olympiometals.com.au 26 August 2025 ## **ASX ANNOUNCEMENT** # **Continued Success of Bousquet Gold Drilling With First Holes at Decoeur Prospect** ## **Highlights** - Assay results received for the first two holes drilled at the Decoeur Prospect within the Bousquet Project have extended the mineralisation at depth and along strike, including: - 14.50m @ 1.96 g/t Au from 355.50m (BO-25-40) - o 3.75m @ 2.24 g/t Au from 13.25m (BO-25-39) - Hole BO-25-40 targeted previously unrecognised north-trending structural zones, and has returned the best intercept at Decoeur since the prospect was discovered 80 years ago - North-trending mineralised structures are poorly defined by historical drilling and are a priority target for future drilling at Decoeur - Hole BO-25-39 has confirmed near-surface gold mineralisation associated with the North Bousquet Fault and remains untested to the east - To-date ALL 12 drillholes completed and assayed across three prospects at Bousquet have successfully intersected high-grade gold mineralisation - Drilling at Bousquet is ongoing with assay results to continue over the next two months - The Bousquet Project is located on the Cadillac Break in Quebec, Canada, a regional structure associated with world-class gold mines (>110 Moz Auⁱ) - Situated within 15km of multi-million ounce working gold mines (Agnico Eagle's La Ronde 15.8Moz Auⁱⁱ and lamgold's Westwood 2.4Moz Auⁱⁱⁱ) #### Olympio's Managing Director, Sean Delaney, commented: "We are delighted to have returned the best intercept at Decoeur with a single targeted drillhole. Hole BO-25-40 has confirmed a previously unrecognised geological interpretation at Decoeur and we are confident that further drilling with this strategy will provide an opportunity to upgrade the scale of the Decoeur Prospect. Hole BO-25-39 has significantly extended the Decoeur gold mineralisation to the east near surface and supports our interpretation the North Bousquet Fault is a fundamental regional structure with previously unrecognised prospectivity for gold mineralisation." **Olympio Metals Limited (ASX:OLY) (Olympio** or **the Company)** is pleased to announce that results from the first two drill holes at the Decoeur Prospect have significantly extended gold mineralisation both at depth and along strike. Olympio has an option to earn an 80% interest in the Bousquet Project in Quebec from Bullion Gold Resources. Figure 1: Plan map showing recent drill results for the Decoeur Prospect, Bousquet Gold Project Figure 2: Decoeur cross section A-A' (see Figure 1 for location) showing results for hole BO-25-40. Cross section width 60m. **Table 1**: Significant gold intersections from recent drilling at Decoeur Prospect (≥ 0.5g/t Au cut-off, 1m min. width , 2m max. internal dilution (downhole)) | Hole ID | Sig Int From | Sig Int Width | Au (g/t) | Sig Int Text | |----------|--------------|---------------|----------|----------------------| | BO-25-39 | 13.25 | 3.75 | 2.24 | 3.75m @ 2.24 g/t Au | | BO-25-40 | 338.00 | 2.15 | 0.84 | 2.15m @ 0.84 g/t Au | | BO-25-40 | 355.50 | 14.50 | 1.96 | 14.50m @ 1.96 g/t Au | | BO-25-40 | 373.80 | 2.00 | 1.39 | 2.00m @ 1.39 g/t Au | Hole BO-25-40 was designed to test north-trending structures at Decoeur, interpreted from field mapping at Amadee and Decoeur by the Olympio exploration team. Historical drilling was drilled exclusively north-south to test for east-trending structures (Figure 1), thus potentially missing these important north-trending mineralised structures. Hole BO-25-40 was drilled with an azimuth of 220° and intercepted **14.50m** @ **1.96** g/t Au (downhole, see Table 1), the best gold intercept recorded at Decoeur to date. The mineralised zone in hole BO-25-40 is associated with a significantly chlorite-carbonate altered talc-schist unit. The mineralised zone is interpreted to occur in the hanging-wall of the North Bousquet Fault (Figure 2). The mineralisation style and the host lithology (talc schist) are very similar to gold mineralisation associated with Piché Group lithologies on the Cadillac Break 1.4km to the north (Figure 4). The distinctive Piché Group volcano-sedimentary package is intimately associated with gold mineralisation at numerous resources along the Cadillac Breakⁱ. Hole BO-25-39 was drilled into the interpreted location of the North Bousquet Fault to the east of the historically defined Decoeur Prospect (Figure 1). The hole intersected **3.75m @ 2.24 g/t Au** from 13.25m (downhole), hosted exclusively in talc-schist, as occurs in hole BO-25-40. Hole BO-25-39 has confirmed the potential for shallow mineralisation associated with the Piché Group talc-schists in the hanging wall of the North Bousquet Fault. The extent of mapped talc-chlorite schist peripheral to the North Bousquet Fault to the east of BO-25-39 (Figure 1) represents a high priority exploration target. The target area is also associated with an IP chargeability anomaly^{iv} (Figure 3). Olympio subsequently completed two more drillholes, BO-25-50 and BO-25-51 to the east of Hole BO-25-39 targeting mapped talc-chlorite schists in the hanging wall of the North Bousquet Fault^v (Figure 1). Both holes intersected sulphide-bearing altered talc shists, and assay results are expected to be received in the coming month. The VLF EM data (Figure 3) illustrates the continuity of the North Bousquet Fault. The recent drilling has confirmed the association between talc-schists in the hanging wall of the North Bousquet Fault and gold mineralisation. This relationship will be targeted by further drilling, particularly to the east of Decoeur. VLF is a passive EM surveying technique that is well suited to detecting linear conductors. A ground-based VLF survey was conducted over the Bousquet Project in 1986vi. The structures are inferred to host disseminated sulphides and/or graphitic schists which produce an EM response, and potentially also an IP response. Notably at Decoeur, there has been very little historical shallow drilling. Further drilling at Decoeur (and along the North Bousquet Fault) will focus on testing for shallow gold mineralisation and north trending structures by drilling at an appropriate azimuth (220° or similar). Olympio looks forward to keeping the market updated on our continuing drill campaign at the Bousquet Project. Figure 3: Gold mineralisation in drilling relative to modelled historical VLF EM data Figure 4: Setting of the Bousquet Project relative to working mines and mineral resources along the Cadillac Break Figure 5: Dufay and Bousquet Project Locations #### - ENDS - This announcement is approved by the Board of Olympio Metals Limited. #### For further information: #### **Sean Delaney** Managing Director T: +61 409 084 771 E: sdelaney@olympiometals.com.au #### Jason Mack White Noise Communications T: +61 400 643 799 E: jason@whitenoisecomms.com #### **Competent Person's Statement** The information in this announcement that relates to exploration results is based on information compiled by Mr. Neal Leggo, a Competent Person who is a Member of the Australian Institute of Geoscientists and a consultant to Olympio Metals Limited. Mr. Leggo has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Leggo consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears. #### **Forward Looking Statements** This announcement may contain certain "forward looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have a reasonable basis. However, forward looking statements are subject to risks, uncertainties, assumptions, and other factors which could cause actual results to differ materially from future results expressed, projected or implied by such forward looking statements. Such risks include, but are not limited to exploration risk, Mineral Resource risk, metal price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which we sell our product to, and government regulation and judicial outcomes. Readers should not place undue reliance on forward looking information. The Company does not undertake any obligation to release publicly any revisions to any "forward looking statement" to reflect events or circumstances after the date of this announcement, or to reflect the occurrence of unanticipated events, except as may be required under applicable securities laws. #### **ISSUED CAPITAL** Ordinary Shares: 103 million #### **BOARD OF DIRECTORS** Sean Delaney, Managing Director Simon Andrew, Non-Executive Chairman Aidan Platel, Non-Executive Director #### **COMPANY SECRETARY** Peter Gray #### **REGISTERED OFFICE** L2, 25 Richardson Street West Perth, WA, 6005 Table 2: Collar information for completed drill-holes of the current drill program at the Bousquet Project | Survey | Prospect | Azimuth | Dip | Depth | E_NUTM17 | N_NUTM17 | Assay results announced | |----------|----------|---------|-----|-------|----------|----------|---------------------------| | BO-25-27 | Paquin | 188 | -55 | 350 | 676528 | 5343882 | 28 th Jul 2025 | | BO-25-28 | Paquin | 205 | -45 | 252 | 676568 | 5343839 | 28 th Jul 2025 | | BO-25-29 | Paquin | 195 | -55 | 300 | 676496 | 5343909 | 12 th Aug 2025 | | BO-25-31 | Amadee | 220 | -45 | 87 | 676115 | 5343741 | 12 th Aug 2025 | | BO-25-32 |
Amadee | 230 | -45 | 102 | 676092 | 5343758 | 12 th Aug 2025 | | BO-25-33 | Amadee | 210 | -45 | 101 | 676092 | 5343758 | 12 th Aug 2025 | | BO-25-34 | Amadee | 210 | -45 | 102 | 676038 | 5343774 | 12 th Aug 2025 | | BO-25-35 | Amadee | 230 | -45 | 102 | 676038 | 5343774 | 12 th Aug 2025 | | BO-25-36 | Amadee | 220 | -45 | 90 | 676157 | 5343734 | 12 th Aug 2025 | | BO-25-37 | Amadee | 220 | -45 | 222 | 676152 | 5343793 | 12 th Aug 2025 | | BO-25-38 | Amadee | 230 | -45 | 102 | 676202 | 5343726 | 12 th Aug 2025 | | BO-25-39 | Decoeur | 180 | -60 | 207 | 675423 | 5343350 | This announcement | | BO-25-40 | Decoeur | 220 | -55 | 408 | 675089 | 5343598 | This announcement | | BO-25-41 | Paquin | 187 | -51 | 225 | 676497 | 5343903 | Pending | | BO-25-42 | Paquin | 150 | -52 | 222 | 676498 | 5343921 | Pending | | BO-25-43 | Paquin | 210 | -45 | 231 | 676557 | 5343900 | Pending | | BO-25-44 | Paquin | 212 | -45 | 252 | 676795 | 5343897 | Pending | | BO-25-45 | VLF | 209 | -47 | 273 | 676601 | 5343677 | Pending | | BO-25-46 | VLF | 210 | -46 | 247.9 | 676551 | 5343589 | Pending | | BO-25-47 | VLF | 210 | -50 | 264 | 676494 | 5343477 | Pending | | BO-25-48 | VLF | 210 | -45 | 312 | 676793 | 5343508 | Pending | | BO-25-49 | VLF | 210 | -45 | 252 | 676843 | 5343595 | Pending | | BO-25-50 | Decoeur | 180 | -60 | 162 | 675641 | 5343263 | Pending | | BO-25-51 | Decoeur | 180 | -60 | 168 | 675838 | 5343286 | Pending | ### References ¹ Poulsen, K., 2017 The Larder Lake-Cadillac Break and Its Gold Districts, Economic Geology, v. 19, pp. 133–167 ii NI 43-101 Technical Report, LaRonde Complex, Québec, Canada, March 24 2023 iii https://s202.q4cdn.com/468687163/files/doc_news/2024/02/iag-2024-mrmr-estimate.pdf lamgold Reserves & Resources Dec 31 2023 ^{iv} GM53815, 1995, Report on ground geophysical investigations: induced polarization surveys, Normar Project, Breakwater Resources $^{^{\}rm v}$ GM34572 REPORT (1978) ON THE GEOLOGY, GEOCHEMISTRY AND INDUCED POLARIZATION SURVEYS ON THE NOMAR PROPERTY vi Magnetometer and VLF Survey of Normar Property, 1986 (GM43967) # JORC Code - Table 1 ## **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | Explanation | Comment | | | |-----------------------|--|--|--|--| | | Nature and quality of sampling. | Current Exploration | | | | Sampling techniques | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | Diamond core samples (NQ) were collected in timber core trays, sequence checked, me marked and oriented at the drill site. The drill core was logged at Explo-logik core shack in Val D'Or by Quebec qualified geologists. Historical Exploration | | | | | Aspects of the determination of mineralisation that are Material to the Public Report. | Diamond drilling to produce core samples is the only sampling technique reported. The drilling data included in this release comes from a range of historical drilling programs. These are grouped in 3 sets as follows: BG Drilling: Sampling techniques from Bullion Gold drilling 2021 to 2023 (Hole series BO-21 and BO-22, GM73520) is described in detail. TM Drilling: Sampling techniques from Twin Mining drilling 2003 to 20xx (Hole series TMN, GM61411) are described in detail. 20thC Drilling: Sampling techniques from all other drilling programs (mostly pre-1947) typically have no details recorded in historical records and reports. Channel Sampling: GM34572 1978 Channel samples were collected by electric jack hammer under the supervision of a Quebec certified geologist. Sample density appears to be appropriate to the vein density existing in mapped outcrops. | | | | Drilling techniques | Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Current Exploration All drill core is NQ. All downhole surveying is done with an OMNIX42 (every 30m), rig alignment with a TN14 Gyro, and core orientation with a Reflex ACTIII every 6m or less. Historical Exploration All drilling within the project area has been diamond core. BG, TM & 20thC: No records of any oriented core The drill core size is not specified for the majority of drill holes. | | | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | Current Exploration • Proportion of core recovered for each 3 metre interval of core drilled is recorded in the drill | | | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade | database. Historical Exploration BG, TM & 20thC: Core recovery is not recorded for the majority of drill holes. The measures taken by previous explorer to maximise recovery is not recorded. With no recovery data available, no comment about any recovery/grade relationship is possible. | | | | Logging | Whether core and chip samples have been logged Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Current Exploration All drill core was qualitatively logged by the Explo-logik staff geologist. Logging includes lithology, alteration, mineralisation, veining and photography. • The main rock types observed in the logging were greywacke, siltstone and conglomerate. Historical Exploration BG Drilling: All drilling has drill logs available. The drill core was logged and marked for sampling by a professional geologist. Sample lengths ranged from 0.3 to 2.0m. The main criterion for sample selection was based on the presence of one of the visible features of the | | | | | | majority of the core has been core has been logged. All descriptive logs are in French summary logging is in English. TM Drilling: All drilling has drill logs available. Logging is qualitative. All core has been logged. All descriptive logs are in English. 20thC Drilling: Drill logs are available for some drill holes with a range of detail/quality. Measurements are generally in imperial units (feet) and logs in either French or English. | | | |---|--|---|--|--| | Sub-sampling | If core, whether cut or sawn and whether quarter, half or all core taken. | Current Exploration All core is logged, then sampling intervals are selected by the logging geologist, with a | | | | techniques and sample preparation | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and | maximum sample interval of 2m. Core samples were collected by sawing each sample interval in half lengthwise with a bench rock saw. One half of the interval was returned to the core box, and the other half was placed in a plastic bag with a tag. The tag number was marked in indelible ink on the outside of the | | | | | appropriateness of the sample preparation technique. Quality control procedures adopted for all | bag, and the bag was sealed with a plastic tie-wrap. Sample are sent to AGAT Laboratories in Thunder Bay. The half core samples were crushed to 90%
passing 2mm and then riffle split to a 250g sub-sample that was pulverised to pulp 90% passing 100 mm. | | | | | sub-sampling stages to maximise representivity of samples. | passing 105μm. Historical Exploration | | | | | Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. | BG Drilling: Core samples were collected by sawing each sample interval in half lengthwise with a bench rock saw. One half of the interval was returned to the core box, and the other half was placed in a plastic bag with a tag. The tag number was marked in indelible ink on the outside of the bag, and the bag was sealed with a plastic tie-wrap. | | | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | Sample preparation was undertaken at the Lab Expert facility in Rouyn-Noranda. The half consamples were crushed to 70% passing 2mm and then riffle split to a 250g sub-sample that we pulverised to pulp 85% passing 75µm. All analyses were done using a 50g fire assay fusion (FA) with Atomic Absorption Spectroscopy (AAS) finish. Assays exceeding 3g/t Au were checked by re-assaying using FA with gravimetric finish. Where the logging geologist deemed appropriate, the sample was analysed using metallic screen assay techniques. Lab Expert protocols were considered by the Qualified Person (for GM73520) to be consistent, in general, with industry standards. | | | | | | TM Drilling: Drill core was split by hydraulic splitter, and approximately half the cores sampled. Sample preparation methods are not recorded. 20thC Drilling: Core sampling techniques of historical drilling other than BG and TM is unknown. Channel Sampling: GM34572 1978 sample preparation is not recorded | | | | 0 - 11 1 | The nature, quality and appropriateness of | Current Exploration | | | | Quality of assay data
and laboratory tests | the assaying and laboratory procedures used For geophysical tools, spectrometers, handheld XRF instruments, etc, | All samples were analysed for Au by 50g fire assay fusion (FA) with Atomic Absorption Spectroscopy (AAS) finish (202-551), and also 34 elements by 4-acid digest with ICP_OES finish (201-070). Samples with observed or suspected coarse gold as logged by the geologist were analysed by screen Fire assay (202-121). From the pulverised sample, a 1kg sub-sample was | | | | | Nature of quality control procedures adopted (eg standards, blanks, duplicates, | sieved to 106µm. The +106µm fraction was analysed to extinction by FA/ICP(OES) and the - 106µm fraction by FA/ICP(OES). | | | | | external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | AGAT protocols are considered by the Qualified Person to be consistent, in general, with industry standards. One certified reference material (CRM) standard and one blank were included in each batch of 20 samples (inserted at 1/19 samples) by Explo-logik staff. CRM used were OREAS 221, 231, 236, 238, 242. The blank was quartz-sericite. | | | | | | Historical Exploration BG Drilling: All analyses were done using a 50g fire assay fusion (FA) with Atomic Absorption Spectroscopy (AAS) finish. Assays exceeding 3g/t Au were checked by re-assaying using FA with gravimetric finish. Where the logging geologist deemed appropriate, the sample was analysed using metallic screen assay techniques. One certified reference material (CRM) standard and one blank were included in each batch of 20 samples (inserted at 1/19 samples). CRM used were SF85, SF100, SG102, SG115, SG81. 58% of the CRM assay results were reported higher than 3 standard deviations from the certified value, which is considered a poor performance from the lab. It was recommended to review the assay certificates and re-assay the pulps before and after the failed standards. TM Drilling: Hole series TMN- (Twin Mining GM61411) was assayed at ALS Vancouver using a fire assay with a 30g split, AAS finish, 5ppb detection limit. Assays over 1g/t Au were reassayed. Twin Mining reported that no quality assurance/quality control checks were performed. 20thC Drilling: Procedures for other historical drilling are unknown. No QA/QC data is recorded. Channel Sampling: GM34572 1978 Samples were analysed at Assayers Ltd. Rouvn-Noranda. | | | **Channel Sampling:** GM34572 1978 Samples were analysed at Assayers Ltd, Rouyn-Noranda. By combined Fire Assay – AAS with 7ppb DL. | | T | T | |-------------------------------------|---|---| | | | | | | | | | Verification of sampling and | The verification of significant intersections by independent or alternative company personnel. | Current Exploration Significant intersections have been reviewed by Neal Leggo, Independent Geologist. No twin holes have been drilled. | | assaying | The use of twinned holes. | No documentation of data protocols has been completed. | | | Documentation of primary data, data entry procedures, data verification, data storage protocols. | Historical Exploration BG Drilling: | | | Discuss any adjustment to assay data. | No independent verification or twinned holes have been used. Adequate documentation of the drill data is available. No adjustments of data are recorded. TM Drilling: | | | | No independent verification or twinned holes have been used. Adequate documentation of basic aspects of the drill data is available. No adjustments of data are recorded. | | | | 20thC Drilling: No independent verification or twinned holes have been used. For the majority of historical drill holes, the data is not well documented. Translation from | | | | imperial to metric system measurements has been made in the database. Channel Sampling: GM34572 1978 no verification sampling is recorded | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource | Current Exploration All drillholes are located using handheld GPS, accuracy ~ +-10m. Drill collars are surveyed using an Imdex TN14 Gyro. | | | estimation. | Historical Exploration | | | Specification of the grid system used. | BG, TM & 20thC: The accuracy and location method of exploration data including historical drill holes is not | | | Quality and adequacy of topographic control. | recorded in the reports, logs and databases available. | | | | Grid system used is NAD83 / UTM zone 17N in accordance with the National Topographic System or NTS used by Natural Resources Canada for mapping. | | | | Topographic control is satisfactory for the exploration phase at which the project is at. Channel Sampling: GM34572 1978 samples are mapped in varying detail in numerous maps which allow the samples to be accurately located relative to outcropping geology in the field. | | Data spacing and | Data spacing for reporting of Exploration Results. | Current Exploration Completed and planned drilling is consistent with spacing used in previous drill programs, and | | distribution | Whether appropriate for the Mineral
Resource estimation procedure(s) | appropriate for the mineralisation targeted, typically 25m drill hole spacing minimum. Historical Exploration BG, TM & 20thC: | | | Whether sample compositing has been applied. | The historical drilling data has been drilled at a range of spacing, azimuth and dip to intersect the interpreted mineralised horizons. Spacing is currently insufficient for resource estimation work. | | | | No sample compositing has been applied. Channel Sampling: GM34572 1978 data spacing and distribution is appropriate to the vein density observed in the field | | Orientation of data in | Whether the orientation of sampling achieves unbiased sampling | Current Exploration The drilling orientation is consistent with previous drilling and designed to maximise exposure | | relation to geological
structure | relationship between the drilling orientation
and structures is considered to have
introduced a sampling bias. | to structural elements see in surface mapping. Historical Exploration BG, TM & 20thC: | | | introduced a sampling bias. | The drill hole sampling orientation is considered appropriate to test the mineralised target horizons. The strike of the mineralised structures targeted is generally determined with drill holes set back and angled, producing intersections across the strike, thus reducing bias. Channel Sampling: GM34572 1978 sampling orientation is optimised relative to mineralised zones | | Sample security | The measures taken to ensure sample security. | Current Exploration Sample security is managed by Explo-logik staff, who are highly experienced in drill core and sample management. All drill core transport, core sampling and sample transport is conducted, or managed, by Explo-logik staff. Core samples are sent by courier to AGAT laboratories in Thunder Bay Ontario. Historical Exploration | | | | BG: For shipping, samples were placed in rice bags that were individually sealed with numbered, tamper-proof security tags. The rice bags were sent to Lab Expert in Rouyn-Noranda. TM: The selected core intervals were split under the direction and supervision of the senior geologist. All samples were hand delivered by the senior geologist or approved project technical personnel to the ALS Chemex sample preparation laboratory in Val d'Or, Quebec. 20thC: No
information about the sample security measures is present in the historical exploration reports. Channel Sampling: GM34572 1978 sample security is not recorded | |-------------------|---|--| | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No reviews or audits are recorded. | ## **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | Explanation | Comment | |---|--|--| | Mineral tenement
and land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Bousquet Project is a mineral property which consists of 71 claims (registered with the Quebec provincial government) covering (23.69 km2). The Property is located 30km east of the historic mining town of Rouyn-Noranda, in the province of Quebec, Canada. The property consists of a contiguous package of wholly owned tenements held under title by Bullion Gold Resources Corp and under option for purchase by Olympio. The tenements are current and in good standing with the Quebec Provincial government. A list of claim IDs is provided in Table 3 of previous ASX release 19th March 2025. Olympio are not aware of any known impediments to obtaining a licence to operate in the area. Numerous gold and base metal mines are currently operating in the district. New mining operations have recently been bought into production through established protocols of Quebec and Canadian authorities. No development studies have been undertaken on the Bousquet project to date. A royalty applies to any future mineral production. In the event that the Project is brought to commercial production, Falco will receive a 1.5% NSR royalty on the claims sold to Bullion Gold. In certain claims located in the Bousquet Township, there a number of companies holding various royalty interest. On the original Normar block, Barrick Gold and Atlanta Gold (bankrupted) each hold a 1% NSR ("Net Smelter Return") royalty while Delfer Gold Mine holds a 5% Net Profit Interest. On the Blackfly Block, Atlanta Gold holds a 1% NSR on certain claims and Globex Resources hold a 0.5% Gross | | Exploration done
by other parties | Acknowledgment and appraisal of exploration by other parties. | Mineral Profit on 8 claims. No mining has occurred on the property, according to available records. There have been 4 eras of active exploration on the property. 1. Early 20thCentury: The main gold corridor was found and explored between 1932 and 1946. During this period, the Paquin, Decoeur, Calder Bousquet and Joannes prospects were discovered and drilled. During this period, 120 drill holes for a total of 20,530m were executed on the various gold discoveries. 2. Late 20thCentury: During the period extending from 1967 to 1995, exploration comprised 14 drill holes for a total of 2,532m which were drilled mainly on the Paquin prospect and just north of the Bouzan Or prospect. Various types of geophysical survey including magnetic, electromagnetic (VLF, MAXMIN and AeroTem) and IP surveys were executed on the property. Breakwater also did some stripping and mapping on the southern gold shear zone. 3. 21st Century: From 2003 to 2020, 39 drill holes were drilled for 13,574m mainly in the southeast portion of the property by Twin Mining (2003-2008, GM61411). Of the 39 drill holes, 4 holes were drilled on the Joannes Township Block and magnetic, EM and IP surveys were conducted on this block. The most recent exploration (2021 to 2023) has been 26 diamond drill holes on the property for a total of 6,194 metres by Bullion Gold, concentrated at Paquin and Decoeur prospects (GM73520). | | Geology | Deposit type, geological setting and style of mineralisation. | The geology of the property consists of volcano-sedimentary rocks divided in three major Groups. From North to South, there is the Cadillac Group, which is composed of turbidites, pelitic schists with beds of polymictic conglomerate and iron formations. The Timiskaming Group is composed of greywacke, siltstone, polymictic conglomerate, and talc-chlorite-carbonate schist (possibly from the Piché Formation). Occasional beds of argillite with graphitic mudstone also occurs. The Pontiac Group is composed of greywacke, interbedded with argillite, massive to pillowed mafic flows and ultramafic flows. The Piché Group is composed of a sequence of komatiites, mafic rocks, amphibolites, volcanic tuffs and flows and granitic intrusives. In many areas, the Piché formation is superposed with the CLLDZ and lies between the Cadillac and Timiskaming Groups. Numerous gold prospects occur on the property. Most of them are found within a gold mineralised shear zone in the southern part of the property. Gold mineralisation is associated with structurally | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: | controlled quartz veins (typically smoky blue-grey-white quartz) and sulphides within E-W oriented, north dipping structures. The dominant host unit is Timiskaming group turbidites, and lesser conglomerate. The Paquin prospect is located between 675716 and 676832mE and 5343683 and 5343802mN giving the mineralised zone a length of 1,300m and a thickness of in excess of 100 m. Paquin was identified through drilling as it does not outcrop. These are two mineralised envelopes (East and West) containing blue to smoky quartz veins and veinlets accompanied by visible gold, as well as disseminated or stringers of arsenopyrite, pyrite, and pyrrhotite. Each envelope is contained within silicified and carbonatised greywackes. The longitudinal sections of the East and West mineralised envelopes show that the gold mineralization is most prominent on the eastern part of the gold corridor with a length of 400m between section 676400E and 676800E. The thickness of the mineralised zone (along the hole) varies from a few meters to 10 to 12m and, in some instances, the envelope may contain more than one mineralised zone. The Decoeur prospect is located between 674860mE and 675300mE at 5343385mN, giving the prospect a length of 440 m. The Decoeur prospect is located immediately in the south contact with the polymictic conglomerates. The mineralization is associated with talc-chlorite-quartz-carbonate schist (probably komatilitic lava flows). Previous interpretation suggested that the mineralization was associated to an E-W fault. The mineralization is composed of stringers of pyrite, chalcopyrite, arsenopyrite and galena and associated quartz veins and veinlets and local silicification. The mineralised sections vary from thirty centimetres up to 28.5m wide. The best intersection metal factor wise was in hole TMN-03-14 where an intercept 1.26 g/t Au over 18.6m was recorded. The Joannes prospect was discovered by drilling in 1937. The
gold mineralization is vein-type associated with clastic sediments (turbidites) of the Timiskam | | | | |--|---|--|--|-------------------------------------|--| | | | | Number Drill Holes 62 14 25 28 11 60 200 | Total Metres Drilled 13183 458 7217 | Grade (g/t) x Thickness (m) > 1 301 7 90 20 7 67 | | Data aggregation methods | weighting averaging techniques,
maximum and/or minimum grade
truncations should be stated.
The assumptions used for any
reporting of metal equivalent values. | Where drill intervals have been aggregated, the calculations are recorded as being weighted according to interval length. No allowance for recovery or truncations of grades are recorded in the documentation available. Significant drill intercepts noted in figures and tables of this announcement are reported at a minimum cut-off grade of 0.5 gram per tonne gold, minimum width of 1m (down-hole); maximum internal dilution of 2m. Significant drill intercepts noted in Table 1 of previous ASX releases for the Paquin and Decoeur prospects are reported at a minimum cut-off grade of 1.0 gram per tonne gold per metre. No metal equivalent values or formulas have been used. | | | | | Relationship
between
mineralisation
widths and
intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of mineralisation with respect to the drill hole angle | Sample mineralisation intervals are reported as down-hole observed intervals in drill core. The true widths of mineralisation have not been calculated on a drill hole intercept basis in available historical documentation. There are many variations of drill hole orientation and lode orientation across the | | | | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included | and accurate
provided by
and reports v
sections will | The maps and figures provided in this announcement provide an overview of the Bousquet project and accurately reflect recent exploration data acquired by Olympio, and historical exploration data as provided by the vendors in project databases and reports. The accuracy of information in databases and reports will be reviewed by Olympio personnel as the project progresses. Detailed maps and sections will be provided in further market announcements as targeting work on each prospect progresses and drill testing is undertaken. | | | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not practicable | The project has seen a long history of exploration with a significant body of data collected with minimal recording of methods and parameters during the early 20th Century. Later exploration data has been reported to Quebec/Canadian/TSX standards of the day. No reporting to ASX/JORC Code standard had previously undertaken, prior to its acquisition by Olympio. Comprehensive reporting will require time consuming search and review of historical records, field assessments, inspection of preserved drill cores, etc prior to historical data being deemed suitable for reporting in the current exploration context. This is being undertaken on a prospect by prospect basis as the exploration program proceeds. To date the historical data has been found to correlate well with new data and thus confidence in the historical data is increasing. | |------------------------------------|---|---| | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported. | In 2021 Bullion gold contracted Novatem to carry out a 1,114 line-km high-resolution helicopter-borne magnetic survey on the Bousquet project. During the late 20" century various types of geophysical survey including magnetic, electromagnetic (VLF, MAXMIN and AeroTem) and IP surveys were executed on the property. Magnetic, EM and IP surveys were eventured on the property. Magnetic, EM and IP surveys were conducted on the Joannes Township Block. Some stripping and mapping on the southern gold shear zone also occurred during this era of exploration. VLF and Magnetometer Ground Survey, Normar Property, October 1986 GM43967 Technical specifications of the geophysical surveys discussed in this announcement are summarised from the technical report of Novamin Resources Inc the geophysical contractors who undertook the work in 1986: Magnetometer and VLF Survey of Normar Property, 1986 (GM43967). Magnetometer and VLF Survey of Normar Property, 1986 (GM43967) Magnetometer and VLF Survey of Normar Property, 1986 (GM43967) Magnetometer and very low frequency (VLF) electromagnetic surveys were completed over the Normar Property (Project 2140.24) in the spring and summer of 1986. Objective was to obtain a geophysical data base to guide and assist subsequent geologic/geophysical work. The magnetic and VLF results outline a number of lithologies and present a complex structural. setting. A number of VLF zones are tentatively associated with known gold
showings. Geologic mapping and compilatory work are recommended before implementation of additional exploratory work. The two survey techniques are reviewed separately below. Very Low Frequency (VLF) Electromagnetic Survey Tablulated below are logistical details concerning the survey. Instrumentation: Geonics EM-16 Crone Radem Transmitter Station: Cutler, Maine, U.S.A. Frequency: 24.0 KHz Line Interval: 100 m Station Interval: 25 m Survey Dates: March 15-21; June 3-5, 15, 24-26, 1986 Parameters Read: Dip in percent (%) of the total electromagnetic field perpendi | | | | integrated with these geophysical results and an exploration proposal developed. Report author: James L. Wright, Senior Staff Geophysicist, Novamin Resources Inc. IP Survey, Normar Project, August 1995 GM53815 In July 1995, ground Induced Polarization (I.P.) surveys was carried out on the NORMAR (5064) property, for BREAKWATER RESOURCES Ltd. The I.P. survey was carried out along previously cut lines oriented at North-South, spaced every 100 meters and chained every 25 meters. The grid is controlled by base line 0+OON and tie line 9+OOS, striking east-west. The I.P. survey was conducted using a dipole-dipole electrode configuration. The dipole dimension was 25 meters and successive separations at multiples of n=1, n=2, n=3, n=4 and n=5 times the dipole dimensions were used, in order to investigate at depth. A total of approximately 9.8 line-km of I.P. data was thus gathered. The I.P. equipment consisted of 1°) a Phoenix IPT-1 transmitter operating at 1.0 Hz, powered by a 2 kiloWatt, Phoenix model MG-2 motor generator. The phase angle (in milliradians) between the transmitted current and the received voltage was measured | | | | by 2°) a Phoenix Turbo V-4 phase I.P. receiver, measuring the polarization effect (phase shift) and also the apparent resistivity of the earth at each "n". The phase angle is a direct measure of the polarization of the underlying earth. | |--------------|---|--| | | | The Bousquet Property is suited to IP survey as there are limited known conductive lithologies or overburden with the potential to mask IP responses from sulphides and associated gold mineralisation. The survey identified numerous resistivity and chargeability anomalies that were ranked according to prospectivity. A notable chargeability anomaly occurs to the immediate southwest of the Decoeur prospect, however the anomaly remains open to the west and south of the IP survey boundaries. The IP anomaly has recently been drilled by hole BO-25-39, 50, and 51. The drilling to date has not resolved the source of the IP anomaly, and further drilling will be required. | | Further Work | The nature and scale of planned further work. | Completion of logging and sampling of the drilling is ongoing, with assaying undertaken sequentially. Further drilling is planned for the Paquin, Decoeur Extension and Amadee projects. Drill targets are continually being revised and optimised. |