

ASX Announcement 19 December 2016

Confirmation of Extensive Zone of Lithium Mineralization at Muddy Mountain

Caeneus Minerals Ltd ("Caeneus" or "the Company") is pleased to provide the following exploration update relating to its 100% owned Muddy Mountain Lithium Clay Project ("Muddy Mountain" or "the Project") in Nevada, USA, following review of the analytical and geological results.

Highlights:

- Assays confirm extensive lithium mineralization across exposed (uplifted and/or eroded) stratigraphic sections, sampled along the approximately 7km extent of the Muddy Mountain Project.
- Elevated lithium results across the Project area exhibit the potential for a large, low grade deposit.
- Twenty-seven samples greater the 700 ppm lithium, with five samples greater than 1,000 ppm lithium (max 1,060 ppm Li or 5,639 ppm Lithium Carbonate Equivalent (LCE)) were identified at multiple locations within the Project.
- Sampled interval lengths averaged 1.8m, representing realistic grade intervals designed to avoid misleading higher grade spot sample results.
- Representative sections display semi-continuous to continuous interval composite grades greater than 800 ppm Li or 4,256 ppm LCE across widths reaching 13m for individual claystone, siltstone and other carbonaceous sediment beds.
- Potential exists for an increase in grade as mineralization dips below weathered surfaces.
- A large area remains un-sampled on the Project and highly mineralized areas remain open above and below sample sections leaving the potential for the delineation of a higher-grade mineralized zone within the Project area.

The Company is in receipt of the final analytical results for samples collected during the recently completed exploration program at Muddy Mountain. The nature and extent of the lithium mineralization is shown on the following sample map (**Figure 1**).



Figure 1: Muddy Mountain Nevada Sampling Map

Historic sampling of the Horse Spring Formation by the United States Geological Survey (USGS) in 1978, located about 35km from the Project, revealed thick accumulations of lithium-bearing claystones with a 40m thick section that averages 1,000 ppm Li, and as much as 5,000 ppm Li (Brenner-Tourtelot and Glanzman, 1978). The USGS also collected widely-spaced grab samples on the Project with up to 1,000 ppm Li recovered (Bohannon et. al., 1982). The Muddy Mountain Project encompasses almost 2,914 acres of the exposed Horse Spring Formation.

The 2016 field exploration confirmed lithium mineralization to occur within sedimentary units of the Horse Spring Formation, which was measured and sampled at approximately 19 sections along a 7km exposure. The most prominent section averaged 830 ppm Li (4,415 ppm LCE) across 12.4m approximate true thickness. A total of 118 samples were collected and contained between 95 and 1060 ppm Li (505 ppm and 5,639 ppm LCE) averaging 514 ppm Li (2,734 ppm LCE).

Geological sections were mapped and sampled across semi-continuous to continuous stratigraphic units. These sections represent the depositional staking of sediments within the Horse Spring Formation. Samples were collected down section (or across bedding) at angles close to true interval thickness, and an average sample length of 1.8m. The complete analytical results are presented in Appendix 1, which accompanies this announcement.

Table 1: Semi-continuous chip Sample Lithium Values by Section and Their Notable Sectional Composites

Measured Section ID	Min Li (ppm) Value	Max Li (ppm) Value	Notable Section Composites* (weighted average Grade and Interval)
Section 1 (Sec 1 - 3)	95	840	540 ppm Li over 4.5 m
Section 4	139	1020	563 ppm Li over 9.7 m
Section 5	162	480	480 ppm Li over 2.5 m
Section 6	383	780	511 ppm Li over 8.2 m
Section 7	421	1050	751 ppm Li over 2.6 m 501 ppm Li over 8.3 m 690 ppm Li over 7.0 m
Section 8	361	570	420 ppm Li over 3.5 m
Section 9	435	770	640 ppm Li over 3.6 m 608 ppm Li over 6.9 m
Section 10	116	430	342 ppm Li over 11.1 m
Section 11	182	660	352 ppm Li over 6.8 m
Section 12	114	1060	830 ppm Li over 12.4 m
Section 13	330	550	438 ppm Li over 4.5 m
Section 14	204	680	452 ppm Li over 12.2 m
Section 15	140	1030	1030 ppm Li over 2.0 m 730 ppm Li over 11.0 m 728 ppm Li over 7.8 m
Section 16	436	960	665 ppm Li over 7.8 m
Section 17	329	790	602 ppm Li over 8.7 m
Section 18	143	700	521 ppm Li over 8.0 m
Section 19	700	1020	883 ppm Li over 3.5 m

*Section composites represent continuous or near continuous sample intervals and composite analytical results have been normalized by individual sample interval relative to total composite interval.

Data supports that the lithium is contained in exposed (uplifted and eroded) stratigraphic sediments and exists as a potential large, low grade deposit. The potential remains that higher lithium values may be present in the subsurface as this strata has not been impacted by weathering or lithium re-mobilization.

The sample results definitively confirm the existence of lithium mineralization across the entire Muddy Mountain Project Area.

Figure 2: Uplifted Lithium Claystone Stratigraphy at Muddy Mountain, Nevada

The Company is encouraged by the results which it considers as indicative for the potential to delineate a large surface footprint of lithium mineralization. Detailed follow-up review of the area is being planned to determine the potential for a higher-grade zone which would become a focus area for further development work.

For and on behalf of the Board

Steve Elliott Managing Director

Note: Lithium content expressed is converted into Lithium Carbonate Equivalent (LCE) by multiplying by 5.32. LCE does not include any potassium, sodium, boron or strontium content.

All samples were submitted to ALS Chemex Labs in Reno, Nevada, for analysis using an ME-ICP61, 48 element four acid digestion ICP-MS method and B-ICP41 for Boron. A four percent external check analyses was completed at Activation Laboratories, Ancaster, Ontario, using a Sodium Peroxide Fusion (ICP & ICPMS) method.

Competent Person Statement

The information in this announcement that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Steven Elliott who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Elliott is a director of the Company. Mr Elliott has sufficient experience which is relevant to the style and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Elliott consents to the inclusion in the announcement of the matters based on his information in the form and context in which it appears.

Disclaimer

Certain statements contained in this announcement, including information as to the future financial or operating performance of Caeneus and its projects are forward-looking statements that:

• may include, among other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions;

■ are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Caeneus, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and,

■ involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Appendix 1: Muddy Mountain Sampling Results

Sample ID	Easting NAD83 (m)	Northing NAD83 (m)	SAMPLE LENGTH (m)	Sample Type	General Rock Type	Li (ppm) ALS ME-MS61
MM-	717872	4025771	1.50	Semi-	mudstone	207
0001	/1/0/2	4023771	1.50	continuous	muustone	207
0001				chip		
MM-	717861	4025864	1.55	Semi-	mudatana	409
	/1/801	4025864	1.55		mudstone	409
0002				continuous		
	747064	1005064	0.00	chip	· · ·	05.4
MM-	717861	4025864	0.30	Semi-	claystone	95.1
0003				continuous		
				chip		
MM-	717863	4025863	1.72	Semi-	claystone	840
0004				continuous		
				chip		
MM-	717874	4025861	2.30	Semi-	mudstone	113.5
0005				continuous		
				chip		
MM-	717831	4025892	1.30	Semi-	sandstone	550
0006				continuous		
				chip		
MM-	717829	4025894	1.20	Semi-	sandstone	490
0007				continuous		
				chip		
MM-	717820	4025893	0.50	Grab	mudstone	399
8000						
MM-	717773	4025931	1.50	Semi-	sandstone	620
0009				continuous		
				chip		
MM-	717744	4026062	1.50	Semi-	claystone	242
0010			2.00	continuous	0.0.,000.00	
0010				chip		
MM-	717747	4026056	1.60	Semi-	claystone	234
0011	/ _// Ţ/	1020030	1.00	continuous	ciaystoric	201
				chip		
MM-	717744	4026063	1.80	Semi-	claystone	343
0012	/ 1//44	TU20003	1.00	continuous	Claystone	
0012				chip		
MM-	717743	4026068	1.20	Semi-	mudstone	710
0013	/1//45	4020008	1.20		muustone	110
0012				continuous		
N 4 N 4	717720	4026071	0.80	chip	mudstana	120
MM-	717736	4026071	0.80	Semi-	mudstone	139
0014				continuous		
	747700	4026674	0.40	chip		1000
MM-	717728	4026071	0.40	Targeted	limestone	1020
0015				Interval		

MM-	717725	4026070	1.70	Semi-	limestone	760
0016	/1//25	4020070	1.70	continuous	limestone	700
0010				chip		
	717710	4020004	2.00		line e et e re e	400
MM-	717718	4026084	2.00	Semi-	limestone	460
0017				continuous		
				chip		
MM-	717702	4026098	1.70	Semi-	limestone	470
0018				continuous		
				chip		
MM-	717700	4026096	1.90	Semi-	limestone	570
0019				continuous		
				chip		
MM-	717679	4026069	1.40	Semi-	claystone	470
0020	/1/0/5	4020005	1.40	continuous	claystone	470
0020						
	747404	4026050	2.40	chip		470
MM-	717431	4026059	2.40	Semi-	sandstone	470
0021				continuous		
				chip		_
MM-	717435	4026056	2.00	Semi-	mudstone	780
0022				continuous		
				chip		
MM-	717443	4026055	2.00	Semi-	mudstone	383
0023				continuous		
				chip		
MM-	717450	4026047	1.80	Semi-	sandstone	412
0024	/1/450	4020047	1.00	continuous	Sundstone	712
0024						
N 4 N 4	717511	4020020	2.50	chip		490
MM-	/1/511	4026039	2.50	Semi-	mudstone	480
0025				continuous		
				chip		
MM-	717523	4026050	0.30	Grab	mudstone	162
0026						
MM-	717525	4026043	0.80	Semi-	mudstone	166
0027				continuous		
				chip		
MM-	720778	4025704	0.80	Semi-	claystone	1050
0028			0.00	continuous		
5520				chip		
N / N /	720734	4025750	1 00	•	limostono	620
MM-	/20/34	4025750	1.80	Semi-	limestone	020
0029				continuous		
				chip		
MM-	720663	4025784	1.60	Semi-	limestone	421
0030				continuous		
				chip		
MM-	720662	4025784	0.50	Semi-	limestone	470
0031				continuous		
				chip		
MM-	720652	4025781	1.80	Semi-	limestone	460
0032	, 20002		1.00	continuous	intestone	
0032						
N 4 N 4	720050	4025777	2.00	chip		F 40
MM-	720650	4025777	2.00	Semi-	claystone	540
0033				continuous		
	1			chip		

MM-	720624	4025755	2.40	Semi-	claystone	560
0034	,20021	1023733	2.10	continuous	ciayscone	500
0031				chip		
MM-	720567	4025771	0.30	Targeted	claystone	660
0035	/2030/	4023771	0.50	Interval	claystone	000
	720582	4025769	1 50	Semi-	limatana	F 9 0
MM- 0036	720582	4025768	1.50		limestone	580
0036				continuous		
				chip		= 10
MM-	720576	4025767	2.00	Semi-	limestone	740
0037				continuous		
				chip		
MM-	720570	4025768	1.50	Semi-	claystone	630
0038				continuous		
				chip		
MM-	720568	4025770	1.50	Semi-	claystone	800
0039				continuous		
				chip		
MM-	720525	4026114	2.50	Semi-	limestone	361
0040				continuous		
				chip		
MM-	720535	4026122	1.00	Semi-		570
0041			2.00	continuous		0.0
0011				chip		
MM-	721189	4025862	1.80	Semi-	claystone	510
0042	721105	4023802	1.80	continuous	claystone	510
0042				chip		
MM-	721176	4025875	1.80	Semi-	daystopo	770
	/211/0	4025875	1.60		claystone	//0
0043				continuous		
N 4 N 4	724067	4026025	2.00	chip		670
MM-	721067	4026025	2.00	Semi-	limestone	670
0044				continuous		
				chip		
MM-	721066	4026029	1.20	Targeted	limestone	435
0045				Interval		
MM-	721069	4026025	1.00	Semi-	claystone	660
0046				continuous		
				chip		
MM-	721063	4026025	1.50	Semi-	limestone	720
0047				continuous		
				chip		
MM-	721063	4026025	1.20	Semi-	claystone	500
0048				continuous		
				chip		
MM-	720364	4025188	2.00	Semi-	claystone	297
0049				continuous		
				chip		
MM-	720363	4025185	1.80	Semi-	claystone	360
0050	/20303	4023103	1.00	continuous	Claystone	500
0000						
N 4 N 4	720200	4025404	1.00	chip	alevetere	402
MM-	720360	4025181	1.80	Semi-	claystone	403
0051				continuous		
				chip		

MM-	720357	4025181	1.50	Semi-	claystone	395
0052				continuous chip		
MM-	720353	4025178	2.00	Semi-	claystone	285
0053				continuous		
				chip		
MM-	720349	4025180	2.00	Semi-	claystone	335
0054				continuous		
				chip		
MM-	720425	4025127	1.00	Targeted	mudstone	116.5
0055	720077	4025225	4.50	Interval		400
MM-	720077	4025335	1.50	Semi-	claystone	400
0056				continuous		
MM-	720076	4025331	1.50	chip Semi-	alayetana	660
0057	/20076	4025551	1.50		claystone	000
0057				continuous chip		
MM-	720073	4025362	2.00	Semi-	claystone	182
0058	/200/3	4023302	2.00	continuous	claystone	102
0050				chip		
MM-	720072	4025366	1.80	Semi-	claystone	246
0059	,200,2	1023300	1.00	continuous	ciaystoric	210
0055				chip		
MM-	715275	4023056	4.00	Semi-	limestone	114
0060	,102,0	1023030		continuous	linestone	
				chip		
MM-	715275	4023049	2.00	Semi-	limestone	376
0061				continuous		
				chip		
MM-	715273	4023041	2.50	Semi-	claystone	403
0062				continuous		
				chip		
MM-	715272	4023037	3.00	Semi-	claystone	351
0063				continuous		
				chip		
MM-	715267	4023034	1.50	Semi-	mudstone	308
0064				continuous		
				chip		1050
MM-	715249	4023094	1.50	Semi-	claystone	1060
0065				continuous		
N 4 N 4	715240	4022088	2.00	chip	alayetana	950
MM- 0066	715248	4023088	2.00	Semi- continuous	claystone	850
0000				chip		
MM-	715260	4023037	2.50	Semi-	claystone	510
0067	/15200	4023037	2.30	continuous	Claystone	510
5007				chip		
MM-	715258	4023039	1.80	Semi-	mudstone	750
0068	, 19290		1.00	continuous		
2000				chip		
MM-	715256	4023041	2.50	Semi-	mudstone	600
0069				continuous		
'				chip		

MM- 0070	715251	4023041	0.50	Targeted Interval	mudstone	870
MM- 0071	715198	4022974	1.60	Semi- continuous	sandstone	700
0071				chip		
MM-	715529	4023148	1.80	Semi-	limestone	330
0072	/15529	4023148	1.80	continuous	limestone	550
0072				chip		
MM-	715524	4023143	1.50	Semi-	claystone	550
0073	/15524	4023143	1.50	continuous	claystone	550
0075				chip		
MM-	715521	4023145	1.20	Semi-	claystone	460
0074	/15521	4025145	1.20	continuous	claystone	400
0074				chip		
MM-	715806	4023314	2.20	Semi-	sandstone	470
	/12800	4025514	2.20		sanustone	470
0075				continuous		
	745047	402224.4	1.00	chip		600
MM-	715817	4023314	1.90	Semi-	mudstone	680
0076				continuous		
				chip		
MM-	715888	4023417	3.00	Semi-	limestone	204
0077				continuous		
				chip		
MM-	715916	4023429	3.00	Semi-	claystone	460
0078				continuous		
				chip		
MM-	715919	4023384	2.10	Semi-	mudstone	570
0079				continuous		
				chip		
MM- 0080	717286	4025249	2.00	Grab	claystone	640
MM-	717381	4025176	2.00	Semi-	claystone	1030
0081	/1/501	1023170	2.00	continuous	ciaystoric	1050
0001				chip		
MM-	717491	4025188	2.00	Semi-	sandstone	221
0082	/1/451	4023100	2.00	continuous	Sundstone	221
0002				chip		
MM-	717500	4025185	1.80	Semi-	claystone	423
0083	/1/500	4025105	1.00	continuous	claystone	425
0005				chip		
MM-	717502	4025179	2.00	Semi-	claystone	447
0084	/1/502	40231/3	2.00	continuous	ciaystone	/
0004				chip		
MM-	717509	4025172	1.20	Semi-	siltstone	140
0085	111203	4023172	1.20	continuous	SILSLUIR	140
0000						
N 4 N 4	717510	4025100	2.00	chip	davetera	740
MM-	717510	4025169	2.00	Semi-	claystone	740
0086				continuous		
N 4 N 4	747540	4035465	2.00	chip		500
MM-	717512	4025165	2.00	Semi-	claystone	580
0087				continuous		
				chip		

MM-	717513	4025157	2.00	Semi-	claystone	670
0088				continuous chip		
MM-	717520	4025151	2.50	Semi-	sandstone	720
0089				continuous		
				chip		
MM-	717513	4025139	2.50	Semi-	claystone	900
0090				continuous		
N 4 N 4	717450	4025020	1.50	chip	line este n e	200
MM- 0091	717459	4025030	1.50	Semi- continuous	limestone	309
0091				chip		
MM-	717455	4025034	2.00	Semi-	claystone	770
0092	/1/455	4023034	2.00	continuous	ciaystone	//0
0001				chip		
MM-	717461	4025020	2.00	Semi-	claystone	710
0093				continuous		
				chip		
MM-	717463	4025018	2.00	Semi-	claystone	800
0094				continuous		
				chip		
MM-	717467	4025020	1.80	Semi-	sandstone	620
0095				continuous		
				chip		
MM-	717753	4024792	3.00	Semi-	claystone	630
0096				continuous		
MM-	717766	4024809	2.30	chip Semi-	claystone	960
0097	/1//00	4024809	2.30	continuous	claystone	900
0097				chip		
MM-	717743	4024793	2.50	Semi-	claystone	436
0098				continuous	,	
				chip		
MM-	716860	4024632	1.60	Semi-	limestone	329
0099				continuous		
				chip		
MM-	716824	4024621	1.80	Semi-	mudstone	570
0100				continuous		
				chip		
MM-	716818	4024618	1.80	Semi-	mudstone	790
0101				continuous chip		
MM-	716815	4024620	2.00	Semi-	mudstone	670
0102	110010	4024020	2.00	continuous	muustone	570
0102				chip		
MM-	716805	4024621	1.50	Semi-	mudstone	620
0103				continuous	breccia	
				chip		
MM-	715798	4024203	2.50	Semi-	claystone	640
0104				continuous		
				chip		

MM- 0105	715869	4024170	2.50	Semi- continuous chip	claystone	143
MM- 0106	715889	4024174	2.00	Semi- continuous chip	sandstone	393
MM- 0107	715910	4024175	2.00	Semi- continuous chip	sandstone	431
MM- 0108	715911	4024175	2.00	Semi- continuous chip	claystone	277
MM- 0109	715976	4024216	1.50	Semi- continuous chip	claystone	264
MM- 0110	716053	4024239	4.00	Semi- continuous chip	claystone	202
MM- 0111	716212	4024232	2.00	Semi- continuous chip	sandstone	700
MM- 0112	716231	4024255	2.00	Semi- continuous chip	limestone	309
MM- 0113	716245	4024291	2.00	Semi- continuous chip	limestone	245
MM- 0114	716271	4024275	3.00	Semi- continuous chip	claystone	431
MM- 0115	716279	4024277	3.00	Semi- continuous chip	siltstone	580
MM- 0116	716286	4024280	2.00	Semi- continuous chip	claystone	570
MM- 0117	716981	4024274	2.00	Semi- continuous chip	claystone	1020
MM- 0118	716993	4024273	1.50	Semi- continuous chip	claystone	700

Section 1 Sampling Techniques and Data	Section 1	Sampling	Techniques	and Data
--	-----------	----------	------------	----------

Criteria	JORC Code explanation	Commentary
Sampling technique	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used Aspects of the determination of mineralisation that are material to the Public report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Samples were collected as semi- continuous chip samples across stratigraphic unit. Field samples were originally analysed using a SciAps LIBZ Z-500 analyser. Semi-continuous chip samples (averaging 1.8 m interval lengths) were sent for laboratory analysis at ALS Chemex Labs in Reno, Nevada, for analysis using an ME-ICP61, 48 element four acid digestion ICP-MS method and B-ICP41 for Boron. A four percent external check analyses was completed at Activation Laboratories, Ancaster, Ontario, using a Sodium Peroxide Fusion (ICP & ICPMS) method.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method etc.).	No Drilling has been completed on the Project
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed Measurements taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No Drilling has been completed on the Project

Criteria	JORC Code explanation	Commentary
Logging Sub- sampling techniques and sample preparation	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography. The total length and percentage of the relevant intersections logged If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffles, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	 All Chip sample stratigraphic intervals were geologically logged in their entirety. No Geotechnical, mineralogical or metallurgical work has been complete. Sample Interval logging is both qualitative and quantitative Qualitative descriptions of colour, grain size, texture and lithology were recorded for each sample. Entire chip sample was sent to laboratory for analysis. No blanks or standards were used for the field LIBS Z-500 analysis. No external blanks or standards were submitted with the samples for laboratory analysis. Mineralisation could not be visually identified, so the LIBZ Z-500 was used to identify rock units that contained mineralization. An external laboratory check was completed for four percent of the samples to measure repeatability and confirm representivity. These were selected from the representative rock
Quality of assay data and laboratory tests	 grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 types. Semi-continuous chips samples were assayed using ALS Laboratories ME-ICP61, 48 element four acid digestion ICP-MS method and B-ICP41 for Boron. Results were confirmed by a four percent external check analyses completed at Activation Laboratories, Ancaster, Ontario, using a Sodium Peroxide Fusion (ICP & ICPMS) A full digestion was completed by each laboratory. No standards or blanks were used for this preliminary program. Field portable LIBZ Z-500 analysis does not provide accurate quantifiable results and were only used for identification of potentially mineralized zones. Laboratory analysis was completed to meet the industry standard acceptable method, using an ISO certified Laboratory. Analysis conducted specifically for Li as part of the 48 element laboratory analysis was completed for B.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes Documentation of primary data, data entry procedures, data verification, data storage (physically and electronic) protocols. Discuss any adjustment to assay data. 	 Not applicable at this early stage of exploration Geological sample logs were entered and stored electronically. All results were double checked by a qualified geologist. Original assay results have not been modified. Larger sample composite interval grades were calculated, using sample length normalized results.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resources estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Sample locations were recorded with handheld GPS (Garman GPS 62 and 64 series, using both GPS and Glonass satellites) system with expected accuracy of +/- 5m horizontal. The grid system for Muddy Mountain Project is UTM NAD83 Zone 11 Topographic control is based on the recorded GPS Elevation.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Reserve and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Samples were collected across exposed stratigraphic sections to identify preliminary vertical grade continuity. This analysis is not suitable for establishing continuity of grade for Mineral Reserve and Ore Reserve estimation. Sample results have been presented independently, but also as stratigraphic section composites. These composites were calculated over continuous sample intervals and normalized to the individual sample length.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Surface samples were collected across stratigraphic sections at angles perpendicular to unit bedding. No drilling has been completed on the Project.
Sample security Audits or	 The measures taken to ensure sample security. The results of and audits or reviews of 	 Samples were collected, sealed in sample bags, combined into durable rice bags and maintained in a locked unit until they were dropped off at laboratory by field crew. No independent audits or reviews have
Audits or reviews	The results of and audits or reviews of sampling techniques and data.	No independent audits or reviews have been undertaken.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenements and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interest, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 A group of mineral claims held wholly (100%) by Caeneus Minerals Ltd. The tenure is secure and in good standing at the time of writing
Exploration done by other parties	• Acknowledgement and appraisal of exploration by other parties.	• The United States Geological Survey (USGS) has previously sampled the tenure area and returned results of up to 1,000 ppm Lithium.
Geology	• Deposit type, geological settings and style of mineralisation.	Volcanic sediment and carbonaceous sedimentary hosted Lithium mineralization.
Drill hole information	 A summary of all information material for the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced level-elevation above sea level in metres)and the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No Drilling has been completed on the Project.
Data aggregation methods	 In reporting Exploration results, weighing averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Strat section chip sample composites were calculated using weighted average and calculated for simular interval grade ranges. Only notable composites were reported for each mapped and sampled section. Lithium content expressed is converted into Lithium Carbonate Equivalent (LCE) by multiplying by 5.32. LCE does not include any potassium, sodium, boron or strontium content.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known') 	 The detailed geometry of mineralized horizon is unknown No Drilling has been completed on the Project.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts would be included for any significant discovery being reported. These should include, but not be limited too plan view of drill hole collar locations and appropriate sectional views.	Appropriate plan maps of sample locations have been included in the body of the report
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Not applicable at this early stage of exploration
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations, geophysical survey results, geochemical survey results, bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or containing substances. 	Not applicable
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, providing this information is not commercially sensitive. 	Not applicable