

#### **BOARD OF DIRECTORS**

Milan Jerkovic (Non-Executive Chairman) Bryan Dixon (Managing Director) Alan Thom (Executive Director) Greg Miles (Non-Executive Director) Peter Rozenauers (Non-Executive Director)

ASX CODE BLK

CORPORATE INFORMATION 286M Ordinary Shares 33M Unlisted Options 4.2M Performance Rights

www.blackhamresources.com.au

E: info@blackhamresources.com.au

P: +61 8 9322 6418 F: +61 8 9322 6398

ABN: 18 119 887 606

PRINCIPAL AND REGISTERED OFFICE Blackham Resources Ltd L2, 38 Richardson Street West Perth WA 6005

POSTAL ADDRESS PO Box 1412 West Perth WA 6872

# WILUNA DRILLING REINFORCES LARGE SCALE OPEN PIT MINING POTENTIAL

Blackham Resources Ltd **(ASX: BLK) ("Blackham")** is pleased to announce the assay results from the remainder of the Wiluna drilling program, drilled as part of a 25,000m RC and diamond drilling program undertaken to investigate open pit potential at Wiluna and support the mill expansion study.

The current drilling is from the northern portion of the Wiluna Mine. Drilling has continued to intersect significant mineralisation beneath and along strike from existing Wiluna open pits, highlighting the potential for open pit mining.

Significant results include:

| 0 | WURC0135: 15m @ 7.28 g/t from 86m | 109 g*m |
|---|-----------------------------------|---------|
| 0 | WURC0129: 5m @ 5.59g/t from 60m   | 28 g*m  |
| 0 | WURC0186: 5m @ 6.66g/t from 97m   | 33 g*m  |
| 0 | WURD0021: 3.6m @ 10.6g/t from 93m | 38 g*m  |

These results follow on from the drill results reported to the ASX on 9<sup>th</sup> November and 7<sup>th</sup> December 2016 and the upgrade to 6Moz gold resource reported to the ASX on the 13<sup>th</sup> December 2016. The recent resource upgrade included the East West Lode open pit resource of 8.6Mt @ 2.5g/t for 700,000oz Au at the southern end of the Wiluna Mine. The current drill results will be used to update the resources over the Happy Jack - Bulletin pit and the Adelaide – Moonlight shear.

Blackham is advancing its mining studies over the Wiluna open pit areas with a view to updating its mine plan and publishing its maiden Wiluna open pit reserves. The East West pit resource and initial mining studies suggest the scale of the East West pit has potential for a 1,500m long, 600m wide pit that could extend 230m deep. Initial mining studies also demonstrate the potential for a 1.9km long pit in the Happy Jack – Bulletin area (see Figure 1).

Blackham's 100% owned Matilda and Wiluna Gold Operations are located in Australia's largest gold belt. The Wiluna Gold Plant is located in the centre of the combined Operation and can process 1.7Mtpa or ~100,000ozpa (Stage 1). The project contains JORC 2012 Measured, Indicated and Inferred Resources of 58Mt @ 3.2g/t for 6.0Moz Au (refer to ASX release 13<sup>th</sup> December 2016) in a +1,000km<sup>2</sup> tenement package which has historically produced in excess of 4.3 million ounces. A mill expansion study (Stage 2), which is exploring the potential to grow production beyond 200,000ozpa, is in progress.

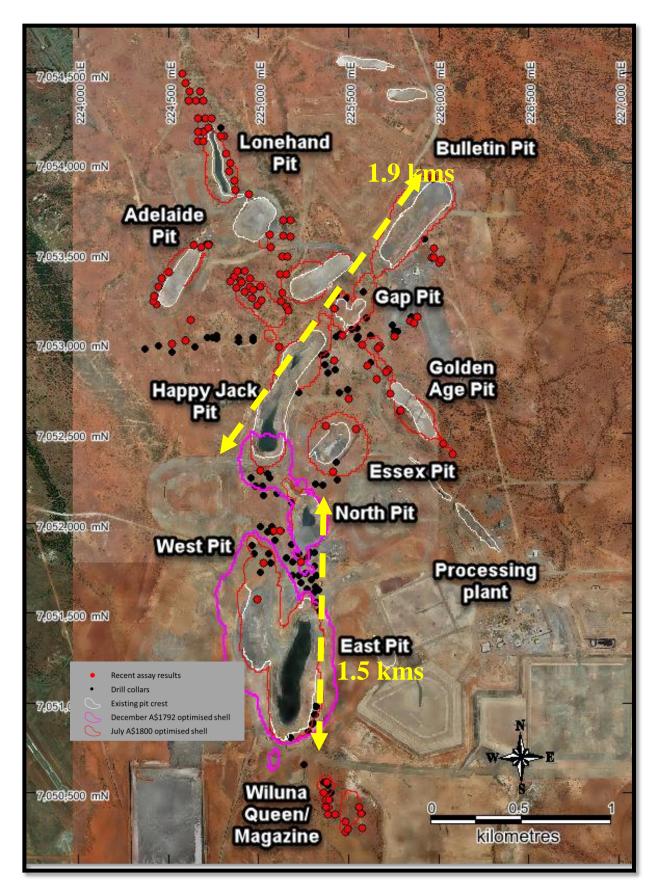
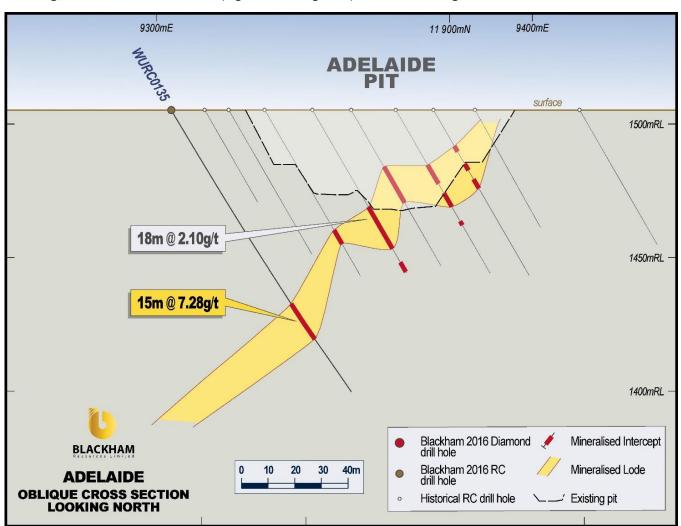




Figure 1. RC and Diamond drilling collar locations. Current pit crests shown as white outline with the July A\$1,800 pit optimisation based on historical drilling shown as red outline. The December A\$1,632 optimised shell for the East-West pit is shown in pink to demonstrate the impact of the recent drilling and re-modelled resource.



Drilling beneath and along strike from the Adelaide pit has intersected significant mineralisation including **15m @ 7.28 g/t** from 86m in WURC0135 (Figure 2 and Figure 3) and **5m @ 5.59g/t** from 60m in WURC0129.

Figure 2. Cross section through Adelaide

Drilling beneath the Lonehand pit has confirmed the presence of steeply plunging high grade shoots including **3.1m @ 4.86g/t** from 107.4m , **8.5m @ 4.38g/t** from 123.5m and **6.1m @ 3.33g/t** from 137.9 in WURD0023 Figure 3 and Figure 4) and **5m @ 6.66g/t** from 97m in WURC0186. Mineralisation at Lonehand had previously been interpreted to have been closed off to the northwest, however, results from this program including **4m @ 4.00g/t**, **6m @ 1.40g/t** and **4m @ 1.34g/t** (Figure 3) indicate that the mineralised structure continues to the northwest and remains open.

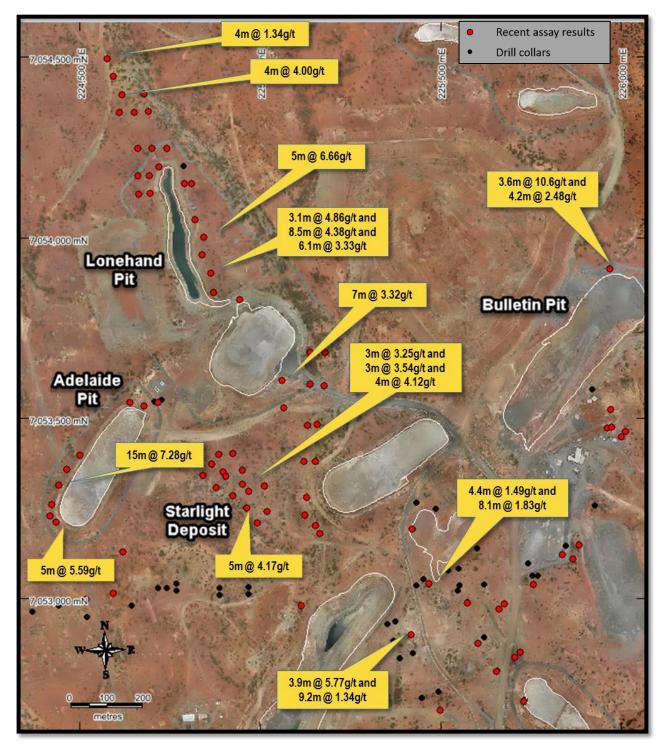



Figure 3. Location of significant intercepts Adelaide-Lone Hand-Starlight area.

A single hole drilled to the north of Bulletin where previously mineralisation was interpreted to have been closed off (Figure 3) intersected **3.6m @ 10.6g/t** from 93m and **4.2m @ 2.48g/t**. A review of the historical drilling north of Bulletin indicates that some of it may not have been effective and there is the possibility that the Bulletin mineralisation may continue along strike.

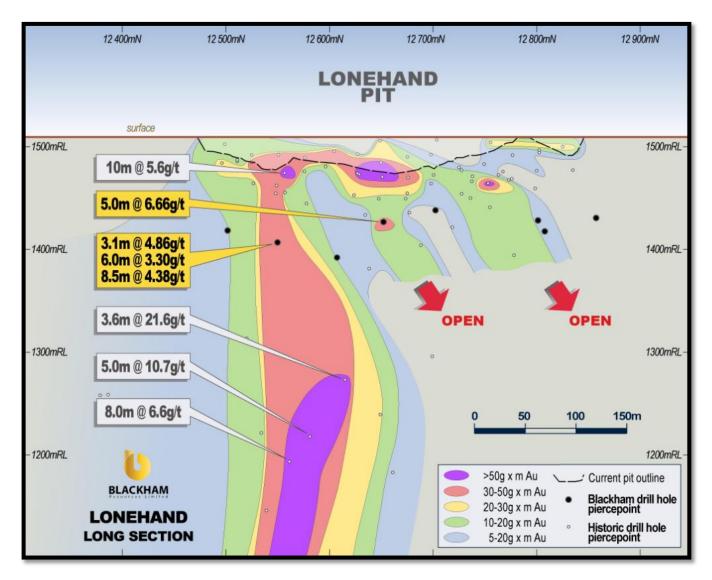



Figure 4. Lonehand long section

Results at Starlight (**5m @ 4.17g/t** from 8m) and Wiluna Queen (**9m @ 3.47g/t** from 99m) where there has not been any historical mining to support the geological model and will be incorporated in the next resource update.

For further information on Blackham please contact:

Bryan Dixon Managing Director Blackham Resources Limited Office: +618 9322 6418 Bruce Kendall Chief Geological Officer Blackham Resources Limited Office: +618 9322 6418

### **Gold Resources**

The Matilda Gold Project has an updated Mineral Resource of **58Mt @ 3.2g/t for 6.0Moz** (48% indicated) all within a 20 kilometres radius of Blackham's 100% owned Wiluna gold plant capable of processing up to 1.7Mtpa for over 100,000ozpa gold production (refer to BLK ASX release dated 13<sup>th</sup> December 2016). Measured and Indicated Resources now total **28Mt @ 3.2g/t for 2.9Moz**.

|                 |     |           |           | o    | PEN PIT RE | SOURCE    | ES   |          |           |            |            |        |  |
|-----------------|-----|-----------|-----------|------|------------|-----------|------|----------|-----------|------------|------------|--------|--|
|                 | м   | easure    | ed        | I    | ndicated   |           |      | Inferred |           | Тс         | Total 100% |        |  |
| Mining Centre   | Mt  | g/t<br>Au | Koz<br>Au | Mt   | g/t Au     | Koz<br>Au | Mt   | g/t Au   | Koz<br>Au | Mt         | g/t<br>Au  | Koz Au |  |
| Matilda Mine OP | 0.2 | 2.1       | 13        | 7.6  | 1.8        | 435       | 4.3  | 1.4      | 200       | 12.0       | 1.7        | 650    |  |
| Galaxy          |     |           |           | 0.4  | 3.1        | 42        | 0.4  | 2.2      | 25        | 0.8        | 2.7        | 68     |  |
| Williamson Mine |     |           |           | 3.3  | 1.6        | 170       | 3.8  | 1.6      | 190       | 7.1        | 1.6        | 360    |  |
| Wiluna OP*      |     |           |           | 5.0  | 2.5        | 410       | 3.6  | 2.5      | 290       | 8.6        | 2.5        | 700    |  |
| Regent          |     |           |           | 0.7  | 2.7        | 61        | 3.1  | 2.1      | 210       | 3.8        | 2.2        | 271    |  |
| Stockpiles      |     |           |           | 0.3  | 1.0        | 8         |      |          |           | 0.3        | 1.0        | 8      |  |
| OP Total        | 0.2 | 2.1       | 13        | 17   | 2.0        | 1,126     | 15   | 1.9      | 915       | 33         | 2.0        | 2,057  |  |
|                 |     |           |           | UND  | RGROUNI    | D RESOU   | RCES |          |           |            |            |        |  |
|                 | м   | easure    | ed        | I    | ndicated   |           |      | Inferred |           | Total 100% |            |        |  |
| Mining Centre   | Mt  | g/t<br>Au | Koz<br>Au | Mt   | g/t Au     | Koz<br>Au | Mt   | g/t Au   | Koz<br>Au | Mt         | g/t<br>Au  | Koz Aı |  |
| Matilda Mine UG |     |           |           | 0.1  | 2.5        | 10        | 0.6  | 3.6      | 70        | 0.7        | 3.4        | 80     |  |
| Wiluna          |     |           |           | 10.0 | 5.3        | 1670      | 13.0 | 4.7      | 2010      | 23         | 4.9        | 3,680  |  |
| Golden Age      |     |           |           | 0.5  | 5.3        | 81        | 0.9  | 3.7      | 110       | 1.4        | 4.3        | 191    |  |
| UG Total        |     |           |           | 11   | 5.2        | 1,761     | 15   | 4.7      | 2,190     | 25         | 4.9        | 3,951  |  |
| Grand Total     | 0.2 | 2.1       | 13        | 28   | 3.2        | 2,887     | 30   | 3.3      | 3,105     | 58         | 3.2        | 6,008  |  |

Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location shape and continuity of the occurrence and on the available sampling results. The figures in the above table are rounded to two significant figures to reflect the relative uncertainty of the estimate.

#### **Competent Persons Statement**

The information contained in the report that relates to Exploration Targets and Exploration Results at the Matilda Gold Project is based on information compiled or reviewed by Mr Bruce Kendall, who is a full-time employee of the Company. Mr Kendall is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Kendall has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information contained in the report that relates to all other Mineral Resources is based on information compiled or reviewed by Mr Marcus Osiejak, who is a full-time employee of the Company. Mr Osiejak, is a Member of the Australian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Osiejak has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

With regard to the Matilda Gold Project Mineral Resources, the Company is not aware of any new information or data that materially affects the information included in this report and that all material assumptions and parameters underpinning Mineral Resource Estimates as reported in the market announcements dated 14 March 2016, 17 June 2016 and 27 June 2016 continue to apply and have not materially changed.

#### Forward Looking Statements

This announcement includes certain statements that may be deemed 'forward-looking statements'. All statements that refer to any future production, resources or reserves, exploration results and events or production that Blackham Resources Ltd ('Blackham' or 'the Company') expects to occur are forward-looking statements. Although the Company believes that the expectations in those forward-looking statements are based upon reasonable assumptions, such statements are not a guarantee of future performance and actual results or developments may differ materially from the outcomes. This may be due to several factors, including market prices, exploration and exploitation success, and the continued availability of capital and financing, plus general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance may differ materially from those projected in the forward-looking statements. The Company does not assume any obligation to update or revise its forward-looking statements, whether as a result of new information, future events or otherwise.

### Appendix 1.Significant assays

| Happy Jack<br>Wiluna Queen<br>Wiluna Queen<br>Wiluna Queen<br>Wiluna Queen<br>Wiluna Queen<br>Wiluna Queen<br>Magazine<br>Magazine                                           | WURC0029           WURC0030           WURC0036           WURC0038           WURC0040           WURC0042           WURC0044           WURC0044           WURC0046 | 224620<br>225009<br>225575<br>225482<br>225492<br>225483 | 7053130<br>7052290<br>7050304<br>7050282 | 1505<br>1500 | 75        |           |                     |                 |                 |                     |                      | (m)                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|--------------|-----------|-----------|---------------------|-----------------|-----------------|---------------------|----------------------|---------------------|
| Wiluna Queen         Magazine         Magazine | WURC0036<br>WURC0038<br>WURC0040<br>WURC0042<br>WURC0044                                                                                                         | 225575<br>225482<br>225492                               | 7050304<br>7050282                       |              |           | 90        | -60                 |                 |                 |                     | NSI                  |                     |
| Wiluna Queen         Wiluna Queen         Wiluna Queen         Wiluna Queen         Wiluna Queen         Magazine         Magazine                                           | WURC0038<br>WURC0040<br>WURC0042<br>WURC0044                                                                                                                     | 225482<br>225492                                         | 7050282                                  | 1404         | 50        | 270       | -65                 |                 |                 |                     | NSI                  |                     |
| Wiluna Queen         Wiluna Queen         Wiluna Queen         Wiluna Queen         Magazine         Magazine                                                                | WURC0040<br>WURC0042<br>WURC0044                                                                                                                                 | 225492                                                   |                                          | 1494         | 140       | 270       | -60                 |                 |                 |                     | NSI                  |                     |
| Wiluna Queen<br>Wiluna Queen<br>Wiluna Queen<br>Magazine<br>Magazine                                                                                                         | WURC0042<br>WURC0044                                                                                                                                             |                                                          |                                          | 1494         | 40        | 270       | -60                 | 22              | 24              | 2.0                 | NSI<br>5.40          |                     |
| Wiluna Queen<br>Wiluna Queen<br>Magazine<br>Magazine                                                                                                                         | WURC0044                                                                                                                                                         | 225402                                                   | 7050302                                  | 1494         | 50        | 270       | -60                 | 32              | 34              | 2.0                 | 5.10                 | 1.3                 |
| Wiluna Queen<br>Wiluna Queen<br>Magazine<br>Magazine                                                                                                                         | WURC0044                                                                                                                                                         | 1/5/184                                                  | 7050342                                  | 1494         | 50        | 270       | <b>incl.</b><br>-60 | <b>32</b><br>7  | 33<br>11        | <b>1.0</b><br>4.0   | <b>8.07</b><br>1.79  | <b>0.7</b><br>2.7   |
| Wiluna Queen<br>Magazine<br>Magazine                                                                                                                                         |                                                                                                                                                                  | 225571                                                   | 7050342                                  | 1494         | 125       | 270       | -59                 | 99              | 108             | 9.0                 | 3.47                 | 6.0                 |
| Magazine<br>Magazine                                                                                                                                                         | WILL RCOOME                                                                                                                                                      | 223371                                                   | 7030301                                  | 1133         | 123       | 2/2       | incl.               | 105             | 108             | 3.0                 | 8.07                 | 2.0                 |
| Magazine                                                                                                                                                                     | WUNC0040                                                                                                                                                         | 225559                                                   | 7050420                                  | 1495         | 100       | 271       | -60                 | 68              | 72              | 4.0                 | 2.98                 | 2.7                 |
|                                                                                                                                                                              | WURC0048                                                                                                                                                         | 225384                                                   | 7050380                                  | 1494         | 40        | 270       | -60                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0050                                                                                                                                                         | 225424                                                   | 7050381                                  | 1494         | 90        | 270       | -60                 |                 |                 |                     | NSI                  |                     |
| Magazine                                                                                                                                                                     | WURC0052                                                                                                                                                         | 225371                                                   | 7050420                                  | 1494         | 50        | 270       | -60                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0061                                                                                                                                                         | 225413                                                   | 7052287                                  | 1503         | 120       | 270       | -65                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0063                                                                                                                                                         | 225538                                                   | 7052521                                  | 1507         | 100       | 315       | -60                 |                 |                 |                     | NSI                  | ļ                   |
|                                                                                                                                                                              | WURC0070                                                                                                                                                         | 225838                                                   | 7053123                                  | 1510         | 75        | 315       | -55                 |                 |                 |                     | NSI                  |                     |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                        | WURC0071                                                                                                                                                         | 225381                                                   | 7050560                                  | 1496         | 60        | 270       | -60                 | 70              | 0.1             |                     | NSI                  | 2.0                 |
| Bulletin                                                                                                                                                                     | WURC0072                                                                                                                                                         | 225866                                                   | 7053110                                  | 1509         | 150       | 318       | -60                 | 78              | 81              | 3.0                 | 2.47                 | 2.0                 |
| Magazine                                                                                                                                                                     | WURC0075                                                                                                                                                         | 225260                                                   | 7050400                                  | 1406         | 20        | 270       | incl.               | 78              | 79              | 1.0                 | 6.04                 | 0.7                 |
|                                                                                                                                                                              | WURC0075<br>WURC0076                                                                                                                                             | 225360<br>225756                                         | 7050499<br>7053039                       | 1496<br>1511 | 30<br>125 | 270<br>70 | -60<br>-60          |                 |                 |                     | NSI<br>NSI           |                     |
|                                                                                                                                                                              | WURC0076                                                                                                                                                         | 225756                                                   | 7053039                                  | 1495         | 50        | 273       | -60                 | 22              | 23              | 1.0                 | 2.85                 | 0.7                 |
|                                                                                                                                                                              | WURC0090                                                                                                                                                         | 2252372                                                  | 7051782                                  | 1495         | 288       | 273       | -60                 | 22              | 23              | 1.0                 | NSI                  | 0.7                 |
|                                                                                                                                                                              | WURC0100                                                                                                                                                         | 225420                                                   | 7053193                                  | 1507         | 186       | 137       | -55                 | 49              | 51              | 2.0                 | 1.48                 | 1.3                 |
|                                                                                                                                                                              | WURC0120                                                                                                                                                         | 225573                                                   | 7052988                                  | 1512         | 125       | 47        | -59                 | 60              | 64              | 4.0                 | 2.22                 | 2.7                 |
| Golden Age                                                                                                                                                                   |                                                                                                                                                                  |                                                          |                                          |              | -         |           | incl.               | 60              | 61              | 1.0                 | 6.33                 | 0.7                 |
| -                                                                                                                                                                            | WURC0122                                                                                                                                                         | 225676                                                   | 7052985                                  | 1512         | 75        | 45        | -60                 |                 |                 |                     | NSI                  |                     |
| Golden Age                                                                                                                                                                   | WURC0124                                                                                                                                                         | 225662                                                   | 7052971                                  | 1512         | 78        | 45        | -60                 |                 |                 |                     | NSI                  |                     |
| Adelaide                                                                                                                                                                     | WURC0129                                                                                                                                                         | 224435                                                   | 7053213                                  | 1506         | 75        | 136       | -60                 | 60              | 65              | 5.0                 | 5.59                 | 5.0                 |
|                                                                                                                                                                              |                                                                                                                                                                  |                                                          |                                          |              |           |           | incl.               | 64              | 65              | 1.0                 | 24.90                | 1.0                 |
|                                                                                                                                                                              | WURC0131                                                                                                                                                         | 224417                                                   | 7053230                                  | 1506         | 100       | 135       | -60                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0132                                                                                                                                                         | 226000                                                   | 7053449                                  | 1509         | 50        | 225       | -60                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0133                                                                                                                                                         | 224423                                                   | 7053261                                  | 1506         | 113       | 135       | -60                 | 89              | 90              | 1.0                 | 2.05                 | 1.0                 |
|                                                                                                                                                                              | WURC0134                                                                                                                                                         | 226014                                                   | 7053463                                  | 1511         | 78        | 225       | -60                 | 00              | 101             | 15.0                | NSI<br>7.20          | 15.0                |
| Adelaide                                                                                                                                                                     | WURC0135                                                                                                                                                         | 224441                                                   | 7053315                                  | 1505         | 125       | 135       | -60<br>incl.        | 86<br><b>86</b> | 101<br>96       | 15.0<br><b>10.0</b> | 7.28                 | 15.0<br><b>10.0</b> |
| Dawn Of Hope                                                                                                                                                                 | WURC0136                                                                                                                                                         | 225960                                                   | 7053474                                  | 1510         | 100       | 272       | -50                 | 86              | 87              | 1.0                 | <b>10.42</b><br>1.79 | 0.7                 |
|                                                                                                                                                                              | WURC0137                                                                                                                                                         | 223900                                                   | 7053358                                  | 1505         | 150       | 136       | -60                 | 94              | 97              | 3.0                 | 2.58                 | 3.0                 |
|                                                                                                                                                                              | WURC0138                                                                                                                                                         | 225973                                                   | 7053350                                  | 1510         | 125       | 270       | -60                 | 54              | 51              | 5.0                 | NSI                  |                     |
|                                                                                                                                                                              | WURC0139                                                                                                                                                         | 224638                                                   | 7053544                                  | 1507         | 125       | 135       | -60                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0141                                                                                                                                                         | 224679                                                   | 7053535                                  | 1504         | 100       | 135       | -60                 |                 |                 |                     | NSI                  |                     |
| Golden Age                                                                                                                                                                   | WURC0142                                                                                                                                                         | 225731                                                   | 7052717                                  | 1512         | 90        | 46        | -59                 | 61              | 69              | 8.0                 | 0.83                 | 5.3                 |
| Starlight-Indigo                                                                                                                                                             | WURC0143                                                                                                                                                         | 224884                                                   | 7053401                                  | 1512         | 100       | 272       | -59                 | 16              | 24              | 8.0                 | 0.96                 | 5.3                 |
| Golden Age                                                                                                                                                                   | WURC0144                                                                                                                                                         | 225790                                                   | 7052624                                  | 1511         | 120       | 46        | -59                 | 107             | 109             | 2.0                 | 1.14                 | 1.3                 |
|                                                                                                                                                                              | WURC0145                                                                                                                                                         | 224924                                                   | 7053402                                  | 1512         | 100       | 274       | -59                 | 49              | 51              | 2.0                 | 1.64                 | 1.3                 |
|                                                                                                                                                                              | WURC0146                                                                                                                                                         | 226025                                                   | 7052442                                  | 1508         | 30        | 45        | -60                 |                 |                 | NSI                 |                      |                     |
| Starlight-Indigo                                                                                                                                                             | WURC0147                                                                                                                                                         | 224897                                                   | 7053351                                  | 1512         | 100       | 272       | -60                 | 32              | 34              | 2.0                 | 6.72                 | 1.3                 |
| Calder Arr                                                                                                                                                                   |                                                                                                                                                                  | 220070                                                   | 7052207                                  | 4507         | 20        | 45        | incl.               | 33              | 34              | 1.0                 | 8.97                 | 0.7                 |
|                                                                                                                                                                              | WURC0148                                                                                                                                                         | 226076                                                   | 7052387                                  | 1507         | 30        | 45        | -60                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0149<br>WURC0150                                                                                                                                             | 224841<br>225720                                         | 7053341<br>7052852                       | 1509<br>1513 | 60<br>30  | 220<br>45 | -60<br>-60          |                 |                 |                     | NSI<br>NSI           |                     |
|                                                                                                                                                                              | WURC0151                                                                                                                                                         | 224879                                                   | 7053308                                  | 1515         | 60        | 220       | -60                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0152                                                                                                                                                         | 224879                                                   | 7052838                                  | 1513         | 50        | 45        | -60                 |                 |                 |                     | NSI                  |                     |
|                                                                                                                                                                              | WURC0152                                                                                                                                                         | 224904                                                   | 7053339                                  | 1509         | 150       | 222       | -61                 | 8               | 12              | 4.0                 | 0.99                 | 2.7                 |
|                                                                                                                                                                              |                                                                                                                                                                  |                                                          |                                          |              |           |           |                     | 84              | 86              | 2.0                 | 6.79                 | 1.3                 |
|                                                                                                                                                                              |                                                                                                                                                                  |                                                          |                                          |              |           |           | incl.               | 84              | 85              | 1.0                 | 12.50                | 0.7                 |
| Golden Age                                                                                                                                                                   | WURC0154                                                                                                                                                         | 225656                                                   | 7052799                                  | 1511         | 120       | 45        | -59                 | 96              | 97              | 1.0                 | 5.13                 | 0.7                 |
|                                                                                                                                                                              | WURC0155                                                                                                                                                         | 224951                                                   | 7053358                                  | 1512         | 115       | 220       | -69                 | 8               | 12              | 4.0                 | 3.59                 | 2.7                 |
|                                                                                                                                                                              | WURC0156                                                                                                                                                         | 225154                                                   | 7053203                                  | 1503         | 125       | 320       | -60                 | 52              | 54              | 2.0                 | 6.48                 | 1.3                 |
|                                                                                                                                                                              | WURC0157                                                                                                                                                         | 224924                                                   | 7053285                                  | 1509         | 60        | 223       | -59                 | 12              | 14              | 2.0                 | 2.48                 | 1.3                 |
|                                                                                                                                                                              | WURC0158                                                                                                                                                         | 225125                                                   | 7053231                                  | 1503         | 60        | 315       | -60                 |                 |                 |                     | NSI                  |                     |
| Starlight                                                                                                                                                                    | WURC0159                                                                                                                                                         | 224950                                                   | 7053316                                  | 1512         | 100       | 220       | -60                 | 35              | 36              | 1.0                 | 1.68                 | 0.7                 |
|                                                                                                                                                                              |                                                                                                                                                                  |                                                          |                                          |              |           |           |                     | 61              | 63              | 2.0                 | 4.95                 | 1.3                 |
|                                                                                                                                                                              |                                                                                                                                                                  |                                                          |                                          |              |           |           | incl.               | <b>61</b><br>97 | <b>62</b><br>99 | <b>1.0</b><br>2.0   | 7.00<br>3.42         | <b>0.7</b><br>1.3   |

|                          |                      |                  |                    |              | ЕОН        | Azi        |            |                 |                 | Downhole          | Au                   | Est True          |
|--------------------------|----------------------|------------------|--------------------|--------------|------------|------------|------------|-----------------|-----------------|-------------------|----------------------|-------------------|
| Prospect                 | Hole ID              | East             | North              | RL           | (m)        | MGA        | Dip        | From            | То              | Thickness         | g/t                  | Thickness         |
| Creek Shear              | WURC0160             | 225128           | 7053281            | 1503         | 84         | 271        | -70        | 70              | 74              | 4.0               | 0.88                 | 2.7               |
| Starlight                | WURC0161             | 224962           | 7053251            | 1510         | 66         | 220        | -59        | 1               | 3               | 2.0               | 1.20                 | 1.3               |
|                          |                      |                  |                    |              |            |            | inal       | 8               | 13              | 5.0               | 4.17                 | 3.3               |
| Creek Shear              | WURC0162             | 225121           | 7053381            | 1503         | 54         | 274        | -50        | <b>9</b><br>15  | <b>10</b><br>19 | <b>1.0</b><br>4.0 | <b>13.40</b><br>1.83 | <b>0.7</b><br>2.7 |
| Starlight                | WURC0162<br>WURC0163 | 223121           | 7053381            | 1503         | 120        | 274        | -50        | 3               | 4               | 1.0               | 5.84                 | 0.7               |
| Stanight                 | WORCOIDS             | 224507           | 7033230            | 1305         | 120        | 225        | -55        | 46              | 49              | 3.0               | 3.25                 | 2.0               |
|                          |                      |                  |                    |              |            |            | incl.      | 48              | 49              | 1.0               | 7.49                 | 0.7               |
|                          |                      |                  |                    |              |            |            | -          | 65              | 68              | 3.0               | 3.54                 | 2.0               |
|                          |                      |                  |                    |              |            |            | incl.      | 65              | 66              | 1.0               | 8.30                 | 0.7               |
|                          |                      |                  |                    |              |            |            |            | 77              | 81              | 4.0               | 4.12                 | 2.7               |
|                          |                      |                  |                    |              |            |            | incl.      | 79              | 80              | 1.0               | 10.15                | 0.7               |
|                          |                      |                  |                    |              |            |            |            | 84              | 85              | 1.0               | 1.23                 | 0.7               |
|                          |                      |                  |                    |              |            |            |            | 116             | 117             | 1.0               | 1.59                 | 0.7               |
| Creek Shear              | WURC0164             | 225152           | 7053382            | 1504         | 100        | 273        | -59        | 26              | 29              | 3.0               | 1.17                 | 2.0               |
| Creek Shear              | 11/11/2004 65        | 224000           | 7050040            | 4507         | 70         |            | 50         | 40              | 44              | 4.0               | 1.41                 | 2.7               |
| Starlight                | WURC0165             | 224993           | 7053210            | 1507         | 78         | 223        | -59        | 32              | 34              | 2.0               | 3.83                 | 1.3               |
|                          |                      |                  |                    |              |            |            | incl.      | <b>33</b><br>50 | <b>34</b><br>52 | <b>1.0</b><br>2.0 | <b>6.85</b> 2.70     | <b>0.7</b><br>1.3 |
| Crock Shoor              | WURC0166             | 225120           | 7052491            | 1504         | 100        | 270        | 60         | 50              | 52              | 2.0               | NSI                  | 1.5               |
| Creek Shear<br>Starlight | WURC0166<br>WURC0167 | 225130<br>225018 | 7053481<br>7053241 | 1504<br>1509 | 100<br>102 | 270<br>225 | -60<br>-60 | 4               | 8               | 4.0               | 3.43                 | 2.7               |
| Starlight                | WORCOIO/             | 223010           | 7033241            | 1303         | 102        | 225        | incl.      | 4<br>5          | 6               | 4.0<br>1.0        | 6.93                 | 0.7               |
|                          |                      |                  |                    |              |            |            |            | 76              | 88              | 12.0              | 1.69                 | 8.0               |
| Creek Shear              | WURC0168             | 225158           | 7053482            | 1503         | 96         | 274        | -60        | 79              | 81              | 2.0               | 4.49                 | 1.3               |
|                          |                      |                  |                    |              |            |            | incl.      | 79              | 80              | 1.0               | 5.49                 | 0.7               |
| Moonlight                | WURC0169             | 225066           | 7053530            | 1508         | 70         | 270        | -60        |                 |                 |                   | NSI                  |                   |
| Moonlight                | WURC0170             | 225061           | 7053605            | 1508         | 70         | 271        | -49        | 40              | 47              | 7.0               | 3.32                 | 4.7               |
|                          |                      |                  |                    |              |            |            | incl.      | 40              | 42              | 2.0               | 8.81                 | 1.3               |
| Lonehand                 | WURC0171             | 224695           | 7054122            | 1511         | 50         | 90         | -60        |                 |                 |                   | NSI                  |                   |
| Creek Shear              | WURC0172             | 225137           | 7053594            | 1506         | 87         | 277        | -59        | 82              | 83              | 1.0               | 2.92                 | 0.7               |
| Lonehand                 | WURC0173             | 224662           | 7054122            | 1511         | 100        | 90         | -60        |                 |                 |                   | NSI                  |                   |
| Creek Shear              | WURC0174             | 225139           | 7053682            | 1506         | 100        | 270        | -60        |                 |                 |                   | NSI                  |                   |
| Lonehand                 | WURC0175             | 224694           | 7054172            | 1511         | 50         | 90         | -60        |                 |                 |                   | NSI                  |                   |
| Creek Shear              | WURC0176             | 225179           | 7053683            | 1505         | 150        | 270        | -60        |                 |                 |                   | NSI                  |                   |
| Lonehand                 | WURC0177             | 224661           | 7054172            | 1511         | 85         | 90         | -60        |                 |                 |                   | NSI                  |                   |
| Moonlight                | WURC0178             | 224944           | 7053828            | 1508         | 30         | 90         | -60        |                 |                 |                   | NSI                  |                   |
| Lonehand<br>Lonehand     | WURC0179             | 224719<br>224870 | 7054198<br>7053849 | 1510         | 100<br>162 | 90         | -50<br>-54 | 90              | 02              | 2.0               | NSI                  | 1.2               |
| Lonenanu                 | WURC0180             | 224870           | 7053849            | 1506         | 102        | 272        | -54        | 110             | 92<br>111       | 2.0               | 1.15<br>2.63         | 1.3<br>0.7        |
| Lonehand North           | WURC0181             | 224701           | 7054248            | 1510         | 100        | 90         | -60        | 110             | 111             | 1.0               | NSI                  | 0.7               |
| Creek Shear              | WURC0182             | 225177           | 7053590            | 1510         | 125        | 274        | -60        | 105             | 108             | 3.0               | 1.91                 | 2.0               |
| Lonehand North           | WURC0183             | 224661           | 7054247            | 1510         | 125        | 90         | -60        | 105             | 100             | 5.0               | NSI                  | 2.0               |
| Lonehand                 | WURC0184             | 224839           | 7053952            | 1510         | 150        | 273        | -59        | 137             | 141             | 4.0               | 2.25                 | 2.7               |
| Lonehand North           | WURC0185             | 224650           | 7054348            | 1509         | 100        | 94         | -61        | 52              | 58              | 6.0               | 1.40                 | 4.0               |
| Lonehand                 | WURC0186             | 224844           | 7054001            | 1510         | 125        | 272        | -60        | 97              | 102             | 5.0               | 6.66                 | 3.3               |
|                          |                      |                  |                    |              |            |            | incl.      | 99              | 102             | 3.0               | 10.84                | 2.0               |
| Lonehand North           | WURC0187             | 224677           | 7054399            | 1509         | 75         | 90         | -60        |                 |                 |                   | NSI                  |                   |
| Lonehand                 | WURC0188             | 224820           | 7054050            | 1509         | 150        | 274        | -60        | 83              | 84              | 1.0               | 3.04                 | 0.7               |
| Lonehand North           | WURC0189             | 224617           | 7054397            | 1509         | 125        | 95         | -61        | 100             | 104             | 4.0               | 4.00                 | 2.7               |
|                          |                      |                  |                    |              |            |            | incl.      | 101             | 103             | 2.0               | 5.41                 | 1.3               |
| Lonehand                 | WURC0190             | 224809           | 7054150            | 1509         | 168        | 274        | -65        | 87              | 89              | 2.0               | 3.99                 | 1.3               |
|                          |                      |                  | 707.11             | 4            |            |            | incl.      | 88              | 89              | 1.0               | 7.20                 | 0.7               |
| Lonehand North           | WURC0191             | 224592           | 7054447            | 1510         | 150        | 90         | -60        | 81              | 85              | 4.0               | 1.41                 | 2.7               |
| Lonehand                 | WURC0192             | 224789           | 7054199            | 1509         | 132        | 273        | -49        | 80              | 81              | 1.0               | 1.73                 | 0.7               |
| Lonobered Marth          | W/UDC0102            | 224575           | 7054406            | 1544         | 114        | 00         | 60         | 106             | 108             | 2.0               | 2.80                 | 1.3               |
| Lonehand North           | WURC0193             | 224575           | 7054496            | 1511         | 114        | 90         | -60        | 88<br>104       | 92              | 4.0               | 1.34                 | 2.7               |
| Lonehand                 | WURC0194             | 224741           | 7054248            | 1510         | 75         | 90         | -60        | 104             | 106             | 2.0               | 1.14<br>NSI          | 1.3               |
| Lonehand North           | WURC0194<br>WURC0195 | 224741           | 7054248            | 1510         | 75         | 90         | -60        |                 |                 |                   | NSI                  |                   |
| Lonehand North           | WURC0195<br>WURC0196 | 224690           | 7054349            | 1509         | 125        | 90         | -60        |                 |                 |                   | NSI                  |                   |
| Indigo                   | WURC0190             | 224010           | 7053544            | 1508         | 85         | 135        | -60        | 8               | 16              | 8.0               | 1.23                 | 5.3               |
| Old Camp                 | WURD0001             | 224718           | 7053016            | 1503         | 114        | 133        | -60        | 80.1            | 82              | 1.9               | 1.25                 | 1.3               |
| Old Camp                 | WURD0002             | 224532           | 7052998            | 1503         | 100        | 180        | -60        | 53              | 65              | 12.0              | 2.19                 | 8.0               |
|                          |                      |                  |                    |              |            |            | incl.      | 55              | 55.7            | 0.7               | 17.60                | 0.5               |
| Bulletin                 | WURD0008             | 225883           | 7053149            | 1509         | 148        | 315        | -65        |                 |                 | -                 | NSI                  |                   |
| Bulletin                 |                      |                  |                    |              |            |            |            | 54.2            | <b>CO A</b>     | 0.2               |                      | 6.1               |
| Happy Jack               | WURD0010             | 225418           | 7052901            | 1506         | 141.5      | 247        | -60        | 51.2            | 60.4            | 9.2               | 1.34                 | 0.1               |
|                          | WURD0010             | 225418           | 7052901            | 1506         | 141.5      | 247        | -60        | 51.2<br>58.7    | 60.4<br>60.4    | 9.2<br>1.7        | 1.34<br>4.01         | 1.1               |

| Prospect     | Hole ID  | East   | North   | RL   | EOH<br>(m) | Azi<br>MGA | Dip   | From  | То    | Downhole<br>Thickness | Au<br>g/t | Est True<br>Thickness |
|--------------|----------|--------|---------|------|------------|------------|-------|-------|-------|-----------------------|-----------|-----------------------|
|              |          |        |         |      |            |            | incl. | 76    | 79    | 3.0                   | 7.30      | 2.0                   |
| Happy Jack   | WURD0012 | 225499 | 7052692 | 1508 | 150.5      | 250        | -60   |       |       |                       | NSI       |                       |
| Essex        | WURD0014 | 225374 | 7052540 | 1504 | 75.6       | 318        | -66   | 50.07 | 53    | 2.9                   | 2.74      | 2.0                   |
| Happy Jack   | WURD0015 | 225466 | 7053042 | 1509 | 225.6      | 315        | -63   | 90.8  | 95.2  | 4.4                   | 1.49      | 2.9                   |
|              |          |        |         |      |            |            |       | 206.6 | 214.7 | 8.1                   | 1.83      | 5.4                   |
| Magazine     | WURD0016 | 225389 | 7050459 | 1494 | 70.2       | 271        | -60   |       |       |                       | NSI       |                       |
| Golden Age   | WURD0018 | 225603 | 7052876 | 1512 | 121        | 45         | -60   |       |       |                       | NSI       |                       |
| Dawn Of Hope | WURD0020 | 225972 | 7053525 | 1509 | 125        | 270        | -60   |       |       |                       | NSI       |                       |
| Bulletin     | WURD0021 | 225968 | 7053915 | 1512 | 223        | 136        | -49   | 93    | 96.6  | 3.6                   | 10.60     | 2.4                   |
|              |          |        |         |      |            |            | incl. | 95    | 96.6  | 1.6                   | 23.05     | 1.1                   |
|              |          |        |         |      |            |            |       | 101   | 104   | 3.0                   | 1.26      | 2.0                   |
|              |          |        |         |      |            |            |       | 107.8 | 112   | 4.2                   | 2.48      | 2.8                   |
|              |          |        |         |      |            |            | incl. | 111   | 112   | 1.0                   | 5.67      | 0.7                   |
| Creek Shear  | WURD0022 | 225165 | 7053182 | 1503 | 125        | 272        | -59   | 41    | 42    | 1.0                   | 2.97      | 0.7                   |
| Lonehand     | WURD0023 | 224864 | 7053901 | 1510 | 156        | 270        | -55   | 107.4 | 110.6 | 3.2                   | 4.86      | 2.1                   |
|              |          |        |         |      |            |            | incl. | 107.4 | 108   | 0.6                   | 17.95     | 0.4                   |
|              |          |        |         |      |            |            |       | 123.5 | 132   | 8.5                   | 4.38      | 5.7                   |
|              |          |        |         |      |            |            | incl. | 123.5 | 124   | 0.5                   | 11.85     | 0.3                   |
|              |          |        |         |      |            |            | and   | 126   | 130   | 4.0                   | 6.07      | 2.7                   |
|              |          |        |         |      |            |            |       | 137.8 | 143.8 | 6.0                   | 3.33      | 4.0                   |
|              |          |        |         |      |            |            | incl. | 141.8 | 142.8 | 1.0                   | 13.25     | 0.7                   |
| Creek Shear  | WURD0024 | 225115 | 7052981 | 1502 | 106        | 270        | -65   |       |       |                       | NSI       |                       |
| Adelaide     | WURD0025 | 224501 | 7053397 | 1505 | 127        | 135        | -50   |       |       |                       | NSI       |                       |
| Lonehand Pit | WURD0026 | 224790 | 7054149 | 1509 | 130        | 270        | -60   | 64    | 65.2  | 1.2                   | 1.59      | 0.8                   |
|              |          |        |         |      |            |            |       | 77.4  | 78.5  | 1.1                   | 11.45     | 0.7                   |
|              |          |        |         |      |            |            |       | 107.4 | 108.6 | 1.2                   | 13.10     | 0.8                   |
| Starlight    | WURD0027 | 224866 | 7053372 | 1510 | 100        | 219        | -60   | 28    | 32    | 4.0                   | 2.06      | 2.7                   |
| Starlight    | WURD0028 | 225012 | 7053313 | 1510 | 171        | 223        | -60   | 42    | 43    | 1.0                   | 1.68      | 0.7                   |

\* Grid is GDA\_94 Z51S. Intercepts are calculated using a minimum assay grade of 0.6g/t, minimum 1.2 gram x metres, maximum 2m internal dilution. NSI = No significant intercept. WURC = RC holes, WURD = RC pre-collar with a diamond tail

## APPENDIX A - JORC Code, 2012 Edition – Table 1

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>Blackham Resources has used i) reverse circulation drilling to obtain 1m samples from which ~3kg samples were collected using a cone splitter connected to the rig, and ii) NQ2 or HQ core with ½ core sampling. Samples from RC and diamond drilling are reported herein.</li> <li>Blackham's sampling procedures are in line with standard industry practice to ensure sample representivity. Core samples are routinely taken from the right-hand-side of the cut line. For Blackham's RC and AC drilling, the drill rig (and cone splitter) is always jacked up so that it is level with the earth to ensure even splitting of the sample. It is assumed that previous owners of the project had procedures in place in line with standard industry practice to ensure sample representivity.</li> <li>Historically (pre-Blackham Resources), drill samples were taken at predominantly 1m intervals in RC holes, or as 2m or 4m composites in AC holes. Historical core sampling is at various intervals so it appears that sampling was based on geological observations at intervals determined by the logging geologist.</li> <li>At the laboratory, samples &gt;3kg were 50:50 riffle split to become &lt;3kg. The &lt;3kg splits were crushed to &lt;2mm in a Boyd crusher and pulverized via LM5 to 90% passing 75µm to produce a 50g charge for fire assay. Historical assays were obtained using either aqua regia digest or fire assay, with AAS readings.</li> <li>Blackham Resources analysed samples using ALS laboratories in Perth. Analytical method was Fire Assay with a 50g charge and AAS finish. Historically, gold analyses were obtained using industry standard methods; split samples were pulverized in an LM5 bowl to produce a 50g charge for assay by Fire Assay or Aqua Regia with AAS finish at the Wiluna Mine site laboratory.</li> </ul> |

| Drilling<br>techniques   | hammer, rotary air blast, auger, Bangka, sonic,<br>etc) and details (eg core diameter, triple or<br>standard tube, depth of diamond tails, face-<br>samplin                                                                                                                                                                                                                                                                                                                                                             | am data reported herein is RC 5.5" diameter holes. Diamond drilling is oriented NQ or HQ core<br>cal drilling data contained in this report includes RC, AC and DD core samples. RC sampling utilized<br>mpling hammer of 4.5" to 5.5" diameter, RAB sampling utilized open-hole blade or hammer<br>ng, and DD sampling utilized NQ2 half core samples. It is unknown if core was orientated, though it<br>naterial to this report. All Blackham RC drilling used a face-sampling bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample<br>recovery | <ul> <li>sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery<br/>and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample<br/>recovery and grade and whether sample bias<br/>may have occurred due to preferential loss/gain<br/>of fine/coarse material.</li> <li>RC drill<br/>throug<br/>inserte<br/>sample<br/>compre<br/>more of<br/>similar<br/>sample<br/>industri<br/>dust-su<br/>collecte<br/>biased<br/>maxim</li> </ul> | ckham RC drilling, chip sample recovery is visually estimated by volume for each 1m bulk sample<br>nd recorded digitally in the sample database. For DD drilling, recovery is measured by the drillers<br>ackham geotechnicians and recorded into the digital database. Recoveries were typically 100%<br>for the non-mineralised upper 3 or 4m. For historical drilling, recovery data for drill holes<br>ned in this report has not been located or assessed, owing to incomplete data records. Database<br>ation is ongoing.<br>Sing, sample recovery is maximized by pulling back the drill hammer and blowing the entire sample<br>the the rod string at the end of each metre. Where composite samples are taken, the sample spear is<br>d diagonally through the sample bag from top to bottom to ensure a full cross-section of the<br>is collected. To minimize contamination and ensure an even split, the cone splitter is cleaned with<br>essed air at the end of each rod, and the cyclone is cleaned every 50m and at the end of hole, and<br>ften when wet samples are encountered. Historical practices are not known, though it is assumed<br>industry-standard procedures were adopted by each operator. For historical drilling with dry<br>is it is unknown what methods were used to ensure sample recovery, though it is assumed that<br>y-standard protocols were used to maximize the representative nature of the samples, including<br>uppression and rod pull-back after each drilled interval. For wet samples, it is noted these were<br>ed in polyweave bags to allow excess water to escape; this is standard practice though can lead to<br>loss of sample material into the suspended fine sample fraction. For DD drilling, sample recovery is<br>ised by the use of short drill runs (typically 1.5m) and triple tube splits for HQ3 drilling.<br>ckham drilling, no such relationship was evaluated as sample recoveries were generally excellent. |
| Logging                  | <ul> <li>geologically and geotechnically logged to a level proper of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in</li> </ul>                                                                                                                                                                                                                                                                         | amples have been logged for geology, alteration, mineralisation, weathering, geotechnical<br>ties and other features to a level of detail considered appropriate for geological and resource<br>ing.<br>g of geology and colour for example are interpretative and qualitative, whereas logging of mineral<br>tages is quantitative.<br>s were logged in full.<br>otography was taken for BLK diamond drilling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>For core samples, Blackham uses half core cut with an automatic core saw. Samples have a minimum sample width of 0.3m and maximum of 1.2m, though typically 1m intervals were selected. A a cut line is routinely drawn at an angle 10 degrees to the right of the orientation line. Where no orientation line can be drawn, where possible samples are cut down the axis of planar features such as veins, such that the two halves of core are mirror images.</li> <li>For historical drilling sampling techniques and preparation are not known. Historical core in storage is generally half core, with some quarter core remaining; it is assumed that half core was routinely analysed, with quarter core perhaps having been used for check assays or other studies. Holes have been selectively sampled (visibly barren zones not sampled, though some quartz vein intervals have been left un-sampled), with a minimum sample width of 0.3m and maximum of 1.2m, though typically 1m intervals were selected.</li> <li>RC sampling with cone splitting with 1m samples collected. 4m scoop composites compiled from individual 1m samples. RC sampling with riffle or cone splitting and spear compositing is considered standard industry practice.</li> <li>For historical samples the method of splitting the RC samples is not known. However, there is no evidence of bias in the results</li> <li>Blackham drilling, 1m RC samples were split using a cone splitter. Most samples were dry; the moisture content data was logged and digitally captured. Where it proved impossible to maintain dry samples, at most three consecutive wet samples were obtained before drilling was abandoned, as per procedure. AC samples were 4 m composites;</li> <li>Boyd &lt;2mm crushing and splitting is considered to be standard industry practice; each sample particle has an equal chance of entering the split chute. At the laboratory, &gt;3kg samples are split so they can fit into a LMS pulveriser bowl.</li> <li>Field duplicates samples. RC duplicates are taken using the secondary sample chute on</li></ul> |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Quality of assay<br>data and<br>laboratory tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>Fire assay is a total digestion method. The lower detection limits of 0.01ppm is considered fit for purpose. For Blackham drilling, ALS completed the analyses using industry best-practice protocols. ALS is globally-recognized and highly-regarded in the industry. Historical assaying was undertaken at Amdel, SGS, and KalAssay laboratories, and by the on-site Agincourt laboratory. The predominant assay method was by Fire Assay with AAS finish. The lower detection limit of 0.01ppm Au used is considered fit for purpose.</li> <li>No geophysical tools were required as the assays directly measure gold mineralisation. For Blackham drilling, down-hole survey tools were checked for calibration at the start of the drilling program and every two weeks.</li> <li>Comprehensive programs of QAQC have been adopted since the 1980's. For Blackham drilling certified reference material, blanks and duplicates were submitted at approximately 1:20. Check samples are routinely submitted to an umpire lab at 1:20 ratio. Analysis of results confirms the accuracy and precision of the assay data. It is understood that previous explorers great Central Mines, Normandy and Agincourt employed QAQC sampling, though digital capture of the data is ongoing, and historical QAQC data have not been assessed. Results show good correlation between original and repeat analyses with very few samples plotting outside acceptable ranges (+/- 20%).</li> </ul> |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification of<br>sampling and<br>assaying      | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                      | <ul> <li>Blackham's significant intercepts have been verified by several company personnel, including the database manager and exploration manager.</li> <li>There were no twinned holes drilled in this program. Drilling has been designed at different orientations, to help correctly model the mineralisation orientation.</li> <li>Wiluna data represents a portion of a large drilling database compiled since the 1930's by various project owners.</li> <li>Data is stored in Datashed SQL database. Internal Datashed validations and validations upon importing into Micromine were completed, as were checks on data location, logging and assay data completeness and down-hole survey information. QAQC and data validation protocols are contained within Blackham's manual "Blackham Exploration Manual 2016v2". Historical procedures are not documented.</li> <li>The only adjustment of assay data is the conversion of lab non-numeric code to numeric for estimation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Location of data<br>points                       | <ul> <li>Accuracy and quality of surveys used to locate<br/>drill holes (collar and down-hole surveys),<br/>trenches, mine workings and other locations used<br/>in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                    | <ul> <li>Downhole surveys are taken every ~5 or 10m using a gyro tool</li> <li>All historical holes appear to have been accurately surveyed to centimetre accuracy. Blackham's drill collars are routinely surveyed using a DGPS with centimetre accuracy, though coordinates reported herein are GPS surveyed to metre-scale accuracy.</li> <li>Grid systems used in this report are Wil10 local mine grid and GDA 94 Zone 51 S. Drilling collars were originally surveyed in either Mine Grid Wiluna 10 or AMG, and converted in Datashed to MGA grid.</li> <li>An accurate topographical model covering the mine site has been obtained, drill collar surveys are closely aligned with this. Away from the mine infrastructure, drill hole collar surveys provide adequate topographical control.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Data spacing<br>and distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                             | <ul> <li>Blackham's exploration holes are generally drilled 25m to 50m apart, on sections spaced 25m to 100m apart.</li> <li>Drilling reported herein is considered adequate to establish geological continuity but has not been used in any resource estimates</li> <li>Samples have been composited only where mineralisation was not anticipated. Where composite samples returned significant gold values, the 1m samples were submitted for analysis and these results were prioritized over the 4m composite values.</li> </ul> |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orientation of<br>data in relation<br>to geological<br>structure | <ul> <li>Whether the orientation of sampling achieves<br/>unbiased sampling of possible structures and the<br/>extent to which this is known, considering the<br/>deposit type.</li> <li>If the relationship between the drilling<br/>orientation and the orientation of key mineralised<br/>structures is considered to have introduced a<br/>sampling bias, this should be assessed and<br/>reported if material.</li> </ul> | <ul> <li>Drill holes were generally orientated perpendicular to targets to intersect predominantly steeply-dipping north-south or northeast-southwest striking mineralisation.</li> <li>The perpendicular orientation of the drillholes to the structures minimises the potential for sample bias</li> </ul>                                                                                                                                                                                                                          |
| Sample security                                                  | • The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                                                | • Drill samples are delivered to McMahon Burnett freight yard in Wiluna by Blackham personnel, where they are stored in a gated locked yard (after hours) until transported by truck to the laboratory in Perth. In Perth the samples are likewise held in a secure compound.                                                                                                                                                                                                                                                         |
| Audits or<br>reviews                                             | • The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                                                        | • No such audits or reviews have been undertaken as they are not considered routinely required; review will be conducted by external resource consultants when resource estimates are updated.                                                                                                                                                                                                                                                                                                                                        |

## Section 2 Reporting of Exploration Results

### (Criteria listed in the preceding section also apply to this section.)

| Criteria                                      | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement<br>and land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</li> </ul> | <ul> <li>M53/32. The tenements are owned 100% by Matilda Operations Pty Ltd, a wholly owned subsidiary of Blackham Resources Ltd.</li> <li>The tenements arein good standing and no impediments exist.</li> </ul>           |
| Exploration done by other parties             | • Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Modern exploration has been conducted on the tenement intermittently since the mid-1980's by various parties as tenure changed hands many times. This work has included mapping and rock chip sampling,</li> </ul> |

| Criteria                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | geophysical surveys and extensive RAB, RC and core drilling for exploration, resource definition and grade control purposes. This exploration is considered to have been successful as it led to the eventual economic exploitation of several open pits during the late 1980's / early 1990's. The deposits remain 'open' in various locations and opportunities remain to find extensions to the known potentially economic mineralisation.                                                                                                                                                                                                                                                              |
| Geology                     | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • The gold deposits are categorized as orogenic gold deposits, with similarities to most other gold deposits in the Yilgarn region. The deposits are hosted within the Wiluna Domain of the Wiluna greenstone belt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drill hole<br>Information   | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | See Appendix 1 of this report for drill hole details.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Data aggregation<br>methods | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> </ul>                                                                                                                                                                                                                                                            | <ul> <li>In the significant intercepts Appendix 1, drill hole intercepts are reported as length-weighted averages, above a 1m @ 0.6g/t cut-off, or &gt; 1.2 gram x metre cut off (to include narrow higher-grade zones) using a maximum 2m contiguous internal dilution. For the body of the report and in Figures, wider zones of internal dilution are included for clearer presentation. AC intercepts are based on 4m composites.</li> <li>High-grade internal zones are reported at a 5g/t envelope, e.g. MADD0018 contains 14.45m @ 6.74g/t from 162.55m including 4.4m @ 15.6g/t from 162.55m.</li> <li>No metal equivalent grades are reported because only Au is of economic interest.</li> </ul> |

| Criteria                                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | • The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                         | <ul> <li>Lode geometries at Wiluna are generally steeply east or steeply west dipping. Generally the lodes<br/>strike north-northeast. Historical drilling was oriented vertically or at -60° west, the latter being close to<br/>optimal for the predominant steeply-east dipping orientation. Drill holes reported herein have been<br/>drilled as closed to perpendicular to mineralisation as possible. In some cases due to the difficulty in<br/>positioning the rig close to remnant mineralisation around open pits this is not possible. See significant<br/>intercepts in Appendix 1 for estimates of mineralisation true widths.</li> </ul> |
| Diagrams                                                                     | • Appropriate maps and sections (with scales)<br>and tabulations of intercepts should be included<br>for any significant discovery being reported<br>These should include, but not be limited to a<br>plan view of drill hole collar locations and<br>appropriate sectional views.                                                                                                                                                        | See body of this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Balanced reporting                                                           | • Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and high<br>grades and/or widths should be practiced to<br>avoid misleading reporting of Exploration<br>Results.                                                                                                                                                                                                | • Full reporting of the historical drill hole database of over 80,000 holes is not feasible. A full list of results from the current drilling program is included with the report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other substantive<br>exploration data                                        | <ul> <li>Other exploration data, if meaningful and<br/>material, should be reported including (but not<br/>limited to): geological observations; geophysical<br/>survey results; geochemical survey results; bulk<br/>samples – size and method of treatment;<br/>metallurgical test results; bulk density,<br/>groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> | Other exploration tests are not the subject of this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Further work                                                                 | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of</li> </ul>                                                                                                                                                                                                                              | <ul> <li>Follow-up resource definition drilling is likely, as mineralisation is interpreted to remain open in various directions.</li> <li>Diagrams are provided in the body of this report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Criteria | JORC Code explanation                                                                                                                                           | Commentary |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|          | possible extensions, including the main<br>geological interpretations and future drilling<br>areas, provided this information is not<br>commercially sensitive. |            |