

236.8m listed options Ex. 2.0c Expiring 31 December 2016

64m unlisted options Ex. 2.5c Expiring 31 December 2019

High-Grade Lithium Potential Confirmed at Forrestania

Sampling results of up to 6.2% Li₂O from newly acquired Gem and Phantom pegmatites

Key Points:

- Significant results from historic rock and trench sampling at the Gem and Phantom Pegmatites.
- Review of historical sampling data completed for the existing open pit at the Gem Pegmatite, demonstrating the presence of lithium mineralisation.
- Initial outcrop geology map completed of multiple LCT pegmatites recorded historically.
- POW submitted for ~5000m RC drilling program, scheduled to commence in early December.
- Nickel sulphide mineralisation also identified in analysis of historical diamond drill holes.

Marindi Metals Limited (ASX: MZN) is pleased to report encouraging initial results from its recently commenced maiden field exploration program at the Forrestania Lithium Project in Western Australia.

As outlined in the September Quarterly Report, the Company has acquired a significant amount of historical data on mining and sampling of the Gem pegmatite and exploration activities on other Lithium Caesium Tantalum (LCT) pegmatites within the recently optioned Mt Hope Mining Lease (M77/549).

The Forrestania Lithium Project, including the centrally located Mt Hope Mining Lease, is located in the emerging Forrestania Lithium Belt which hosts the recently discovered and rapidly growing Earl Grey pegmatite.

Historic rock and trench samples taken from the Gem and Giant pegmatite localities have returned highly anomalous lithium oxide (Li_2O) results, with assay results of up to 6.2% Li_2O at the Gem locality and approximately 800m along strike at the Giant pegmatite 3.9% Li_2O . The high-grade samples are lepidolite-rich.

Historical sampling of highly weathered clay material from the open pit at the Gem pegmatite and from shallow rotary air blast drill holes (RAB) ranges from 0.1% Li₂O to 0.6% Li₂O, with material from fresh rock returning much higher results and assaying up to 1.0% Li₂O (MHD 17) and logged as containing abundant spodumene. The sampling data comes from reports completed in the mid-1980s and is detailed in the accompanying tables and located on the attached geological plan.

The Mining Lease is part of the larger Mt Hope nickel occurrence, which is now owned by Western Areas Limited, where historical drilling by Amax Exploration (Australia) Inc. amongst others intersected disseminated nickel sulphides in diamond drilling in 1975.

These diamond holes also intersected several LCT pegmatites, some of which were re-sampled in the 1980s and assayed for specialty elements, the data for which are also appended in the tables. Abundant spodumene was recorded from several of these holes (MHD 6, 14 and 17) along with significant tantalum and Niobium, see diamond drill hole table attached. All pegmatites sampled were anomalous in specialty elements including Lithium, tin, tantalum, caesium and Rubidium.

Historical sampling and drilling has confirmed the presence of several LCT pegmatites within the Mining Lease, the size and distribution of which is uncertain. Marindi has completed an outcrop geology map and, although outcrop is poor, the overall trends of pegmatite material were successfully recorded.

The inclination and attitude of the pegmatites are difficult to ascertain from outcrop or from historical diamond drilling data.

Marindi has therefore submitted a program of work (POW) to the Department of Mines and Petroleum for up to ~5,000m of Reverse Circulation RC drilling which, subject to regulatory approval, is expected to commence in early December.

Nickel Potential

While examining historical data for the presence of LCT pegmatites, Marindi noted that diamond hole MHD14 terminated in nickel sulphides at a depth of 396.25m.

The last 2.75m of the hole was logged as containing disseminated pentlandite (nickel sulphide and native copper) within a dunitic unit and averaged 0.47% Ni to the end of hole. This lease has been in private hands since the mid 1980's and as such has not been subject to any modern nickel exploration techniques or exploration activity. Marindi has yet to review the nickel potential of the Mining Lease but views this intersection as very encouraging.

Joe Treacy Managing Director and CEO

Investor Inquiries Marindi Metals Limited 08 9322 2338

<u>Media Inquiries</u> Read Corporate Nicholas Read – 0419 929 046

Competent Persons Statement

Information in this release that relates to Exploration Results is based on information prepared by Mr Joseph Treacy a Member of the Australasian Institution of Mining and Metallurgy and the Australian Institute of Geoscientists Mt Treacy is the Managing Director of Marindi Metals Ltd, a full time employee and shareholder. Mr Treacy has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Treacy consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

Figure 1- Mt Hope M77/549 Mining Lease

Figure 2- Forrestania Lithium Belt

	Loca	l Grid	MGA 5	0 GDA 94	Drill			Downho	le Depth				Rb	Nb					
Sample Number	E	N	E	N	Hole	Azimuth	Inclination	From	То	LIZO %	Li (ppm)	Sn (ppm)	(ppm)	(ppm)	Cs (ppm)	Ta (ppm)	Sr (ppm)	Be (ppm)	Comments
23	219.8	249.1	763,380	6,435,310	NA	NA	NA	NA	NA	6.20%	28800	No Assay	0.0347	98	7900	188	No Assay	No Assay	Gem pegmatite pit sample, contains lepidolite
24	220.05	249.0	762 405	6 425 290	NA	vartical	vertical	46	48	0.05%	230	No Assay	3760	-10	290	22	No Assay	No Assay	Grab samples from RAB hole
25	220.05	240.0	703,405	0,433,200	19/5	vertical	vertical	48	50	0.08%	374	No Assay	8200	27	920	79	No Assay	No Assay	Grab samples from RAB hole
26								10	12	0.26%	1230	No Assay	4350	32	570	152	No Assay	No Assay	Grab samples from RAB hole
27	220.05	248.9	763,405	6,435,290	NA	vertical	vertical	12	14	0.27%	1270	No Assay	950	22	150	43	No Assay	No Assay	Grab samples from RAB hole
28	1							14	16	0.02%	76	No Assay	150	16	30	22	No Assay	No Assay	Grab samples from RAB hole
29								24	26	0.62%	2880	No Assay	3720	34	830	52	No Assay	No Assay	Grab samples from RAB hole
30	219.9 248.9	248.9	763,390	6,435,290	NA	vertical	vertical	26	28	0.41%	1900	No Assay	0.0114	21	1420	59	No Assay	No Assay	Grab samples from RAB hole
31								28	30	0.10%	470	No Assay	1940	40	420	57	No Assay	No Assay	Grab samples from RAB hole
32								26	28	0.03%	137	No Assay	74	-10	-10	21	No Assay	No Assay	Grab samples from RAB hole
33	210.0	240.05	762 200	6 435 305				28	30	0.07%	307	No Assay	150	-10	20	35	No Assay	No Assay	Grab samples from RAB hole
34	219.9	248.85	/63,390	6,435,285	NA	vertical	vertical	30	32	0.12%	536	No Assay	7300	11	800	33	No Assay	No Assay	Grab samples from RAB hole
35	1							32	34	0.07%	336	No Assay	2760	14	610	34	No Assay	No Assay	Grab samples from RAB hole
36								28	30	0.03%	120	No Assay	7	-10	30	19	No Assay	No Assay	Grab samples from RAB hole
37	1						<i></i>	30	32	0.25%	1180	No Assay	7400	38	921	108	No Assay	No Assay	Grab samples from RAB hole
38	219.9	248.8	763,390	6,435,280	NA	vertical	vertical	32	34	0.11%	494	No Assay	1490	-10	230	39	No Assay	No Assay	Grab samples from RAB hole
39	1							34	36	0.15%	706	No Assay	2050	36	420	60	No Assay	No Assay	Grab samples from RAB hole
40								20	22	0.11%	494	No Assay	170	29	40	61	No Assay	No Assay	Grab samples from RAB hole
41	41 42 43 44 219.95 24			6,435,280	NA	vertical		22	24	0.09%	439	No Assay	8200	22	860	53	No Assay	No Assay	Grab samples from RAB hole
42								24	26	0.29%	1360	No Assay	4850	26	690	88	No Assay	No Assay	Grab samples from RAB hole
43		210.0	762 225					26	28	0.31%	1460	No Assay	3850	28	650	63	No Assay	No Assay	Grab samples from RAB hole
44		248.8	/63,395				vertical	28	30	0.22%	1020	No Assay	1850	12	340	37	No Assay	No Assay	Grab samples from RAB hole
45	1							30	32	0.20%	922	No Assay	2150	-10	510	28	No Assay	No Assay	Grab samples from RAB hole
46	1							32	34	0.26%	1220	No Assay	2420	11	390	28	No Assay	No Assay	Grab samples from RAB hole
47	1							34	36	0.27%	1260	No Assay	3240	16	510	38	No Assay	No Assay	Grab samples from RAB hole
48								10	12	0.12%	566	No Assay	3120	112	320	364	No Assay	No Assay	Grab samples from RAB hole
49	1							12	14	0.04%	190	No Assay	2930	12	300	32	No Assay	No Assay	Grab samples from RAB hole
50	219.95	248.85	763,395	6,435,285	NA	vertical	vertical	14	16	0.06%	300	No Assay	239	16	40	34	No Assay	No Assay	Grab samples from RAB hole
51	1							16	18	0.16%	744	No Assay	920	20	640	28	No Assay	No Assay	Grab samples from RAB hole
52	1							18	20	0.08%	393	No Assay	1050	19	200	52	No Assay	No Assay	Grab samples from RAB hole
53								20	22	0.21%	977	No Assay	389	36	80	82	No Assay	No Assay	Grab samples from RAB hole
54	220	248.8	763,400	6,435,280	NA	vertical	vertical	22	24	0.14%	654	No Assay	1140	34	80	68	No Assay	No Assay	Grab samples from RAB hole
55	1							24	26	0.08%	354	No Assay	1470	17	110	39	No Assay	No Assay	Grab samples from RAB hole
56								46	48	0.02%	89	No Assay	2000	-10	130	14	No Assay	No Assay	Grab samples from RAB hole
57	1							48	50	0.07%	304	No Assay	4320	14	420	38	No Assay	No Assay	Grab samples from RAB hole
58	1							50	52	0.15%	695	No Assay	0.0106	21	1250	39	No Assay	No Assay	Grab samples from RAB hole
59	1							52	54	0.14%	655	No Assay	0.0111	15	1280	24	No Assay	No Assay	Grab samples from RAB hole
60	1							54	56	0.44%	2040	No Assay	0.0101	17	1390	40	No Assay	No Assay	Grab samples from RAB hole
61	220	248.75	763,400	6,435,275	NA	vertical	vertical	56	58	0.39%	1830	No Assay	5700	22	960	34	No Assay	No Assay	Grab samples from RAB hole
62								58	60	0.27%	1260	No Assay	5700	17	720	44	No Assay	No Assay	Grab samples from RAB hole
63								60	62	0.22%	1040	No Assay	6100	-10	860	16	No Assay	No Assay	Grab samples from RAB hole
64								62	64	0.23%	1080	No Assay	4630	12	1490	21	No Assay	No Assay	Grab samples from RAB hole
65								64	66	0.30%	1410	No Assay	4520	20	2760	36	No Assay	No Assay	Grab samples from RAB hole
66	1							66	68	0.26%	1200	No Assay	4070	20	2570	34	No Assay	No Assay	Grab samples from RAB hole

Consulta Number	Loca	l Grid	MGA 5	0 GDA 94	Drill	A-1		Downho	le Depth	1120 11		Circle Section 3	Rb	Nb	e. (-	6-1-1-1-1-1-1	Be (mark)	
Sample Number	E	N	E	N	Hole	Azimuth	Inclination	From	То	LI20 %	LI (ppm)	Sn (ppm)	(ppm)	(ppm)	Cs (ppm)	Ta (ppm)	Sr { ppmJ	Be (ppm)	Comments
67								8	10	0.05%	219	No Assay	1220	17	180	43	No Assay	No Assay	Grab samples from RAB hole
68								10	12	0.06%	288	No Assay	154	-10	110	14	No Assay	No Assay	Grab samples from RAB hole
69								12	14	0.08%	383	No Assay	430	-10	50	16	No Assay	No Assay	Grab samples from RAB hole
70	222.05	240.05	762 405	6 435 305		wether		14	16	0.18%	856	No Assay	1020	-10	230	15	No Assay	No Assay	Grab samples from RAB hole
71	220.05	248.85	763,405	0,435,285	NA.	vertical	vertical	16	18	0.10%	446	No Assay	430	10	50	25	No Assay	No Assay	Grab samples from RAB hole
72	1							18	20	0.12%	565	No Assay	8000	-10	490	-10	No Assay	No Assay	Grab samples from RAB hole
73	1							20	22	0.18%	828	No Assay	6200	-10	580	18	No Assay	No Assay	Grab samples from RAB hole
74	1							22	24	0.16%	746	No Assay	860	19	480	51	No Assay	No Assay	Grab samples from RAB hole
75								8	10	0.06%	285	No Assay	2300	14	205	31	No Assay	No Assay	Grab samples from RAB hole
76		249.0	762 410	6 435 300	NIA	wartigal	uartical	10	12	0.10%	471	No Assay	0.0152	-10	1700	10	No Assay	No Assay	Grab samples from RAB hole
77	220.1	240.5	703,410	0,455,250	N/A	verucal	vertical	12	14	0.14%	647	No Assay	2360	20	300	43	No Assay	No Assay	Grab samples from RAB hole
78	1							14	16	0.13%	586	No Assay	1020	11	80	36	No Assay	No Assay	Grab samples from RAB hole
79								14	16	0.08%	367	No Assay	2110	32	220	93	No Assay	No Assay	Grab samples from RAB hole
80	1							16	18	0.08%	368	No Assay	7700	-10	700	23	No Assay	No Assay	Grab samples from RAB hole
81]							18	20	0.08%	375	No Assay	1330	-10	110	32	No Assay	No Assay	Grab samples from RAB hole
82	220.1	248.85	763,410	6,435,285	NA	vertical	vertical	20	22	0.07%	321	No Assay	0.0112	-10	590	19	No Assay	No Assay	Grab samples from RAB hole
83]							22	24	0.09%	406	No Assay	7200	10	580	22	No Assay	No Assay	Grab samples from RAB hole
84]							24	26	0.12%	542	No Assay	5100	18	540	36	No Assay	No Assay	Grab samples from RAB hole
85								26	28	0.07%	334	No Assay	1200	13	150	29	No Assay	No Assay	Grab samples from RAB hole
86								40	42	0.04%	209	No Assay	1010	-10	80	17	No Assay	No Assay	Grab samples from RAB hole
87	220.15	248.85	763,415	6,435,285	NA	vertical	vertical	42	44	0.06%	273	No Assay	1520	-10	120	17	No Assay	No Assay	Grab samples from RAB hole
88								44	46	0.06%	298	No Assay	1640	-10	120	16	No Assay	No Assay	Grab samples from RAB hole
Channel TR 1 89	220.1	248.85	763,410	6,435,285	NA	NA	NA	NA	NA	0.08%	373	No Assay	5600	170	270	622	No Assay	No Assay	trench sample gem pegmatite
Chennel Tr 4 90	220.25	249	763,425	6,435,300	NA	NA	NA	NA	NA	0.20%	949	No Assay	2350	85	790	66	No Assay	No Assay	trench sample gem pegmatite
91	219.95	248.8	763,395	6,435,280	NA	NA	NA	NA	NA	5.94%	27600	No Assay	0.0267	102	6600	234	No Assay	No Assay	Gem pegmatite pit sample, contains lepidolite
11251	210.8	257	763,200	6,436,200	NA	NA	NA	NA	NA.	3.96%	18400	No Assay	0	50	7470	100	No Assay	No Assay	trench sample Giant Pegmatite,contains lepidolite
11252								66	67	0.01%	27	No Assay	0	<50	12.5	90	No Assay	No Assay	Grab sample of RC hole
11253								67	68	0.12%	552	No Assay	0	<50	4680	130	No Assay	No Assay	Grab sample of RC hole
11254	220	248.4	763,400	6,435,240	NA.	vertical	vertical	68	69	0.04%	175	No Assay	0	<50	195	120	No Assay	No Assay	Grab sample of RC hole
11255								69	70	0.41%	1900	No Assay	0	<50	113	140	No Assay	No Assay	Grab sample of RC hole
11256								70	71	0.78%	3610	No Assay	0	670	749	2140	No Assay	No Assay	Grab sample of RC hole
P005	221.5	257	763550	6430100	MHD6	90	50	212.7	217.1	0.5%	2200	20	2,700	45	320	110	50	146	Abundant spodumene, lepidolite and black mineral Ta?
P007	221.5	257	763550	6430100	MHD6	90	50	247.5	247.95	0.7%	3400	<10	2,000	35	470	55	60	17	Abundant spodumene
P011	215	255	762900	6435900	MHD14	90	50	285.75	286.45	0.2%	1070	35	2,200	30	0.0034	350	35	156	Spodumene and black mineral, Ta ?
P014	217.8	258.68	763175	6436280	MHD17	90	50	172.98	174.1	1.0%	4700	30	1,000	65	0.002	85	30	610	Spodumene and black mineral Ta ?
P015	217.8	258.68	763175	6436280	MHD17	90	50	207.3	207.97	0.2%	1110	14	2,500	45	0.0022	50	60	68	pegmatite
MHX1	220	249	763400	6435300	GEM	NA	NA	NA	NA	0.12%	580	0	23,000	0	1,600	0	250	<5	K-feldspar, quarry at "Gem".
MHX3	220	249	763400	6435300	GEM	NA	NA	NA	NA	0.10%	442	0	18,000	0	990	0	210	<5	K-feldspar, quarry at "Gem". Associated with rubellite.
MHX4	220	249	763400	6435300	GEM	NA	NA	NA	NA	0.13%	600	0	19,000	0	0	0	210	<5	K-feldspar, quarry at "Gem".
MHX 2	220	249	763400	6435300	GEM	NA	NA	NA	NA	0.06%	296	<10	190	20	35	35	13	118	Chip sample of saprolitic pegmatite, quarry at "Gem" pegmatite. Represents possible albitized zone of
MHX6	220	249	763400	6435300	GEM	NA	NA	NA	NA.	0.17%	790	55	520	120	60	150	18	<5	Chip sample, saprolitic pegmatite, quarry at "Gem". Across sub-horizontal tourmaline-muscovite fracture
MHX8	220	249	763400	6435300	GEM	NA	NA	NA	NA	0.14%	650	45	250	55	18	90	30	<5	Chip sample, saprolitic pegmatite, quarry at "Gem". Across south hanging wall contact, with coarse black
MHX9	220	249	763400	6435300	GEM	NA	NA	NA	NA	0.06%	0	190	2,900	18	490	120	40	249	Chip sample, saprolitic pegmatite, quarray at "Gem". Selected composite sample from areas rich in pink

Appendix 1 - JORC TABLE 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 No data is available on sampling methodology, however sampling was conducted by reputable drilling companies under geological supervision.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The drilling technique used was Rotary Air Blast (RAB) drilling and was an open hole technique. Diamond core drilling in both NQ and BQ diameter was undertaken. Holes were surveyed but no detail of the survey method was recorded.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No information on RAB drill sample recovery was included in the technical report. Poor core recovery when encountered was noted in the diamond drill hole logs. Recoveries were generally 100%
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RAB drilling was geologically logged and geological contacts noted. All Diamond holes were geologically logged.
Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No information has been recorded on RAB sampling techniques. All diamond drill core was cut for assay but no details are available about the way the sample was obtained. No information is available on quality control procedures.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Samples were analysed for a suite of base metals using AAS techniques by Analabs and Geomin, both laboratories operated at industry best practise for the time (1975). Later sampling of LCT pegmatites was conducted by SGS using XRF analyses, Pilbara Laboratories using both ICP and AAS techniques and Analabs using XRF and AAS techniques. The methods were deemed appropriate for the style of mineralisation and all laboratories operated at Industry best practice.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No verification of drilling and sampling data has been undertaken,
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All collar co-ordinates of drill holes in this release have been located by the conversion from a local exploration grid through the registering of known topographical points. Accuracy is assumed to be within +-50m but may vary due to the historic inaccuracies of the original exploration gridding. Drill hole locations are recorded in GDA94, MGA Zone 50.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing was defined by exploration criteria and is regarded as appropriate to determine the extents of mineralisation. Spacing is shown by the accompanying tables and figures. The distribution of exploration results is not sufficient to support Mineral Resources or Ore Reserves.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No significant orientation based sampling bias is known at this time. The drill holes may not necessarily be perpendicular to the orientation of the intersected mineralisation. All reported intervals are downhole intervals, not true widths
Sample security	The measures taken to ensure sample security.	No information is available on sample security.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Marindi Metals have not completed any external audits or reviews of the sampling techniques and data.

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Gem pegmatite prospect is comprised of granted mining lease ML 77/549 which is under an option agreement to Marindi metals Limited. The option allows Marindi the ability to purchase 100% of the tenement on certain terms and conditions which are detailed in Marindi ASX release dated September 20,2016.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Numerous exploration companies have conducted exploration on M77/549 Significant exploration results are summarised in JORC Table 1 attached. A large amount of historic data is available to Marindi Metals and appraisal of data is continuing. The majority of nickel exploration (Aust) limited in 1975. The sampling and appraisal of the LCT pegmatites was most comprehensively reported on by Aztec Exploration in 1985 (Wamex ref A17582) and specifically appendix 2 of that report entitled "The potential for pegmatite related mineralisation in the Mt Hope District Yilgarn Goldfields, Westerns Australia" by Dr L F Betternay. Further information was also supplied by Mr K Robinson the operator of the Gem Rubellite mine in the early 1980s.

Criteria	JORC Code explanation	Commentary
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Gem pegmatite is one of a series of LCT pegmatites that have intruded a thick sequence of ultramafic rocks. The extent and attitude of the LCT units is unknown and is the subject of further exploration. The nickel sulphide occurrence occurs in a diamond drill hole that terminated in a dunitic sequence and is part of the eastern ultramafic belt at Forrestania. Several significant nickel sulphide deposits are known to occur within the eastern ultramafic belt at Forrestania.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole o down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Table 1 of this document, Drill Hole Collar Table.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The relationship between drilling and the LCT pegmatites is not known. The relationship between nickel mineralisation and drilling is not known. All intersections reported in this release are downhole intervals.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps with scale are included within the body of the accompanying document.

Criteria	JORC Code explanation	Commentary
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The accompanying document is considered to represent a balanced report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Other exploration data collected is not considered as material to this document at this stage. Further data collection will be reviewed and reported when considered material.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale stepout drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further exploration is planned once all historic data has been assessed.