28th August 2025 ASX:COD # New Flowsheet Delivers Significant Cu-Ag Economic Uplift Flowsheet breakthrough delivers increased copper and silver production from a simpler process with lower costs. The result is greater value and reduced product marketing risk. Future Cobalt inclusion adds blue sky value. ## **Highlights** - <u>FLOWSHEET BREAKTHROUGH</u>: CAPEX and OPEX re-estimation completed incorporating the simplified processing flowsheet using coarse grind whole-ore leaching, as outlined in the announcement of 26 June 2025¹. - <u>SIMPLIFIED PROJECT</u>: Streamlined project using a copper-silver base case with cobalt offering attractive future upside. This is expected to reduce commodity risk and strengthen the development case. - <u>INCREASED PRODUCTION</u>: Planned production of 454kt of copper and 20Moz of silver over the life-of-mine. Material increase from the previous estimate (384kt of copper and 16Moz of silver) due to increased recoveries with the new flowsheet. Annual estimated steady state production approximately 31ktpa copper, 1.4Mozpa silver. - PROJECT FINANCIALS: Estimated Pre-tax NPV₍₇₎ of approximately \$1.29B and Internal Rate of Return (IRR) of 39%, compares with a Pre-tax NPV₍₇₎ of ~A\$1.2B and IRR of 35% in the 2024 Scoping Study² (copper-silver-cobalt case). - <u>UPSIDE AT SPOT</u>: At spot prices, the estimated Pre-tax NPV₍₇₎ increases to approximately \$1.81B and the IRR to 48%. Post-Tax NPV₍₇₎ of approximately \$855 million, IRR 30%, rises to approximately \$1.23 Billion and IRR 38% at SPOT³. - <u>REDUCED CAPEX</u>: Total CAPEX reduction of \$74 million, with the estimated total CAPEX payback period reduced from 4.0 years to 3.25 years. - PATHWAY TO DEVELOPMENT: Revised copper-silver base case will be incorporated in currently ongoing Pre-Feasibility Study (PFS). Coda Minerals Limited (ASX: COD, "Coda" or "the Company") is pleased to report revised economics for its flagship **100%-owned Elizabeth Creek Copper-Silver Project** in South Australia following the adoption of a revised base case copper-silver flowsheet incorporating the outcomes of the significant metallurgical breakthrough announced earlier this year. Further to the announcement of this key development on 26 June 2025⁴, the Company has completed additional metallurgical test work and optimisation studies, together with a full CAPEX and OPEX re-estimation for the revised whole-ore leach flowsheet as part of its ongoing strategy to optimise the Elizabeth Creek development pathway as part of an ongoing Pre-Feasibility Study (PFS). The updated economics reported in this announcement are based on a simplified copper-silver base. Importantly, these figures exclude all cobalt revenue with the economics presented on copper and silver alone. This represents a value uplift ¹ Please see ASX Announcement "Material Uplift in Copper and Silver Recoveries", released to the market 26 June 2025, available at https://codaminerals.com/announcements/7023903 ² Please see ASX Announcement "New Resources, Higher Recoveries Boost Elizabeth Creek Value", released to the market 3 December 2024, available at https://codaminerals.com/announcements/6690414 ³ Spot Prices at 25th August 2025. Cu – \$9,718 USD/t, Ag - \$39 USD/Oz, FX – 0.65 AUD/USD on prior studies. Crucially, the revised base case demonstrates that Elizabeth Creek is economically robust on copper and silver alone — both metals with strong price profiles and deep, liquid markets. Cobalt now becomes pure upside: while still offering attractive future potential, its removal from the base case reduces technical and marketing risk and positions it as an opportunity rather than a dependency. Metallurgical test work has focused on the copper and silver streams, delivering recoveries of 95% for copper and 98% for silver. Revised CAPEX and OPEX figures, calculated by independent consultants, are reported to a ±35% level of confidence — consistent with the previous flotation-based flowsheet. The outcomes presented are based on a staged development scenario, with the base case copper-silver project delivering a planned increase in production of 454kt of copper and 20Moz of silver over the life-of-mine. This is an interim update. Key workstreams are continuing, including cobalt optimisation and a re-optimisation of the mine plan using the new economic assumptions. Both of these workstreams offer further potential to enhance project value and will be incorporated as part of the PFS. As a result of the updated flowsheet, total CAPEX has reduced by \$74 million compared with the previous estimate. Processing OPEX has fallen by \$7.50/t, representing a 19% reduction. The revised economics 5 deliver an estimated pre-tax NPV $_{(7)}$ of approximately \$1.29 billion and a pre-tax IRR of 39%. Post-tax, the estimated NPV $_{(7)}$ is \$855 million with an IRR of 30%. These figures are based on US\$9,260/t (US\$ 4.20/lb) copper and US\$ 30/oz silver and AUD:USD 0.68 Fx assumptions. This increases materially at current SPOT copper and silver pricing to NPV $_{(7)}$ of approximately \$1.81 billion and 48% IRR pre-tax and \$1.23 billion and 38% post tax. **Commenting on the results, Coda Minerals CEO Chris Stevens said:** "This is possibly the most significant advance in the history of Elizabeth Creek. Recovery optimisation has always been the single biggest lever we can pull, and these results show just how much value this work has unlocked. "The fact that copper and silver alone now deliver stronger economics on a like-for-like basis compared with our previous base case producing all three metals (copper, silver and cobalt) from the outset is very encouraging. This simplifies and streamlines the project using a base case flowsheet based on well-established technology. "This translates into a significant value uplift in terms of the Project's key metrics — with increased production of copper and silver, reduced CAPEX and OPEX and, importantly, increased estimated Net Present Value and a very strong Internal Rate of Return. At spot prices—materially above our base-case assumptions for both metals—the effect is amplified: the project's estimated pre-tax NPV₍₇₎ increases from approximately \$1.2 billion to over \$1.8 billion, before any contribution from cobalt. "This is a fantastic result and a reflection of the hard work undertaken by our development team in continuously optimising the Project and improving it over the past few years. This well and truly sets the stage for development, giving us a clear focus as we move forward into the PFS. "It's also important to note that cobalt has not gone away. Cobalt represents further upside for the project, with the potential for critical minerals incentives and funding support, but crucially it is no longer required for the base case economics. For a polymetallic orebody, this is the ideal position to be in and changes cobalt from being a dependency to an opportunity. It reflects the skill of our technical team and partners and is a tremendous achievement. "This work underpins our strategic vision to get Elizabeth Creek to a construction-ready state with technical and economic studies, and approvals in place. There is strong demand for quality copper projects in Tier 1 jurisdictions – are we are continuing to be surprised to the upside with Elizabeth Creek and am very excited about future project work." ⁵ Please see Cautionary Statements <u>below</u> # KEY FINANCIAL METRICS NPV₇ PRE-TAX \$1,289_{MBASE} \$1,813_{M SPOT} NPV₇ POST-TAX \$855M BASE \$1,230_{MSPOT} REVENUE \$7,264M BASE \$8,198_M SPOT IRRPRE-TAX **39%** BASE 48% SPOT IRRPOST-TAX **30%** BASE **38%** SPOT **NET CASHFLOW** PRE-TAX(A\$M) \$2,397_{M BASE} \$3,293_{M SPOT} COPPER 454Kt TOTAL PRODUCTION **31.4**Ktpa STEADY STATE SILVER 20.3Moz TOTAL PRODUCTION 1.4Mozpa STEADY STATE ### Recent Testwork Coda has been investigating methods to increase recoveries through the use of whole-ore leaching, especially of copper and silver which offered the greatest scope for recovery improvement in the base-case flotation-based flowsheet. The Company selected chloride leaching as the most attractive option from a number of potential leach chemistries. Chloride leaching has the benefit of rapid leach times at neutral to near neutral pH, as well as the capacity to leach challenging sulphide minerals ⁶. Recoveries for copper and silver have improved significantly relative to the base case flowsheet, as set out in the table below. | OVERALL RECOVERY | UNIT | FLOTATION
CONCENTRATION
(EMMIE BLUFF) | WHOLE-ORE LEACH | RECOVERY
IMPROVEMENT | |------------------|------|---|-----------------|-------------------------| | COPPER | % | 82.8% | 94.8% | 12.0% | | SILVER | % | 82.0% | 98.2% | 16.2% | ### About Whole Ore Leaching Whole-ore leaching methods, including heap and tank leach, already account for about 20% of global copper production.⁷. Chloride leaching is also proven technology, used commercially for nearly two decades. Antofagasta's Cuprochlor® process, first applied at the Michilla mine in Chile in 2004, and its later variant Cuprochlor-T®, have been deployed at operations including Centinela and Zaldívar in Chile. Both rely on acid leaching, which is a key point of difference from Coda's proposed flowsheet — designed to operate at a higher, near-neutral pH. Coda's whole-ore leach flowsheet uses a simple, single-stage oxidative circuit. Ore is ground and pumped into tanks, where a short chloride leach is conducted under controlled oxidative conditions. The solution, containing dissolved copper and silver, is then separated for downstream processing, while the residue goes to tailings. In contrast to conventional chloride leaching approaches, the optimal parameters identified here differ markedly and represent a meaningful advance in applying chloride salts to the leaching of copper sulphide ores. By adapting
established technologies with innovative operating conditions, the process has delivered results not previously achieved. Please refer to the detailed technical section Flowsheet Technical Details for more details. ⁶ See "Flowsheet Technical Details", below, for more details. ⁷ Applied Geochemistry Volume 166 May 2024 and Minerals & Metallurgical Processing , 2017, Vol. 34, No. 2, pp. 53-64 # Project Economic Modelling The economics of the Elizabeth Creek Project have been re-modelled on the basis of the revised flowsheet described in the "Flowsheet Technical Details" section, below. Material changes include: - Removal of the flotation Concentrator step. - Removal of the Albion Process[™] oxidation circuit and directly associated equipment such as the O₂ plant, ultrafine grinding mills etc. - Addition in the project CAPEX of whole-ore leach tanks and associated infrastructure. - Expansion of copper and silver hydrometallurgical production circuits to account for the higher copper-silver extraction per tonne and larger overall copper-silver production; and - Removal of cobalt production circuit. All other relevant economic factors, including assumptions around commodity prices, foreign exchange rates, etc. remain as stated in the Company's most recent Scoping Study⁸. ### Macroeconomic Assumptions Table | DISCOUNT RATE | REAL % | 7.0% | |----------------------------|-----------------|---------| | EXCHANGE RATE | USD:AUD | 0.68 | | FEDERAL CORPORATE TAX RATE | % | 30% | | SA ROYALTY RATES | REFINED PRODUCT | 3.5% | | COPPER PRICE | USD/T | \$9,260 | | SILVER PRICE | USD/0Z | \$30 | | ZINC PRICE | USD/T | \$2,700 | ### **Statement Regarding Cobalt** This re-modelling is not intended to suggest that the Company has chosen to abandon the extraction of cobalt; rather, it is intended to demonstrate the metallurgical improvements achieved to date while the Company continues to perfect its cobalt extraction flowsheet. Further updates are anticipated following additional cobalt leaching test work. ⁸ Coda's last Scoping Study Update, released to the market on 3 December 2024, is available at https://codaminerals.com/announcements/6690414 # **Cautionary Statements** ### **Cautionary Statement Regarding Metallurgical Testwork** The Company advises that the metallurgical results presented in this announcement are preliminary in nature and based on early-stage testwork. While the testwork has been conducted and reported with due care, and while it is the opinion of Coda's technical experts and its metallurgical consultants that the laboratory results relied on for this estimate are likely to be applicable to all the mineralogically and geologically similar deposits at Elizabeth Creek, further work is required to confirm the applicability of these results across the broader Elizabeth Creek Project, including additional variability testing at Emmie Bluff and assessment of applicability to the MG14, Windabout and Cattlegrid South deposits. Investors are cautioned that these results are not definitive and should not be relied upon as a basis for investment decisions. Further testwork and analysis will be undertaken during upcoming Pre-Feasibility Studies, and these tests are expected to provide greater confidence when estimating the economic potential of the Project at PFS level. This test work will be required before any production or economic outcomes can be confirmed. ### **Cautionary Statement Regarding CAPEX and OPEX Estimates** The Company advises that the CAPEX and OPEX estimates presented in this announcement which underpin the economic assessments, though they have been prepared with due care by suitably qualified experts to the standard of a Scoping Study, are derived in part from modifications of Coda's earlier CAPEX and OPEX estimates, first presented in 2022. This has been done to ensure direct comparability with earlier iterations of the Scoping Study, however it should be noted changing underlying market conditions may mean that a full recalculation would produce different numbers if undertaken from scratch. This work will be undertaken during upcoming Pre-Feasibility Studies, and this work is expected to provide greater confidence when estimating the economic potential of the Project at PFS level. This work will be required before any production or economic outcomes can be confirmed. ### **Cautionary Statement Regarding Use of Inferred Resources in Production Targets** Production targets are unchanged from the December 2024 Scoping Study⁹ and include contributions from Inferred Resources. Emmie Bluff Production Target includes 96% Indicated and 4% Inferred Resources, MG14 and Windabout 100% Indicated, Cattle Grid South 100% Inferred. Please Appendix 3 for full breakdown. There is a low level of geological confidence associated with Inferred Resources and there is no certainty that further exploration will result in upgrading them to Indicated Resources, or that the production targets themselves will be realised. ### **Cautionary Statement Regarding Calculation Ore Reserves** The Scoping Study referred to in this report is based on low-level technical and economic assessments, and is insufficient to support estimation of Ore Reserves or to provide assurance of an economic development case at this stage, or to provide certainty that the conclusions of the Scoping Study will be realised. ⁹ Coda's last Scoping Study Update, released to the market on 3 December 2024, is available at https://codaminerals.com/announcements/6690414 # Project Economic Summary | AREA | MEASURE | UNIT | UPDATED
SCOPING
STUDY | | |-------------------------|---------------------------------------|-----------|-----------------------------|--| | | | | Aug-24 | | | | Mine Life | Years | 15.5 | | | | Ore Process Rate | Mtpa | 3 | | | S | Feed from Indicated Resource | % | 87% | | | JCTI | Feed from Inferred Resource | % | 13% | | | PRODUCTION | Copper Produced - Total | Kt | 454 | | | E . | Silver Produced - Total | Moz | 20.3 | | | | Copper - Steady State Average 10 | Ktpa | 31.4 | | | | Silver - Steady State Average | M0zpa | 1.4 | | | | Pre-Production Capital | A\$M | 472 | | | CAPITAL | Post-Production Capital | A\$M | 143 | | | CAP | Total Capital | A\$M | 615 | | | | Total Financing Requirement | A\$M | 478 | | | OPERATING | All In Sustaining Cost ¹¹ | USD/lb Cu | 2.15 | | | | Revenue | A\$M | 7,264 | | | ALS
(X) | Net Cash Flow (Pre-Tax) | A\$M | 2,397 | | | FINANCIALS
(PRE TAX) | Net Present Value (NPV ₇) | A\$M | 1,289 | | | FINA
(PR | Internal Rate of Return (IRR) | % | 39% | | | | Total Capital Payback 12 | Years | 3.25 | | $^{^{\}rm 10}$ Steady State Average" is calculated from year 5 to year 16 ¹¹ All-In Sustaining Cost (AISC) includes all mining, processing, tailings management, transport including freight, sustaining capital, royalties & G&A costs ¹² Capital payback is calculated from first production ### Sensitivity Analysis Sensitivity analysis was carried out to determine the impact of various factors on the Project's financial performance. The table below illustrates how the estimated base case NPV (\$1.289B) varies when each of the following factors increases or decreases by 20%. Figure 1 Project pre-tax NPV sensitivity to key variables. Please note that the above chart does not account for correlation between variables and the model remains ceteris paribus. Coda's base-case commodity price assumptions have been derived in a variety of ways and checked against comparable peer projects to ensure consistency with the broader market. The selected copper price of US\$9,260/t (US\$4.20/lb) is below the six-month average LME price leading up to release of this study and is considered conservative given the general market consensus of a coming copper supply shortage. Coda has modelled the Project's sensitivity to a range of potential copper price scenarios, spanning from a low case, which is the 12-month low pricing at US8,538/t^{13}$, to the potential upside case forecasted by Citigroup, ranging between US\$10,000 and US\$15,000/t. These results are presented below: | Cu Price (USD/t) | \$8,538 | \$9,260 | \$10,000 | \$12,000 | \$15,000 | |------------------------------------|--------------|----------------------|----------|----------------------------------|----------| | Cu Price (USD/lb) | \$3.87 | \$4.20 | \$4.54 | \$5.44 | \$6.80 | | | 12-Month Low | Current Base
Case | | Citigroup Forecast ¹⁴ | | | Pre-Tax NPV7(A\$M) | 1,016 | 1,289 | 1,568 | 2,323 | 3,456 | | Pre-Tax IRR | 33% | 39% | 44% | 58% | 77% | | Pre-Tax NPV ₇ /Capex 15 | 2.15 | 2.73 | 3.32 | 4.92 | 7.32 | ¹³ Source: LME Copper Price – 11th April 2025 ¹⁴ Source: Citi Research ¹⁵ Pre-production CAPEX The project has also been modelled at under current (spot) commodity prices which demonstrate upside compared to Coda's base case commodity price assumptions. | | UNIT | BASE CASE | SPOT
25 TH AUGUST | |-----------------------------|-----------|-----------|--| | COPPER | (USD/T) | \$9,260 | \$9,718 | | SILVER | (USD/OZ) | \$30 | \$39 | | FX | (USD:AUD) | 0.68 | 0.65 | | PRE-TAX (NPV ₇) | A\$M | 1,289 | 1,813 | | PRE-TAX IRR | % | 39% | 48% | | POST-TAX (NPV7) | A\$M | 855 | 1,230 | | POST-TAX IRR | % | 30% | 38% | ### **Project CAPEX** Total project CAPEX has decreased by approximately A\$74 million relative to the December 2024 Scoping Study update. CAPEX reduction has come primarily from the reduction in cost of the oxidation circuit, and the removal of the flotation circuit entirely. Net project CAPEX is estimated at A\$615 million under the current assumptions. ¹⁶ A detailed breakdown of project CAPEX is provided as Table 1, below. Table 1 Elizabeth Creek CAPEX cost breakdown | PRE-PRODUCTION CAPITAL EXPENDITURE | A\$M |
--|--| | Underground Mining | 37 | | Process Plant | 285 | | Camp | 31 | | Site Infrastructure | 52 | | Tailings Storage Facility | 22 | | Contingency | 42 | | Owners Costs | 3 | | | | | Total Pre-Production Capital Expenditure | 472 | | Total Pre-Production Capital Expenditure Capital Intensity 17, Steady-State Annual, (USD/t Cu) | 472
\$10,222 | | | | | Capital Intensity ¹⁷ , Steady-State Annual, (USD/t Cu) | \$10,222 | | Capital Intensity ¹⁷ , Steady-State Annual, (USD/t Cu) Capital Intensity, Lifetime, (USD/t Cu) | \$10,222
\$707 | | Capital Intensity ¹⁷ , Steady-State Annual, (USD/t Cu) Capital Intensity, Lifetime, (USD/t Cu) POST-PRODUCTION CAPITAL EXPENDITURE | \$10,222
\$707
A\$M | | Capital Intensity ¹⁷ , Steady-State Annual, (USD/t Cu) Capital Intensity, Lifetime, (USD/t Cu) POST-PRODUCTION CAPITAL EXPENDITURE Underground Mining | \$10,222
\$707
ASM
143 | Sustaining CAPEX has been calculated under the same assumptions as the December 2024 Study and has reduced commensurately with the lower overall project CAPEX. ¹⁶ Please see Cautionary Statement Regarding CAPEX and OPEX Estimates for caveats regarding the calculation of project CAPEX. ¹⁷ Capital intensity has been calculated based on pre-production CAPEX per tonne of Cu, with no accounting for by-product credits (i.e. calculating on the basis of CuEq). Zinc carbonate is a minor immaterial by-product of producing copper cathode and silver dore, contributing ~3% of total project ## Project OPEX Overall project OPEX has decreased significantly, averaging a reduction of approximately A\$7.50 per tonne as a result of adopting the simplified flowsheet. A detailed breakdown of project OPEX is provided as Table 2. Table 2 OPEX per tonne of ore mined | UNIT OPERATING COSTS | UNIT | CATTLE GRID
SOUTH | MG14 | WINDABOUT | EMMIE BLUFF | | |------------------------------|-----------|----------------------|------|-----------|-------------|--| | Mining | A\$/t ore | 17 | 40 | 71 | 49 | | | Processing – Whole Ore Leach | A\$/t ore | 33 | 33 | 33 | 33 | | | Residual Management | A\$/t ore | 2 | 2 | 2 | 2 | | | General & Administration | A\$/t ore | 4 | 4 | 4 | 4 | | | Total Operating Costs A\$/1 | | 55 | 78 | 110 | 87 | | ### **Annual Cashflow** Figure 2 Pre-Tax annual cashflow for the base case scenario, Elizabeth Creek Copper-Cobalt Project. ### **Taxation** The base case financial analysis is undertaken on a pre-tax basis to reflect the Project's value at the point of FID independent of its ownership structure. Accounting for the impact of tax, the financial performance of the Project changes as follows: | NET REVENUE | A\$M | 7,264 | |--|-------|-------| | NET CASH FLOW (POST-TAX) | A\$M | 1,692 | | POST-TAX NPV ₇ | A\$M | 855 | | POST-TAX IRR | % | 30% | | CAPITALPAYBACK
PERIOD ¹⁸ | YEARS | 3.25 | It is anticipated that the Project will contribute a total of approximately \$253 million in state royalties and \$705 million in federal taxes over its lifetime. ### PROJECT FUNDING Coda will progress project funding options and ownership structures during the Pre-Feasibility study. The funding of greenfield mining projects is well understood and a globally common occurrence with multiple precedent transactions of similar scale and size. It is currently envisaged that the project may be funded through a combination of equity, project debt, build-own-operate (BOO) models, and offtake prepayments. ### FUNDING OPTIONS - DEBT AND EQUITY Global capital markets provide multiple opportunities for funding of copper and battery minerals projects through debt and equity. Coda has received and continues to receive, considerable interest from parties including private equity groups, end users, and traders of both copper and cobalt materials. Ongoing global efforts to de-carbonise mean that it is likely that there will be ongoing interest and liquidity for funding of copper and battery minerals projects by global capital markets. ### STRATEGIC PARTNERS - SOURCES OF FUNDING Coda is actively engaging with multiple potential strategic partners and has established a detailed project dataroom containing full details of this Scoping Study as well as other relevant project and exploration data. Potential strategic partners include end users, OEMs, and trading houses located in South Korea, Japan, and Europe. Funding may become available in the form of direct project interest, equity participation or off-take funding, royalties or metals streaming agreements. It is important to note that potential funding structures noted herein would reduce Coda's direct funding requirements but may dilute shareholder interests in the Elizabeth Creek Project. $^{^{\}rm 18}$ Capital payback period is calculated from first production ### CRITICAL MINERALS - AUSTRALIAN GOVERNMENT The Australian Government established the Critical Minerals Facility in 2021, the CFM is a \$4Bn fund managed by the Australian Export Credit Agency and Export Finance Australia. Coda is actively seeking to engage with various government entities engaged in the funding of critical minerals projects as well as overseas government strategic partners. Ongoing government support for critical minerals and downstream processing in Australia have been made available and are anticipated to continue in various forms, including through the Future Made in Australia Act, which was passed in November 2024 and which establishes Production Tax Credits for downstream critical minerals processing. It should be noted that availability of such funding will likely be impacted by changes to the flowsheet reported in this document. Coda remains strongly of the view that cobalt will return to the overall project as a by-product and that critical minerals funding remains likely to be a potential source of funding. ### DUE DILIGENCE AND ESG Coda maintains a detailed dataroom to provide opportunity for interested parties to undertake due diligence subject to strict confidentiality arrangements. During PFS Coda will continue to ensure that its project design will align with and where possible, reach standards set by global organisations including the World Bank, Equator Principles, International Finance Corporation and the Organisation for Economic Co-operation and Development (OECD). Coda has established high standards of corporate, environmental, and social governance including the adoption of the Social Suite ESG reporting system to align with globally recognised ESG reporting frameworks. ### Mining and Mineral Resources In calculating these economics, no changes have been to mining studies carried out for previous iterations of the Elizabeth Creek Scoping Studies under earlier assumptions ¹⁹, nor to the Mineral Resource estimates which underpinned them. These Mineral Resources were based on a Copper Equivalent calculation which included cobalt ²⁰, which the Company has not recalculated. Similarly, mining studies have been undertaken under the lower recovery assumptions for copper and silver derived from the flotation-based flowsheet, with the associated implications for cut-off grades and block selection. The company anticipates that, if this flowsheet were ultimately selected for production, recalculation of these factors would potentially result in the following changes: - Recalculation of the Company's Mineral Resource Estimates *may* result in changes to estimated overall tonnages and grades. - Recalculation of the Company's mine plans would be expected to result in the removal of tonnes which may be uneconomic under the new flowsheet, and potentially the inclusion of tonnes which were previously uneconomic under the flotation based flowsheet, but which may be economic under the new flowsheet. Coda anticipates that this work, if undertaken, would have a materially positive impact on the project's estimated economics, however the Company cautions that the associated studies have not yet been completed, and these statements are cautionary and speculative in nature, and should be treated as such. ### Reintegration of Cobalt All statements regarding the new flowsheet and associated economic performance referred to in this announcement assume the cobalt has been removed from the hydrometallurgical flowsheet entirely, and that cobalt will therefore not be recovered. Coda is currently undertaking testwork on the extraction of cobalt through whole ore leach. The Company believes that this ongoing testwork has the potential to identify a pathway to material practical recovery of cobalt, though at this time the company lacks the final experimental data or associated CAPEX/OPEX estimates to report an estimated recovery percentage or make definitive statements regarding the associated economic impact of the reintegration of cobalt into the flowsheet. If testwork is successful, Coda anticipates that that the reintegration of cobalt into the whole-ore leach flowsheet would improve the project's modelled economics, however the Company cautions that the required studies have not yet been completed, and that the required results may not be obtained through laboratory test work. As such, Coda has chosen to make no definitive statement on Cobalt and recommends that investors treat future cobalt integration as speculative in nature. ¹⁹ For full breakdown of the mined production schedule, please see Appendix 3: Mined Production Schedule ²⁰ Please see "Appendix 1: Elizabeth Creek Mineral Resources" for full details. # **TIMELINE TO PRODUCTION** Estimated timeline for completion of all project approvals. **Disclaimer:** Timeline is indicative only and subject to change. This remains subject to availability of funding for both advanced feasibility and construction post FID. As at the time
of writing, this remains uncertain. ### Flowsheet Technical Details The whole ore leach flowsheet consists of is a single stage oxidative circuit, wherein sample is ground to p80 75µm before being pumped into a series of tanks for leaching. A 4-hour chloride leach under air-sparged, oxidative conditions at 90 degrees C and an ore solids ratio of 6%. The mixture is then passed through a series of thickeners, with the resultant pregnant liquor solution being pumped away for hydrometallurgical processing, while the residue is sent to tailings. In contrast to existing chloride leaching technologies, the optimal leaching parameters identified are different and constitute a significant advancement in the use of chloride salts in leaching of copper sulphide ores. Adapting simple, existing technologies with new, novel parameters delivers results not achieved previously. Recovery of copper, silver and zinc are detailed in Table 3. Chloride leaching is a well-established leaching process which has as it's core two key properties of high concentration dissolved chloride ions: - 1. The ability of chloride ions to form soluble metal-chloride complexes (e.g., CuCl₂⁻, FeCl₄⁻); and - 2. The ability to promote oxidiation of sulfide minerals with the help of oxidants such as oxygen (O₂), ferric chloride (FeCl₃), cupric chloride (CuCl₂), or chlorine gas (Cl₂). Chloride leaching offers significant benefits, including the moderate temperature and pressure requirements, wide availability and high recyclability of inputs, and the demonstrated capability to leach refractory sulphides like chalcopyrite. Table 3 Major metal recoveries from whole ore leach. | OVERALL RECOVERY | | | |------------------|---|-------| | COPPER | % | 94.8% | | SILVER | % | 98.2% | | ZINC | % | 79.6% | Hydrometallurgical recovery consists of a standard SX/EW circuit to recover copper cathode, a Merrill Crowe circuit to recover silver dore, and a precipitation circuit to recover zinc carbonate. All reagents proposed for use are widely available and low cost, with high recyclability anticipated for chlorides used during leaching. ²¹ ### Sample Selection and Testwork Method The test work programme which underlies this work has been undertaken on a series of three drillholes, all from the Emmie Bluff deposit, as outlined in Table 4 and Table 5. All drillholes were drilled in 2021, and the mineralised portions of the drillholes have been held in sub-zero cold storage ever since to minimise oxidation. The exemplar test which the company has chosen to base its assumptions off was undertaken on core from DD21EB0028, which was selected to be as representative of the overall Emmie Bluff deposit as possible (See Figure 3 and Table 5, below). DD21EB0025 is a higher-grade sample designed to be more representative of the north-east corner of the Emmie Bluff Resource, while DD21EB0020A is a lower grade sample. ²¹ To maintain confidentiality around specific leach conditions, which have been provided on a commercial-in-confidence basis, Coda has chosen not to publicly reveal specific reagents, concentrations or other leach conditions not considered critical for the market's understanding of the commercial implications of the leaching technology. Table 4 Drillhole collar data | DRILLHOLE
NAME | EASTING | NORTHING | ELEVATION | AZIMUTH | COLLAR DIP | EOH AZI | EOH DIP | ACTUAL
DEPTH | |-------------------|---------|----------|-----------|---------|------------|---------|---------|-----------------| | DD21EB0028 | 705830 | 6555990 | 158 | 270 | -80 | 263.1 | -89.3 | 456.5 | | DD21EB0025 | 706395 | 6557025 | 171 | 225 | -60 | 230.9 | -67.4 | 519.5 | | DD21EB0020A | 705135 | 6556381 | 167 | 90 | -60 | 111.4 | -66.9 | 516.7 | Table 5 Metallurgical sample representivity: mineralised samples compared to the head grade of the Emmie Bluff Mineral Resource 22. | RESOURCE | CATEGORY | TONNES
(MT) | CUTOFF
GRADE | GRADE
(% CU) | GRADE
(PPM CO) | GRADE
(G/T AG) | GRADE
(PPM ZN) | |--------------------|-----------|----------------|-----------------|-----------------|-------------------|-------------------|-------------------| | EMMIE BLUFF | INDICATED | 37.5 | 1% CUEQ | 1.29% | 590 | 17.1 | 1800 | | MINERAL RESOURCE | INFERRED | 2.7 | 1% CUEQ | 0.94% | 283 | 12.1 | 1700 | | TOTAL | TOTAL | 40.2 | 1% CUEQ | 1.27% | 569 | 16.8 | 1700 | | DD21EB0028 SAMPLE | - | - | - | 1.28% | 377 | 28 | 508 | | DD21EB0025 SAMPLE | - | - | - | 2.39% | 865 | 46 | 1,492 | | DD21EB0020A SAMPLE | | | | 0.88% | 323 | 12.4 | 2,512 | Figure 3 Location of sampled drillholes within the broader mineral resource. Please see Appendix 1 for links to full Resource Statements, Confirmatory Statements and Copper Equivalent grade calculations. Please note that Copper Equivalent has been calculated based on the base-case flowsheet and does not imply the calculation of a copper equivalent based on the metallurgical flowsheet described in this release. ### Changes as Compared to Existing Base Case Flowsheet The current base-case processing flowsheet which Coda has previously reported on at the Elizabeth Creek project includes: - Milling and Grinding to p80 32μm - Concentration by conventional flotation - Ultra-fine grinding and Oxidative leach using the Albion Process[™] - Hydrometallurgical processing to produce copper cathode by SX/EW, cobalt sulphate, silver dore and zinc carbonate. The process being reported on today would require fewer steps, require coarser grinding and do away with the flotation circuit entirely: - Milling and Grinding to p80 75μm - Whole ore oxidative chloride leach (4 hours, 90 degrees C). - Hydrometallurgical processing to produce copper cathode by SX/EW, silver dore and zinc carbonate.²³ The company expects that this simpler flowsheet could significant positive implications for both the capital intensity and operational costs associated with the new process which, combined with higher copper and silver recoveries, could see a material uplift in the project's economics. Assessing these economic implications will be Coda's priority over the next several weeks. ### **Cobalt Recovery** Coda is currently undertaking additional metallurgical test work to demonstrate practical and economically viable extraction of cobalt from Emmie Bluff ore. The Company has chosen to exclude cobalt recovery from this flowsheet to demonstrate the economic potential of the Elizabeth Creek project even if cobalt recovery is assumed to be zero. This is not intended to suggest that it is the Company's intention or belief that the final flowsheet will not include recovery of cobalt. Rather, it reflects the fact that, by contrast with silver and copper extraction, test work related to the recovery of Cobalt has not reached the level of technical robustness or repeatability sufficient to quote a figure within the confines of the JORC Code (2012). The Company anticipates that this situation may change with further test work, and will update the market accordingly, including, where relevant, with updated estimates of the Project's economics. ²³ The company anticipates that the hydrometallurgical back-end associated with final product production will be materially identical (except for the removal of the cobalt circuit) to that which was described in its last Scoping Study Update, released to the market on 3 December 2024 and available at https://codaminerals.com/announcements/6690414 # Implications and Next Steps With these results, as well as other test work previously undertaken, it has become clear that chloride leaching has significantly more potential as a whole-ore leach methodology than other methods recently tested at Elizabeth Creek, including catalysed ammoniacal leaching, and as such this will be Coda's primary focus as a processing alternative to the Company's existing flotation and on-site hydrometallurgical base-case. The base-case flotation-based flowsheet is estimated to provide an average net 82% copper recovery across the Emmie Bluff deposit, materially lower than the 94.8% copper reported in this announcement. Recoveries at that level, especially given the potential for material reductions in CAPEX and OPEX, creates strategic opportunities for project development which Coda will explore in the coming months. Significant improvements to recovery are likely, for example, to allow Coda to re-optimise open pit designs, which may enable a larger Stage 1 development, or potentially even lead to a lower-CAPEX, fast-startup scenario which focuses on early production initially solely from open pits. These improvements could offer Coda far greater flexibility to stage the project in the most economically efficient manner. In the short term, metallurgical test work will remain ongoing for the next several weeks, with priorities including: - Finalising cobalt recovery pathway, and integrating selected pathway into the currently modelled flowsheet; - Updating CAPEX and OPEX - Optimising input factors (reagent dosing, grind size etc.); and - Undertaking further variability test work. Coda anticipates that the completion of this test work, in particular the finalisation of the cobalt recovery pathway, will largely determine the whole-ore flowsheet, at which point, if required, Coda will update its CAPEX and OPEX estimates to properly assess whole-ore leach against the base case flotation scenario which the Company has previously published. Both methods of processing will be taken forward into PFS, with a final decision on which is the more economically attractive of the two options to be made during that process. # Competent Person's Statement The information in this report which relates to metallurgical results is based on information compiled by Dr Carl Urbani, who is an employee of AMAC Process Solutions Pty Ltd. Dr Urbani is a Member of the Australasian Institute of Mining and Metallurgy and has sufficient relevant experience to the style
of mineralisation and type of deposit under consideration and to the activities undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Urbani consents to the inclusion in this report of the matters based on the information compiled by him, in the form and context in which it appears. ### Governance Note This announcement has been authorised for release by the board of Coda Minerals. ## Appendix 1: Elizabeth Creek Mineral Resources Table 6 Aggregated Mineral Resources at Elizabeth Creek | OPEN PIT | | | Proposed | Tonnage | Cut-off | | Copper | | Cobalt | | Silver | | Zinc | Copper | Equivalent | |-------------------|-----------|---------|------------------|---------|-----------|-----------------|------------------------|-------------------|------------------------|-------------------|--------------------------|-------------------|------------------------|-------------------|------------------------| | Resource | Category | Type | Mining
Method | Mt | Grade | Grade
(% Cu) | Contained
Metal (t) | Grade
(ppm Co) | Contained
Metal (t) | Grade
(g/t Ag) | Contained
Metal (Moz) | Grade
(ppm Zn) | Contained
Metal (t) | Grade
(% CuEq) | Contained
Metal (t) | | MG14 | Indicated | Zambian | Open Pit | 1.8 | 0.5% CuEq | 1.2% | 22,700 | 330 | 600 | 14 | 0.8 | | | 1.7% | 30,600 | | Cattle Grid South | Inferred | Breccia | Open Pit | 5.8 | 0.2% Cu | 0.6% | 36,000 | 120 | 700 | 3.5 | 0.7 | 684 | 4000 | | 36,000 ²⁴ | | Windabout | Indicated | Zambian | Open Pit | 17.7 | 0.5% CuEq | 0.8% | 136,100 | 490 | 8700 | 8 | 4.6 | | | 1.4% | 249,100 | | Sub Totals | Indicated | Zambian | Open Pit | 19.5 | 0.5 CuEq | 0.8% | 158,800 | 480 | 9300 | 8.5 | 5.4 | | | 1.4% | 316,000 | | (Open Pit) | Inferred | Breccia | Open Pit | 5.8 | 0.2% Cu | 0.6% | 36,000 | 120 | 700 | 3.5 | 1 | 684 | 4,000 | | | | UNDERGROUND | | | Proposed | Tonnage | Cut-off | | Copper | | Cobalt | | Silver | | Zinc | Copper | Equivalent | |----------------------------|-----------|---------|------------------|---------|---------|-----------------|------------------------|-------------------|------------------------|-------------------|--------------------------|-------------------|------------------------|-------------------|------------------------| | Resource | Category | Type | Mining
Method | Mt | Grade | Grade
(% Cu) | Contained
Metal (t) | Grade
(ppm Co) | Contained
Metal (t) | Grade
(g/t Ag) | Contained
Metal (Moz) | Grade
(ppm Zn) | Contained
Metal (t) | Grade
(% CuEq) | Contained
Metal (t) | | | Indicated | Zambian | Underground | 37.5 | 1% CuEq | 1.3% | 485,000 | 590 | 22,000 | 17 | 20.6 | 1800 | 66000 | 1.9% | 715,000 | | Emmie Bluff | Inferred | Zambian | Underground | 2.7 | 1% CuEq | 0.9% | 46,000 | 280 | 1,000 | 12 | 1.1 | 1700 | 5000 | 1.3% | 36,000 | | Sub Total
(Underground) | Combined | Zambian | Underground | 40.2 | 1% CuEq | 1.3% | 511,000 | 570 | 23,000 | 16.8 | 21.7 | 1700 | 70000 | 1.9% | 751,000 | | Project Wide Total ²⁵ | | 65.5 Mt | 725,800t Contained Cu | 33,000t contained Co | 28 Moz Contained Ag | 75,000t Contained Zn ²⁶ | 1,067,000t contain CuEq | |----------------------------------|--|---------|-----------------------|----------------------|---------------------|------------------------------------|-------------------------| |----------------------------------|--|---------|-----------------------|----------------------|---------------------|------------------------------------|-------------------------| ²⁴ No Copper Equivalent was calculated for Cattle Grid South. Contained CuEq tonnes quoted in this column for Cattle Grid South consist of contained copper only. ²⁵ Total figures have been aggregated purely for convenience and to contextualise the specific contribution of individual Mineral Resource Estimates to the overall project scale. Grades reported are tonnage-weighted averages of the individual Mineral Resource Estimates. Coda notes that the total figure includes resources reported at varying cut-off grades, with varying estimation techniques, metallurgical properties and proposed mining methods. Individual Mineral Resource Estimates should be considered individually. A total copper equivalent figure has not been disclosed as Coda does not believe it is currently appropriate to calculate a copper equivalent for the Cattle Grid South Mineral Resource Estimate. Please see below sections Statement Regarding Metal Equivalent Calculations and Competent Persons Statement for full details on the calculation of copper equivalents and links to original releases/CP statements. Figures have been rounded for simplicity. ²⁶ No Zinc estimate was provided for the MG14 and Windabout deposits. This figure reflects the contained tonnage solely from Emmie Bluff and Cattle Grid South. # Competent Persons' Statements and Confirmatory Statement - Mineral Resource Estimates and Production Targets **MG14 Indicated Mineral Resource:** The information is extracted from the report entitled "Confirmation Statements JORC" created on 26th October 2020 and is available to view at: $\frac{\text{https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02298915-6A1003162\&v=70bc033a22188bdfefb8a0b8ad3c24897ef2837d.}$ The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. **Windabout Indicated Mineral Resource:** The information is extracted from the report entitled "Confirmation Statements JORC" created on 26th October 2020 and is available to view at: $\frac{https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02298915-6A1003162\&v=70bc033a22188bdfefb8a0b8ad3c24897ef2837d.$ The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. **Emmie Bluff Mineral Resource:** The information is extracted from the report entitled "Scoping Study Update Delivers Materially Improved Economics" created on 30 January 2024 and is available to view at: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02766550-6A1191314. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. **Cattle Grid South Mineral Resource:** The information is extracted from the report entitled "Initial Copper Resource for Cattle Grid South" created on 03 July 2024 and is available to view at: https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02823989-6A1214274&v=4015c7b87631faf94ecd96975272ff9ad5cb14c3. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. ### Listing Rule 5.19.2 In relation to any Production Target or any forecast financial information based on any Production Target quoted or referenced in this announcement, the Company confirms that all material assumptions underpinning both the Production Target and any forecast financial information continue to apply and have not materially changed. The original ASX announcement released on 3 December 2024 relating to any Production Target or forecast financial information derived from any Production Target referenced within this announcement can be found here. ### Statement Regarding Metal Equivalent Calculations Metal Equivalent grades are quoted for one or more of the Emmie Bluff, Windabout and MG14 Mineral Resources, or for exploration results considered by the company to be related directly to one of these Mineral Resources, in this announcement. ### For the Emmie Bluff Mineral Resource: The Emmie Bluff Mineral Resource is reported as 40.2Mt @ 1.27% Cu, 569 ppm Co, 16.8 g/t Ag and 0.17% Zn (1.87% Copper Equivalent (CuEq)) reported at a cut-off grade of 1% CuEq. The calculation of this metal equivalent is based on the following assumptions. | Metal Coefficient | | Forecast Price | Price Unit | | | |-------------------|------|----------------|------------|--|--| | Copper | 0.8 | \$7,000 | USD/Tonne | | |
| Cobalt | 0.85 | \$55,000 | USD/Tonne | | | | Zinc | 0.9 | \$2,100 | USD/Tonne | | | | Silver | 0.85 | \$18.50 | USD/Oz | | | Price assumptions used when calculating copper equivalent grades were based primarily on Consensus Economics forecasts of metals, except for Cobalt, which was sourced via communication with subject matter experts. Metallurgical assumptions used when calculating copper equivalent grades were based on a simple bulk float utilising rougher and minimal cleaner/scavenger circuits. The produced a reasonably consistent mean recovery across most metals of between approximately 83 and 94 percent. For simplicity, and to in part account for losses associated with less intensive cleaner floats and losses to the hydromet plant, these figures were rounded down to the nearest 5%. Application of these assumptions resulted in the following calculation of CuEq: $$CuEq\% = Cu\% + 0.00068 \times Co\ ppm + 0.337 \times Zn\% + 90.3 \times \frac{Ag\ ppm}{10000}$$ ### For the Windabout and MG14 Mineral Resource: The Windabout and MG14 Mineral Resource are reported at a cut-off grade of 0.5% CuEq as: - Windabout: 17.67Mt @ 0.77% Cu, 492 ppm Co and 8 g/t Ag (1.41% CuEq) - MG14: 1.83Mt @ 1.24% Cu, 334 ppm Co and 14 g/t Ag (1.84% CuEq) The calculation of this metal equivalent is based on the following assumptions. | | Metal | Mining
Recovery % | Dilution % | Recovery % | Payability % | Forecast Price | Price Unit | |---|--------|----------------------|------------|------------|--------------|----------------|------------| | | Copper | 0.9 | 0.05 | 0.6 | 0.7 | \$6,600 | USD/Tonne | | ĺ | Cobalt | 0.9 | 0.05 | 0.85 | 0.75 | \$55,000 | USD/Tonne | Price assumptions used when calculating copper equivalent grades were based on recent historical metal prices at the time of calculation (2018). Metallurgical assumptions are based on extensive metallurgical testwork undertaken on the two deposits to 2018 across various potential flowsheets involving both floatation and leaching. Ag analyses in the estimation and metallurgical testwork were considered insufficient at the time to include in the metal equivalent calculation. Application of these assumptions resulted in the following calculation of CuEq: $$CuEq\% = Cu\% + 0.0012 \times Co ppm$$ It is the opinion of the company that both sets of prices used in the calculations are reasonable to conservative long-term forecasts for real dollar metal prices during the years most relevant to the deposits (approx. 2026-2030). It is the opinion of the company that all of the elements included in the metal equivalent calculations have a reasonable potential to be recovered and sold. For full details of the Emmie Bluff Metal Equivalent calculation, please see "Scoping Study Update Delivers Materially Improved Economics", released to the ASX on 30th January 2024 and available at https://www.codaminerals.com/wp-content/uploads/2024/01/20240130 Coda ASX-ANN Scoping-Study-Update-Delivers-Materially-Improved-Economics RELEASE.pdf. For full details of the MG14/Windabout Metal Equivalent Calculation, please see "Confirmation of Exploration Target & Mineral Resource and Ore Reserve Statement", released to the ASX on 23rd October 2020 and available at https://www.codaminerals.com/wp-content/uploads/2020/10/20201026_Coda_ASX-ANN_Confirmation-Statements-JORC.pdf. ### Listing Rule 5.23.2 The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements cited in this announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. ### Forward Looking Statements This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information. # Appendix 2: ASX Announcements Index This appendix includes links to major announcements released by Coda Minerals which are relevant to the Scoping Study. Where relevant, links include full JORC Table 1s and Competent Persons Statements. | ANNOUNCEMENT TITLE | RELEASE DATE | KEY INFORMATION | URL | |--|-----------------|--|---| | MINERAL RESOURCE ESTIMATES | | | | | Scoping Study Update Delivers Materially Improved Economics | 30 January 2024 | Emmie Bluff Mineral Resource Estimate | https://www.codaminerals.com/wp-content/uploads/2024/01/20240130_Coda_ASX-ANN_Scoping-Study-Update-Delivers-Materially-Improved-Economics_RELEASE.pdf | | Securities Exchange Announcement - Mt Gunson
Copper-Cobalt Project Update | 19 January 2018 | MG14 and Windabout Mineral Resource
Estimates | https://cdn-api.markitdigital.com/apiman-gateway/ASX/asx-research/1.0/file/2924-02298915-6A1003162&v=70bc033a22188bdfefb8a0b8ad3c24897ef2837d. | | Initial Copper Resource for Cattle Grid South | 3 July 2024 | Cattle Grid South Mineral Resource Estimate | https://www.codaminerals.com/wp-content/uploads/2024/07/20240703_Coda_ANN_Initial-Copper-Resource-for-Cattle-Grid-South_vRelease.pdf | | UNDERGROUND MINING | | | | | Scoping Study Update Delivers Materially Improved Economics | 30 January 2024 | Mechanical Cutting | https://www.codaminerals.com/wp-content/uploads/2024/01/20240130_Coda_ASX-ANN_Scoping-Study-Update-Delivers-Materially-Improved-Economics_RELEASE.pdf | | Further Key Improvement in Underground Project Economics | 14 March 2024 | Pillar Recovery at Emmie Bluff | https://www.codaminerals.com/wp-content/uploads/2024/03/20240314_Coda_ASX-ANN_Further-Key-Improvement-in-Underground-Project-Economics_RELEASE.pdf | | METALLURGY | | | | | Oxide Flotation Success Delivers Pathway To Improved Recoveries | 18 June 2024 | Oxide flotation (rougher) results at windabout | https://www.codaminerals.com/wp-content/uploads/2024/07/20240618_Coda_ANN_Flotation-Success_Release.pdf | | Next-Stage Metallurgical Testwork Confirms Recovery Uplift | 20 August 2024 | Oxide flotation (rougher) results at windabout | https://www.codaminerals.com/wp-content/uploads/2024/08/2024082-1.pdf | | Breakthrough Delivers Material Uplift in Copper, Silver
Recoveries | 26 June 2025 | Whole Ore Leach Results | https://codaminerals.com/announcements/7023903 | | EARLIER SCOPING STUDY ITERATIONS | | | | |--|--------------------|---|---| | Positive Scoping Study - Elizabeth Creek Copper-
Cobalt Project | 23 March 2023 | Original Scoping Study | https://www.codaminerals.com/wp-content/uploads/2023/03/20230323_COD_ASX-ANN_Elizabeth-Creek-Scoping-Study_VRelease.pdf | | Scoping Study Update Delivers Materially Improved Economics | 30 January 2024 | First Scoping Study Update, including
Emmie Bluff Mechanical Cutting, On-Site
Dolomite and other changes | https://www.codaminerals.com/wp-content/uploads/2024/01/20240130_Coda_ASX-ANN_Scoping-Study-Update-Delivers-Materially-Improved-Economics_RELEASE.pdf | | Further Key Improvement in Underground Project Economics | 14 March 2024 | Second Scoping Study update, integration of pillar recovery strategy at Emmie Bluff | https://codaminerals.com/announcements/6245805 | | New Resources, Higher Recoveries Significantly Boost
Elizabeth Creek's Underlying Value | 3 December
2024 | Third Scoping Study update, integration of oxide collectors, second mill-float stage and Cattlegrid South deposit | https://codaminerals.com/announcements/6690414 | # Appendix 3: Mined Production Schedule Table 7 The anticipated mined production schedule for all four deposits based on Resource Categorisation. CuEq% equations for MG14/Windabout and Emmie Bluff are provided in the Metal Equivalents section, above. There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further
exploration work will result in the determination of Indicated Mineral Resources or that the production target itself will be realised. Please note that only revenue from copper, silver and zinc is considered in this Scoping Study. | | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 | Year 7 | Year 8 | Year 9 | Year 10 | Year 11 | Year 12 | Year 13 | Year 14 | Year 15 | Year 16 | Year 17 | Year 18 | |--|--------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------------|-----------|---------| | MG14 (Indicated), Tonnes | | | 1,256,905 | 0 | | | | | | | | | | | | | | | | Windabout (Indicated), Tonnes | | | 847,329 | 2,368,673 | 422,132 | 131,750 | | | | | | | | | | 2,189,049 | | | | Emmie Bluff (Inferred), Tonnes | | | | | 21,076 | 3,193 | | | | 6,841 | 70,736 | 49,080 | 272,193 | 201,322 | 972,198 | 15,994 | | | | Emmie Bluff (Indicated), Tonnes | | | 19,803 | 777,674 | 2,600,156 | 2,910,363 | 2,911,250 | 2,820,654 | 2,815,323 | 2,773,940 | 2,758,291 | 2,721,593 | 2,663,927 | 2,615,340 | 1,285,951 | 521,342 | | | | Cattle Grid South (Inferred), Tonnes | | | | | | | | | | | | | | | | 1,808,359
27 | 1,567,974 | 666,667 | | Inferred Mined (Tonnage basis, %, yearly) | - | - | 0.00% | 0.00% | 0.69% | 0.10% | 0.00% | 0.00% | 0.00% | 0.25% | 2.50% | 1.77% | 9.27% | 7.15% | 43.05% | 40.23% | 100.00% | 100.00% | | Inferred Mined (Tonnage basis, %, cumulatively) | - | - | 0.00% | 0.00% | 0.05% | 0.06% | 0.06% | 0.06% | 0.06% | 0.07% | 0.24% | 0.35% | 0.98% | 1.45% | 3.71% | 7.94% | 11.58% | 13.13% | | Indicated Mined (Tonnage basis, %, yearly) | - | - | 100.00% | 100.00% | 99.31% | 99.90% | 100.00% | 100.00% | 100.00% | 99.75% | 97.50% | 98.23% | 90.73% | 92.85% | 56.95% | 59.77% | 0.00% | 0.00% | | Indicated Mined (Tonnage basis, %, cumulatively) | - | - | 4.93% | 12.24% | 19.26% | 26.32% | 33.08% | 39.63% | 46.17% | 52.61% | 59.01% | 65.33% | 71.52% | 77.59% | 80.57% | 86.87% | 86.87% | 86.87% | ²⁷ Mined production exceeds processing capacity – excess tonnes will be stockpiled to maximise plant throughput in year 17. Figure 4 The anticipated mined production schedule for all three deposits based on Resource Categorisation. CuEq% for MG14, Windabout and Emmie Bluff is calculated as per "Metal Equivalents", above. Mine schedule has been carried over from the December Study without adjustment in order to facilitate comparison between the two processing options. Coda anticipates that changes to this schedule may occur during mining studies, slated to be undertaken during the PFS if the whole-ore leach flowsheet is selected. There is a low level of geological confidence associated with Inferred Mineral Resources and there is no certainty that further exploration work will result in the determination of Indicated Mineral Resources or that the production target itself will be realised. Mined production exceeds processing capacity in year 16— excess tonnes will be stockpiled to maximise plant throughput in year 17. # Appendix 4: Detailed Technical Information and JORC Table 1 This table includes data relevant to both the metallurgical test work which forms the basis of the new information reported herein. # Section 1 Sampling Techniques and Data | (Criteria in this s | ection apply to all succeeding sections.) | | |---------------------|--|---| | Criteria | JORC Code explanation | Commentary | | Sampling techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation | Metallurgical sample from Emmie Bluff was taken from samples drilled in 2021 and composited in 2024 from drillholes DD21EB0020A DD21EB0025 and DD21EB0028. Sample from DD21EB0028 was used in the exemplar test which underpins this announcement. The material has been kept in cold storage since compositing/flotation to minimise oxidation. Core was logged in the field and approximate metal content of potentially mineralised zones was measured at regular intervals with a portable XRF device at measurement intervals of between 0.1 and 0.5m. Sampling intervals were selected by field geologists based on logging and XRF results. Understanding of the mineralising system based on both historical drilling and previous drilling by Coda, as well as the XRF results, allowed large parts of the holes to remain unsampled. Sampling is typically restricted to areas of intersected Tapley Hill fm. and immediate surrounds. Coda's field personnel cut the core on site prior to sending to be assayed. Portable XRF readings were taken in the field using an Olympus Vanta M tool applied directly to the core at either single or half metre intervals, depending on prior results or visual identification of potential grade by the field geologist. The sample was not prepared except by standard cleaning of core by driller's offsiders. XRF readings were taken at ambient summer daytime temperature for Woomera in South Australia, between 20 and 43 degrees Celsius. The device was used in 3-beam mode, scanning for a total of 15, 15 and 15 seconds for the two 40 KV beams and the final 50KV beam respectively. The | | | types (e.g. submarine nodules) may warrant disclosure of detailed information. | device is designed to minimise drift over time, but has not been calibrated in the last 12 months. The results have not been corrected or otherwise adjusted. Minor QA/QC is performed during reading, including duplicates and a series of | standards and blanks taken at the start of each recording cycle. | Criteria | JORC Code explanation | Commentary | |------------------------|--
---| | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole
hammer, rotary air blast, auger, Bangka, sonic,
etc) and details (e.g. core diameter, triple or
standard tube, depth of diamond tails, face-
sampling bit or other type, whether core is
oriented and if so, by what method, etc). | Drilling has not been reported as part of this release. Metallurgical sample was taken from HQ diamond core (Emmie Bluff). Parent holes at Emmie Bluff were drilled from surface to approximately 300m using RC, and tailed to end of hole using HQ diamond. The holes achieved EOH Dips and azimuths for angled holes are as per Table 4 in the main body of the announcement. Core was oriented using an EziMark core orientation tool on angles holes. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Drilling has not been reported as part of this release. Metallurgical sample was taken from diamond drilling at the Windabout and Emmie Bluff deposits, where recovery is typically excellent. No recovery issues were noted in the holes/at the depths from which sample was derived. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Drilling has not been reported as part of this release. No Mineral Resource has been estimated as part of this announcement. All core was qualitatively logged by suitably qualified field geologists at the time of drilling. | | Criteria | JORC Code explanation | Commentary | |---|---|--| | Sub-sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Drilling has not been reported as part of this release. Tapley Hill Fm shale (host rock) is a fine grained shale, mineralogy is known to be fine grained from field logging/XRD – grain size is not considered a relevant factor for sampling representivity but is a factor in metallurgical properties | | Quality of
assay data and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | Original assays via sodium peroxide fusion, ICP-OES/ICP-MS (Ag). Metallurgical assays were carried out by Nagrom in Perth, WA. Elements were sampled by a variety of methods: Ag, As, Bi, Ca, Co, Mg, Ni, Pb, Zn: Four Acid Digest (mixed acid digest) with ICP MS and OES finish (ICP003) Cu, Fe, Mn, S: Sodium peroxide fusion digest in an alumina crucible with ICP MS and OES finish (ICP004) Hg: Sodium peroxide fusion digest in zirconium crucible with ICP MS and OES finish (ICP009) These techniques were selected by Coda's metallurgical consultants (AMAC Processing Solutions) as appropriate for the deposit type. | | Criteria | JORC Code explanation | Commentary | |---------------------------------------|---|---| | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | No verification of the assays have been carried out. No adjustments have been made to assay data. No details are available of repeats, standards, etc. or other assay verification tests undertaken. Duplication and verification of metallurgical results will be undertaken as part of follow up test work using the same sample composite. | | Location of data points Data spacing | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. | Drilling has not been reported as part of this release. Drill collar locations (including RL) have been located using handheld GPS, MGA 94 Zone 53. Historical drillhole locations have been extracted from the South Australian Resources Information Gateway (SARIG) and ground truthed by Coda field personnel. Drilling has not been reported as part of this release. | | and
distribution | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | • Composites were made of material from a number of holes to improve representivity, per the table below. | | Criteria | JORC Code explanation | Commentary | |---
--|---| | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Drilling has not been reported as part of this release. The Emmie Bluff host rock (Tapley Hill fm, black shale) makes up part of a broadly flat lying sequence of sediments on the Stuart Shelf. Drillholes from which sample was taken were all either vertical or had drooped significantly by the time of intercepting the potentially mineralised horizon, and no bias is believed to be introduced as a result. Where Tapley intersections are reported in historical drilling account has been taken of any potential bias. | | Sample
security | The measures taken to ensure sample security. | Core was sampled by Coda in the field, cut by Challenger Geological Services,
and has been stored by APF Cold Storage in Adelaide since 2021. Core was
transferred by Coda personnel from Adelaide to AMAC Processing Solutions
staff to undertake metallurgical testwork. | | Audits or reviews | The results of any audits or reviews of sampling
techniques and data. | No audits, umpire assays or reviews have yet been undertaken. | # Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) | (Criteria listed in the preceding section also apply to this section.) | | | |--|--|--| | Criteria | JORC Code explanation | Commentary | | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Drilling from which samples were extracted took place on EL 6265. EL 6265 is owned in a 70:30 split by Coda Minerals Ltd and Terrace Mining Pty Ltd (a wholly owned subsidiary of Coda) respectively. The tenure is pending renewal at the time of this release, however Coda has confirmed with he South Australian Department of Energy and Mining that renewal application was submitted on time and that there are no expected impediments to renewal. The Company considers EL 6265 to be in good standing and secure. No other impediments are known at this time. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by
other parties. | Historical exploration of the MG14 and Emmie Bluff prospects has been undertaken by (among others) Mt Isa Mines, Gunson Resources, Torrens Mining and Gindalbie Metals (Coda's predecessor company). Historical exploration of the Cattle Grid South deposit has been undertaken by (among others) Pacminex Pty Ltd, Cobalt Resources NL and Mount Gunson Mines Pty Ltd. With the exception of data from Gindalbie Metals, all historical results used to guide Coda's exploration has been obtained from the Geological Survey of South Australia via the South Australian Resources Information Gateway (SARIG). | ### Geology Deposit type, geological setting and style of mineralisation. - The Elizabeth Creek project, of which MG14, Cattle Grid South and Emmie Bluff are part, sits in the Stuart Shelf within the broader Olympic Copper Province in South Australia. - Mineralisation at MG14 and Emmie Bluff is hosted in the dolomitic shales and dolarenites of the Neoproterozoic Tapley Hill Formation. This formation unconformably overlies the Meso/Palaeoproterozoic Pandurra Formation due to local uplifting associated with the Pernatty Upwarp. This unconformity, as well as structures associated with the Pernatty Upwarp, represent the most likely fluid flow pathways associated with the emplacement of metal bearing sulphides. - Mineralisation from MG14, Emmie Bluff and the nearby Windabout deposit closely resemble each other, and are located within approximately 40km of one another within the broader Elizabeth Creek tenure. They are considered to fall within the broad "Zambian-style" family of sediment hosted copper deposits. - Cattle Grid South breccia mineralisation is hosted in a palaeopermafrost breccia of the basalt Whyalla Formation and upper Pandurra Formation sandstones. This formation unconformably overlies the Meso/Palaeoproterozoic Pandurra Formation due to local uplifting associated with the Pernatty Upwarp. This unconformity, as well as structures associated with the Pernatty Upwarp, represent the most likely fluid flow pathways associated with the emplacement of metal-bearing sulphides. - Cattlegrid Breccia mineralisation closely resembles mineralisation in the Main Open Cut, East and West Lagoon, House and Gunyot resources found approximately 2-4 km to the north and east, also within the broader Elizabeth Creek project tenure. - These deposits are considered by Coda to be genetically related to, but geologically distinct from, the shale-hosted Zambian-style copper-cobalt deposits which host the majority of the copper known to exist at Elizabeth Creek (MG14, Windabout and Emmie Bluff). While Coda considers it very likely that the two deposit types formed from the same fluid at the same time, | Criteria | JORC Code explanation | Commentary | |---------------------------|--|---| | | | differences in the host rock produced two highly distinct deposit types with different chemistry, morphology and metal distribution, with material implications for mining and metallurgy | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: | Drilling has not been reported as part of this release. See tables and images in the body of the announcement for details regarding drillholes from which sample has been extracted. | | Criteria | JORC Code explanation | Commentary | |---|---
---| | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | See above for full compositing. No metal equivalents have been used in reporting exploration results. Metal equivalents are used by Coda in reporting its Mineral Resources. The basis for these calculations are provided in the "Error! Reference source not found.", above. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | The Emmie Bluff host rock (Tapley Hill fm, black shale) makes up part of a broadly flat lying sequence of sediments on the Stuart Shelf. Drillholes were all either vertical or had drooped significantly by the time of intercepting the potentially mineralised horizon, and no bias is believed to be introduced as a result i.e. reported widths are assumed to be materially accurate to true widths. Where Tapley intersections are reported in historical drilling (E.g. MGD42) account has been taken of any potential bias. | | Diagrams | Appropriate maps and sections (with scales) and
tabulations of intercepts should be included for
any significant discovery being reported These
should include, but not be limited to a plan view of
drill hole collar locations and appropriate sectional
views. | See maps in main body of announcement. | | Criteria | JORC Code explanation | Commentary | |------------------------------------|---|--| | Balanced
reporting | Where comprehensive reporting of all Exploration
Results is not practicable, representative reporting
of both low and high grades and/or widths should
be practiced to avoid misleading reporting of
Exploration Results. | Coda has provided detailed descriptions of the methods used to undertake the test work, and has released the results in as much detail as possible. Coda has withheld the specific details due to their commercial in confidence nature. Coda can confirm, however, that the reagents used are is widely available and relatively inexpensive. Coda also anticipates that the majority of reagents will be substantially recyclable. Coda is in the process of securing approval from the IP holder to release the details of the process to market. Coda believes that this announcement represents an accurate and balanced reporting of the information it has to date. More information will be made available to the market as soon as practical upon its receipt by the company. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | No other substantive exploration results are considered relevant to this release. | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Coda is continuing to advance the Elizabeth Creek project, including ongoing
metallurgical testwork to further improve results as detailed in the main body
of the announcement. | ## Section 4 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.) The following Table sourced from the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012 Edition) (JORC Code (2012)) presents the assumptions on which this Study is based. For clarity, this table is not being used to report Ore Reserves. Instead, as per the ASX Interim Guidance: Reporting Scoping Studies dated November 2016, this table is being used as a framework to disclose underlying study assumptions. Coda considers this announcement to be supplementary to the most recently released update to the Elizabeth Creek Scoping Study, as released to the market on 3 December 2024, and available at https://codaminerals.com/announcements/6690414, and this announcement should be read in concert with that announcement (Identificed as the "December Study" in the table below). With the exception of the changes outlined in the body of the announcement, all assumptions underlying the most recent update are considered valid for this announcement and the following table has been extracted from the December update with minor edits. Section 4 Estimation and Reporting of Ore Reserves modified for a Scoping Study which includes an approximate Production Target and/or Forecast Financial Information | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral
Resource
estimate for
conversion to
Ore Reserves | Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve. Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves. | No JORC Code (2012) Ore Reserve estimate has been classified or
reported. The study is based on four Mineral Resource Estimates. Three broadly geologically consistent Mineral Resource Estimates (shale hosted, stratiform copper-cobalt-silver deposits of the central African or <i>Kupferschiefer</i> style). They are: Emmie Bluff: A roughly triangular lens of Tapley Hill Formation shale extending from the northern boundary of Coda's tenure, with a maximum width of approximately 2.9 km east-west and a north-south extent of approximately 2.4 km. The upper lode varies in thickness from 1 m to 22 m, whereas the lower lode is inconsistent, varying from absent to approximately 8 m. The Mineral Resource used in this study was reported at a cut off of 1% CuEq ⁶ , and was prepared by a suitably qualified Competent Person (See Competent Persons Statements, above). The resource is divided by confidence levels into Inferred and Indicated in the ratios set out in Table 2 in the main body of the announcement. Windabout: A flat, tabular, triangular shaped sheet of Tapley Hill Formation, extending approximately 2 km east-west and 1 km north-south, with an upper lode varying in thickness between 2 m and 8 m at a depth between 55 m and 85 m, whereas the lower lode varies from 2 m to 6 m. The Mineral Resource used in this study was reported at a cut off of 0.5% CuEq ⁵ and a confidence level of Indicated, and was prepared by a suitably qualified Competent Person (See Competent Persons Statements, above) | | Criteria | JORC Code explanation | Commentary | |-------------|--|---| | | | ■ MG14: A tabular, horizontal, triangular shaped sheet of Tapley Hill Formation, extending approximately 1.4 km east-west by 0.4 km north. The upper lode of the deposit is 3-8 m thick and is located approximately 20-25 m below the surface, whereas the lower lode is narrow and inconsistently mineralised. The Mineral Resource used in this study was reported at a cut off of 0.5% CuEq ⁵ and a confidence level of Indicated, and was prepared by a suitably qualified Competent Person (See Competent Persons Statements, above) One geologically distinct variant on sediment hosted mineralisation, (breccia sandstone hosted copper-cobalt-silver) deposit: ■ Cattle Grid South: Cattle Grid South breccia mineralisation is approximately 1.4km (east-west) by 750m (north-south) by 15m (thickness), and is hosted in a palaeopermafrost breccia of the basalt Whyalla Formation and upper Pandurra Formation sandstones. This formation unconformably overlies the Meso/Palaeoproterozoic Pandurra Formation due to local uplifting associated with the Pernatty Upwarp. This unconformity, as well as structures associated with the Pernatty Upwarp, represent the most likely fluid flow pathways associated with the emplacement of metal-bearing sulphides. Cattlegrid Breccia mineralisation closely resembles mineralisation in the Main Open Cut, East and West Lagoon, House and Gunyot resources found approximately 2-4 km to the north and east, also within the broader Elizabeth Creek project tenure. These deposits are considered by Coda to be genetically related to, but geologically distinct from, the shale-hosted Zambian-style copper-cobalt deposits which host the majority of the copper known to exist at Elizabeth Creek (MG14, Windabout and Emmie Bluff). While Coda considers it very likely that the two deposits which host the majority of the copper known to exist at Elizabeth Creek (MG14, Windabout and Emmie Bluff). While Coda considers it very likely that the two deposit sypes formed from the same fluid at the same time, differences in the host rock pr | | Site visits | Comment on any site visits
undertaken by the Competent Perso
and the outcome of those visits. If no site visits have been undertaken
indicate why this is the case. | Neoproterozoic Stuart Shelf or by recent cover, such that limited geological information of value can be | | Criteria | JORC Code explanation | Commentary | |-----------------------|--|---| | | | • It was the opinion of the Company and the Competent Persons that sufficient information to undertake the work described in this announcement could be gained without requiring a site visit. | | Study status | The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves. The Code requires that a study to at least Pre-Feasibility Study level has been undertaken to convert Mineral Resources to Ore Reserves. Such studies will have been carried out and will have determined a mine plan that is technically achievable and economically viable, and that material Modifying Factors have been considered. | This announcement is presented as a supplement to an earlier released Scoping Study. As a result, the Company does not believe it has sufficiently rigorous understanding of the relevant modifying factors, and, in line with the requirements of the JORC Code (2012) has not attempted to define an Ore Reserve. | | Cut-off
parameters | The basis of the cut-off grade(s) or quality parameters applied. | Cut off grades were calculated differently for the open pit and underground deposits. MG14 and Windabout: A marginal cut-off grade calculation was undertaken for MG14 and Windabout based on providing sufficient revenue to cover the cost of transport from the pits to the proposed process plant at Emmie Bluff (approximately 40km away via an
assumed haul road route), the cost of processing and metallurgical recoveries known from testwork. This was determined to be 0.6% CuEq. Mining costs were calculated based on a cost model developed in 2022 including inputs from a reputable South Australian based mining contractor. Costs included Mine Technical Services, Load and Haul, Drill and Blast, Grade Control, Dewatering, Messing & Accommodation, and assumed contract mining. Tapley Hill Formation shale at MG14 and Windabout was assumed to have a dry bulk density of 2.2 dmt/bcm. Cattle Grid South: A Cutoff of 0.5% Cu was used following assessments of cut off grades ranging from 0.2 upwards. The number was selected to maximise project NPV given the role the deposit was proposed to play in the overall mine plan. Emmie Bluff: A cut-off grade calculation was made based on known metallurgical characteristics, assumed average lifetime commodity prices (See "Metal Equivalents") and mining operating costs (See December Study), which were calculated based on the selected mining method using a unit rate calculator and Mining Plus's (Coda's Mining Consultant) internal database; the total stoping cost was \$45 per tonne. These calculations resulted in a cut-off grade of 1.0% CuEq. CuEq calculations were undertaken on the basis of earlier flotation processing flowsheets, and account for cobalt. Recalculation of Copper Equivalent based on the alternative processing flowsheet outlined in this | | Criteria | JORC Code explanation | Commentary | |-------------------------------|--|--| | | | announcement would be expected to materially alter mineral resources and associated mining plans. | | Mining factors or assumptions | The method and assumptions used as reported in the Pre-Feasibility or Feasibility Study to convert the Mineral Resource to an Ore Reserve (i.e. either by application of appropriate factors by optimisation or by preliminary or detailed design). The choice, nature and appropriateness of the selected mining method(s) and other mining parameters including associated design issues such as pre-strip, access, etc. The assumptions made regarding geotechnical parameters (eg pit slopes, stope sizes, etc), grade control and pre-production drilling. The major assumptions made and Mineral Resource model used for pit and stope optimisation (if appropriate). The mining dilution factors used. The mining recovery factors used. Any minimum mining widths used. The manner in which Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their inclusion. The infrastructure requirements of the selected mining methods. | Announcement would be expected to materially after mineral resources and associated mining plans. No JORC Code (2012) Ore Reserve estimate has been classified or reported. Methods and assumptions reported are as part of the Scoping Study, no Pre-Feasibility or Feasibility Study has yet been undertaken. MG14 and Windabout: The mineralisation at MG14 and Windabout is relatively shallow, commencing at approximately 20–25 m and 55-85 m below the surface respectively. Historical assessments of underground mining at Windabout have been undertaken, but it was determined that open pit was the optimal method to mine these two deposits due to a superior economic outcome based on modelling and challenging geotechnical characteristics. Open Pit The MG14 and Windabout pit optimisation process was run using Hexagon Mining's Mine Economic Planner software, assuming pit wall slopes of 45-55 degrees. The bases of the designed pit floors were set to the lower surfaces of the optimised pits, batter slopes of pit walls were set at 65 degrees with 5 metre high berms every 20 metres. The Cattle Grid South pit was optimised through numerous iterations, constrained by the mining lease boundary to the north. Optimisation and pit wall parameters assumed 10m bench heights, 80 degree wall angles, and 8m berm widths. A 1:10, 25m wide ramp was assumed, and minimum mining widths were set at 50m. Bulk overburden stripping will be carried out on 10 metre benches mined on 4-5 metre flitches. Ore mining with be carried out on 5 metre benches mined in to 2.5 metre flitches. Drilling and blasting will be performed on 10 metre benches in overburden, and 5 metre benches near the ore zones. Blasthole cuttings in ore zones will be used delineate ore and waste zones. Dilution in the open pits was accounted for in the original diluted block model. Mining recovery in both deposits was assumed to be 100%. | | Criteria | JORC Code explanation | Commentary | | |----------|-----------------------|------------|---| | | | 0 | Mechanical Cutting Cost per tonne mined was derived first by the development of a super panel layout. Stopes were arranged in super panels and were aligned approximately NE/SW in line with the direction of principal stress. | | | | 0 | From this layout, the Super Panel excavations were split into Development and Extraction, both of which were costed from first principles. The two costs were then combined proportionally to come up with an overall operating cost of \$45.20/t. | | | | 0 | This cost assumes owner-operated mining for all mechanical cutting operations combined with contractor drill and blast mining and trucking operations. The continuous miner productivity was based on the height of the stope panel to be mined. Continuous miner OEM modelled and provided the rates | | | | 0 | The orebody will be accessed via a decline from the surface, located in the center of the southwest side of the deposit, (Figure 9). The decline has an arched profile of 5.0 m wide and 5.5 m high with a -1:7 gradient; stockpiles are approximately 125 m apart. | | | | 0 | A series of short 35m long rises will be developed next to the decline, these rises will initially be used for return air. Once the primary return air rises are developed, these short rises will be converted into an additional fresh air intake. Three return air rises located at the outer limits of the orebody and one fresh air rise, 150 m west of the decline, will be developed to the surface. | | | | 0 | The stope design was based on a 225m long x 135m wide area. The MSO shapes were created at $15m \times 38m$ and then manually connected within the grid formed by the panel dimensions. There were 6,557 MSO shapes, and when
combined and isolated shapes were removed, 132 mineable stopes were created. | | | | 0 | The scenario selected for the study has capital development taking place with declines, escapeway and ventilation infrastructure prioritised over stope development for the initial 3 years. | | | | 0 | Three dedicated jumbo drill rigs were assigned for capital development during the first 3 years of the underground mining schedule to complete key infrastructure. This development is shown in Figure 11. | | | | 0 | Sequencing of stopes was unconstrained geotechnically. The southeastern half of the orebody contains higher grades, development and stope sequencing utilising mining priorities focused on mining those stopes leaving the remaining development in the northwestern side until late in | | Criteria | JORC Code explanation | Commentary | | |----------|-----------------------|------------|---| | | | | the schedule to be completed. Stoping panel with average CuEq grades greater than 2.00% were given the highest priority in the production schedule. | | | | 0 | The 2 lower Tapley mining areas (i.e. mineralisation developed at the lower contact of the Tapley and the Pandurra Formation) are developed and stoped late in the schedule due to the relatively low grades mined and to ensure stopes above have been completed. | | | | 0 | A minimum 15m (vertical) crown pillar between the upper and lower Tapley stopes was maintained. | | | | 0 | It was found that 10 stopes were to be developed higher than 4.6m. For the purpose of this study those stopes are assumed to be mined in a 2-pass system where stoping on the upper level will have full ground support installed allowing safe removed of material on the lower level of the stope. | | | | 0 | All capital and operating development were designed for the whole mine. In addition, 15% additional development was added to all the non-ore drives to account for development such as wall and back stripping, undesigned stockpiles, magazines & fuel bays, and cuddies. | | | | 0 | 2m wide grout packs for pillar recovery are to be installed in the mechanical cutting development drives that are 8 metres wide. Gaps in the grout pack installation will be left to allow for pillar recovery of the centre pillars and end pillars. Grout packs are filled with a tailings and cement mix which is pumped underground. Water within the grout fill escapes through the sides of the bags due to the "weeping weave" design. | | | | 0 | After filling, the grout packs will be allowed to cure for at least 28 days, at which point they are expected to attain strength of 16 MPa or higher. Based on the limited geotechnical information available and the strength of the cured grout packs, Cartledge have determined that secondary partial extraction of the pillars increases the mined extraction panel percentage by 12% from 77% to 89%. | | | | 0 | The in-stope pillars developed during stope production phase of mining will not be recovered. Once pillar recovery has taken place, two additional grout packs will be installed to close those gaps at the ends of the drives. These additional grout packs at ends of each drive will allow for sealing of individual compartments within the super panels, which in turn may be used to contain tailings pumped into the completed mining area | | | | 0 | A central grout pumping plant will be constructed at Emmie Bluff to mix tailings and cement (assumed at a ratio of approximately 9:1). The plant will be located at the surface, at the | | Criteria | JORC Code explanation | Commentary | |--------------------------|--|--| | | | approximate centre of the deposit, and will pump the mixed slurry to one of a series or boreholes distributed throughout the ore body. A total of 6 holes will be required to sufficiently cover the entire deposit. | | | | As described previously, the Company does not believe it has sufficiently rigorous understanding of the relevant modifying factors, and has therefore not attempted to define an Ore Reserve. The majority of relevant mining factors and assumptions are described in detail in the December Study. No Inferred Resources are included in the mine schedule of MG14 or Windabout, and less than 5% of the mine schedule from Emmie Bluff is derived from Inferred Resources. Less than half of the Inferred Resources in the Emmie Bluff mine schedule are intended to be mined in the first ten years of production. The project is not expected to be materially sensitive to their inclusion or exclusion, however studies to determine this are still ongoing. A minimum mining width of 2.4m has been determined for Emmie Bluff based on the minimum height of the continuous miner selected, however thinner lodes could be mined if dilution is taken into account (i.e. when mineralised widths are so thin as to result in too high dilution to justify extraction of a minimum height stope). A similar consideration is gtaken for strip ratio at MG14, Windabout and Cattle Grid. 0.25m of barren roof dilution was assumed for development ore at Emmie Bluff. Mechanical cutting method is a non-explosive mining method with excellent control on cutting application – as such, production ore from stopes do not have any overbreak dilution applied. Dilution in the open pits was accounted for in the original diluted block model. Mining recovery in all deposits was assumed to be 100%. Infrastructure requirements are accounted for principally in the project CAPEX. Open pit deposits require minimal on site infrastructure beyond a haul road and minor contractor derived equipment maintenance facilities, the costs of which have been assumed within contractor rates (OPEX). Underground infrastructure including ventilation, decline, production drives, refuge chambers and other | | | | infrastructure are accounted for in project mining CAPEX. Onsite Process infrastructure details are provided in the main body of the announcement and in the "Costs" section of this table (below). | | Metallurgical factors or | The metallurgical process proposed and the appropriateness of that | The base-case metallurgical assumption provided by the consultants for this study was based on a modification of the assumptions built in to the December Study. | | assumptions | process to the style of mineralisation. Whether the metallurgical process is well-tested technology or novel in nature. | Under this scenario, Coda would develop an on-site process plant comprising a primary single toggle jaw crusher discharging to a stockpile, which feeds into a grind circuit consisting of a 2,300 kW SAG mill operating in closed circuit with a pebble crusher, and 5,100 kW ball mill operating in closed circuit with a whole-ore leach circuit comprising a pair of 5 tank trains followed by 7 thickeners. | | | The nature, amount and | PLS is delivered to an on-site recovery circuit comprising SX/EW, zinc precipitation and Merrill-Crowe silver | | Criteria | JORC Code explanation | Commentary | |---------------
---|--| | | representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied. • Any assumptions or allowances made for deleterious elements. • The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole. • For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications? | circuit). The above has been developed following significant test work over several years with Coda's principal metallurgical consultants, Strategic Metallurgy and modified by AMAC Process Solutions. All proposed metallurgical processes are well established and considered appropriate for this style of mineralisation. Test work to date has been undertaken primarily on composites of Emmie Bluff, and has not yet been rigorously tested for variability. This will be confirmed during the PFS. All test work has been at the benchtop scale, with no piloting yet undertaken. No special allowance for deleterious elements has been made due to relatively low levels of potential deleterious elements in feed ore. Deleterious elements and associated impacts to OPEX will be studied further during the PFS. | | Environmental | The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals for process residue storage and waste dumps should be reported. | Coda engaged Barron Environmental through Green Values Australia to undertake a preliminary environmental baseline survey of the Elizabeth Creek project area, as described in the body of the study. At this time, no significant hurdles to development have been identified, but it should be stressed that the Company has not formally begun the approvals process and cannot be certain of the environmental status of the project and its surrounds. Waste rock characterization will be undertaken as part of future studies. Open pit waste rock will initially be dumped adjacent to the starter open pits at each deposit until such time as progressive backfilling can commence. Progressive backfilling will continue at each pit for the duration of the project. Maximum height of overburden emplacements will be 20 metres above the natural surface. Underground waste rock production is not expected to be significant (< 1 million tonnes over the life of the project) and this material is expected to be fully utilised in the construction of tailings storage facility and other similar infrastructure. A potential site for a tailings storage facility has been chosen within a natural basin approximately 2km from the processing plant. Final design of the TSF will be determined during PFS and will be affected by the decisions taken regarding tailings management, such as including water reclamation levels. Some tailings will also be consumed in the filling of grout bags at Emmie Bluff. All overburden and tailings storage facilities sizes, locations and designs are at this time nominal and subject to change during the approvals process and/or following further and more advanced studies. | | Criteria | JORC Code explanation | Commentary | |----------------|---|--| | | | The Company has not attempted to progress approvals in a material fashion at this time due to the early stage of the study process (i.e. scoping level), however it has commenced the SA DEM Approvals Scoping process as set out in the main body of the announcement. | | Infrastructure | The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which the infrastructure can be provided, or accessed. | Elizabeth Creek is well served by rail, road and power infrastructure. The Stuart Highway and the parallel Adelaide-Darwin rail line passes through the project, and the Carrapateena Western Access road passes between the MG14 and Windabout deposits. The Company has an agreement in place with Oz Minerals which governs its access to this road and the rights and obligations of each party. There are two identified electrical substations considered as potential sources for grid power for the project, Pimba (37km west-southwest of Emmie Bluff) and Mt Gunson (40 km south of Emmie Bluff). The project has limited access to water and other infrastructure. The site is remote, with limited skilled labour available nearby, though is readily accessible by air from major centres. An on-site accommodation camp has been assumed to house a FIFO or DIDO workforce. Land for infrastructure development is readily available, with few other built-up areas in the immediate vicinity of either deposit, though the extent to which environmental and heritage factors may impact availability has not yet been confirmed. The Company has proposed construction of a 43km, 132 kV line which will connect the Mt Gunson substation to the process plant at Emmie Bluff, running parallel with
the haul road which will support the open pit mining operations at MG14 and Windabout. A historical airstrip is located on site that could be made serviceable if required. The scoping study assumes construction of a 450 man camp, anticipated to be sufficient for both the construction and ongoing workforce. Alternate accommodation options will be explored during the PFS. Miscellaneous Purposes Leases are not yet in place for this project due to the early stage of the study process (i.e. scoping level), and approvals for these leases will be required before construction of infrastructure can occur, however the Company sees no specific reason why such approvals should not be forth | | Costs | The derivation of, or assumptions
made, regarding projected capital
costs in the study. | All open-pit deposits are assumed to be contractor rather than owner mined. Underground mining at Emmie Bluff has been assumed to operate in a hybrid owner-operator model for highly specialized equipment such as continuous miners and a contractor model for more generic services such as trucking. | | | The methodology used to estimate operating costs. | Open Pits: Mining costs were based on a cost model developed in 2022 including inputs from a reputable South Australian based mining contractor. For the Underground: Mining Plus, the consultants who undertook | | | Allowances made for the content of deleterious elements. | the study, are a part of the Byrnecut Group, and thus have access to internal price estimates from a leading mining contractor. | | Criteria | JORC Code explanation | Commentary | |--------------------|---|---| | | The source of exchange rates used in the study. Derivation of transportation charges. The basis for forecasting or source of treatment and refining charges, penalties for failure to meet specification, etc. The allowances made for royalties payable, both Government and private. | Processing costs were determined by Strategic Metallurgy on the basis of their designed processing flowsheet, with input from Glencore Technology for the Albion Process™ leach circuit. No special allowance for deleterious elements has been made due to relatively low levels of potential deleterious elements in feed ore. Deleterious elements and associated impacts to OPEX will be studied further during the PFS. As the base-case assumption is that the project (during Phase 2, which represents the majority of the project's lifetime) will be selling final product, all treatment and refining costs (excl. silver) are also included in these costs, which have been provided by Coda's principal metallurgical consultants, Strategic Metallurgy, based on their test work to date and internal databases, and modified by AMAC Process Solutions. Exchange rate assumptions were provided by Coda based on internal estimates and forecasting. Transportation charges have been derived from estimates sought from SA based transport companies and from work done by AFX Commodities in 2020. TC/RCs have been derived from the S&P Global database. Penalties for failure to meet specifications have not been modelled and will be assessed during later stages of feasibility studies. Capital costs were calculated as part of various studies feeding into the broader scoping study. Capital costs were estimated individually by the various consultants on the basis of similar projects using in house databases or, where relevant (for example capitalized prestrip/decline etc.), determined based on OPEX estimates provided by mining contractors. Capital cost estimates have been based on bottom-up equipment assumptions with indirect and other costs based on benchmarking with similar operations. CAPEX for the processing plant was provided by Strategic Metallurgy and Glencore Technology. Non Processing CAPEX was provided by Como Engineering (Camp and power infr | | Revenue
factors | The derivation of, or assumptions
made regarding revenue factors
including head grade, metal or
commodity price(s) exchange rates,
transportation and treatment
charges, penalties, net smelter
returns, etc. | Revenue has been assumed based on final saleable products, i.e. copper cathode, zinc carbonate and silver doré. Head grade is derived from the mining schedule and is based on the Windabout Indicated Mineral Resource Estimate and the Emmie Bluff Indicated/Inferred Mineral Resource Estimate, plus assumed dilution. Commodity price assumptions are derived from conservative estimates assumed internally. Transportation charges and concentrate penalty estimates have been derived from estimates sought from SA based transport companies and from work done by AFX Commodities in 2020. A lifetime average exchange rate of 0.68 USD:AUD has been assumed on the basis of internal forecasts. | | Criteria | JORC Code explanation | Commentary | |----------------------|---|--| | | The derivation of assumptions made
of metal or commodity price(s), for
the principal metals, minerals and co-
products. | Commodity prices (excluding cobalt) are assumed to be fixed over the life of the project at the following levels: Copper price - \$9,260 USD/tonne Silver price - \$30 USD/Oz Zinc price - \$2,700 USD/tonne | | Market
assessment |
The demand, supply and stock situation for the particular commodity, consumption trends and factors likely to affect supply and demand into the future. A customer and competitor analysis along with the identification of likely market windows for the product. Price and volume forecasts and the basis for these forecasts. For industrial minerals the customer specification, testing and acceptance requirements prior to a supply contract. | By revenue, the principal product of the mine will be copper, with the principal by-product being silver. Zinc is more properly thought of as a by-product, and is not considered in detail here. Both principal products are critical to the expanding trend towards electrification and green energy, with particular emphasis in the case of silver on growing photovoltaic demand. Coda anticipates structural deficit for the copper and silver market in line with the view that demand from decarbonization and the energy transition will outstrip supply in both markets in the near future. A conservative copper price, USD \$9,260/t has been assumed in line with this view. The global copper industry is, on average, experiencing declining grades as resources are depleted, and relatively few major new discoveries in the past fifteen years have been made to replace deposits going offline. There is also an emerging shortage of high-quality copper concentrate producers. New projects can take up to 15 years from discovery to production in many jurisdictions, and some jurisdictions previously seen as historically stable and reliable, like Chile, are moving towards (or are perceived to be moving towards) resource nationalism. Competition is not anticipated a significant issue in Phase 2, with copper cathode and silver doré being easily sold into commodity markets. Zinc carbonate will require marketing and likely an offtake agreement to be put in place, but represents an extremely small percentage of overall project revenue and this risk is not considered material. | | Economic | The inputs to the economic analysis to produce the net present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc. NPV ranges and sensitivity to variations in the significant assumptions and inputs. | Coda Minerals has a 100% ownership of the Elizabeth Creek Copper Cobalt project The NPV of the Scoping Study was determined using a Discounted Cash Flow Method of valuation using a discount rate of 7% The financial model is in real terms based on quarterly increments. As such, no inflation has been considered. No escalation factors were applied. The Australian federal tax rate of 30% taxable income has been applied in the model. GST has not been accounted for to maintain consistency between imported and domestic outlays (capital items etc.) and is assumed to be fully refundable. Sensitive analysis on key variables has been considered in this model to provide a range of potential economic outcomes. These include Exchange rate Copper Revenue (Price, Recovery or Grade) | | Criteria | JORC Code explanation | Commentary | |----------|---|--| | | | Silver Revenue (Price, Recovery or Grade Discount rate Mining Opex Processing Opex Capital Costs The model is most sensitive to the exchange rate, followed by copper revenue. | | Social | The status of agreements with key stakeholders and matters leading to social licence to operate. | The project is located in the arid north of South Australia and has a very low population density, with the only nearby towns being Woomera and Pimba, which have a combined population of <500 people, and are not expected to be substantially affected by the project. The Company has good relationships with all major identified stakeholders to date (being pastoralists, the traditional owners and the SA Government). The Company has a land access agreement in place governing its interactions with one of the two (potentially three) pastoral stations which may be affected by the development of the Elizabeth Creek Copper-Cobalt Project. The Company has a heritage agreement (note: not a Native Title agreement) in place and with the traditional owners of the land on which Elizabeth Creek is located, the Kokatha people. These agreements cover mineral exploration, and further negotiation is expected to be required with some or all of these groups prior to development. | | Other | To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally occurring risks. The status of material legal agreements and marketing arrangements. The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government | The Company has begun the SA DEM Approvals Scoping process, but has not yet completed the process. It cannot at this time be certain of its ability to receive the relevant approvals to begin developing the Elizabeth Creek Project, however at this time it sees no specific reason why such approvals should not be forthcoming. Preliminary environmental and heritage assessments have identified no significant hurdles to development and other projects in the area have been completed with no significant environmental or heritage challenges. No natural occurring risks have been identified with the exception of the uncertain groundwater situation, which the Company will seek to rectify rapidly during the PFS process. No marketing arrangements are currently in place. All relevant exploration tenure is in good standing and is held 100% by Coda Minerals (or its wholly owned subsidiary Torrens Mining). The Company again emphasises that no Mineral Reserve has been estimated and it cannot yet make any statement regarding the potential economic viability of the Elizabeth Creek project prior to the completion of its ongoing Scoping Study. | | Criteria | | JORC Code explanation | Commentary | |----------------|----|--|--| | | | approvals will be received within the | | | | | timeframes anticipated in the Pre- | | | | | Feasibility or Feasibility study. | | | | | Highlight and discuss the materiality | | | | | of any unresolved matter that is | | | | | dependent on a third party on which | | | | | extraction of the reserve is | | | | | contingent. | | | Classification | | • The basis for the classification of the | The Company is not reporting any Ore Reserves as part of this Scoping Study. | | | | Ore Reserves into varying confidence | | | | | categories. | | | | | Whether the result appropriately | | | | | reflects the Competent Person's view | | | | | of the deposit. | | | | | The proportion of Probable Ore | | | | | Reserves that have been derived from | | | | | Measured Mineral Resources (if any). | | | | or | • The results of any audits or reviews of | The Company is not reporting any Ore Reserves as part of this Scoping Study. | | reviews | | Ore Reserve estimates. | | | Discussion | of | • Where appropriate a statement of the | The Company is not reporting any Ore Reserves as part of this Scoping Study. | | relative | | relative accuracy and confidence level | • While the Company has made every effort to be as accurate as possible, the Elizabeth Creek Copper-Cobalt | | accuracy/ | | in the Ore Reserve estimate using an | Project Scoping Study is an early-stage project and as such has been completed only to a level of accuracy | |
confidence | | approach or procedure deemed | expected of a Scoping Study. Estimates of key inputs have been provided to the following levels of accuracy: | | | | appropriate by the Competent | Underground Mining CAPEX: +/- 50% | | | | Person. For example, the application | Underground Mining OPEX: +/- 50% | | | | of statistical or geostatistical | Open Pit Mining CAPEX: +/- 25% | | | | procedures to quantify the relative | Open Pit Mining OPEX: +/- 25% | | | | accuracy of the reserve within stated | Processing CAPEX (Excl. Albion Leach -15% / +30% | | | | confidence limits, or, if such an | circuit): | | | | approach is not deemed appropriate, | Processing OPEX (Excl. Albion Leach -15% / +20% | | | | a qualitative discussion of the factors | circuit): | | | | which could affect the relative | Albion Leach Circuit CAPEX: +/- 45% | | | | accuracy and confidence of the | Albion Leach Circuit OPEX: +/- 20% | | | | estimate. | Electrical Infrastructure CAPEX +/- 30% | | Criteria JC | ORC Code explanation | Commentary | |-------------|--|--| | | The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. Accuracy and confidence discussions should extend to specific discussions of any applied Modifying Factors that may have a material impact on Ore Reserve viability, or for which there are remaining areas of uncertainty at the current study stage. It is recognised that this may not be possible or appropriate in all circumstances. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. | Camp CAPEX TSF CAPEX +/- 30% Overall project accuracy has been derived by weighting CAPEX accuracy by magnitude of expenditure and OPEX accuracy by magnitude of contribution to per tonne OPEX, and on a per deposit basis by tonnes produced. This resulted in estimated overall accuracy for CAPEX of -29% / + 33% and for OPEX -33% / +34%. The Company has chosen to round these figures and report the overall accuracy of the study as +/- 35%. The life of mine production target is comprised of 13% inferred, 87% indicated material on a tonnage basis, and 5% inferred, 95% indicated on a contained metal basis. |