite-bornite bearing sediments from 175m - Further **semi-massive chalcopyrite-bornite** is observed from 290m to 295m downhole, attesting to the potential for vein systems adjacent to sediment hosted copper mineralisation - Chalcopyrite is observed replacing inferred diagenetic pyrite, disseminated in sandstone beds, forming sulphide veinlets and within quartz-calcite veins and breccias - The style of mineralisation and position above a major unconformity/redox boundary are both hallmarks of a sedimentary hosted copper system - The drillhole targeted sediments adjacent to the Herb Dixon Fault, a major structure which runs north-south through the Company's property. These observations, alongside results¹ from surface confirm this fault as a major copper-fertile conduit capable of hosting large mineralising systems - Follow up drilling is underway at the Stark target area, stepping out from the discovery drillhole to vector towards a possible bornite and/or chalcocite zone within these typically zoned copper systems - The Stark target is a very large geophysical conductor that is yet to be tested by drilling with a **strike length of** >15km x 2km, that lies on a major structure, the Herb Dixon fault - Based on this understanding the Company has recently expanded its land holdings to the north, with the addition of ~950km² of mineral claims (Figure 8). These licences secure a newly identified intersection of the Herb Dixon Fault (the main copper conduit) to a previously untested and newly identified sedimentary package with known copper occurrences to the north - This strategic acquisition reinforces White Cliff's leading position in the Rae Basin and adds multiple high-priority exploration targets. $^{^{1}}$ ASX announcement 4 October 2024 "Large Scale Copper Discovery Confirmed at Rae Project" "White Cliff holds a dominant land package with over 72km untested strike length of the lower Rae Group, now a proven host to sedimentary copper mineralisation. This drillhole is an important proof of concept, validating our thesis that the Rae Project hosts significant sediment-hosted copper mineralisation. To encounter strong sulphides in both the overlying sediments and in a vein system beneath them highlights the Herb Dixon Fault as a major fluid conduit – a critical control in these systems. Rae is fast emerging as a multi-faceted copper discovery, with world-class intercepts at Danvers now extending over 800 metres, a new zone of over 4 kilometres to the southwest, and fresh confirmation of sediment-hosted copper and semi-massive sulphides at Stark. Our additional landholding to the North reinforces White Cliff's leading position in the Rae Basin and adds multiple highpriority exploration targets in this emerging copper district in Canada's West Kitikmeot region." Troy Whittaker - Managing Director This announcement has been approved by the Board of White Cliff Minerals Limited. ### FURTHER INFORMATION Figure 1 - White Cliff's Rae Copper Project Area (excluding newly acquired tenure - see Figure 10) Drillhole STK25001 was conceived to test a geophysical anomaly sitting within the Herb Dixon Fault Zone and has validated that the processes have occurred that are required for the formation of sediment hosted copper deposits within the Rae Copper Project. Previously identified first order controls have been affirmed and the search space for sediment hosted copper deposits expanded. Sitting south of the mapped extents of Rae Group sediments the drillhole was inclined towards the fault zone to test for a mineralised fault breccia, like the Company's Danvers copper system. Interpretation of the magnetic response from the 2024 MobileMT shows a subdued signal with strong linear magnetic lows indicating possible sediments crosscut by major structures, which were confirmed by drilling. Within reduced sediments of the lower Rae Group chalcopyrite with minor bornite can be observed replacing diagenetic pyrite nodules, disseminated within sandstone intervals, cross-cutting bedding in sulphide veinlets and present within quartz-carbonate veins and breccias. The mineralised zone sits above the unconformable contact with the Husky Creek Formation, a package of "red-bed" sediments consisting of hematite rich sandstones and mudstones intercalated with hematite rich basalts and peperites. This Rae Group – Husky Creek Formation unconformity is interpreted as a substantial redox boundary, offering the required chemical contrast for copper sulphide precipitation. Reduced facies sediment hosted copper deposits are typically zoned, with transition from distal chalcopyrite grading into more proximal bornite and chalcocite. Further drilling at the Stark target aims to vector within the mineralised system towards the fluid upflow zone and bornite-chalcocite mineralisation. Beneath the sediment hosted copper mineralisation, within the Husky Creek Formation a series of banded quartz-calcite veins were intersected, hosting intervals of semi massive chalcopyrite-bornite mineralisation. This adds a second style of mineralisation encountered in STK25001, the first drillhole into the target area. It is a testament to the fertility of the structures and their capacity to host multiple copper-bearing systems within the Rae Project. Figure 2 - Map of the location of STK25001 drillhole which encountered both sediment hosted copper mineralisation and substantial chalcopyrite bearing epithermal veining. Perth, WA 6000 Australia Figure 3 - Diamond drilling underway at STK25001. Figure 4 - Example of chalcopyrite-bornite-quartz-carbonate veining within the Husky Creek Formation of STK25001 at 291.4m. Core diameter is NQ2. Cautionary Statement: The Company cautions that, with respect to any visual mineralisation indicators, visual observations and estimates of mineral abundance and uncertain in nature and should not be taken as a substitute or proxy for appropriate laboratory analysis. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results from the drilling and sampling programmes will be required to understand the grade and extent of mineralisation. Initial assay results are expected in the September quarter. Perth, WA 6000 Australia Figure 4 - Example of chalcopyrite-bornite hosting quartz-carbonate veining within the lower Rae Group sediments of STK25001 between 181.30 and 181.52m downhole. Core diameter is NQ2. Cautionary Statement: The Company cautions that, with respect to any visual mineralisation indicators, visual observations and estimates of mineral abundance and uncertain in nature and should not be taken as a substitute or proxy for appropriate laboratory analysis. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results from the drilling and sampling programmes will be required to understand the grade and extent of mineralisation. Initial assay results are expected in the September quarter. Figure 5 - Example of chalcopyrite replacement of inferred diagenetic pyrite nodules within reducing sediments of the lower Rae Group between 182.24 and 182.52m downhole in STK25001. Core diameter is NQ2. Cautionary Statement: The Company cautions that, with respect to any visual mineralisation indicators, visual observations and estimates of mineral abundance and uncertain in nature and should not be taken as a substitute or proxy for appropriate laboratory analysis. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results from the drilling and sampling programmes will be required to understand the grade and extent of mineralisation. Initial assay results are expected in the September quarter. Figure 6 - Example of banded quartz-calcite epithermal veining with semi-massive chalcopyrite between 290.95 and 293.38m downhole in STK25001. Cautionary Statement: The Company cautions that, with respect to any visual mineralisation indicators, visual observations and estimates of mineral abundance and uncertain in nature and should not be taken as a substitute or proxy for appropriate laboratory analysis. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results from the drilling and sampling programmes will be required to understand the grade and extent of mineralisation. Initial assay results are expected in the September quarter. Figure 7 - Example of banded
quartz-calcite epithermal veining with semi-massive chalcopyrite between 291.10 and 291.59m downhole in STK25001. Cautionary Statement: The Company cautions that, with respect to any visual mineralisation indicators, visual observations and estimates of mineral abundance and uncertain in nature and should not be taken as a substitute or proxy for appropriate laboratory analysis. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results from the drilling and sampling programmes will be required to understand the grade and extent of mineralisation. Initial assay results are expected in the September quarter. ## **RAE COPPER PROJECT - LICENSE EXPANSION** The newly secured claims cover the northern extents of the Herb Dixon Fault Zone, a major north—south structure now confirmed as a copper-fertile fluid conduit following the discovery at Stark. This expansion also captures an additional redox boundary within the Upper Rae Group, located above the reduced-facies system currently being advanced in the lower Rae Group. This horizon was first targeted by Noranda in the 1990s but remains largely untested by modern exploration. Figure 8 - White Cliff's Newly Acquired Mineral Claims The Upper Rae Group hosts a copper-bearing horizon associated with a redox contact between stromatolitic dolomites and overlying permeable sandstones and conglomerates, a well-documented trap for sediment-hosted copper globally. The target units dip gently to the north, offering shallow, walk-up drill opportunities with significant down-dip potential into larger fan systems. Several high-priority targets within the newly acquired area, including untested geochemical anomalies and anomalous EM responses, were identified by White Cliff through a detailed review of legacy datasets. This approach reinforces White Cliff's position at the forefront of identifying and securing the most prospective ground in the Rae Basin. The geological setting is comparable to the Mount Gunson copper district in South Australia and highlights the potential for a large-scale, multi-play copper system within White Cliff's expanded landholding. Table 2 - Visually identified sulphide intervals. STK25001 diamond drillhole. | Hole ID | From
(m) | To (m) | Mineral 1 | Mineral 1 % | Mineral 1
Form | Mineral 2 | Mineral 2 % | 6 | Mineral 2 Form | |----------|-------------|--------|--------------|-------------|-------------------|--------------|-------------|----|-----------------------------| | STK25001 | 81.91 | 88.30 | Pyrite | 0.5 | Veins | Pyrite | 0.5 | | Bedding/lamination parallel | | STK25001 | 103.73 | 113.35 | Pyrite | 0.1 | Veins | Pyrite | 0.1 | | Stringer Veins | | STK25001 | 175.00 | 179.50 | Chalcopyrite | 0.5 | Replacement | Pyrite | 0.5 | | Patchy | | STK25001 | 180.70 | 181.10 | Chalcopyrite | 0.1 | Veins | | | | | | STK25001 | 181.10 | 181.52 | Chalcopyrite | 5 | Veins | Chalcopyrite | 0.5 | | Replacement | | STK25001 | 181.52 | 182.25 | Chalcopyrite | 0.1 | Veins | Chalcopyrite | 0.1 | | Replacement | | STK25001 | 182.25 | 182.65 | Chalcopyrite | 5 | Replacement | | | | | | STK25001 | 182.65 | 183.10 | Chalcopyrite | 1 | Replacement | | | | | | STK25001 | 183.10 | 184.00 | Chalcopyrite | 0.5 | Replacement | | | | | | STK25001 | 184.00 | 185.00 | Chalcopyrite | 0.5 | Replacement | | | | | | STK25001 | 185.00 | 186.00 | Chalcopyrite | 0.5 | Replacement | | | | | | STK25001 | 186.00 | 186.89 | Chalcopyrite | 0.1 | Replacement | | | | | | STK25001 | 186.89 | 188.20 | Chalcopyrite | 1 | Replacement | Bornite | 1 | | Replacement | | STK25001 | 188.20 | 189.00 | Chalcopyrite | 0.1 | Replacement | | | | | | STK25001 | 189.00 | 190.00 | Chalcopyrite | 0.1 | Replacement | | | | | | STK25001 | 190.00 | 191.42 | Chalcopyrite | 0.1 | Replacement | | | | | | STK25001 | 191.42 | 192.00 | Chalcopyrite | 0.05 | Stringer
Veins | Chalcopyrite | 0.05 | | Replacement | | STK25001 | 234.44 | 235.00 | Chalcopyrite | 5 | Veins | Bornite | | 1 | Veins | | STK25001 | 258.40 | 258.42 | Chalcopyrite | 3 | Veins | | | | | | STK25001 | 258.79 | 258.80 | Chalcopyrite | 0.1 | Disseminated | | | | | | STK25001 | 287.60 | 290.90 | Chalcopyrite | 1 | Veins | | | | | | STK25001 | 290.90 | 291.16 | Chalcopyrite | 30 | Veins | Bornite | 3 | | Veins | | STK25001 | 291.16 | 291.72 | Chalcopyrite | 50 | Veins | Bornite | 7 | | Veins | | STK25001 | 291.72 | 292.20 | Chalcopyrite | 5 | Veins | | | | | | STK25001 | 292.20 | 292.95 | Chalcopyrite | 3 | Veins | Bornite | 0.5 | | Veins | | STK25001 | 292.95 | 293.38 | Chalcopyrite | 20 | Veins | Bornite | 0.1 | | Veins | | STK25001 | 293.38 | 293.83 | Chalcopyrite | 3 | Veins | Bornite | 0. | .1 | Veins | | STK25001 | 293.83 | 294.36 | Chalcopyrite | 25 | Veins | Bornite | | 3 | Veins | | STK25001 | 294.36 | 294.51 | Chalcopyrite | 3 | Veins | Bornite | | 3 | Veins | | STK25001 | 297.10 | 297.57 | Chalcopyrite | 3 | Veins | | | | | | STK25001 | 297.57 | 297.89 | Chalcopyrite | 7 | Veins | | | | | | STK25001 | 322.00 | 322.10 | Chalcopyrite | 3 | Veins | | | | | | STK25001 | 340.67 | 340.95 | Bornite | 1 | Veins | | | | | | STK25001 | 341.30 | 341.65 | Bornite | 1 | Veins | | | | | | STK25001 | 357.00 | 357.30 | Chalcopyrite | 3 | Veins | | | | | | STK25001 | 357.45 | 357.79 | Chalcopyrite | 5 | Veins | | | | | Cautionary Statement: The Company cautions that, with respect to any visual mineralisation indicators, visual observations and estimates of mineral abundance and uncertain in nature and should not be taken as a substitute or proxy for appropriate laboratory analysis. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. Assay results from the drilling and sampling programmes will be required to understand the grade and extent of mineralisation. Initial assay results are expected in the September quarter. Table 3 - Rock chip information for samples included in Figure 1. | Sample ID | Easting | Northing | District | Ag (g/t) | Cu (%) | |-----------|---------|----------|----------|----------|--------| | F005965 | 512291 | 7486880 | Vision | 152 | 64.02 | | F005950 | 552872 | 7466464 | Rocket | 14 | 54.12 | | F005921 | 541649 | 7468525 | Thor | 34 | 54.02 | | F005996 | 468678 | 7514161 | Wanda | 4 | 24.1 | Table 4 - Collar location information for reported drillholes | Hole ID | Datum | CRS | Easting | Northing | Dip | Azimuth | Depth (m) | |----------|-------|--------------|---------|----------|-----|---------|-----------| | STK25001 | NAD83 | UTM Zone 11N | 508198 | 7507265 | -65 | 270 | 366 | ### **COMPETENT PERSONS STATEMENT** The information in this report that relates to exploration results, mineral resources or ore reserves is based on information compiled by Roderick McIllree, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr McIllree is an employee of White Cliff Minerals. Mr McIllree has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr McIllree consents to the inclusion of this information in the form and context in which it appears in this report. #### JORC COMPLIANCE STATEMENT Where statement in this announcement refer to exploration results which previously been reported, the Company confirms that it is not aware of any new information or data that materially affects the information included in the original announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially modified from the original market announcements. ## **CAUTION REGARDING FORWARD-LOOKING STATEMENTS** This document may contain forward-looking statements concerning White Cliff Minerals. Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward-looking statements because of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information by White Cliff Minerals, or, on behalf of the Company. Forward-looking statements in this document are based on White Cliff Minerals' beliefs, opinions and estimates of the Company as of the dates the forward-looking statements are made, and no obligation is assured to update forward-looking statements if these beliefs, opinions and estimates should change or to reflect future developments. ## **ABOUT WHITE CLIFF MINERALS** The **Great Bear Lake** area is Identified as having Canada's highest probability for the hosting of iron-oxide-copper-gold uranium plus silver-style mineralisation in the Country. Results from the Company's maiden exploration include **42.6% Cu**, **39.5% Cu** and **38.2g/t Au** from the Phoenix prospect and the **highest-grade silver rock chip** assays in recent history **7.54% Ag** and **5.35% Ag** from Slider The Rae Cu-Ag project contains numerous high grade Cu mineralisation occurrences and hosts all first-order controls for a sediment-hosted copper deposit and includes a historic resource estimate of 4.16 million tons at a grade of 2.96% Cu². Highlights from the maiden drilling campaign include 175m @ 2.5% Cu & 8.66g/t Ag, 90m @ 4% Cu & 7.5g/t Ag, 58m @ 3.08% Cu & 13.3g/t Ag, 105m @ 2.25% Cu, 63m @ 2.23% Cu, and 75m @ 2% Cu. The historic resource estimate at the Danvers Prospect, is a historic estimate and not in accordance with the JORC Code. The Company notes that the estimate and historic
drilling results dated 1967 and 1968 are not reported in accordance with the NI 43-101 or JORC Code 2012. A competent person has not done sufficient work to disclose the estimate/results in accordance with the JORC Code 2012. It is possible that following further evaluation and/or exploration work that the confidence in the estimate and reported exploration results may be reduced when reported under the JORC Code 2012. The supporting information provided in the announcement dated 26 November 2024 continues to apply and has not materially changed. ### For further information, please contact: **Troy Whittaker** - Managing Director **E:** info@wcminerals.com.au White Cliff Minerals T: +61 8 9486 4036 ² See ASX Announcement dated 26 November 2024 "WCN Acquires Highly Prospective and Proven Copper Project" # **APPENDIX 1.** The following Tables are provided to ensure compliance with the JORC Code (2012 Edition) requirements for the reporting of Exploration Results at the Rae Copper Project. ## **SECTION 1: SAMPLING TECHNIQUES AND DATA** (Criteria in this section applies to all succeeding sections) | Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. | • | 2025 Reverse circulation (RC) drilling by White Cliff Minerals. Drilling completed by Northspan Explorations Ltd. The drillholes were sampled in their entirety on 5-foot (1.52m) intervals. Returned material was passed through a level 3-tier riffle splitter, producing a 12.5% sample split and a retention sample. Representative chips for logging were taken from the retention sample by sieving from the retention sample. Chips are washed at the camp location, prior to storage in chip trays. 2025 Reverse circulation (RC) drilling by White Cliff Minerals - Samples are sent to ALS Yellowknife for preparation under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised | |--|---|---| | These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to | • | | | | | to better than 85% passing 75 microns. Followed by multi-element ICP-MS analysis after 4-acid digestion (ME- | | ensure sample representivity and the | | MS61) and fire assay gold (Au-ICP21). | | ppropriate calibration of any measurement ools or systems used. | • | 2025 diamond drilling (DD) by White Cliff Minerals. Drilling was completed by Northtech Drilling Ltd and Azrock Core was sampled after geological logging and sample interval markup by the logging geologist. A standard interval of 1.5m was employed with sample intervals breaking at changes in lithology, alteration or | | Aspects of the determination of | | mineralisation. Half core or quarter core (duplicates) were produced for assay samples. | | mineralisation that are Material to the Public
Report. | • | 2025 diamond drilling (DD) by White Cliff Minerals – Samples are sent to ALS Yellowknife for preparation under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to | | In cases where 'industry standard' work has
been done this would be relatively simple | | better than 85% passing 75 microns. Followed by multi-element ICP-AES analysis after 4-acid digestion (ME-ICP61). | | (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. | • | 2024 rock chip samples from the Nunavut based Rae Copper Project were sent to Yellowknife via secure air freight, and received by an employee of Aurora Geosciences Ltd., who ensured sample security and maintained custody until delivered to ALS laboratories, Yellowknife for preparation. Samples are prepared under code PREP-31D and analysed by ME-ICPORE, an analysis package designed for massive sulphides. Overassay (>40% Cu) are undertaken by Cu-VOL61. Samples with visible native copper were analysed by Cu-SCR21. All samples from Danvers target area underwent gold analysis by 30g fire assay and ICP-AES under code Au-ICP21, samples from | | to As m Re ln be ob pu as | ols or systems used. spects of the determination of ineralisation that are Material to the Public eport. cases where 'industry standard' work has een done this would be relatively simple e.g., 'reverse circulation drilling was used to otain 1 m samples from which 3 kg was alverised to produce a 30 g charge for fire say'). In other cases, more explanation may be required, such as where there is coarse | cases where 'industry standard' work has een done this would be relatively simple e.g., 'reverse circulation drilling was used to otain 1 m samples from which 3 kg was alverised to produce a 30 g charge for fire say'). In other cases, more explanation may be required, such as where there is coarse old that has inherent sampling problems. | (e.g., submarine nodules) may warrant disclosure of detailed information. - directly to both the WCN senior geologist and country manager to undertake independent quality control before release of results. - 2025 rock chip samples from the Nunavut based Rae Copper Project will be shipped to Yellowknife via secure air freight, and received by an employee of Aurora Geosciences Ltd., who ensures sample security and maintains custody until delivered to ALS laboratories, Yellowknife for preparation. Samples will be prepared under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Followed by multi-element ICP-MS analysis after 4-acid digestion (ME-MS61) and fire assay gold (Au-ICP21). - Historic drilling completed by Kaizen Discovery Corp. Diamond drillhole CP15-DD009, half core samples were sent to ALS Minerals preparatory lab in Yellowknife, N.T., followed by secure transport to and multi element assay at ALS's laboratory in North Vancouver, B.C. Analytical procedures consisted of 33 Element Four Acid ICP-AES, followed by automatic Ore Grade Four Acid ICP-AES for all copper over limits. - 2003/2005 diamond drilling completed by Coronation Minerals produced half core samples which were flown to Loring Laboratories Inc. of Calgary for assay in the 2005 campaign, 2003 samples were sent to ALS Chemex (Vancouver). The entire sample was crushed to 2mm using a primary jaw and secondary cone crusher. The sample was homogenized and a split of 250-350 grams is taken and pulverized using a TM ring and puck pulverizer to 95 % -150 mesh. The pulp is then rolled 100 times to ensure complete homogenization placed in a sample bag ready for analysis. 0.5 g was digested by HCI, HNO3 and HCIO4 and analysed for copper and nickel by ICP. Silver was analysed after HNO3 and HCI digestion followed by atomic absorption, with samples greater than 30 ppm silver re-analysed with fire assay with gravimetric finish. Gold and PGMs were analysed by a 30 g split by fire assay followed by ICP analysis. #### **Drilling techniques** - Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic etc.) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is orientated and if so, by what method, etc.). - 2025 Reverse circulation (RC) drilling by White Cliff Minerals drilling was completed by reverse circulation (RC) drilling methods by Northspan Explorations Ltd. utilising a heli-portable hornet machine. 5-foot rod intervals with a 3.5-inch face sampling hammer with inner-tube assembly and 3.5-inch string diameter. - 2025 diamond drilling (DD) by White Cliff Minerals completed by diamond drilling methods by Northtech Drilling Ltd. A heli-portable Zinex A5 rig using standard NQ rod diameter. The core was not oriented. Azrock drilling completed NQ2 diameter hole using a heli portable Multi-Power Products Discovery 1 Boyles-15 rig. The core was not oriented. - Historic drilling completed by Kaizen Discovery Corp. in 2015 utilised a diamond drilling rig operated by Peak Drilling contractors. NQ2 diameter was used. Core-orientation procedure is unknown. Standard or triple tube drilling is unknown. - 2003/2005
conventional diamond drilling (LY 38 drill model) of NQ core diameter. # Drill sample recovery - Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. - 2025 RC drilling by White Cliff Minerals changes sample recovery and sample condition at the rig site during drilling operation. An estimation (qualitative) of recovery was completed on the sample returned from the complete drill interval if loss is believed to have occurred. Reasons for loss discussed between rigsite geologist and driller. Wet samples have not been encountered. Sample bias is believed to be negligible due to a preferential loss of fine/coarse material. Riffle splitting of the returned material to generate a sample produces a homogenous sample for the interval, ensuring representative sampling. Field duplicate samples are taken by spearing the homogenised retention sample, post riffle splitting. - 2025 diamond drilling (DD) by White Cliff Minerals core recovery and rock quality designation (RQD) are measured by logging geologists and technicians of contractor Aurora Geosciences Ltd on a per drill run basis, of 3m. Recovery is calculated as the relationship between drilled interval and length of recovered core. No relationship between grade and recovery can be determined currently due to no assays received for 2025 diamond drilling. - 2015 Kaizen Discovery Corp Core recovery was calculated as the difference between drilled intervals between drillers core blocks and the length of recovered core. Representative core samples were taken by sampling half core, cutting the core along the long axis with an electric powered core saw. No relationship is observed between recovery and grade for drillhole CP15_DD009 which returned 99.5% core recovery. - 2003/2005 diamond drilling completed by Coronation Minerals No note of core recovery within source publication for Coronation Minerals' program. Representative half core samples were taken for assay. No relationship between grade and recovery can be commented on due to lack of recovery information. #### Logging - Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. - The total length and percentage of the relevant intersections logged. - 2025 RC drilling by White Cliff Minerals All intervals returned are logged for lithology and mineralisation at the camp location. - 2025 diamond drilling (DD) by White Cliff Minerals All recovered drillcore is logged for lithology, alteration and mineralisation at the camp location by an Aurora Geosciences contractor. All recovered core is photographed wet and dry. - 2024 and 2025 rock chip sampling by White Cliff Minerals sampling was undertaken on surface alongside lithologic, alteration and mineralisation logging. Data input presented in tabulated form alongside coordinates and sample numbers. - High resolution photographs are available for RC chips and diamond drillcore from the 2025 program. - 2015 Kaizen Discovery Corp core was logged for lithology, alteration, mineralisation and structure. All recovered intervals were logged. - 2015 Kaizen Discovery Corp core photography is not available. Photographs of select intervals are available. ## 2003/2005 diamond drilling completed by Coronation Minerals - Core intervals were logged within a core shack at the Hope Lake Airstrip. Descriptive notes are recorded including note of rock type, alteration and mineralised intersections. No geotechnical logging is available. The level of detail would not be sufficient for inclusion in a Mineral Resource estimation to JORC standards. All recovered core was logged. No photographs of the drillcore are available. ## Sub-sampling techniques and sample preparation - If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled. - 2025 RC drilling by White Cliff Minerals Holes were sampled in full using 1.52m intervals as per the 5-foot rod lengths of the rig. Assay samples were collected as a 12.5% split from a 3-tier riffle splitter used to ensure a homogenous and representative sample of the drilled interval. - 2025 RC drilling by White Cliff Minerals sample size is deemed appropriate to the base metal mineralisation which is hosted by fine to medium grained copper sulphides and their associated secondary minerals (malachite, azurite). - 2025 diamond drilling (DD) by White Cliff Minerals Drillcore is sampled on a nominal 1.5m interval, breaking at lithology, alteration or mineralisation boundaries. Half core is sampled for standard sample intervals, cut by a Husqvarna target portasaw ts355g. Quarter core intervals are used for duplicate insertion. - 2024 and 2025 rock chip sampling by White Cliff Minerals Rock chip sample sizes are deemed appropriate for the style of mineralisation targeted and able to quantify the precious and base metal content. A range of 0.56-1.96 kg of material was assayed with an average of 1.1kg for 2024 samples. - 2015 Kaizen Discovery Corp Standard half core intervals were assayed. Quarter core duplicate samples were taken at specified intervals downhole as part of the quality assurance and control protocols. A total of 6 quarter core samples were taken within the reported drillhole. - 2003/2005 diamond drilling completed by Coronation Minerals Half core samples taken, split by hand on site. The nature of sample preparation is deemed fit for purpose for the target mineralisation style. No note of field duplicates are recorded by Coronation Minerals. Loring Laboratories conducted lab duplicate analyses. Sampling of half core is deemed appropriate for the mineralization being targeted. # Quality of assay data and laboratory tests - The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, - 2025 RC drilling by White Cliff Minerals Samples are sent to ALS Yellowknife for preparation under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Followed by multi-element ICP-MS analysis after 4-acid digestion (ME-MS61) and fire assay gold (Au-ICP21). 4-acid digestion is considered a near-total digestion except for barite, rare earth oxides, columbite-tantalite, and titanium, tin and tungsten minerals, which may not be fully digested. Overassay completed by OG-62 methods. - A schedule of quality control samples is inserted into the sample stream at a rate of 10%, including field duplicates, coarse blanks (OREAS C26e), and certified reference materials OREAS930 and OREAS922. Field duplicates were taken from the retention sample by spearing the homogenised chips after riffle splitting. - reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. - 2025 diamond drilling (DD) by White Cliff Minerals Samples are sent to ALS Yellowknife for preparation under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Followed by multi-element ICP-AES after 4-acid digestion (ME-ICP61). 4-acid digestion is considered a near-total digestion except for barite, rare earth oxides, columbite-tantalite, and titanium, tin and tungsten minerals, which may not be fully digested. Overassay completed by OG-62 methods. A schedule of quality control samples is inserted into the sample stream at a rate of 10%, including field duplicates, coarse blanks (OREAS C26e), and certified reference materials OREAS930 and OREAS922. - Further to the inserted quality control samples ALS Laboratories conducts their own QC including reference materials during the analyses, matching the element concentrations to those observed in the analysis dataset, ensuring quality in reported assay results. - 2025 rock chip sampling will be shipped to Yellowknife via secure air freight, and received by an employee of Aurora Geosciences Ltd., who ensures sample security and maintains custody until delivered to ALS laboratories, Yellowknife for preparation. Samples will be prepared under code PREP-31B, which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Followed by multi-element ICP-MS analysis after 4-acid digestion (ME-MS61) and fire assay gold (Au-ICP21). - 2025 rock chip sampling by White Cliff Minerals Blanks are inserted at a rate of 4% (OREAS C26e), no field duplicates of certified reference materials are inserted into the sample stream. - 2024 rock chip sampling by White Cliff Minerals Sent to Yellowknife via
secure air freight, and received by an employee of Aurora Geosciences Ltd., who ensured sample security and maintained custody until delivered to ALS laboratories, Yellowknife for preparation. Samples are prepared under code PREP-31D and analysed by ME-ICPORE; an analysis package designed for massive sulphides. Overassay (>40% Cu) are undertaken by Cu-VOL61. Samples with visible native copper were analysed by Cu-SCR21. All samples underwent gold analysis by 30g fire assay and ICP-AES under code Au-ICP21. - 2024 rock chip sampling by White Cliff Minerals Blanks (BL-10 CDN Laboratories) were inserted at a rate of 4 %. No field duplicates or certified reference materials were inserted into the sample stream. - 2015 Kaizen Discovery Corp Samples were analysed by ALS laboratories Vancouver using prep code PREP-31B which entails crushing to 70% less than 2mm, riffle splitting 1kg, with the split pulverised to better than 85% passing 75 microns. Analysis by ME-ICP61, a four-acid (near total) digestion followed by multi-element ICP-AES finish. A total of 6 quarter core samples were taken within the reported drillhole. - 2003/2005 diamond drilling completed by Coronation Minerals -0.5 g was digested by HCl, HNO3 and HClO4 and analysed for copper and nickel by ICP. Silver was analysed after HNO3 and HCl digestion followed by atomic absorption, with samples greater than 30 ppm silver re-analysed with fire assay with gravimetric finish. Gold and PGMs were analysed by a 30 g split by fire assay followed by ICP analysis. Digestion for copper and nickel is noted | | | | | to be a partial digestion. No geophysical tools were used. No note of insertion of quality control samples, including blanks, standards or duplicates were noted by Coronation Minerals. Loring Laboratories conducted lab duplicate analyses. | |---------------------------------------|---|---|---|---| | Verification of sampling and assaying | • | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. | • | 2025 RC and diamond drilling by White Cliff Minerals – Primary data collection is completed by White Cliff Minerals employees or contracting geologists from Aurora Geosciences Ltd. Data is entered into Excel logging templates and reviewed by White Cliff Minerals senior geologist. Data is then stored on a cloud server with 2-factor authorisation. All received results are reviewed by the senior geologist, country manager and designated competent person. | | | Ċ | procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | ٠ | No independent review of the historic drilling (2003/2005) has been completed by personnel independent to White Cliff Minerals. Documentation of primary data in historic programs is unknown. | | | • | | i | 2015 Kaizen Discovery Corp – Data was entered into Excel logging templates. No information regarding data verification and storage protocols are known. | | | | | Ť | No adjustment to assay data, reported intervals are calculated by weighted average accounting for sample length and reported concentration. 2025 RC drilling by White Cliff Minerals – drilled intervals are recorded on site in feet (Imperial) and later converted to metres (metric) as per 1 foot = 0.3048 metres. | | | | | ٠ | No twin holes are reported. | | Location of data points | • | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other | Ī | 2025 RC and diamond drilling by White Cliff Minerals – Collar locations were pegged out using a Garmin GPSMAP 66sr (Multiband) with foresight and backsight stakes demarcating the azimuth. | | | | locations used in Mineral Resource estimation. | | 2024 and 2025 rock chip sampling by White Cliff Minerals - Locations of reported rock chip assay results are in NAD83 / UTM Zone 11 N. Positions of samples determined in the field by handheld Garmin GPSMAP 66sr or Garmin GPSMAP 65 units. | | | 1 | Specification of the grid system used. | ÷ | 2015 Kaizen Discovery Corp – No note of collar survey method or method of downhole surveying. | | | | Quality and adequacy of topographic control. | • | Coordinates of drillholes from the 2003/2005 Coronation Minerals program are presented in NAD83 UTM Zone 11N. Location of collars was determined by handheld GPS. | | | | | ١ | Topographic control is provided by a DTM created from the Canvec data series, an open-source dataset from the Government of Canada, Natural Resources. Data provided as ESRI shapefile with 10m contours. | | Data spacing and distribution | • | Data spacing for reporting of Exploration Results. | • | 2025 RC and diamond drilling by White Cliff Minerals – Maiden drilling program spacing of collars between 28 and 60 m at the Danvers target area. Drilling at the Hulk target is planned on a regional scale with kilometres between | | | • | Whether the data spacing, and distribution is
sufficient to establish the degree of geological
and grade continuity appropriate for the | | holes. Additional work will be required at all targets to establish continuity for inclusion in estimation to JORC standards. | | unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling completed with azimuth towards the SSE, perpendicular to the strike of the inferred mineralisation. Oblique intersections of the hole and the mineralisation is expected, and thus all reported intervals are drilled widths, not true thicknesses. More work will be required to understand the trend of mineralisation at Danvers and report true thicknesses. Drilling at the Hulk target, or other sedimentary hosted copper targets in the Rae Group is conducted by vertical drillholes to intersect the sedimentary hosted copper targets in the Rae Group is conducted where mineralisation or alterated by vertical drillholes to intersect the sedimentary hosted copper targets in the Rae Group is conducted where mineralisation or alterated by vertical drillholes were to a sampling is conducted by vertical drillholes to intersect the SESE, perpendicular to the strike of the intervals are drilled width | | | | | | |--|---|---
---|---|--| | pplied. CP15_D008 located 10 km east. This drilling does not have sufficient data density to inform geological or grade continuity. 2003/2005 diamond drilling completed by Coronation Minerals – drillinoles cover 656 m NE/SW dimension with spacing of between 30 and 150m between adjacent drillinoles. The drilling completed by Coronation Minerals is not sufficient for a mineral resource estimation to JORC standards. No sample compositing applied. Orientation of data in the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling blas, this should be assessed and reported if material. 2024 and 2025 rock chip sampling by White Cliff Minerals – Grab sampling is conducted where mineralisation or intersect the sediments near perpendicular as they dip <5 degrees to the north. 2024 and 2025 rock chip sampling by White Cliff Minerals – Grab sampling is conducted where mineralisation or alteration of interest is observed. Sampling is conducted as a composite of the outcrop to produce a representative sample. 2015 Kaizen Discovery Corp – Reported drillhole is vertical, this is deemed appropriate to test the shallow north dipping sediments. The 2003/2005 drillholes were conducted at inclinations of between –60 and -65. The intersection angle with the known mineralisation is unknown, therefor a drilled interval length is presented, the assay intervals are not treated as true thicknesses. All drillholes were towards 150 azimuth (SSE) to intersect the NE/SW trending zone perpendicular to strike. 2025 RC and dilling (MD) by White Cliff Minerals – Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample farm in a remote field camp before transporting to Yellowkinfe by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and delivered directly to ALS preparations. | | | | • | | | spacing of between 30 and 150m between adjacent drillholes. The drilling completed by Coronation Minerals is not sufficient for a mineral resource estimation to JORC standards. No sample compositing applied. 2025 RC and diamond drilling by White Cliff Minerals – Mineralisation at Danvers is hosted within a breccia/vein unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation on the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 2024 and 2025 rock chip sampling by White Cliff Minerals - Grab sampling is conducted where mineralisation or alteration of interest is observed. Sampling is conducted as a composite of the outcrop to produce a representative sample. 2015 Kaizen Discovery Corp - Reported drillhole is vertical, this is deemed appropriate to test the shallow north dipping sediments. 1 The measures taken to ensure sample security. 2025 RC drilling by White Cliff Minerals - Samples are bagged at the rig site with the corresponding sample tag placed inside the bag and secured by cable ties. Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample farm in a remote field camp before transporting to Yellowknife by chartered flight where the samples were bagged in the core cutting shack immediately | | • | | ١ | CP15_DD008 located 10 km east. This drilling does not have sufficient data density to inform geological or grade | | Orientation of data in relation to geological structure Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. Seemple security The measures taken to ensure sample security The measures taken to ensure sample security The measures taken to ensure sample security Whether the orientation of sampling achieves unbiased sampling achieves unbiased sampling achieves unbiased sampling achieves unbiased sampling proposible structures in the extent to which this is known, considering the deposit type. 2025 RC and diamond drilling by White Cliff Minerals – Mineralisation at Danvers is hosted within a breccia/vein system which strikes NE/SW with a variable dip to the NW inferred. Drilling completed with azimuth towards the SSE, perpendicular to the strike of the inferred mineralisation of Dilique intersections of the hole and the mineralisation is expected, and thus all reported intervals are drilled withs, not true thicknesses. Mori work will be required to understand the trend of mineralisation on a Danvers and report true thicknesses. Mori true thicknesses. Propendicular to the strike of the inferred mineralisation of Dilique intersections of the hole and the mineralisation is expected, and thus all reported intervals are required to understand the trend of mineralisation at Danvers and report true thicknesses. Drilling at the Hulk target, or other sedimentary hosted copper targets in the Rae Group is conducted by extreal drilled wither he sample and report true thicknesses. Drilling at the Hulk target, or other sedimentary hosted copper targets in the Rae Group is conducted where mineralisation or alteration at Danvers and report true thicknesses. Prove work will be required to understand the trend of mineralisati | | | | ١ | spacing of between 30 and 150m between adjacent drillholes. The drilling completed by Coronation Minerals is | | unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced as a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced as a sampling bias, this should be assessed and reported if material. If the relationship between the drilling orientation of key mineralisation is expected, and thus all reported intervals are drilled widths, not true thicknesses. More work will be required to understand the trend of mineralisation at Danvers and report true thicknesses. The Hulk target, or other sediments and these life the Hulk target, or other sediments as they dip <5 degrees to the north. If the relationship between the drilling on pleted with azimuth towards the SSE, perpendicular to the strike of the inferred mineralisation. Oblique intervals and report the thicknesses. And required to the Nur fire drilling to the NUV inferred intervals and report true thicknesses. The Hulk target, or other sediments as they dip <5 degrees to the north. If the relationship between the drilling is conducted where mineralisation or alteration of interest is observed. Sampling by White Cli | | | | ٠ | No sample compositing applied. | | target, or other sedimentary hosted copper targets in the Rae Group is conducted by vertical drillholes to intersect the sediments near perpendicular as they dip <5 degrees to the north. 2024 and 2025 rock chip sampling by White Cliff Minerals - Grab sampling is conducted where mineralisation or alteration of interest is observed. Sampling is conducted as a composite of the outcrop to produce a representative sample. 2015 Kaizen Discovery Corp - Reported drillhole is vertical, this is deemed appropriate to test the shallow north dipping sediments. The 2003/2005 drillholes were conducted at inclinations of between -60 and -65. The intersection angle with the known mineralisation is unknown, therefore a drilled interval length is presented, the assay intervals are not treated as true thicknesses. All drillholes were towards 150 azimuth (SSE) to intersect the NE/SW trending zone perpendicular to strike. Sample security The measures taken to ensure sample security. 2025 RC drilling by White Cliff Minerals - Samples are bagged at the rig site with the corresponding sample tag placed inside the bag and secured by cable ties. Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample arm in a remote field camp before transporting to Yellowknife by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and delivered directly to ALS preparation laboratory
Yellowknife. 2025 diamond drilling (DD) by White Cliff Minerals - Samples were bagged in the core cutting shack immediately | Orientation of data in relation to geological structure | • | unbiased sampling of possible structures and the extent to which this is known, considering | | system which strikes NE/SW with a variable dip to the NW inferred. Drilling completed with azimuth towards the SSE, perpendicular to the strike of the inferred mineralisation. Oblique intersections of the hole and the mineralisation is expected, and thus all reported intervals are drilled widths, not true thicknesses. More work will | | alteration of interest is observed. Sampling is conducted as a composite of the outcrop to produce a representative sample. 2015 Kaizen Discovery Corp – Reported drillhole is vertical, this is deemed appropriate to test the shallow north dipping sediments. The 2003/2005 drillholes were conducted at inclinations of between -60 and -65. The intersection angle with the known mineralisation is unknown, therefore a drilled interval length is presented, the assay intervals are not treated as true thicknesses. All drillholes were towards 150 azimuth (SSE) to intersect the NE/SW trending zone perpendicular to strike. Sample security The measures taken to ensure sample security. 2025 RC drilling by White Cliff Minerals – Samples are bagged at the rig site with the corresponding sample tag placed inside the bag and secured by cable ties. Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample farm in a remote field camp before transporting to Yellowknife by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and delivered directly to ALS preparation laboratory Yellowknife. 2025 diamond drilling (DD) by White Cliff Minerals – Samples were bagged in the core cutting shack immediately | | • | orientation and the orientation of key | | target, or other sedimentary hosted copper targets in the Rae Group is conducted by vertical drillholes to | | dipping sediments. The 2003/2005 drillholes were conducted at inclinations of between -60 and -65. The intersection angle with the known mineralisation is unknown, therefore a drilled interval length is presented, the assay intervals are not treated as true thicknesses. All drillholes were towards 150 azimuth (SSE) to intersect the NE/SW trending zone perpendicular to strike. Sample security The measures taken to ensure sample security. 2025 RC drilling by White Cliff Minerals – Samples are bagged at the rig site with the corresponding sample tag placed inside the bag and secured by cable ties. Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample farm in a remote field camp before transporting to Yellowknife by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and delivered directly to ALS preparation laboratory Yellowknife. 2025 diamond drilling (DD) by White Cliff Minerals – Samples were bagged in the core cutting shack immediately | | | | ١ | alteration of interest is observed. Sampling is conducted as a composite of the outcrop to produce a | | known mineralisation is unknown, therefore a drilled interval length is presented, the assay intervals are not treated as true thicknesses. All drillholes were towards 150 azimuth (SSE) to intersect the NE/SW trending zone perpendicular to strike. Sample security The measures taken to ensure sample security. 2025 RC drilling by White Cliff Minerals – Samples are bagged at the rig site with the corresponding sample tag placed inside the bag and secured by cable ties. Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample farm in a remote field camp before transporting to Yellowknife by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and delivered directly to ALS preparation laboratory Yellowknife. 2025 diamond drilling (DD) by White Cliff Minerals – Samples were bagged in the core cutting shack immediately | | | | t | | | security. placed inside the bag and secured by cable ties. Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample farm in a remote field camp before transporting to Yellowknife by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and delivered directly to ALS preparation laboratory Yellowknife. 2025 diamond drilling (DD) by White Cliff Minerals – Samples were bagged in the core cutting shack immediately | | | | ١ | known mineralisation is unknown, therefore a drilled interval length is presented, the assay intervals are not treated as true thicknesses. All drillholes were towards 150 azimuth (SSE) to intersect the NE/SW trending zone | | | Sample security | • | | • | placed inside the bag and secured by cable ties. Samples were placed into larger rice sacks, which were labelled and cable tied closed. Samples were stored at the sample farm in a remote field camp before transporting to Yellowknife by chartered flight where the samples are met by an employee of Aurora Geosciences Ltd and | | | | | | • | | | | | | | ids and cable tied closed. Samples are then stored in the sample farm of the remote field camp before transporting to Yellowknife by chartered flight where the samples are met by an employee of Aurora Geoscience. Ltd and delivered directly to ALS preparation laboratory Yellowknife. | |-------------------|---|---|---|--| | | | | | ALS Laboratory conduct checks to ensure the delivered samples match the list of samples sent for assay as per the submittal form and all are accounted for. | | | | | | 2015 Kaizen Discovery Corp – No note of measures taken to ensure sample security. | | | | | • | 2003/2005 diamond drilling completed by Coronation Minerals - Samples were stored in self-locking, cable tied sample bags, before being batched into rice sacks, which were also cable tied. Transport from the remote field camp to the laboratory was completed by freighting services. | | Audits or reviews | • | The results of any audits or reviews of sampling techniques and data. | • | No independent site visit or audit/review of the procedures/assay results has been conducted. | ## **SECTION 2: REPORTING OF EXPLORATION RESULTS** (Criteria listed in the preceding section also apply to this section) | Criteria | JORC Code explanation | Commentary | |---|--|---| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Rae Copper Project is made up of 93 mineral claims in 3 blocks and 1 mineral lease in the Kitikmeot region of Nunavut, northern Canada. The claims and lease cover a total area of 1228 km². All mineral claims are in good standing. In November 2024 White Cliff Minerals acquired mineral lease L-2797 from Victoria Copper Inc. granting 100% ownership of the project. Victoria Copper Inc. retained a 1% net smelter royalty (NSR) over production from the lease. White Cliff Minerals can buy back 50% of the NSR for CAD \$1 million in cash and has right of first refusal with respect to the sale of the remaining 50% of the NSR (0.5% NSR). White Cliff Minerals is in possession of a type B water license issued by the Nunavut Water Board and a Class A Land Use Permit granted by the Crown-Indigenous Relations and Northern Affairs Canada allowing the completion of exploration drilling and camp establishment. White Cliff Minerals have obtained permission from the Kitikmeot Inuit
Association to conduct exploration on this property. | # Exploration done by other parties Acknowledgment and appraisal of exploration by other parties. - Tools and idols, made from native copper found in the Coppermine Region have been worked and traded by the local Inuit population going back centuries. - The area first came to the attention of European and English explorers in the 17th century. In 1771 Samuel Hearne reported finding a four-pound native copper nugget at surface. - The Coppermine River area was first staked in 1929 and continued slowly until 1966 when, due to the discovery of several high-grade surface deposits of copper. By late 1967 over 40,000 claims were lodged by more than 70 different companies (E.D. Kindle, 1972). In his report, Kindle locates and gives a brief description of over 80 high grade copper occurrences. - The largest copper deposit in the area is called Area 47 or the DOT 47 Lode in a vertical, tabular body 1,500 feet long and 35 feet wide along one of the faults of the Teshierpi fault zone (Kindle, 1972). The DOT 47 deposit was estimated to host 4,162,000 tons grading 2.96 % copper remaining open at depth and to the southwest. The definition of this deposit by Coppermine River Limited marked the largest exploration effort to date. - Mapping and exploration in the area were conducted over several campaigns by regional workers and individual companies until 1970, when the area was mapped in detail by W.A. Barager and J.A. Donaldson. During this time, Barager conducted a litho-geochemical study of the Coppermine River basalts. E.D. Kindle followed this work and produced the first major collaboration of mineralisation, geology, and geologic history in 1972. Following this, Ross and Kerans (1989) mapped Middle Proterozoic sediments of the Hornby Bay and Dismal Lake Groups to the south and west of the region. - Exploration and development persisted sporadically between 1990 2010, when companies started to utilise geophysics at the Area 47 and Muskox Intrusion to the southeast of the project area, the latter of which witnessed drilling for several years. - Mineral claims in the region continued to lapse because of depressed economic conditions, until most of the Coppermine area was free and available for staking. - Exploration 2013-2015 was conducted by Tundra Copper Corporation, with work from 2013-2014 detailed in Assessment Report 086024. The work completed included geological mapping, rock chip sampling and later diamond drilling in 2015 consisting of 2060 m. - Of importance is the result of a regional drilling program, testing the basal portion of the Rae Group Sediments. A series of 7 vertical drillholes tested the Rae Group Coppermine River Group unconformity, targeting sediment-hosted copper deposits for a total of 1949 m. The final drillhole of the program, furthest to the west, drillhole CP15_DD009 intercepted 29 m at 0.57 % Cu from 197 m depth and noted a zonation of copper sulphides of chalcocite-bornite-chalcopyrite upwards from the unconformity. This interval and zonation of copper sulphides is a significant proof of concept for sediment hosted copper deposits within the Rae Group, possessing similarities with the Central African Copperbelt and Kupferschiefer districts. #### Geology Deposit type, geological setting and style of mineralisation. The Rae Copper Project is located within the north dipping Coppermine Homocline. It unconformably rests on the metamorphic and plutonic rocks of the ca. 1.88-1.84 Ga Wopmay Orogen (Barager et al, 1996). The Hornby Bay Group consists of continental sedimentary and volcanic strata overlain by transitional marine sedimentary rocks of the Dismal Lakes Group. The Coppermine River Group overlie | these older sedimentary groups and form a thick sequence of continental flood basalts capped by red bed | |---| | sandstones. A further unconformity is present where the Rae Group, a sedimentary package sits above | | the Coppermine River Group, defining a return to marine conditions with a possible age of sedimentation | | onset of 1070 Ma (Rainbird et al, 2020). Crosscutting the Coppermine River Group and overlying Rae | | Group are the Coronation Sills, gabbroic composition and believed to have been emplaced at 723 +/- 4Ma | | (Heaman et al, 1992). | Mineralisation in the Rae Copper Project comprises a variety of styles within both the Copper Creek Formation basalts and the overlying basal Rae Group sediments. Chalcocite dominant vein and breccia systems, flow top replacements and sedimentary hosted stratiform copper. Specifically, the reduced-facies sub type of sediment hosted copper deposits, akin to the Central African Copperbelt. # Drill hole Information - A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole, down hole length and interception depth, hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. Collar information for any relevant drillholes are included in table form in this release. # Data aggregation methods - In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - Reported copper intervals were calculated using a length weighted average. No cutting of high grades or cut off grades have been used in the reporting of drilled thickness intervals. - A cut of grade of 2% Cu was utilised for the historic estimate. - No data aggregation techniques have been applied. - No metal equivalent values are being used. | | • | The assumptions used for any reporting of metal equivalent values should be clearly stated. | | | |--|---|--|---|--| | Relationship
between
mineralisation
widths and intercept
lengths | | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). | | 2025 RC and diamond drilling by White Cliff Minerals – Reported results are treated as drilled widths not true thicknesses. Mineralisation at Danvers is hosted within a breccia/vein system which strikes NE/SW with a variable dip to the NW inferred. Drilling completed with azimuth towards the SSE, perpendicular to the strike of the inferred mineralisation. Oblique intersections of the hole and the mineralisation is expected, and thus all reported intervals are drilled widths, not true thicknesses. More work will be required to understand the trend of mineralisation at Danvers and report true thicknesses. Any reported intervals from sedimentary hosted targets are understood to be close to true thickness given the near perpendicular intersection of the sediments in vertical drillholes, unless otherwise stated. 2015 Kaizen Discovery Corp – The downhole width is reported for CP15_DD009, which is interpreted to be very close to true width given the near horizontal orientation of sedimentary bedding which is controlling copper mineralisation. The vertical drillhole is fit for purpose. 2003/2005 diamond drilling completed by Coronation Minerals - Downhole interval thicknesses are
presented. At this stage true widths are not known. Holes drilled in 2003/2005 were inclined between -60 and -65 degrees and have variably oblique intersections with the interpreted mineralisation outline. | | Diagrams | • | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | • | Location maps and sections provided within the release with relevant exploration information contained. | | Balanced reporting | • | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. | : | All exploration results have been reported. The reporting of exploration results is considered balanced by the competent person. | | Other substantive exploration data | • | Other exploration data, if meaningful, should be reported including geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | • | 2,427 line-km of MobileMT airborne geophysics was completed during the 2024 field program at the Rae Copper Project. The survey was conducted by Expert Geophysics using an AS 350 B2 SD2 helicopter of Capital Helicopters. The survey lines were oriented E/W and spaced at 400m intervals, with tie lines running N/S and spaced 4000m apart. The average survey speed was 23m/s with a helicopter terrain clearance of 152m. The magnetometer was on average 81m above terrain and 62m for the EM sensor. Data was controlled for quality, interpolated and underwent 2D inversion, completed by Expert Geophysics. | | Further work | The nature and scale of planned further work
(e.g., tests for lateral extensions or depth | | Drilling at the Rae Project is ongoing and will continue to test the Danvers target area, and the Hulk target for sediment hosted copper mineralisation. | |--------------|--|---|--| | | extensions or large-scale step-out drilling).Diagrams clearly highlighting the areas of | 1 | Further work may involve reassessment of the geophysics data provided by the 2024 MobileMT survey, using the drilling data and new subsurface knowledge to refine geophysical targets. | | | possible extensions, including the main
geological interpretations and future drilling
areas, provided this information is not | ٠ | A detailed surface sampling campaign will also be conducted when conditions allow, focusing on the basal Rae formation and the wider area around the Danvers deposit. | | | commercially sensitive. | 1 | Additional drilling will be planned throughout 2025 which will aid in delivering a maiden JORC compliant mineral resource estimate | ## **SECTION 3: ESTIMATION AND REPORTING OF MINERAL RESOURCES** (Criteria listed in section 1, and where relevant in section 2, also apply to this section) | Criteria | JORC Code explanation | Commentary | |---------------------------|---|---| | Database integrity | Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. | No information is available regarding the transcription of data from data collection to estimation given the historic nature of the estimate. Certain drillhole locations, included in the historic estimate were verified by Coronation Minerals' personnel in 2003/2005. | | Site visits | Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. | The JORC Competent Person has not visited the site which hosts the historic estimation as the project
has been recently acquired. | | Geological interpretation | Confidence in (or conversely, the uncertainty
of) the geological interpretation of the
mineral deposit. | The project is an epigenetic, fault breccia hosted copper-silver deposit. It also hosts intervals of
replacement style mineralization within vesicular flow tops of basalt flows. The deposit style is well
recognized within the Copper Creek Basalt Formation. | | | Nature of the data used and of any
assumptions made. | • Due to the historic nature of the estimate and lack of review of drill core or other evidence an
assumption is made that the assay and geological interpretation is fit for purpose within the historic
estimate. | - The effect, if any, of alternative interpretations on Mineral Resource estimation. - The use of geology in guiding and controlling Mineral Resource estimation. - The factors affecting continuity both of grade and geology. - Alternative interpretations of the deposit style are not believed to have altering effects on the historic estimation. - The orientation of the main breccia body, in line with the major NE/SW trending Teshierpi Fault Zone guided the orientation of historic drilling which was used during the historic estimate. Knowledge of the shallow NE dipping basalt flows informed the drilling and estimation of the flow-top replacement style mineralization. - Continuity in the breccia and host structure depend on the intersection of major and minor faults and fracture zones. Continuity of grade within the flow top replacement bodies is dependent on the primary porosity of the basalt flow tops and their proximity to feeder structures/the main breccia zone. #### **Dimensions** - The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. - The historic estimate covers an average of 40 to 45 ft width with local swelling to over 100 ft. The top of the body appears to have a horizontal attitude along strike with the bottom of defined zones gently plunging to the southwest. The estimate covered 1528 ft strike length with a vertical depth of 600 ft. # Estimation and modelling techniques - The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. - The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. - The assumptions made regarding recovery of by-products. - Estimation of deleterious elements or other non-grade variables of economic significance - The historic estimate did not use computer software and was completed using plan view and 2D sections along completed drill fences. The estimation technique is deemed appropriate for the historic nature of the estimate. - The areas within the outlined blocks were calculated by taking 3 measurements of each block with a planimeter and averaging the readings. - Drill-indicated reserves were computed from specific measurements based on the following: - a) The length of copper bearing diamond drill core intersections - b) The weighted average grade of the above intersections - c) The area of influence of diamond drill core intersections (see No. 5) - d) The horizontal projection of the area of influence (see No. 6) - e) A calculated tonnage factor (see No. 2) - f) A total of 30,337 feet of diamond drilling on the 47 Zone and its southwest extension with the holes on the average 100 feet apart on section - Inferred reserves were calculated in the same manner as indicated reserves but are based on evidence of continuity as suggested by diamond drilling and/or longitudinal projection | In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. The grade for the inferred reserve blocks was calculated from the average grade or grades of the adojoining block or blocks The elevations to which reserves were projected on each section
were determined from a longiture projection of the orebody On both plan and sections of copper bearing diamond drill holes straight wall ore limits are assum to prevail between each drill intersection. There are no available here set in a set of the reserves were projected on each section were determined from a longiture projection of the orebody On both plan and sections of copper bearing diamond drill holes straight wall ore limits are assum to prevail between each drill intersection. There are no available here set in a set of copper bearing diamond drill holes straight wall ore limits are assum to prevail between each drill intersection. The by-product silver was estimated for each 10% contained copper there is approximately 1 o 2 of silver. This was determined by metallurgical testwork on diamond drill core samples conducted by Lakefield Research, silver was not routinely assayed during drilling and thus not included in the estimate. The geological model, created in 2D sections along drill fences influenced the estimate through creation of blocks controlled by either the breccia zone or flow top replacement, which correlated t | | | | |--|--------------------|--|---| | basis or with natural moisture, and the method of determination of the moisture content. Cut-off parameters The basis of the adopted cut-off grade(s) or quality parameters applied. Mining factors or assumptions Assumptions Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining Mining factors or assumptions Mining parameters detailed in this section were taken from the report "A Preliminary Feasibility Report on the Hope Lake Copper Deposit, Mackenzie. Assessment Report INAC (Exploration Report internal (or, if applicable, external) mining Mining parameters detailed in this section were taken from the report "A Preliminary Feasibility Report on the Hope Lake Copper Deposit, Mackenzie. Assessment Report INAC (Exploration Report internal (or, if applicable, external) mining | | characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation | extended one halfway to adjacent holes on the same section of 50 feet beyond the top and bottom hole unless geological evidence suggested that longer projections were justified The horizontal distance of grade and area projection was taken as half the distance to adjoining sections. The ore was projected beyond the last sections on each end of the deposit a distance equal to half the distance to the last adjoining section The grade for the inferred reserve blocks was calculated from the average grade or grades of the adjoining block or blocks The elevations to which reserves were projected on each section were determined from a longitudinal projection of the orebody On both plan and sections of copper bearing diamond drill holes straight wall ore limits are assumed to prevail between each drill intersection There are no available check estimates. The by-product silver was estimated for each 10% contained copper there is approximately 1 oz of silver. This was determined by metallurgical testwork on diamond drill core samples conducted by Lakefield Research, silver was not routinely assayed during drilling and thus not included in the estimate. The geological model, created in 2D sections along drill fences influenced the estimate through creation of blocks controlled by either the breccia zone or flow top replacement, which correlated to the drillhole intersections. These blocks were then combined per section. | | quality parameters applied. Mining factors or assumptions Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining Mining parameters detailed in this section were taken from the report "A Preliminary Feasibility Report on the Hope Lake Copper Deposit, Mackenzie. Assessment Report INAC (Exploration Report internal (or, if applicable, external) mining Bracken, J M; Seasor, R W; Neal, H E; Leslie, C A; Pullen, T C. April 1, 1968". The report defines a 10 deposit of the properties proper | Moisture | basis or with natural moisture, and the method of determination of the moisture | The mostare content for comage calculations is annihown. The mote of any basis estimation is resolved | | assumptions methods, minimum mining dimensions and internal (or, if applicable, external) mining methods, minimum mining dimensions and internal (or, if applicable, external) mining methods, minimum mining dimensions and internal (or, if applicable, external) mining methods, minimum mining dimensions and internal (or, if applicable, external) mining methods, minimum mining dimensions and internal (or, if applicable, external) mining methods, minimum mining dimensions and internal (or, if applicable, external) mining methods, minimum mining dimensions and internal (or, if applicable, external) mining methods, minimum mining dimensions and internal (or, if applicable, external) mining methods, minimum mining dimensions and internal (or, if applicable, external) mining mining methods, minimum mining dimensions and internal (or, if applicable, external)
mining mining methods, minimum mining methods, minimum mining methods, minimum mining methods, minimum mining methods me | Cut-off parameters | | A 2 % copper cut-off grade was included in the estimate. | | | _ | methods, minimum mining dimensions and internal (or, if applicable, external) mining | Mining parameters detailed in this section were taken from the report "A Preliminary Feasibility
Report on the Hope Lake Copper Deposit, Mackenzie. Assessment Report INAC (Exploration Report),
Bracken, J M; Seasor, R W; Neal, H E; Leslie, C A; Pullen, T C. April 1, 1968". The report defines a 1000-
1500 ton per day plant size operating 350 days per year. The mining method is described as consisting | process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. - of open stope for the vertical breccia body and room and pillar methods through the flow top replacement bodies. - A dilution of 10% was accounted for in the historic estimate, adding in material calculated to be 0.6% Cu. - A case for open pit mining was not pursued in any detail. # Metallurgical factors or assumptions - The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made - The use of the term "ore" in the following section is not taken by White Cliff Minerals to imply economic extraction of metal contents, however, is used to describe the processing outlined in the referenced report. The completion of additional work and evaluation may not define JORC compliant resources/reserves. The report "A Preliminary Feasibility Report on the Hope Lake Copper Deposit, Mackenzie. Assessment Report INAC (Exploration Report), Bracken, J M; Seasor, R W; Neal, H E; Leslie, C A; Pullen, T C. April 1, 1968" defines a mining scenario of a 1500 ton per day mill. The report notes similarities of the "ore" with that treated at Roan Antelope in northern Rhodesia (operated since 1931 to date of 1968 report) with the successful operations at Mufulira and Roan Antelope adding support and confidence to the present preliminary design. Testwork completed by Lakefield Research and detailed in the 1968 Preliminary Feasibility Report conducted 43 bench scale grinding and flotation tests on 5 composites from 1967 drillcore totalling 2462 feet of material and found no other metals apart from copper and silver in significant quantities. Metallurgical testwork outlined 55-66% copper concentrates with copper recoveries of 85-95% depending on the grind and flowsheet. Silver content in the concentrate varies from 4.5 to 5.5 oz/t with recoveries in the range of 82 – 95% Ag. The concentrate is chiefly chalcocite with considerable bornite, minor chalcopyrite, covellite and pyrite. Very little to no pyrrhotite has been detected. An excerpt from the report states "The chalcocite and bornite are readily floated with preliminary indications that a coarse high-grade concentrate can be removed after the rod mill or ball mill. The very low pyrite and pyrrhotite content helps the flotation and does not require a depressant for these sulphides. Flotation time is considered normal to fast for this ore". A processing flowsheet is presented with the following components, conveying of ore to primary jaw crusher, followed by crushing to a fine ore storage unit, grinding of ore to 50% minus 325 mesh before flotation by ball/rod mills, with possibility of a coarse copper concentrate "scalp off", 2 banks of floatation equipment each consisting of 4 rougher and 5 scavenger cells before movement into thickening and filtering systems. # Environmental factors or assumptions - Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfield project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. - The historic estimate and associated pre-feasibility study notes the use of a tailings thickener, which will allow for recirculation of process water, limiting required extraction from nearby water sources. An area, to the north of the deposit was highlighted for use as a tailings area within a natural depression. - The deposit is dominated by chalcocite and bornite, zoning outwards to chalcopyrite and pyrite sulphide assemblages. Given the acid generating potential of pyrite when exposed to the atmosphere this should be mitigated when designing waste storage (tailings) facilities. - The arctic environment, and presence of well-established permafrost will also be accounted for in future studies. #### **Bulk density** - Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. - The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. - Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. - Bulk density measurements were conducted on historic drill core samples during metallurgical testwork completed by Lakefield Research. The number of drill core samples tested and their locations within the deposit or representativeness is unknown. - A bulk density of 11 sq ft per ton was used. - No details are available regarding the method of determination of the bulk density value. It is unknown if vugs, porosity or other void spaces were accounted for. #### Classification - The basis for the classification of the Mineral Resources into varying confidence categories. - Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of - The historic estimate was classified as ore reserves comprising indicated and inferred resources. These are non JORC compliant terms and White Cliff Minerals is not treating the estimate as a current JORC compliant resource estimate. - The estimate is classified as historic, non JORC compliant. | input data, confidence in continuity of | |---| | geology and metal values, quality, quantity | | and distribution of the data). | Whether the result appropriately reflects the Competent Person's view of the deposit #### **Audits or reviews** - The results of any audits or reviews of Mineral Resource estimates. - No official/independent audits or reviews of the historic estimate have been completed. White Cliff Minerals has conducted proof reading and cross-referencing data where possible to minimize transcription errors when reporting details of the historic estimate. # Discussion of relative accuracy/ confidence - Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. - The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. - These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. - The method of estimation is deemed appropriate for the historic nature of the estimate. - The weighted averaging of copper in drillhole intersections is well established and the resulting estimation is constrained by the geology and mineralisation with both the breccia zone and flow top replacements. - Given the historic nature of the exploration work which informed the historic estimate the drill core has not been viewed by the Competent Person and thus not been re-assayed or validated at this time. - The assay procedures are also unknown, with details of the detection limits and digestion efficiency (partial or total digestion) unknown, which may influence the copper assay results. No standards, blanks or field duplicates are noted to have been included in the sample stream which generated the assays included in the estimate, however, check assays are noted to have been completed by a second laboratory. - The historic nature of the estimate can only be deemed accurate through the re-drilling of previously reported holes. Further exploration work would include the industry standard diamond and/or reverse circulation methods with a robust quality control program of blanks, standards and duplicates
inserted into the sample stream for assay. Initial work would aim to confirm the geological model outlined in historic sections and through twinned holes understand the difference in historically reported intercepts and modern assay results. Bulk density measurements would be taken during diamond drilling activities, covering both mineralisation and host rock/alteration domains for inclusion in possible future resource estimations. This would increase the confidence in the historic results which informed the historic estimate where a comparison of modern and historic data/results can be completed. - Verification work is planned to commence in 2025, and White Cliff Minerals is in possession of the required funding to commence this work.