Force Commodities Limited ACN 145 184 667 Suite 7, 234 Churchill Avenue, Subiaco, WA, 6008, Australia Phone: +61 8 6500 6872 #### Contact Rocco Tassone, Managing Director e: corporate@sovereigngold.com.au #### **Latest News** www.sovereigngold.com.au #### Directors / Officers Charles Thomas (Chairman) Rocco Tassone (MD) Patrick Glovac ASX: SOC (to change to "4CE") #### **Qualifying Statements** The information in this Report that relates to Exploration Information is based on information compiled by Richard Robertson who is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Robertson is a qualified geologist and is a contractor of Force Commodities Limited. Mr Robertson has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Resources. Mr Robertson consents to the inclusion in this announcement of the Exploration Information in the form and context in which it appears. ## Final Assay Results Confirm Extensive High Grade Zinc and Lead Mineralisation – Up to 46% Zinc and 27% Lead - Spectacular Mineralised Intersections (Massive Sulphides intersected) from the 100% owned Halls Peak – Gibson Project (EL4474) - All drill holes ended in mineralisation with Super-high grade samples returned include: - Up to 46% Zn and 22.9% Pb (Sample SG05-04) - Up to 39.2% Zn and 27.2% Pb (Sample SG06-08) - Up to 24.8% Zn and 13.05% Pb (Sample SG04-11) - SG04: 44.9m @ 2.91% Zn+Pb, 0.21% Cu, 34.99 g/t Ag and 0.21 g/t Au (8.8m EOH) including: - o <u>13.2m @ 5.53% Zn, 2.71% Pb, 0.43% Cu, 94.33</u> g/t Ag and 0.52 g/t Au from 8.8m) - **SG05:** 33m @ 6.66% Zn+Pb, 0.33% Cu, 10.67 g/t Ag and 0.05 g/t Au (7m EOH) including: - o <u>7.2m @ 20.19% Zn, 7.17 % Pb, 0.66% Cu, 30.93gpt Ag and 0.1gpt Au from 8.8m)</u> - **SG06**: 99.1m @ 3.59% Zn+Pb, 0.15% Cu, 17.53 g/t Ag and 0.05 g/t Au (6.1m EOH) including: - 11.2m @ 19.71% Zn, 10.77 % Pb, 0.8% Cu, 134.96 g/t Ag and 0.23 g/t Au from 8.4m) - Recognition of Halls Peak as a Kuroko Style (exhalative-diagenetic) massive sulphide deposit type raises the prospectivity and chance of major ore system discovery through the use of type-example analogy - Collation of data for the creation of a 3D model is ongoing and will be possible with the addition of the next round of drilling data - Spatial modelling of features noted at Halls Peak shared with type-example deposits like Kuroko) will allow efficient vectoring to the areas deemed most prospective for large orehodies Force Commodities Ltd (ASX: SOC) (Force Commodities or the Company) is pleased to announce the release of significant mineralised drill results from the 100% owned Halls Peak – Gibson Project (EL4474), intersecting massive sulphide bands of high grade Zinc (Zn), Lead (Pb), Copper (Cu), Gold (Au) and Silver (Ag). The developing picture at Halls Peak as shown by the most recent results from holes SG04, SG05 and SG06 is a hugely encouraging. With a relatively large amount of new data from the above holes, Force Commodities geologists are now working on deciphering the many clues and pieces of evidence from drill hole logs to produce a spatially true model of the deposit based on the Kuroko massive sulphide type-example (Figure 1). The final round of assay results from this drilling campaign have returned some exceptional near surface high-grade results including: (SG05) 7.2m @ 20.19% Zn, 7.17 % Pb, 0.66% Cu, 30.93 g/t Ag and 0.1 g/t Au (from 8.8m) including: - <u>1.5 metres (from 11m) @ 48.13% Zn, 13.77% Pb, 1.65% Cu, 54.33 g/t Ag and 0.17 g/t Au</u> (SG06) 11.2m @ 19.71% Zn, 10.77% Pb, 0.8% Cu, 134.96gpt Ag and 0.23gpt Au (from 8.4m) including: - 2.20 metres (from 16.50m) @ 36.15% Zn, 22.13% Pb, 1.03% Cu, 91 g/t Ag and 0.19 g/t Au (SG04) 13.2m @ 5.53% Zn, 2.71% Pb, 0.43% Cu, 94.33 g/t Ag and 0.52 g/t Au (from 8.8m) including: - 0.6 metres (from 14.4m) @ 24.8% Zn, 13.05% Pb, 2.04% Cu, 495 g/t Ag and 1.36 g/t Au Figure 1: Primary alteration and element zonation around a typical mound style VMS deposit with stockwork-stringer zone and associated alteration pipe (modified after Gemmell et al., 1998). Figure 1: Kuroko massive base metal sulphide deposit model The significance of these results are evident and affirmation of the board's decision to expedite its phase 3 drilling campaign early next year and extract the maximum value for shareholders from this project. Managing Director Mr Rocco Tassone commented "Features of Kuroko style deposits such as Cu enrichment seen toward the base of the system, pervasive diagenetic and hydrothermal alteration within country rocks, not to mention the lithological association itself, are being recognised at Halls Peak and to that end can be capitalised in terms of a valid exploration model. This process will ensure the best information available is used in targeting further drill holes, which in turn gives the Company its best chance of discovering the most economically significant parts of the system". Figure 2: Significant intersections from SG04, SG05 and SG06. For further information please contact: Rocco Tassone, Managing Director Force Commodities Limited Telephone: +61 8 6500 6872 The Halls Peak Tenements are located 80km SE of Armidale N.S.W. ## **Drill Hole Information (Map Zone 56J)** | Hole | Loc | ation | Collar | | | | |------|-----------|------------|-----------|------|---------|------------------| | | East | North | Elev
m | Dip | Azimuth | Hole Length
m | | SG04 | 407655.15 | 6598003.93 | 780 | -90° | 0° | 58.5 | | SG05 | 407621.78 | 6597979.71 | 765 | -70° | 180° | 58.5 | | SG06 | 407619.74 | 6597969.77 | 780 | 60° | 40° | 105.2 | ## Section 1 Sampling Techniques and Data | Criteria | JORC Code explanation | Commentary | |------------------------|---|--| | Sampling
techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. | • From drill hole SG04 51 samples from 2.5m to 58.50m downhole with a mean weight of 3.6kg over the total of 51 samples with 1.1m of core loss over the 58.5m drilled. From Drill hole SG05 28 samples from 7.0m to 40m downhole with a mean weight of 4.53kg over the total of 28 samples with no core loss over the 30m drilled. From drill hole SG06 68 samples from 6.10m to 105.20m downhole with a mean weight of 5.33kg over the total of 68 samples with 4.6m of core loss over the 99.10m drilled. All samples were sent for assay to ALS Brisbane The methods used for analysis of these samples were methods Au-AA25 for gold and ME-OG46 for Ag, Cu, Pb and Zn. See Table i) appended to this table for full details of individual sample weights and sample intersections and geochemical results | | | Include reference to measures taken
to ensure sample representivity and
the appropriate calibration of any
measurement tools or systems used. | Measurement of core using tape
measure, core recovery on each run to
identify and confirm core loss | | | Aspects of the determination of
mineralisation that are Material to the
Public Report. | Geochemical analysis has now been
performed on core samples and full
disclosure is made in Table i)
appended to this table | | Criteria | JORC Code explanation | Commentary | |--------------------------|--|--| | | In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | HQ Diamond drilling was used to obtain half core samples of each intersection which were sent to ALS Brisbane. The entire sample was then crushed to 70% nominal -6mm and then pulverised the entre sample with 85% passing 75 microns. Analytical methods used were AU-AA25 for Gold with a 30g sample by fire assay and an AAS finish and OG46- method used to analyse for Ag, Cu, Pb, and Zn using an Aqua Regia digest and analysed by ICP-AES using a minimum sample weight of 0.05g. Detailed results of the analysis for all three holes are tabled as table i) appended to this table. | | Drilling
techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | HQ diamond drill core using triple tube
with core orientation on measurable
lengths of core and downhole surveys
conducted every 30 metres | | Drill sample
recovery | Method of recording and assessing
core and chip sample recoveries and
results assessed. | Logging core in note book and then
transferring into an MS Excel file with
analytical results entered when
analysis of all drill holes are finalised | | | Measures taken to maximise sample
recovery and ensure representative
nature of the samples. | Full recovery of diamond drill core with
a minimum loss of core by using triple
tube | | | Whether a relationship exists between
sample recovery and grade and
whether sample bias may have
occurred due to preferential loss/gain
of fine/coarse material. | Where full recovery of core has
occurred there is a direct relationship
between recovery and grade | | Logging | Whether core and chip samples have
been geologically and geotechnically
logged to a level of detail to support
appropriate Mineral Resource
estimation, mining studies and
metallurgical studies. | Core has been geologically logged. RQD,SG and metallurgical studies are to be completed at the end of the drilling program | | | Whether logging is qualitative or
quantitative in nature. Core (or
costean, channel, etc.) photography. | Visual logging of is qualitative, as is the photography of the core during the logging process prior to cutting of the core in half. The quantitative nature of the core is reflected in the geochemical analysis results tables appended to this Table as Table i) | # 29 December 2016 - Page 7 FORCE COMMODITIES | Criteria | JORC Code explanation | Commentary | | | | |--|---|---|--|--|--| | | The total length and percentage of the relevant intersections logged. | • For SG04 the total length of core 58.50m with core loss of 1.10m = 57.40m (95.2%) of the core logged. For SG05 the total length of core 33m sent for analysis to ALS with no core loss = 100% of the core logged. For SG06 the total length of core 105.20m with core loss of 4.6m =100.6m (95.4%) of the core logged | | | | | Sub-
sampling
techniques
and sample | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube | Core samples sawn in half and half
sent to ALS for geochemical analysis Not applicable | | | | | preparation | sampled, rotary split, etc. and whether sampled wet or dry. | | | | | | | For all sample types, the nature,
quality and appropriateness of the
sample preparation technique. | For all samples analysis of the nature,
quality (high detection limit and the
appropriateness of the sample
preparation techniques is appropriate
for the type of deposit being explored. | | | | | | Quality control procedures adopted for
all sub-sampling stages to maximise
representivity of samples. | Minimum standard of samples
required sent for analysis which is
then pulverised to -75micron
maximises the representivity of all
samples | | | | | | Measures taken to ensure that the
sampling is representative of the in
situ material collected, including for
instance results for field
duplicate/second-half sampling. | With supply of an excess of 2kg samples, sufficient sample which is 2 way-split after pulverisation and the balance returned for use of representative duplicates for reanalysis | | | | | | Whether sample sizes are appropriate
to the grain size of the material being
sampled. | The sample size is appropriate for the
grain size of the material being
sampled for the type of deposit being
sampled | | | | | Quality of
assay data
and
laboratory
tests | The nature, quality and
appropriateness of the assaying and
laboratory procedures used and
whether the technique is considered
partial or total. | The nature, quality and appropriateness of the assay method and laboratory procedures has been carefully selected and is considered total for the core being analysed | | | | | | For geophysical tools, spectrometres,
handheld XRF instruments, etc., the
parametres used in determining the
analysis including instrument make
and model, reading times, calibrations
factors applied and their derivation,
etc. | Not applicable | | | | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | Quality control includes blanks and
duplicates as per ALS laboratory
standards that result in an acceptable
level of accuracy as determined by
NATA and the ISO. | | Verification
of sampling
and assaying | The verification of significant
intersections by either independent or
alternative company personnel. | Verification of significant intersections
by duplicate sampling to verify by re-
assay of remaining pulp. This has at
present not yet been performed. | | | The use of twinned holes. | Not applicable | | | Documentation of primary data, data
entry procedures, data verification,
data storage (physical and electronic)
protocols. | Documentation of primary data both
physically by photocopying field notes
electronically and by having backup
copies are standard protocol for all
data collected | | | Discuss any adjustment to assay data. | Not applicable | | Location of
data points | Accuracy and quality of surveys used
to locate drill holes (collar and down-
hole surveys), trenches, mine workings
and other locations used in Mineral
Resource estimation. | Differential GPS locations to be
determined by qualified surveyor on
completion of drilling program | | | Specification of the grid system used. | • GDA94 | | | Quality and adequacy of topographic control. | Once a differential GPS survey is
completed topographic quality is
assured using MapInfo to produce
high quality topographic control | | Data spacing
and
distribution | Data spacing for reporting of
Exploration Results. | Data from logging and geochemical
analysis are tabled as Table i)
appended to this Table | | | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | Data spacing and distribution of drill holes at present are insufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource and Ore reserve estimation procedures and classifications to be applied. | | | Whether sample compositing has been applied. | Sample compositing has been applied
to the geochemical results of the
diamond drill hole SG04. | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling
achieves unbiased sampling of
possible structures and the extent to
which this is known, considering the
deposit type. | With orientation of core of measurable length the relationship to the geological structure will be able to be determined. Where ground is severely broken this will not be possible | | Criteria | JORC Code explanation | Commentary | |--------------------|--|---| | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Not determined at this point. This will
necessitate structural analysis of all
oriented core at the completion of the
drilling program | | Sample
security | The measures taken to ensure sample security. | All samples sent for analysis were bagged, marked appropriately, sealed with zip tie and documented with a detailed copy of the sample submittal sent with the samples to ALS | | Audits or reviews | The results of any audits or reviews of
sampling techniques and data. | Not applicable | # Section 2 Reporting of Exploration Results | Criteria | JORC Code explanation | Commentary | |--|---|--| | Mineral
tenement and
land tenure
status | Type, reference name/number,
location and ownership including
agreements or material issues with
third parties such as joint ventures,
partnerships, overriding royalties,
native title interests, historical sites,
wilderness or national park and
environmental settings. | Exploration Licence Tenement is
EL4474 with an approval to conduct
this exploration program from Mineral
Resources NSW. A current access and
compensation agreement with Crown
Lands NSW is in place for this work to
be performed | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The security of tenure at the time of reporting for EL 4474 is valid until 12 th January 2018 and there are no known impediments to obtaining a licence to operate in the area | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Other parties who have explored and
mined this area confirm and have
reported the presence of
mineralisation is this area | | Geology | Deposit type, geological setting and
style of mineralisation. | The deposit type is interpreted to be a
Kuroko-type volcanic massive sulphide
deposit set in an episodic submarine
volcanic environmental setting with
the style of mineralisation being a
Massive Sulphide Deposit | | Criteria | JORC Code explanation | Commentary | |---------------------------|--|--| | Drill hole
Information | `A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole | Hole No. SG04: 56J 407655.15mE 6598003.93mN ± 5m 780m asI Dip -90° Azimuth 0° Down Hole length =58.5m; 51 Intercepts as detailed on summary of ALS Results on Certificate of Analysis BR16208768 dated 16th December 2016 summarised on Table i) appended to this Table | | | down hole length and interception depthhole length. | Hole No. SG05: | | | | • 56J 407621.78mE 6597979.71mN ± 5m | | | | • 765m asl | | | | • Dip -70° Azimuth 180° | | | | Down Hole length =58.5m; 28 Intercepts as detailed on summary of ALS Results on Certificate of Analysis BR16213897 dated 20 th December 2016 summarised on Table i) appended to this Table | | | | Hole No. SG06: | | | | • 56J 407619.74mE 6597969.77mN ± 5m | | | | • 780m asl | | | | • Dip 60° Azimuth 040° | | | | Down Hole length =105.2m; 68 Intercepts as detailed on summary of ALS Results on Certificate of Analysis BR16213897 dated 20 th December 2016 summarised on Table i) appended to this Table | | | If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Not applicable | | Criteria | JORC Code explanation | Commentary | | | | |--|---|--|--|--|--| | Data
aggregation
methods | In reporting Exploration Results,
weighting averaging techniques,
maximum and/or minimum grade
truncations (e.g. cutting of high
grades) and cut-off grades are usually
Material and should be stated. | Length weighted averaging has been
used and no modification with respect
to top or bottom cuts has been
employed. Lower thresholds for
reporting rely on geological
observation. | | | | | | Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | Length weighted averaging has been
used on composited intervals
comprised of different sample lengths. | | | | | | The assumptions used for any
reporting of metal equivalent values
should be clearly stated. | Not applicable | | | | | Relationship
between
mineralisation
widths and
intercept | These relationships are particularly
important in the reporting of
Exploration Results. | True relationship between
mineralisation widths and intercept
length to be calculated when
structural analysis is completed. | | | | | lengths | If the geometry of the mineralisation
with respect to the drill hole angle is
known, its nature should be reported. | Geometry of the mineralisation with
respect to the vertical drill hole angle
is 89.5° | | | | | | If it is not known and only the down
hole lengths are reported, there
should be a clear statement to this
effect (e.g. 'down hole length, true
width not known'). | Specific length of mineralisation and
true widths not known until structural
analysis and geochemical results are
completed | | | | | Diagrams | Appropriate maps and sections (with
scales) and tabulations of intercepts
should be included for any significant
discovery being reported These should
include, but not be limited to a plan
view of drill hole collar locations and
appropriate sectional views. | Diagram of drill hole cross-sections
and a plan view provided for all
diamond Drill Holes SG01, SG02,
SG03, SG04, SG05 and SG06. | | | | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | Comprehensive reporting of the
geochemical analysis of drill hole
SG04, SG05 and SG06 are reported
as Table i) appended to this table | | | | | Criteria | JORC Code explanation | Commentary | |---|---|---| | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Not applicable | | Further work | The nature and scale of planned
further work (e.g. tests for lateral
extensions or depth extensions or
large-scale step-out drilling). | Not known at present | | | Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Not applicable until comprehensive
results from all drill holes are known. | **Table i):** Summary of Geochemical analysis for Diamond Drill Hole SG04 by ALS on Certificate of Analysis BR16208768 dated 16^{th} December 2016 and For SG05 and SG06 by ALS on Certificate of Analysis BR16213897 dated 20^{th} December 2016 with sample intersections, sample intervals and weight of each sample submitted to ALS. #### Data for Diamond Drill Hole SG04 - 51 samples: | | | Method | WEI-21 | Au-AA25 | ME-OG46 | ME-OG46 | ME-OG46 | ME-OG46 | |------------|----------|---------|-----------|---------|---------|---------|---------|---------| | SGO4 | | Analyte | Recvd Wt. | Au | Ag | Cu | Pb | Zn | | Sample No. | From (m) | To (m) | kg | ppm | ppm | % | % | % | | SG04-1 | 2.50 | 3.50 | 2.91 | 0.03 | 3 | 0.083 | 0.27 | 0.168 | | SG04-2 | 3.50 | 4.30 | 3.58 | 0.04 | 5 | 0.065 | 0.377 | 0.415 | | SG04-3 | 4.30 | 5.30 | 3.64 | 0.03 | 3 | 0.032 | 0.252 | 0.445 | | SG04-4 | 5.30 | 6.30 | 3.58 | 0.02 | 2 | 0.021 | 0.104 | 0.208 | | SG04-5 | 6.30 | 7.30 | 3.52 | 0.04 | 3 | 0.019 | 0.142 | 0.245 | | SG04-6 | 7.30 | 8.20 | 3.4 | 0.1 | 3 | 0.028 | 0.17 | 0.313 | | SG04-7 | 8.20 | 8.80 | 3.2 | 0.11 | 8 | 0.064 | 0.323 | 0.684 | | SG04-8 | 8.80 | 10.60 | 6.98 | 0.43 | 170 | 0.718 | 4.42 | 8.94 | | SG04-9 | 10.60 | 12.70 | 7.47 | 0.43 | 107 | 0.681 | 4.43 | 8.37 | | SG04-10 | 12.70 | 14.40 | 6.47 | 0.69 | 153 | 0.742 | 4.14 | 8.03 | | SG04-11 | 14.40 | 15.00 | 3.13 | 1.36 | 495 | 2.04 | 13.05 | 24.8 | | SG04-12 | 15.00 | 16.00 | 3.92 | 1.15 | 92 | 0.109 | 0.471 | 1.015 | | SG04-13 | 16.00 | 17.00 | 3.3 | 0.13 | 21 | 0.101 | 0.918 | 1.79 | | SG04-14 | 17.00 | 18.00 | 4.02 | 0.09 | 5 | 0.14 | 0.175 | 0.414 | | SG04-15 | 18.00 | 18.60 | 2.11 | 0.15 | 2 | 0.004 | 0.141 | 0.21 | | SG04-16 | 18.60 | 19.70 | 4.42 | 1.18 | 17 | 0.117 | 0.978 | 1.43 | | SG04-17 | 19.70 | 21.00 | 4.42 | 0.22 | 8 | 0.075 | 0.544 | 0.684 | | | | Method | WEI-21 | Au-AA25 | ME-OG46 | ME-OG46 | ME-OG46 | ME-OG46 | |------------|----------|---------|-----------|---------|---------|---------|---------|---------| | SGO4 | | Analyte | Recvd Wt. | Au | Ag | Cu | Pb | Zn | | Sample No. | From (m) | To (m) | kg | ppm | ppm | % | % | % | | SG04-18 | 21.00 | 2200 | 2.9 | 0.14 | 9 | 0.031 | 0.158 | 4.98 | | SG04-19 | 22.00 | 23.00 | 3.01 | 0.07 | 13 | 0.041 | 0.272 | 1.555 | | SG04-20 | 23.00 | 24.00 | 4.36 | 0.09 | 11 | 0.01 | 0.05 | 0.315 | | SG04-21 | 24.00 | 25.00 | 3.53 | 0.06 | 8 | 0.003 | 0.007 | 0.05 | | SG04-22 | 25.00 | 26.00 | 3.33 | 0.02 | 1 | 0.001 | 0.004 | 0.019 | | SG04-23 | 26.00 | 27.00 | 4.15 | 0.01 | <1 | 0.002 | 0.004 | 0.012 | | SG04-24 | 31.80 | 32.60 | 2.9 | <0.01 | <1 | 0.002 | 0.004 | 0.014 | | SG04-25 | 32.60 | 33.30 | 2.96 | 0.03 | <1 | 0.002 | 0.005 | 0.008 | | SG04-26 | 33.30 | 34.20 | 3.43 | 0.02 | 1 | 0.002 | 0.005 | 0.021 | | SG04-27 | 34.20 | 35.20 | 3.24 | 0.05 | 3 | 0.005 | 0.008 | 0.095 | | SG04-28 | 35.20 | 36.20 | 3.18 | 0.14 | 7 | 0.006 | 0.012 | 0.073 | | SG04-29 | 36.20 | 37.20 | 3.73 | 0.17 | 10 | 0.016 | 0.022 | 0.079 | | SG04-30 | 37.20 | 37.50 | 1.89 | 0.2 | 12 | 0.012 | 0.019 | 0.081 | | SG04-31 | 37.50 | 38.00 | 1.52 | 0.11 | 12 | 0.009 | 0.019 | 0.115 | | SG04-32 | 38.00 | 39.00 | 3.64 | 0.07 | 7 | 0.01 | 0.016 | 0.084 | | SG04-33 | 39.00 | 40.00 | 3.94 | 0.07 | 4 | 0.01 | 0.017 | 0.028 | | SG04-34 | 40.00 | 41.00 | 3.69 | 0.06 | 20 | 0.032 | 0.098 | 0.249 | | SG04-35 | 41.00 | 41.50 | 2.1 | 0.37 | 31 | 0.026 | 0.074 | 0.196 | | SG04-36 | 41.50 | 42.60 | 4.04 | 0.15 | 27 | 0.023 | 0.092 | 0.205 | | SG04-37 | 42.60 | 44.00 | 5.06 | 0.15 | 6 | 0.007 | 0.015 | 0.06 | | SG04-38 | 44.00 | 45.50 | 6.04 | 0.13 | 8 | 0.015 | 0.031 | 0.178 | | SG04-39 | 45.50 | 47.00 | 4.32 | 0.1 | 20 | 0.052 | 0.089 | 1.825 | | SG04-40 | 47.00 | 47.90 | 3.15 | 0.11 | 7 | 0.015 | 0.039 | 0.225 | | SG04-41 | 47.90 | 49.00 | 4.12 | 0.03 | 6 | 0.017 | 0.106 | 0.382 | | SG04-42 | 49.00 | 50.00 | 3.66 | 0.03 | 3 | 0.003 | 0.008 | 0.327 | | SG04-43 | 50.00 | 50.90 | 2.69 | 0.04 | 3 | 0.013 | 0.027 | 0.28 | | SG04-44 | 50.90 | 51.40 | 1.78 | 0.06 | 9 | 0.125 | 0.558 | 0.394 | | SG04-45 | 51.40 | 52.50 | 2.82 | 0.04 | 12 | 0.168 | 1.185 | 0.38 | | SG04-46 | 52.50 | 53.50 | 2.73 | 0.05 | 9 | 0.259 | 0.667 | 0.372 | | SG04-47 | 53.50 | 54.50 | 3.02 | 0.05 | 16 | 2.02 | 0.208 | 0.806 | | SG04-48 | 54.50 | 55.10 | 1.82 | 0.1 | 31 | 0.487 | 1.285 | 1.175 | | SG04-49 | 55.10 | 55.90 | 3.04 | 0.12 | 26 | 0.5 | 1.485 | 1.17 | | SG04-50 | 55.90 | 56.90 | 3.44 | 0.02 | 11 | 0.062 | 1.08 | 1.655 | | SG04-51 | 56.90 | 58.50 | 5.41 | 0.05 | 15 | 0.016 | 1.43 | 0.356 | *Note: 4.8m from 27.00m to 31.80m not sampled ## Data for Diamond Drill Hole SG05 - 28 samples: | | | | Method | WEI-21 | Au-
AA25 | ME-
OG46 | ME-
OG46 | ME-
OG46 | ME-
OG46 | ME-
ICPDil | |---------------|-------------|-----------|-----------------|--------------|-------------|-------------|-------------|-------------|-------------|---------------| | SG05 | | | Analyte | Recvd
Wt. | Au | Ag | Cu | Pb | Zn | Zn | | Sample
No. | From
(m) | To
(m) | Interval
(m) | kg | ppm | ppm | % | % | % | % | | SG05-01 | 7.00 | 8.00 | 1.00 | 2.41 | 0.26 | 35 | 2.48 | 2.95 | 8.82 | | | SG05-02 | 8.00 | 8.80 | 0.80 | 3.64 | 0.29 | 19 | 1.335 | 0.353 | 2.54 | | | SG05-03 | 8.80 | 10.00 | 1.20 | 5.1 | 0.1 | 21 | 0.737 | 3.2 | >30.0 | 32.3 | | SG05-04 | 10.00 | 11.00 | 1.00 | 5.02 | 0.18 | 44 | 1.905 | 9.2 | >30.0 | 49.2 | | SG05-05 | 11.00 | 11.50 | 0.50 | 2.88 | 0.15 | 75 | 1.135 | 22.9 | >30.0 | 46 | | SG05-06 | 11.50 | 12.20 | 0.70 | 2.78 | 0.08 | 28 | 0.85 | 2.7 | 4.54 | | | SG05-07 | 12.20 | 13.00 | 0.80 | 2.81 | 0.04 | 3 | 0.012 | 0.144 | 0.338 | | | SG05-08 | 13.00 | 14.00 | 1.00 | 3.62 | 0.05 | 4 | 0.015 | 0.112 | 0.238 | | | SG05-09 | 14.00 | 15.00 | 1.00 | 4.25 | 0.11 | 60 | 0.38 | 18.4 | 18.8 | | | SG05-10 | 15.00 | 16.00 | 1.00 | 4.49 | 0.08 | 30 | 0.422 | 6.63 | 11.9 | | | SG05-11 | 16.00 | 17.00 | 1.00 | 4.04 | 0.07 | 7 | 0.218 | 0.362 | 1.855 | | | SG05-12 | 17.00 | 18.00 | 1.00 | 3.44 | 0.03 | 4 | 0.074 | 0.11 | 0.582 | | | SG05-13 | 18.00 | 19.50 | 1.50 | 5.91 | 0.02 | 3 | 0.005 | 0.013 | 0.048 | | | SG05-14 | 19.50 | 21.00 | 1.50 | 5.64 | 0.01 | 3 | 0.004 | 0.009 | 0.063 | | | SG05-17 | 24.00 | 25.00 | 1.00 | 3.38 | <0.01 | 4 | 0.169 | 0.093 | 0.12 | | | SG05-18 | 25.00 | 26.00 | 1.00 | 3.18 | 0.01 | 3 | 0.442 | 0.251 | 0.977 | | | SG05-19 | 26.00 | 27.50 | 1.50 | 6.17 | 0.02 | 1 | 0.057 | 0.008 | 0.048 | | | SG05-20 | 27.50 | 29.00 | 1.50 | 5.54 | 0.08 | 6 | 0.063 | 0.177 | 0.273 | | | SG05-21 | 29.00 | 30.50 | 1.50 | 6.25 | 0.04 | 3 | 0.062 | 0.014 | 0.091 | | | SG05-22 | 30.50 | 31.00 | 0.50 | 2.12 | 0.03 | 7 | 0.071 | 0.135 | 0.279 | | | SG05-23 | 31.00 | 32.50 | 1.50 | 6.09 | 0.01 | 4 | 0.065 | 0.065 | 0.426 | | | SG05-24 | 32.50 | 34.20 | 1.70 | 6.94 | 0.04 | 4 | 0.019 | 0.061 | 0.102 | | | SG05-25 | 34.20 | 35.50 | 1.30 | 4.94 | <0.01 | 1 | 0.084 | 0.006 | 0.074 | | | SG05-26 | 35.50 | 37.00 | 1.50 | 4.65 | <0.01 | 2 | 0.499 | 0.003 | 0.287 | | | SG05-27 | 37.00 | 38.50 | 1.50 | 5.75 | <0.01 | 3 | 0.115 | 0.138 | 0.381 | | | SG05-28 | 38.50 | 40.00 | 1.50 | 5.48 | <0.01 | 1 | 0.098 | 0.003 | 0.277 | | ## Data for Diamond Drill Hole SG06 - 68 samples: | | | | Metho
d | WEI-
21 | Au-
AA25 | ME-
OG46 | ME-
OG46 | ME-
OG46 | ME-
OG46 | ME-
ICPDII | |-----------------|-------------|-----------|--------------|---------------|-------------|-------------|-------------|-------------|-------------|---------------| | SG06 | | | Analyt
e | Recv
d Wt. | Au | Ag | Cu | Pb | Zn | Zn | | Descriptio
n | From
(m) | To
(m) | Interva
I | kg | ppm | ppm | % | % | % | % | | SG06-01 | 6.10 | 8.40 | 2.30 | 1.95 | 0.03 | 14 | 0.041 | 0.29 | 0.111 | | | SG06-02 | 8.40 | 10.70 | 2.30 | 1.98 | 0.1 | 441 | 1.495 | 4.06 | 7.12 | | | SG06-03 | 10.70 | 11.80 | 1.10 | 5.69 | 0.19 | 57 | 0.444 | 9.74 | 17.7 | | | SG06-04 | 11.80 | 13.35 | 1.55 | 5.42 | 0.1 | 33 | 0.287 | 3.49 | 7.34 | | | SG06-05 | 13.35 | 14.50 | 1.15 | 5.83 | 0.51 | 53 | 0.524 | 13.45 | 28.8 | | | SG06-06 | 14.50 | 15.80 | 1.30 | 5.51 | 0.68 | 57 | 0.9 | 15 | >30.0 | 30.4 | | SG06-07 | 15.80 | 16.50 | 0.70 | 3.21 | 0.06 | 20 | 0.25 | 4.4 | 7.18 | | | SG06-08 | 16.50 | 17.50 | 1.00 | 6.13 | 0.18 | 103 | 1.095 | 27.2 | >30.0 | 39.2 | | SG06-09 | 17.50 | 18.70 | 1.20 | 6.7 | 0.19 | 81 | 0.979 | 17.95 | >30 | 33.6 | | SG06 | | | Metho
d
Analyt | WEI-
21 | Au-
AA25 | ME-
OG46 | ME-
OG46 | ME-
OG46
Pb | ME-
OG46 | ME-
ICPDil | |-----------------|-------------|-----------|----------------------|---------------|-------------|-------------|-------------|-------------------|-------------|---------------| | 5G06 | | | e Analyt | Recv
d Wt. | Au | Ag | Cu | PD | Zn | Zn | | Descriptio
n | From
(m) | To
(m) | Interva
I | kg | ppm | ppm | % | % | % | % | | SG06-10 | 18.70 | 19.60 | .90 | 3.67 | 0.07 | 38 | 0.464 | 9.33 | 18.15 | | | SG06-11 | 19.60 | 21.30 | 1.70 | 5.68 | 0.05 | 6 | 0.084 | 0.393 | 1.115 | | | SG06-12 | 21.30 | 22.70 | 1.40 | 6.05 | 0.03 | 2 | 0.012 | 0.063 | 0.2 | | | SG06-13 | 22.70 | 24.47 | 1.77 | 6.07 | 0.02 | 3 | 0.035 | 0.066 | 0.204 | | | SG06-14 | 24.47 | 26.00 | 1.53 | 5.65 | 0.03 | 6 | 0.024 | 0.045 | 0.109 | | | SG06-15 | 26.00 | 27.65 | 1.65 | 6.25 | 0.03 | 6 | 0.098 | 0.025 | 0.08 | | | SG06-16 | 27.65 | 29.00 | 1.35 | 4.89 | 0.03 | 4 | 0.007 | 0.021 | 0.091 | | | SG06-17 | 29.00 | 30.50 | 1.50 | 5.25 | 0.01 | 3 | 0.005 | 0.014 | 0.053 | | | SG06-18 | 30.50 | 31.50 | 1.00 | 3.95 | 0.01 | 2 | 0.003 | 0.009 | 0.041 | | | SG06-19 | 31.50 | 32.50 | 1.00 | 3.57 | <0.01 | 2 | 0.002 | 0.035 | 0.084 | | | SG06-20 | 32.50 | 34.00 | 1.50 | 4.83 | <0.01 | 1 | 0.003 | 0.014 | 0.035 | | | SG06-21 | 34.00 | 35.50 | 1.50 | 5.61 | <0.01 | 1 | 0.031 | 0.024 | 0.077 | | | SG06-22 | 35.50 | 37.00 | 1.50 | 4.74 | <0.01 | 1 | 0.052 | 0.019 | 0.068 | | | SG06-23 | 37.00 | 38.50 | 1.50 | 5.69 | 0.01 | 1 | 0.007 | 0.014 | 0.054 | | | SG06-24 | 38.50 | 40.00 | 1.50 | 5.08 | 0.01 | 1 | 0.004 | 0.01 | 0.05 | | | SG06-25 | 40.00 | 41.10 | 1.10 | 4.33 | <0.01 | 2 | 0.01 | 0.018 | 0.065 | | | SG06-26 | 41.10 | 42.60 | 1.50 | 6.06 | <0.01 | 2 | 0.137 | 0.005 | 0.07 | | | SG06-27 | 42.60 | 44.10 | 1.50 | 5.27 | 0.02 | 4 | 0.326 | 0.189 | 0.491 | | | SG06-28 | 44.10 | 45.60 | 1.50 | 5.48 | <0.01 | 1 | 0.075 | 0.003 | 0.048 | | | SG06-29 | 45.60 | 47.10 | 1.50 | 5.29 | <0.01 | <1 | 0.001 | 0.003 | 0.058 | | | SG06-30 | 47.10 | 48.60 | 1.50 | 5.47 | 0.01 | 1 | 0.001 | 0.002 | 0.046 | | | SG06-31 | 48.60 | 50.10 | 1.50 | 5.63 | 0.01 | <1 | <0.001 | 0.002 | 0.043 | | | SG06-32 | 50.10 | 51.60 | 1.50 | 5.68 | <0.01 | <1 | <0.001 | 0.002 | 0.047 | | | SG06-33 | 51.60 | 53.10 | 1.50 | 5.86 | <0.01 | <1 | <0.001 | 0.001 | 0.044 | | | SG06-34 | 53.10 | 54.67 | 1.57 | 5.83 | 0.01 | <1 | <0.001 | 0.003 | 0.052 | | | SG06-35 | 54.67 | 56.15 | 1.48 | 5.21 | <0.01 | <1 | <0.001 | 0.001 | 0.07 | | | SG06-36 | 56.15 | 57.65 | 1.50 | 5.45 | 0.01 | <1 | 0.001 | 0.002 | 0.072 | | | SG06-37 | 57.65 | 59.15 | 1.50 | 5.68 | <0.01 | 1 | <0.001 | 0.003 | 0.051 | | | SG06-39 | 60.65 | 62.15 | 1.50 | 5.43 | 0.02 | 1 | 0.02 | 0.005 | 0.034 | | | SG06-40 | 62.15 | 63.65 | 1.50 | 5.8 | 0.05 | 2 | 0.163 | 0.014 | 0.121 | | | SG06-41 | 63.65 | 64.80 | 1.15 | 4.65 | 0.05 | 1 | 0.084 | 0.005 | 0.078 | | | SG06-42 | 64.80 | 66.25 | 1.45 | 6.03 | 0.06 | 4 | 0.006 | 0.007 | 0.052 | | | SG06-43 | 66.25 | 67.50 | 1.25 | 5.1 | 0.12 | 5 | 0.011 | 0.013 | 0.066 | | | SG06-44 | 67.50 | 69.30 | 1.80 | 6.07 | 0.02 | 1 | 0.004 | 0.008 | 0.217 | | | SG06-45 | 69.30 | 70.80 | 1.50 | 6.53 | 0.03 | 2 | 0.003 | 0.004 | 0.019 | | | SG06-46 | 70.80 | 72.30 | 1.50 | 6.14 | 0.02 | 2 | 0.002 | 0.003 | 0.017 | | | SG06-47 | 72.30 | 73.80 | 1.50 | 5.73 | 0.06 | 2 | 0.006 | 0.007 | 0.03 | | | SG06-48 | 73.80 | 75.30 | 1.50 | 5.87 | 0.06 | 1 | 0.055 | 0.007 | 0.026 | | | SG06-49 | 75.30 | 76.80 | 1.50 | 5.32 | 0.06 | 1 | 0.014 | 0.024 | 0.046 | | | SG06-50 | 76.80 | 78.30 | 1.50 | 5.93 | 0.06 | 1 | 0.003 | 0.015 | 0.028 | | | SG06-51 | 78.30 | 79.80 | 1.50 | 5.86 | 0.07 | 2 | 0.003 | 0.011 | 0.031 | | | SG06-52 | 79.80 | 81.33 | 1.53 | 6.03 | 0.07 | 4 | 0.038 | 0.007 | 0.036 | | | SG06-53 | 81.33 | 82.50 | 1.17 | 4.5 | 0.09 | 4 | 0.003 | 0.009 | 0.041 | | | | | | Metho
d | WEI-
21 | Au-
AA25 | ME-
OG46 | ME-
OG46 | ME-
OG46 | ME-
OG46 | ME-
ICPDil | |-----------------|-------------|-----------|--------------|---------------|-------------|-------------|-------------|-------------|-------------|---------------| | SG06 | | | Analyt
e | Recv
d Wt. | Au | Ag | Cu | Pb | Zn | Zn | | Descriptio
n | From
(m) | To
(m) | Interva
I | kg | ppm | ppm | % | % | % | % | | SG06-54 | 82.50 | 84.10 | 1.60 | 6.17 | 0.01 | 1 | 0.003 | 0.008 | 0.023 | | | SG06-55 | 84.10 | 85.77 | 1.67 | 6.16 | 0.03 | 1 | 0.038 | 0.012 | 0.03 | | | SG06-56 | 85.77 | 86.40 | 0.63 | 2.84 | 0.03 | 6 | 0.553 | 0.635 | 1.245 | | | SG06-57 | 86.40 | 88.00 | 1.60 | 6.18 | 0.02 | 2 | 0.019 | 0.022 | 0.037 | | | SG06-58 | 88.00 | 89.80 | 1.80 | 6.7 | 0.02 | 1 | 0.022 | 0.006 | 0.02 | | | SG06-59 | 89.80 | 91.60 | 1.80 | 6.75 | 0.07 | 3 | 0.023 | 0.01 | 0.05 | | | SG06-60 | 91.60 | 92.50 | 0.90 | 3.24 | 0.03 | 2 | 0.074 | 0.041 | 0.161 | | | SG06-61 | 92.50 | 94.00 | 1.50 | 5.72 | 0.03 | 4 | 0.037 | 0.026 | 0.075 | | | SG06-62 | 94.00 | 95.50 | 1.50 | 5.33 | 0.05 | 2 | 0.013 | 0.019 | 0.057 | | | SG06-63 | 95.50 | 97.10 | 1.60 | 5.76 | 0.06 | 3 | 0.008 | 0.012 | 0.089 | | | SG06-64 | 97.10 | 98.45 | 1.35 | 4.1 | 0.03 | 4 | 0.177 | 0.048 | 0.227 | | | SG06-65 | 98.45 | 100.0 | 1.55 | 4.43 | <0.01 | 4 | 0.209 | 0.093 | 0.291 | | | SG06-66 | 100.0 | 101.7 | 1.70 | 6.52 | 0.01 | 4 | 0.85 | 0.093 | 0.161 | | | SG06-67 | 101.7 | 103.4 | 1.70 | 5.64 | 0.01 | 2 | 0.249 | 0.063 | 0.257 | | | SG06-68 | 103.4 | 105.2 | 1.80 | 6.37 | 0.02 | 6 | 0.397 | 0.128 | 0.456 | |