

HIGHLIGHTS

- First phase drilling confirms 1km long VMS mineralized horizon at Wodger Prospect
- Significant copper intercepts include:
 - \circ 9m @ 1.30% Cu (within a broader halo of 99m @ 0.27% Cu)
 - $_{\odot}~$ 4m @ 2.02% Cu (within a broader halo of 28m @ 0.53% Cu)
 - $_{\odot}$ 16m @ 0.85% Cu (within a broader halo of 88m @ 0.29% Cu)
- Several intercepts of visible malachite and azurite from aircore drill chips returned maximum copper intercepts (4m @ 2.02%, 4m @ 1.50% and 2m @ 3.44%)
- Second phase drilling to further define the mineralized horizon to commence immediately

RNI NL (ASX:RNI) is pleased to announce the assay results from the first phase of aircore drilling across the Forrest and Wodger prospects in the highly prospective Bryah Basin in Western Australia.

A combined total of 85 aircore holes for 7,825 metres were completed across the Wodger and Forrest Prospects and were aimed at targeting the source of the modelled alteration at Wodger and to confirm a stratigraphic offset at Forrest.

The observations throughout the drilling were extremely encouraging with aircore holes WRAC013 and WRAC014 (Figures 2 & 3) intersecting visible malachite and azurite (Figure 1) over several metres. The assay results from Wodger further enhance these observations and returned an extensive halo of highly anomalous VMS mineralisation ((Cu, Au, Ag, Bi, Te & Mo (Appendix 2: Table 1)) between the Ravelstone Fm sediments and the hydrothermally altered Narracoota Formation mafic volcanics. This zone is similar in style to what is seen at the Forrest Prospect and is the primary VMS horizon.

These assay results are extremely encouraging and have further elevated each prospect in terms of hosting a significant VMS deposit. The VMS mineralisation at Wodger is over 1km in length and is open to the north and at depth. Second phase drilling is to commence immediately at the Wodger Prospect for a planned program of 50 holes for 5,000 metres. It is expected this program will take 3 weeks to complete with assay results to follow thereafter.

RNI Executive Director, Debbie Fullarton said "These results continue to validate our exploration methods and provide a firm foundation for a potential economic VMS deposit. With second phase drilling to commence immediately, RNI is enthused by these results at this high priority exploration area within the Bryah Basin."

Wodger Prospect

A total of 71 aircore holes for 6,651 metres (Appendix 1 – Table 1 & Figure 3) were completed across the Wodger gravity anomaly and were aimed at targeting the source of the modelled alteration (see ASX announcement 14 October 2016).

The observations throughout the drilling were extremely encouraging with aircore holes WRAC013 and WRAC014 (Figures 1 & 2) intersecting visible malachite and azurite over several metres.

The assay results from Wodger further enhance these observations and returned an extensive halo of highly anomalous VMS mineralisation ((Cu, Au, Ag, Bi, Te & Mo (Appendix 2: Table 1)) between the Ravelstone Fm sediments and the hydrothermally altered Narracoota Formation mafic volcanics. This zone is similar in style to what is seen at the Forrest Prospect and is the primary VMS horizon.

In addition to the mineralisation, the geochemistry from the assays also delineates certain rock types and suggests that the mineralisation at Wodger sits within a regional fold. This is an important geological feature as the mineralisation belonging to the proximal Horseshoe Lights VMS deposit sits within a similar fold structure.

The VMS oxide mineralisation at Wodger to date, defined over 1km in length (Figure 1), is open along strike and at depth and includes the significant copper intercepts below:

- 9 m @ 1.30% Cu (within a broader halo of 99 m @ 0.27% Cu)
- 4 m @ 2.02% Cu (within a broader halo of 28 m @ 0.53% Cu)
- 16 m @ 0.85% Cu (within a broader halo of 88 m @ 0.29% Cu)

Further drilling will re-commence at Wodger to define the extent of the VMS horizon, with the resulting analysis forming the platform for a deeper Reverse Circulation (RC) drilling program. A subsequent high powered Down Hole Electro Magnetic (DHEM) survey is planned to hone in on the sulphide VMS source.

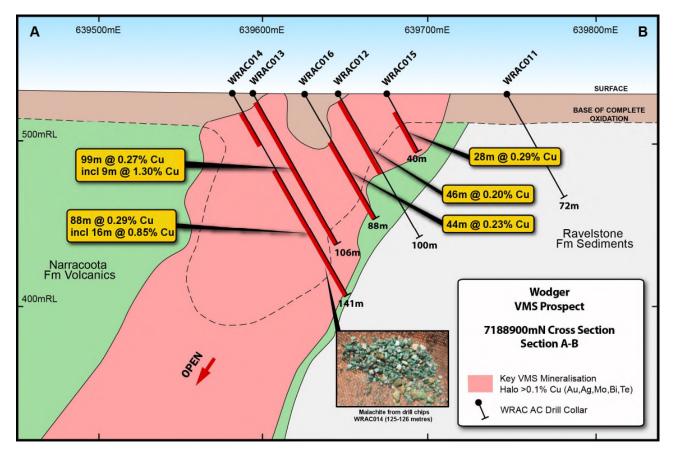


Figure 1: Wodger Cross-Section A-B: 7188900mN cross section showing the extensive copper mineralisation (>0.1% Cu) in relation to the prospect scale geology (refer Figure 2 for location)

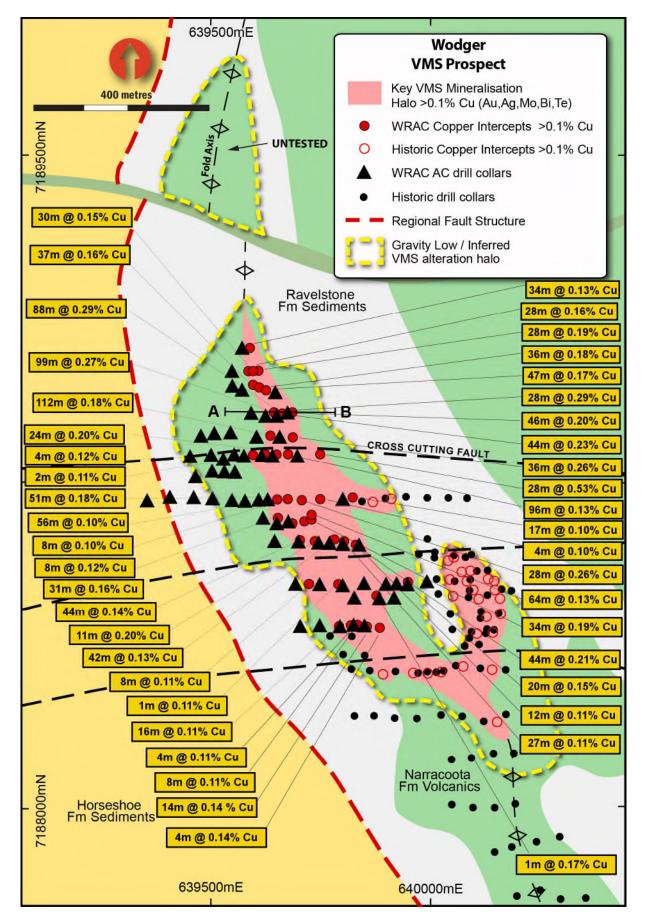


Figure 2: Significant copper mineralisation (>0.1% Cu) from recent aircore drilling, historic drill copper intercepts (>0.1% Cu) and interpreted hydrothermal alteration in relation to the Wodger Prospects interpreted geology

Forrest Prospect

A total of 14 aircore holes for 1,174 metres (Figure 3 – Appendix 1) were completed across the southern Forrest Prospect region and confirm a stratigraphic offset. Assay results confirm this offset with anomalous VMS mineralisation identified from aircore holes FPAC004 & FPAC011 (Appendix 2 – Table 2). The down-plunge nature in the copper mineralisation from previous drilling in the north provides a platform for deeper RC drilling with high powered DHEM survey to hone in on the source of the VMS anomalism.

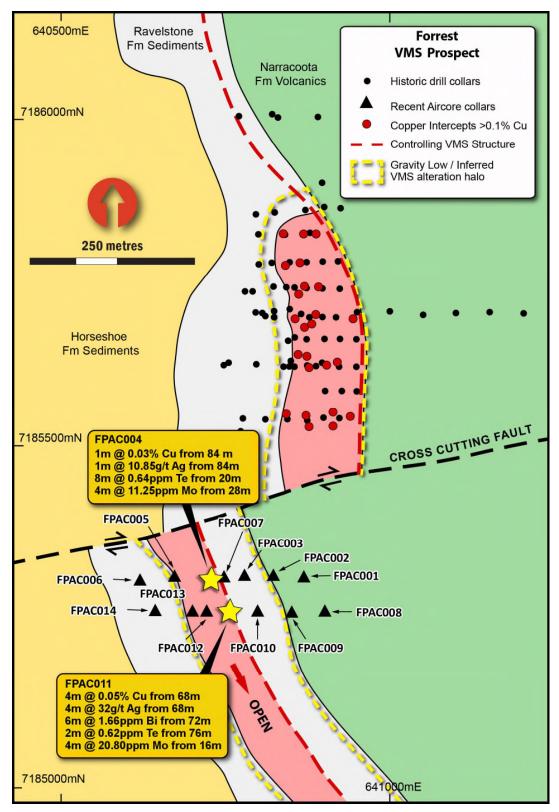


Figure 3: Aircore drilling in relation the stratigraphic offset, the historic copper intercepts from the Forrest Prospect and the recent anomalous VMS intercepts from FPAC004 and FPAC011

For and on behalf of the Board.

DEBBIE FULLARTON EXECUTIVE DIRECTOR

ABOUT RNI NL

RNI NL is exploring for high-grade VMS copper-gold discoveries in Western Australia's highly-prospective Bryah Basin region.

RNI has consolidated a 1,553km² copper-gold exploration portfolio in the Bryah Basin divided into five welldefined project areas – Doolgunna, Morck's Well, Forrest, Cashmans and Horseshoe Well.

The Company's exploration focus is on VHMS horizons identified at the Cuba and Orient-T10 prospects and the Forrest-Wodger-Big Billy trend.

RNI is headed by an experienced board and management team.

The Forrest Project tenements (Figure 4) are held as follows:

- i. RNI 80%; Fe Ltd 20% (Fe Ltd (ASX:FEL) interest is free carried until a Decision to Mine)
- ii. Westgold Resources Ltd (ASX:WGX) own the gold rights over the RNI interest.

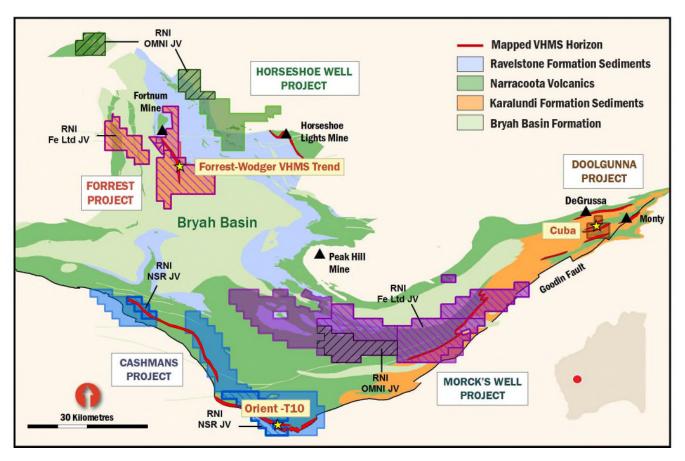


Figure 4: RNI's Bryah Basin copper-gold exploration portfolio and target areas

Competent Person's Statement

Information in this announcement that relates to exploration results is based on and fairly represents information and supporting documentation prepared and compiled by Richard Pugh BSc (Hons) who is a Member of the Australasian Institute of Mining and Metallurgy.

The information in this announcement that relates to previously released exploration was first disclosed under the JORC Code 2004. It has not been updated to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported and is based on and fairly represents information and supporting documentation prepared and compiled by Richard Pugh BSc (Hons) who is a Member of the Australasian Institute of Mining and Metallurgy.

Mr Pugh is Exploration Manager for RNI NL. Mr Pugh has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves. Mr Pugh consents to the inclusion in the announcement of the matters based on this information in the form and context in which it appears.

No New Information

Except where explicitly stated, this announcement contains references to prior exploration results and Mineral Resource estimates, all of which have been cross referenced to previous market announcements made by the Company. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources that all material assumptions and technical parameters underpinning the results and/or estimates in the relevant market announcement continue to apply and have not materially changed.

Forward-Looking Statements

This announcement has been prepared by RNI NL. This document contains background information about RNI NL and its related entities current at the date of this announcement. This is in summary form and does not purport to be all inclusive or complete. Recipients should conduct their own investigations and perform their own analysis in order to satisfy themselves as to the accuracy and completeness of the information, statements and opinions contained in this announcement. This announcement is for information purposes only. Neither this document nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction.

This announcement may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply in their own jurisdiction. A failure to do so may result in a violation of securities laws in such jurisdiction. This document does not constitute investment advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this representation are not intended to represent recommendations of particular investments to particular persons. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments.

No responsibility for any errors or omissions from this document arising out of negligence or otherwise is accepted. This document does include forward-looking statements. Forward-looking statements are only predictions and are subject to risks, uncertainties and assumptions which are outside the control of RNI NL. Actual values, results, outcomes or events may be materially different to those expressed or implied in this announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward-looking statements.

Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and ASX Listing Rules, RNI NL does not undertake any obligation to update or revise any information or any of the forward-looking statements in this document or any changes in events, conditions or circumstances on which any such forward-looking statement is based.

		Hole		MGA94_5)			EOH
Prospect	Hole_ID	Туре	East	North	RL	Dip	Azimuth	Depth
Forrest	FPAC001	AC	640873	7185300	525	-60	90	90
Forrest	FPAC002	AC	640826	7185303	525	-60	90	95
Forrest	FPAC003	AC	640782	7185307	525	-60	90	80
Forrest	FPAC004	AC	640730	7185300	525	-60	90	85
Forrest	FPAC005	AC	640678	7185302	525	-60	90	96
Forrest	FPAC006	AC	640626	7185298	525	-60	90	78
Forrest	FPAC007	AC	640752	7185300	525	-60	90	78
Forrest	FPAC008	AC	640901	7185253	525	-60	90	90
Forrest	FPAC009	AC	640853	7185253	525	-60	90	102
Forrest	FPAC010	AC	640800	7185249	525	-60	90	74
Forrest	FPAC011	AC	640757	7185252	525	-60	90	78
Forrest	FPAC012	AC	640727	7185251	525	-60	90	67
Forrest	FPAC013	AC	640703	7185247	525	-60	90	90
Forrest	FPAC014	AC	640650	7185252	525	-60	90	71
Wodger	WRAC001	AC	639804	7188699	522	-60	90	100
Wodger	WRAC002	AC	639750	7188698	520	-60	90	100
Wodger	WRAC003	AC	639702	7188696	532	-60	90	89
Wodger	WRAC004	AC	639654	7188700	525	-60	90	99
Wodger	WRAC005	AC	639606	7188696	525	-60	90	94
Wodger	WRAC006	AC	639549	7188697	529	-60	90	100
Wodger	WRAC007	AC	639500	7188701	529	-60	90	120
Wodger	WRAC008	AC	639456	7188702	530	-60	90	120
Wodger	WRAC009	AC	639402	7188703	533	-60	90	100
Wodger	WRAC010	AC	639350	7188697	536	-60	90	49
Wodger	WRAC011	AC	639747	7188903	526	-60	90	72
Wodger	WRAC012	AC	639646	7188897	530	-60	90	100
Wodger	WRAC013	AC	639594	7188902	529	-60	90	106
Wodger	WRAC014	AC	639582	7188906	527	-60	90	141
Wodger	WRAC015	AC	639675	7188903	532	-60	90	40
Wodger	WRAC016	AC	639626	7188899	523	-60	90	88
Wodger	WRAC017	AC	639700	7188801	526	-60	90	100
Wodger	WRAC018	AC	639644	7188799	532	-60	90	100
Wodger	WRAC019	AC	639623	7188802	525	-60	90	120
Wodger	WRAC020	AC	639577	7188801	533	-60	90	120
Wodger	WRAC021	AC	639524	7188794	525	-60	90	112
Wodger	WRAC022	AC	639548	7188803	524	-60	90	90
Wodger	WRAC023	AC	639498	7188801	531	-60	90	134

Appendix 1 – Wodger & Forrest AC Drilling Table 1: Drillhole Information Summary

_		Hole		MGA94_50)			EOH
Prospect	Hole_ID	Туре	East	North	RL	Dip	Azimuth	Depth
Wodger	WRAC024	AC	639450	7188800	535	-60	90	69
Wodger	WRAC025	AC	639650	7188847	530	-60	90	90
Wodger	WRAC026	AC	639605	7188847	530	-60	90	120
Wodger	WRAC027	AC	639544	7188862	528	-60	90	100
Wodger	WRAC028	AC	639503	7188849	528	-60	90	100
Wodger	WRAC029	AC	639477	7188850	537	-60	90	120
Wodger	WRAC030	AC	639648	7188949	527	-60	90	45
Wodger	WRAC031	AC	639602	7188951	527	-60	90	72
Wodger	WRAC032	AC	639551	7188965	526	-60	90	105
Wodger	WRAC033	AC	639573	7188953	528	-60	90	94
Wodger	WRAC034	AC	639599	7189002	534	-60	90	54
Wodger	WRAC035	AC	639576	7188997	530	-60	90	72
Wodger	WRAC036	AC	639546	7188999	525	-60	90	93
Wodger	WRAC037	AC	639575	7189050	525	-60	90	50
Wodger	WRAC038	AC	639550	7188763	536	-60	90	90
Wodger	WRAC039	AC	639528	7188765	536	-60	90	120
Wodger	WRAC040	AC	639499	7188764	534	-60	90	100
Wodger	WRAC041	AC	639461	7188753	557	-60	90	100
Wodger	WRAC042	AC	639624	7188701	529	-60	90	96
Wodger	WRAC043	AC	639578	7188698	531	-60	90	90
Wodger	WRAC044	AC	639703	7188650	529	-60	90	99
Wodger	WRAC045	AC	639677	7188647	527	-60	90	111
Wodger	WRAC046	AC	639649	7188644	522	-60	90	99
Wodger	WRAC047	AC	639622	7188654	525	-60	90	90
Wodger	WRAC048	AC	639844	7188589	531	-60	90	66
Wodger	WRAC049	AC	639800	7188595	530	-60	90	90
Wodger	WRAC050	AC	639750	7188601	530	-60	90	108
Wodger	WRAC051	AC	639724	7188658	530	-60	90	114
Wodger	WRAC052	AC	639702	7188600	530	-60	90	99
Wodger	WRAC053	AC	639649	7188602	530	-60	90	133
Wodger	WRAC054	AC	639774	7188599	530	-60	90	94
Wodger	WRAC055	AC	639901	7188501	530	-60	90	81
Wodger	WRAC056	AC	639851	7188504	530	-60	90	99
Wodger	WRAC057	AC	639804	7188500	530	-60	90	100
Wodger	WRAC058	AC	639751	7188500	530	-60	90	124
Wodger	WRAC059	AC	639692	7188498	530	-60	90	86
Wodger	WRAC060	AC	639998	7188510	530	-60	90	69
Wodger	WRAC061	AC	639951	7188505	530	-60	90	69
Wodger	WRAC062	AC	639927	7188499	530	-60	90	69

Dreenest	ospect Hole ID			MGA94_5	0	Dip	Azimuth	EOH
Prospect	Hole_ID	Туре	East	North	RL	ыр	Azimuth	Depth
Wodger	WRAC063	AC	639924	7188477	530	-60	90	78
Wodger	WRAC064	AC	639887	7188474	530	-60	90	99
Wodger	WRAC065	AC	639829	7188472	530	-60	90	101
Wodger	WRAC066	AC	639878	7188400	530	-60	90	73
Wodger	WRAC067	AC	639852	7188402	530	-60	90	54
Wodger	WRAC068	AC	639824	7188409	530	-60	90	69
Wodger	WRAC069	AC	639802	7188404	530	-60	90	96
Wodger	WRAC070	AC	639748	7188402	530	-60	90	108
Wodger	WRAC071	AC	639706	7188404	530	-60	90	99

Depth (m) Intercept Hole ID Element Value From То (m) Result Intercept Summary % 17 Cu 36 53 0.10 17 metres @ 0.10% Cu from 17 metres Au g/t 6 7 1 0.11 1 metre @ 0.11g/t Au from 6 metres 16 17 1 0.10 1 metre @ 0.10g/t Au from 16 metres 48 49 0.43 1 metre @ 0.43g/t Au from 48 metres 1 **WRAC001** 8 33 25 0.86 25 metres @ 0.86g/t Ag from 8 metres Ag g/t Bi 0 4 4 5.51 4 metres @ 5.51 ppm Bi from surface ppm 41 42 1 1.83 1 metre @ 1.83ppm Bi from 41 metres 2 47 49 1.51 2 metres @ 1.55 ppm Bi from 47 metres Te ppm 0 4 4 2.60 4 metres @ 2.60 ppm Te from surface _ _ _ Мо _ NSR ppm Cu 50 4 0.10 4 metres @ 0.10% from 50 metres % 54 Au g/t 49 50 1 0.33 1 metre @ 0.33g/t Au from 49 metres **WRAC002** 50 56 1.55 6 metres @ 1.55g/t Ag from 50 metres Aq q/t 6 Bi 0 3 3 1.55 3 metres @ 1.55 ppm Bi from surface ppm NSR Te ppm _ _ _ Мо NSR ppm Cu % 4 28 0.26 28 metres @ 0.26% Cu from 4 metres 32 Au g/t 12 20 8 0.29 8 metres @ 0.29g/t Au from 12 metres 44 8 0.21 52 8 metres @ 0.21g/t Au from 44 metres 0.84 g/t 48 56 8 8 metres @ 0.84g/t Ag from 48 metres Aq **WRAC003** 20 15.74 Bi 12 32 20 metres @ 15.74 ppm Bi from 12 metres ppm 2.99 44 52 8 8 metres @ 2.99 ppm Bi from 44 metres 80 84 4 1.31 4 metres @ 1.31ppm Bi from 80 metres 24 8 4.25 Te 8 metres @ 4.25 ppm Te from 16 metres ppm 16 44 48 4 0.54 4 metres @ 0.54 ppm Te from 44 metres 12 20 8 20.70 8 metres @ 20.70 ppm Mo from 12 metres Мо ppm Cu % 0 56 56 0.13 56 metres @ 0.13% Cu from surface Au q/t 52 60 8 0.10 8 metres @ 0.10g/t Au from 52 metres WRAC004 NSR Ag g/t _ _ _ _ Bi NSR ppm _ _ NSR Te ppm 24.20 Мо 40 56 16 16 metres @ 24.20 ppm Mo from 40 metres ppm 92 8 metres @ 0.10% Cu from 84 metres to % 84 (EOH) 8 0.10 Cu EOH NSR Au q/t **WRAC005** 8 0.70 8 metres @ 0.70g/t Ag from 84 metres Aq g/t 84 92 NSR Bi ppm _ _ _ _ Te 24 28 4 0.86 4 metres @ 0.86 ppm Te from 24 metres ppm 92 12 metres @ 192.93 ppm Mo from 80 80 (EOH) 12 192.93 metres to EOH Мο ppm Cu % NSR _ _ _ _ NSR Au g/t NSR Aq q/t _ _ _ _

Appendix 2 – Wodger & Forrest AC Drilling Table 1: Wodger Prospect - Table of Significant Intercepts

			Depth (m)		Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
WRAC007	Bi	ppm	8	12	4	1.70	4 metres @ 1.70 ppm Bi from 8 metres
			84	88	4	1.99	4 metres @ 1.99 ppm Bi from 84 metres
	Te	ppm	28	36	8	0.70	8 metres @ 0.70 ppm Te from 28 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	_	-	_	_	NSR
	Au	g/t	_	_	_	_	NSR
	Ag	g/t	48	52	4	1.53	4 metres @ 1.53g/t Ag from 48 metres
	Bi	ppm	24	28	4	1.05	4 metres @ 1.5 ppm Bi from 24 metres
WRAC008		ppin	100	104	4	1.26	4 metres @ 1.26 ppm Bi from 100 metres
MACCOC	Te	nnm	24	28	4	0.59	4 metres @ 0.59 ppm Te from 24 metres
	IE	ppm	56	60	4	0.50	4 metres @ 0.50 ppm Te from 56 metres
				80	8		
			72		8	0.63	8 metres @ 0.63 ppm Te from 72 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	-	-	-	-	NSR
	Au	g/t	-	-	-	-	NSR
WRAC009	Ag	g/t	4	12	8	0.78	8 metres @ 0.78 g/t Ag from 4 metres
	Bi	ppm	8	12	4	1.05	4 metres @ 1.05 ppm Bi from 8 metres
	Te	ppm	8	44	36	0.77	36 metres @ 0.77 ppm Te from 8 metres
	Мо	ppm	4	12	8	22.95	8 metres @ 22.95 ppm Mo from 4 metres
	Cu	%	-	_	-	-	NSR
	Au	g/t	-	_	-	-	NSR
	Ag	g/t	-	-	-	-	NSR
WRAC010	Bi	ppm	-	-	-	-	NSR
	Te	ppm	4	8	4	0.67	4 metres @ 0.67 ppm Te from 4 metres
			24	28	4	0.89	4 metres @ 0.89 ppm Te from 24 metres
			44	48	4	0.63	4 metres @ 0.63 ppm Te from 44 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	6	52	46	0.20	46 metres @ 0.20% Cu from 6 metres
	Au	g/t	29	30	1	0.56	1 metre @ 0.56g/t Au from 29 metres
			36	38	2	0.50	2 metres @ 0.50g/t Au from 36 metres
			49	50	1	0.46	1 metre @ 0.46 g/t Au from 49 metres
	Ag	g/t	30	44	14	1.23	14 metres @ 1.23g/t Ag from 30 metres
WRAC012	Bi	ppm	5	6	1	1.07	1 metre @ 1.07 ppm Bi from 5 metres
	5		26	38	12	1.99	12 metres @ 1.99 ppm Bi from 26 metres
	Те	ppm	20	6	4	0.61	4 metres @ 0.61 ppm Te from 2 metres
	10	ppin	36	40	4	0.87	4 metres @ 0.87 ppm Te from 36 metres
			48	52	4	7.43	4 metres @ 7.43 ppm Te from 48 metres
	N		40			7.43	
	Mo	ppm	-	-	-	_	NSR 99 metres @ 0.27% Cu from 7 metres to EOH
							Including 9 metres @ 1.30% Cu Max Cu values = 1 metre @ 4.08% Cu from
	Cu	%	7	106 (EOH)	99	0.27	98 metres & 1m @ 2.80% Cu from 99 metres
	Au	g/t	, 59	61	2	0.27	2 metres @ 0.13g/t Au from 59 metres
	Au	y/t	- 59 - 81	82	1	0.13	1 metre @ 0.12g/t Au from 81 metres

		Dept	h (m)			
Element	Value				Result	Intercept Summary
Etement	Vulue					2 metres @ 0.13g/t Au from 95 metres
		1				2 metres @ 0.15g/t Au from 102 metres
		102	104	2	0.15	30 metres @ 1.24 g/t Ag from 76 metres to
Ag	g/t	76	(EOH)	30	1.24	ЕОН
Bi	ppm	5	6	1	1.06	1 metre @ 1.06 ppm Bi from 5 metres
		9/		12	6 5 2	12 metres @ 6.52ppm Bi from 94 metres
		74	106	12	0.52	10 metres @ 12.01 ppm Te from 96 metres
Te	ppm	96	(EOH)	10	12.01	to EOH
Мо	ppm	83	84	1	57.70	1 metre @ 57.70 ppm Mo from 83 metres
						88 metres @ 0.29% Cu from 52 metres
Cu	%	52	140	88	0.29	Including 16 metres @ 0.85% Cu from 124 metres
Au	q/t	108	112	4	0.25	4 metres @ 0.25g/t au from 108 metres
		124	128	4	0.14	4 metres @ 0.14g/t Au from 124 metres
		136	140	4	0.17	4 metres @ 0.17g/t Au from 136 metres
Aa	a/t	116	140		2.27	24 metres @ 2.27 g/t Ag from 116 metres
						2 metres @ 1.39 ppm Bi from 4 metres
	PP					8 metres @ 1.15 ppm Bi from 120 metres
						4 metres @ 3.22 ppm Bi from 136 metres
Te	nnm					7 metres @ 0.73 ppm Te from surface
	ppin	1				24 metres @ 1.75 ppm Te from 116 metres
Ma		110	140	24	1.75	NSR
		-	-	-	-	
						28 metres @ 0.29% Cu from 12 metres
						NSR
						16 metres @ 0.61g/t Ag from 16 metres
						8 metres @ 1.00 pm Bi from surface
le	ppm					8 metres @ 0.75 ppm Te from surface
		24	28	4	0.98	4 metres @ 0.98 ppm Te from 24 metres
	ppm	-	-	-	-	NSR
Cu	%	36	80	44	0.23	44 metres @ 0.23% Cu from 36 metres
Au	g/t	44	48	4	0.10	4 metres @ 0.10g/t Au from 44 metres
		56	72		0.32	16 metres @ 0.32 g/t Au from 56 metres
Ag	g/t	52	72	20	3.05	20 metres @ 3.05g/t Ag from 52 metres
Bi	ppm	4	8	4	1.05	4 metres @ 1.05 ppm Bi from 4 metres
Te	ppm	4	8	4	0.70	4 metres @ 0.70 ppm Te from 4 metres
		52	76	24	7.79	24 metres @ 7.79 ppm Te from 52 metres
		84		4	0 71	4 metres @ 0.71ppm Te from 84 metres to EOH
Mo	nnm					NSR
	••					28 metres @ 0.12% Cu from 8 metres
Cu	70	0	30	20	0.12	28 metres @ 0.12% Cu from 8 metres 28 metres @ 0.53% Cu from 72 metres
					~ -	Including 4 metres @ 2.02% Cu from 96
		1				metres to EOH
Au	g/t	4		4	0.24	4 metres @ 0.24g/t Au from 4 metres
		96		4	0.26	4 metres @ 0.26g/t Au from 96 metres to EOH
		/0		-	0.20	LOII
	Bi Te Mo Cu Au Ag Bi Te Mo Cu Ag Bi Te Mo Cu Au Ag Bi Te Mo Cu Mo Cu Mo Cu Mo Cu Mo Cu Mo Cu	Agg/tBippmTeppmMoppmCu%Aug/tGu%Aug/tBippmTeppmMoppmCu%Agg/tBippmCu%Agg/tBippmTeppmCu%Aug/tBippmCu%Aug/tBippmCu%Aug/tBippmTeppmTeppmTeppmTeppmCu%Aug/tMoppmCu%Aug/tMoppmCu%MoppmTeppmMo	ElementValueFromI95I102Agg/t102Agg/t76Bippm94Teppm94Teppm83Moppm83Cu%52Aug/t108Aug/t114Bippm4Aug/t116Bippm4Cu%120Aug/t116Bippm4Cu%120Agg/t116Bippm0Teppm0Cu%12Aug/t16Bippm0Teppm0Teppm124Moppm12Aug/t16Bippm36Aug/t52Bippm4Teppm4Teppm4Teppm4Moppm4Teppm4Moppm52Bippm4Moppm52Bippm4Moppm4Moppm4Aug/t52Aug/t52Aug/t4Auj <j<j<j<j<j<j<j<j<d>34Auj<j<j<j<j<j<j<d>j<j<j<j< td=""><td>95 97 102 104 Ag g/t 76 106 Bi ppm 5 6 94 0H) 106 Fe ppm 94 106 Mo ppm 83 84 Cu % 52 140 Au g/t 108 112 Ag g/t 116 140 Bi ppm 4 6 Te ppm 0 7 Cu % 12 40 Ag g/t 16 32 Bi ppm 0 8 Te ppm 0 8 Mo ppm - - Cu %<!--</td--><td>ElementValueFromToIntercept (m)9797210210421021042Agg/t76(EOH)Bippm56Ppm940H)12Teppm96(EOH)Teppm8384Moppm8384Cu%52140Mog/t108112Cu%52140Agg/t116140Aug/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t1288Aug/t1240Agg/t1240Agg/t1240Agg/t1632Aug/t1632Aug/t1632Agg/t1632Agg/t1632Aug/t44Aug/t44Aug/t5272Agg/t5276Agg/t5276Agg/t5276Bipp</td><td>ElementValueFromToIntercept (m)Result10959720.13Agg/t10210420.15Agg/t76(EOH)3001.24Bippm5611.06P940H)126.52Teppm96(EOH)10012.01Moppm8384157.70Cu9%521408880.29Aug/t1081124.025Cu9%521404.00.14Aug/t1181404.00.17Agg/t116140242.27Bippm4621.39Aug/t116140243.22Teppm077.70.73Agg/t116140243.22Teppm077.70.73Cu%1240280.29Aug/t16140243.22Teppm0880.75Aug/t1632160.61Bippm4840.70Aug/t1632160.32Aug/t1632160.32Aug/t1632160.32Au<</td></td></j<j<j<></j<j<j<j<j<j<d></j<j<j<j<j<j<j<j<d>	95 97 102 104 Ag g/t 76 106 Bi ppm 5 6 94 0H) 106 Fe ppm 94 106 Mo ppm 83 84 Cu % 52 140 Au g/t 108 112 Ag g/t 116 140 Bi ppm 4 6 Te ppm 0 7 Cu % 12 40 Ag g/t 16 32 Bi ppm 0 8 Te ppm 0 8 Mo ppm - - Cu % </td <td>ElementValueFromToIntercept (m)9797210210421021042Agg/t76(EOH)Bippm56Ppm940H)12Teppm96(EOH)Teppm8384Moppm8384Cu%52140Mog/t108112Cu%52140Agg/t116140Aug/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t1288Aug/t1240Agg/t1240Agg/t1240Agg/t1632Aug/t1632Aug/t1632Agg/t1632Agg/t1632Aug/t44Aug/t44Aug/t5272Agg/t5276Agg/t5276Agg/t5276Bipp</td> <td>ElementValueFromToIntercept (m)Result10959720.13Agg/t10210420.15Agg/t76(EOH)3001.24Bippm5611.06P940H)126.52Teppm96(EOH)10012.01Moppm8384157.70Cu9%521408880.29Aug/t1081124.025Cu9%521404.00.14Aug/t1181404.00.17Agg/t116140242.27Bippm4621.39Aug/t116140243.22Teppm077.70.73Agg/t116140243.22Teppm077.70.73Cu%1240280.29Aug/t16140243.22Teppm0880.75Aug/t1632160.61Bippm4840.70Aug/t1632160.32Aug/t1632160.32Aug/t1632160.32Au<</td>	ElementValueFromToIntercept (m)9797210210421021042Agg/t76(EOH)Bippm56Ppm940H)12Teppm96(EOH)Teppm8384Moppm8384Cu%52140Mog/t108112Cu%52140Agg/t116140Aug/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t116140Agg/t1288Aug/t1240Agg/t1240Agg/t1240Agg/t1632Aug/t1632Aug/t1632Agg/t1632Agg/t1632Aug/t44Aug/t44Aug/t5272Agg/t5276Agg/t5276Agg/t5276Bipp	ElementValueFromToIntercept (m)Result10959720.13Agg/t10210420.15Agg/t76(EOH)3001.24Bippm5611.06P940H)126.52Teppm96(EOH)10012.01Moppm8384157.70Cu9%521408880.29Aug/t1081124.025Cu9%521404.00.14Aug/t1181404.00.17Agg/t116140242.27Bippm4621.39Aug/t116140243.22Teppm077.70.73Agg/t116140243.22Teppm077.70.73Cu%1240280.29Aug/t16140243.22Teppm0880.75Aug/t1632160.61Bippm4840.70Aug/t1632160.32Aug/t1632160.32Aug/t1632160.32Au<

			Dept	h (m)			
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
			60	64	4	0.51	4 metres @ 0.51g/t Ag from 60 metres
			88	100 (EOH)	12	0.54	12 metres @ 0.54 g/t Ag from 88 metres
	Bi	ppm	4	8	4	1.18	4 metres @ 1.18 ppm Bi from 4 metres
				100			
			96	(EOH)	4	1.05	4 metres @ 1.05 ppm Bi from 96 metres
	Te	ppm	-	-	-	-	NSR
	Mo	ppm	-	-	-	-	NSR
	Cu	%	0	24	24	0.20	24 metres @ 0.20% Cu from surface
	Au	g/t	0	4	4	0.23	4 metres @ 0.23g/t Au from surface
WRAC018	٨a	g/t	40	- 44	4	0.69	4 metres @ 0.69g/t Au from 40 metres NSR
WRACOTO	Ag Bi	ppm	0	- 8	- 8	1.32	8 metres @ 1.32 ppm Bi from surface
	Ы	ррп	40	44	4	1.27	4 metres @ 1.27 ppm Bi from 40 metres
	Те	ppm	40	44	4	1.69	4 metres @ 1.69 ppm Te from 40 metres
	Mo	ppm	-	-	-	-	NSR
	Cu	%	8	104	96	0.13	96 metres @ 0.13% Cu from 8 metres
	Au	g/t	16	28	12	0.13	12 metres @ 0.14g/t Au from 16 metres
	7.4	g/t	60	64	4	0.14	4 metres @ 0.13g/t Au from 60 metres
WRAC019	Ag	g/t	32	44	12	0.84	12 metres @ 0.84 g/t Ag from 32 metres
	Bi	ppm	12	36	24	9.85	24 metres @ 9.85 ppm Bi from 12 metres
		FF	96	100	4	1.03	4 metres @ 1.03 ppm Bi from 96 metres
	Te	ppm	12	36	24	2.13	24 metres @ 2.13 ppm Te from 12 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	52	56	4	0.12	4 metres @ 0.12% Cu from 52 metres
	Au	g/t	52	56	4	0.16	4 metres @ 0.16g/t Au from 52 metres
	Ag	g/t	-	-	-	-	NSR
WRAC020	Bi	ppm	52	56	8	8.04	8 metres @ 8.04 ppm Bi from 52 metres
			92	96	4	1.06	4 metres @ 1.06ppm Bi from 92 metres
	Te	ppm	52	60	8	0.95	8 metres @ 0.95 ppm Te from 52 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	-	-	-	-	NSR
	Au	g/t	76	77	1	0.17	1 metre @ 0.17g/t Au from 76 metres
	Ag	g/t	69	71	2	0.97	2 metres @ 0.97 g/t Ag from 69 metres
WRAC021		ļ	77	78	1	0.64	1 metre @ 0.64 g/t Ag from 77 metres
			80	82	2	0.62	2 metres @ 0.62g/t Ag from 80 metres
	Bi	ppm	-	-	-	-	NSR
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	-	-	-	-	NSR
	Cu	%	88	90 (EOH)	2	0.11	2 metres @ 0.11% Cu from 88m to EOH
	Au	g/t	-	-	-	-	NSR
WRAC022	Ag	g/t	_	-		-	NSR
	Bi	ppm	76	80	4	1.21	4 metres @ 1.21 ppm Bi from 76 metres
	Te	ppm	0	4	4	0.57	4 metres @ 0.57 ppm Te from surface
	Мо	ppm	-	-	-	-	NSR

			Dept	h (m)	Interest		
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
	Cu	%	-	-	_	_	NSR
	Au	g/t	-	_	-	-	NSR
	Ag	g/t	-	_	-	-	NSR
WRAC024	Bi	ppm	32	60	28	1.07	28 metres @ 1.07 ppm Bi from 32 metres
	Te	ppm	24	60	36	0.65	36 metres @ 0.65 pm Te from 24 metres
			68	69 (EOH)	1	0.60	1 metre @ 0.60 ppm Te from 68 metres to EOH
	Мо	ppm	-	-	-	-	NSR
	Cu	%	40	76	36	0.26	36 metres @ 0.26% Cu from 40 metres
	Au	g/t	4	8	4	0.61	4 metres @ 0.61g/t Au from 4 metres
			20	76	56	0.79	56 metres @ 0.79g/t Au from 20 metres
	Ag	g/t	36	80	44	1.74	44 metres @ 1.74 g/t Ag from 36 metres
WRAC025	Bi	ppm	0	84	84	12.44	84 metres @ 12.44 ppm Bi from surface
			88	90 (EOH)	2	1.01	2 metres @ 1.01 ppm Bi from 88 metres to EOH
	Te	ppm	0	8	8	0.59	8 metres @ 0.59 ppm Te from surface
			28	76	48	8.59	48 metres @ 8.59 ppm Te from 28 metres
	Мо	ppm	-	_	_	-	NSR
	Cu	%	8	120 (EOH)	112	0.18	112 metres @ 0.18% Cu from 8m to EOH
	Au	g/t	28	32	4	0.19	4 metres @ 0.19g/t Au from 28 metres
				120			64 metres @ 1.35g/t Au from 8 metres to
			56	(EOH)	64	1.35	EOH
	Ag	g/t	52	96 120	44	4.22	44 metres @ 4.22g/t Ag from 52 metres
			116	(EOH)	4	3.50	4 metres @ 3.50g/t Ag from 116 metres to EOH
	Bi	ppm	28	32	4	1.50	4 metres @ 1.50 ppm Bi from 28 metres
WRAC026			56	120(E OH)	64	7.00	64 metres @ 7 ppm Bi from 56 metres to EOH
	Te	ppm	0	8	8	0.81	8 metres @ 0.81 ppm Te from surface
			28	32	4	0.64	4 metres @ 0.64 ppm Te from 28 metres
			56	96	40	2.03	40 metres @ 2.03 ppm Te from 56 metres
			108	112	4	0.65	4 metres @ 0.65 ppm Te from 108 metres
			116	120 (EOH)	4	1.34	4 metres @ 1.34 ppm Te from 116 metres to EOH
	Мо	ppm	-	-	-	-	NSR
	Cu	%	-	-	-	-	NSR
	Au	g/t	0	4	4	0.51	4 metres @ 0.51g/t Au from surface
WRAC027	Ag	g/t	-	-	-	-	NSR
	Bi	ppm	0	8	8	3.40	8 metres @ 3.40 ppm Bi from surface
	Te	ppm	0	8	8	0.96	8 metres @ 0.96 ppm Te from surface
	Мо	ppm	_	_	-	-	NSR
	Cu	%	-	-	_	_	NSR
	Au	g/t	_	_	_	_	NSR
	Ag	g/t	4	8	4	0.55	4 metres @ 0.55g/t Ag from 4 metres
	Bi	ppm	4	8	4	1.22	4 metres @ 1.22 ppm Bi from 4 metres
WRAC028			59	61	2	1.22	2 metres @ 1.22 ppm Bi from 59 metres
	Te	ppm	0	8	8	0.98	8 metres @ 0.98 ppm Te from surface

			Dept	h (m)	Intercent		
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
			20	28	8	0.64	8 metres @ 0.64 ppm Te from 20 metres
			59	61	2	0.97	2 metres @ 0.97 ppm Te from 59 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	-	_	_	-	NSR
	Au	g/t	-	_	_	_	NSR
WRAC029	Ag	g/t	4	8	4	1.48	4 metres @ 1.48g/t Ag from 4 metres
	Bi	ppm	4	8	4	1.05	4 metres @ 1.05 ppm Bi from 4 metres
	Te	ppm	0	24	24	0.64	24 metres @ 0.64 ppm Te from surface
	Мо	ppm	-	_	-	-	NSR
	Cu	%	32	68	36	0.18	36 metres @ 0.18% Cu from 32 metres
	Au	g/t	40	44	4	0.24	4 metres @ 0.24g/t Au from 40 metres
	Ag	g/t	48	60	12	2.06	12 metres @ 2.06g/t Ag from 48 metres
WRAC031	Bi	ppm	8	12	4	3.66	4 metres @ 3.66 ppm Bi from 8 metres
			48	56	8	2.20	8 metres @ 2.20 ppm Bi from 48 metres
	Te	ppm	0	16	16	3.26	16 metres @ 3.26 ppm Te from surface
	10		48	60	12	3.80	12 metres @ 3.80 ppm Te from 48 metres
	Мо	ppm	-		-	-	NSR
	1410	ppm		105			NSIA
	Cu	%	68	(EOH)	37	0.16	37 metres @ 0.16% Cu from 68 metres
	Au	g/t	96	100	4	0.18	4 metres @ 0.18g/t Au from 96 metres
	Ag	g/t	52	60	8	0.66	8 metres @ 0.66g/t Ag from 52 metres
			92	105 (EOH)	13	1.25	13 metres @ 1.25g/t Ag from 92 metres to EOH
	Bi	ppm	16	28	12	1.84	12 metres @ 1.84 ppm Bi from 16 metres
WRAC032			96	100	4	7.16	4 metres @ 7.16 ppm Bi from 96 metres
	Te	ppm	16	28	12	1.08	12 metres @ 1.08 ppm Te from 16 metres
			36	40	4	0.76	4 metres @ 0.76 ppm Te from 36 metres
			48	52	4	0.55	4 metres @ 0.55 ppm Te from 48 metres
			96	105 (EOH)	9	1.92	9 metres @ 1.92 ppm Te from 96 metres to EOH
	Мо	ppm	-	-	-	-	NSR
	Cu	%	40	87	47	0.17	47 metres @ 0.17% Cu from 40 metres
	Au	g/t	60	75	15	0.26	15 metres @ 0.26g/t Au from 60 metres
			79	81	2	0.38	2 metres @ 0.38g/t Au from 79 metres
	Ag	g/t	68	86	18	1.84	18 metres @ 1.84g/t Ag from 68 metres
	<u> </u>		90	91	1	0.64	1 metre @ 0.64g/t Ag from 90 metres
WRAC033			93	94 (EOH)	1	2.25	1 metre @ 2.25g/t Ag from 93 metres to EOH
	Bi	ppm	72	85	13	6.50	13 metres @ 6.50 ppm Bi from 72 metres
	Te	ppm	12	20	8	0.64	8 metres @ 0.64 ppm Te from 12 metres
			28	40	12	4.93	12 metres @ 4.93 ppm Te from 4.93 ppm Te
			72	86	14	9.14	14 metres @ 9.14 ppm Te from 72 metres
	Мо	ppm	_	-	-	-	NSR
	Cu	%	12	40	28	0.19	28 metres @ 0.19% Cu from 12 metres
	Au	g/t	20	21	1	0.18	1 metre @ 0.18g/t Au from 20 metres
	Ag	g/t	4	8	4	1.62	4 metres @ 1.62g/t Ag from 4 metres

			Dept	h (m)	Interest		
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
			12	21	9	0.7	9 metres @ 0.70g/t Ag from 12 metres
WRAC034			26	40	14	0.92	14 metres @ 0.92g/t Ag from 26 metres
	Bi	ppm	16	20	4	1.39	4 metres @ 1.39 ppm Bi from 16 metres
			26	33	9	5.85	9 metres @ 5.85 ppm Bi from 26 metres
	Te	ppm	12	33	21	3.51	21 metres @ 3.51 ppm Te from 12 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	40	68 (EOH)	28	0.16	28 metres @ 0.16% Cu from 40 metres to EOH
	Au	g/t	42	43	1	0.51	1 metre @ 0.51g/t Au from 42 metres
	Ag	g/t	20	28	8	1.00	8 metres @ 1.00 g/t Ag from 20 metres
			41	44	3	0.66	3 metres @ 0.66g/t Ag from 41 metres
WRAC035			55	58	3	3.55	3 metres @ 3.55g/t Ag from 55 metres
	Bi	ppm	40	43	3	5.76	3 metres @ 5.76ppm Bi from 40 metres
			53	54	1	1.06	1 metre @ 1.06 ppm Bi from 53 metres
			56	58	2	1.45	2 metres @ 1.45ppm Bi from 56 metres
	Te	ppm	12	58	46	1.17	46 metres @ 1.17 ppm Te from 12 metres
	Мо	ppm	-	_	-	_	NSR
	Cu	%	68	98	30	0.15	30 metres @ 0.15% Cu from 68 metres
	Au	g/t	-	_		_	NSR
	Ag	g/t	72	88	16	1.94	16 metres @ 1.94g/t Ag from 72 metres
	Bi	ppm	0	12	12	1.28	12 metres @ 1.28 ppm Bi from surface
		- FF	40	44	4	1.27	4 metres @ 1.27 ppm Bi from 40 metres
WRAC036			72	73	1	1.00	1 metre @ 1.00 ppm Bi from 72 metres
			82	84	2	2.33	2 metres @ 2.33 ppm Bi from 82 metres
	Te	ppm	0	12	12	0.87	12 metres @ 0.87 ppm Te from surface
			40	44	4	0.83	4 metres @ 0.83 ppm Te from 40 metres
			72	74	2	2.20	2 metres @ 2.20 ppm Te from 72 metres
			84	88	4	0.96	4 metres @ 0.96 ppm Te from 84 metres
	Мо	ppm	_	_	_	_	NSR
	Cu	%	4	38	34	0.13	34 metres @ 0.13% Cu from 4 metres
	Au	g/t	-	-	-	-	NSR
WRAC037	Ag	g/t	16	20	4	0.70	4 metres @ 0.70g/t Ag from 16 metres
	Bi	ppm	-	-		-	NSR
	Te	ppm	20	24	4	1.53	4 metres @ 1.53 ppm Te from 20 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	_	_		_	NSR
							NSR
	Au	g/t	-	-	-	-	NSR
WRAC038	Ag	g/t	- 17	- 20	-	-	
WRACUJO	Bi	ppm	16		4	1.02	4 metres @ 1.02 ppm Bi from 16 metres
	То		28	32 32	<u>4</u> 8	1.15	4 metres @ 1.15 ppm Bi from 28 metres
	Te	ppm	24		Ö	0.68	8 metres @ 0.68 ppm Te from 24 metres
	Mo	ppm	-	-	-	-	NSR
	Cu	%	-	-	-	-	NSR
	Au	g/t	-	-	-	-	NSR
WRAC039	Ag	g/t	-	-	-	-	NSR

			Dept	h (m)	_		
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
	Bi	ppm	64	68	4	1.12	4 metres @ 1.12 ppm Bi from 64 metres
	Te	ppm	64	68	4	0.69	4 metres @ 0.69 ppm Te from 64 metres
	Мо	ppm	-	-	_	-	NSR
	Cu	%	_	-	_	_	NSR
	Au	g/t	_	-	_	_	NSR
	Ag	g/t	_	-	_	_	NSR
WRAC040	Bi	ppm	59	64	5	1.85	5 metres @ 1.85 ppm Bi from 59 metres
		- FF	76	80	4	1.07	4 metres @ 1.07 ppm Bi from 76 metres
			92	96	4	2.12	4 metres @ 2.12 ppm Bi from 92 metres
	Te	ppm	88	96	8	0.89	8 metres @ 0.89 ppm Te from 88 metres
	Мо	ppm	62	63	1	24.60	1 metre @ 24.60 ppm Mo from 62 metres
	Cu	%	-	-		_	NSR
	Au	g/t	_	_	_	_	NSR
	Ag	g/t	_	-	_	_	NSR
	Bi	ppm	8	12	4	1.67	4 metres @ 1.67 ppm Bi from 8 metres
WRAC041		- F-F-11	20	24	4	1.89	4 metres @ 1.89 ppm Bi from 20 metres
			99	102	3	1.14	3 metres @ 1.14 ppm Bi from 99 metres
	Te	ppm	20	40	20	0.57	12 metres @ 0.57 ppm Te from 20 metres
			82	85	3	0.64	3 metres @ 0.64 ppm Te from 82 metres
	Mo	ppm	36	40	4	24.70	4 metres @ 24.70 ppm Mo from 36 metres
			77	78	1	20.70	1 metre @ 20.70 ppm Mo from 77 metres
	Cu	%	32	83	51	0.18	51 metres @ 0.18% Cu from 32 metres
	Au	g/t	92	96 (EOH)	4	0.48	4 metres @ 0.48g/t Au from 93 metres
	Ag	g/t	16	28	12	0.71	12 metres @ 0.71g/t Ag from 16 metres
	, (9	9,1	40	42	2	1.66	2 metres @ 1.66g/t Ag from 40 metres
WRAC042			59	63	4	1.52	4 metres @ 1.52g/t Ag from 59 metres
	Bi	ppm	75	81	6	1.53	6 metres @ 1.53 ppm Bi from 75 metres
			92	96 (EOH)	4	1.94	4 metres @ 1.94 ppm Bi from 92 metres
	Te	ppm	_	-	-	-	NSR
	Mo	ppm	40	81	41	58.53	41 metres @ 58.53 ppm Mo from 40 metres
	Cu	%	_	_	_	_	NSR
	Au	g/t	-	-	-	-	NSR
WRAC043	Ag	g/t	32	47	15	1.19	15 metres @ 1.19g/t Ag from 32 metres
	Bi	ppm	_	_	-	-	NSR
	Te	ppm	-	-	-	-	NSR
	Mo	ppm	_	_	-	-	NSR
	Cu	%	0	24	24	0.16	24 metres @ 0.16% Cu from surface
			46	80	34	0.19	34 metres @ 0.19% Cu from 46 metres
	Au	g/t	53	54	1	0.13	1 metre @ 0.13g/t Au from 53 metres
			58	59	1	1.86	1 metre @ 1.86g/t Au from 58 metres
WRAC044			72	74	2	0.2	2 metres @ 0.20g/t Au from 72 metres
	Ag	g/t	54	55	1	0.52	1 metre @ 0.52g/t Ag from 54 metres
	Bi	ppm	56	57	1	1.31	1 metre @ 1.31 ppm Bi from 56 metres

			Dept	h (m)			
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
			68	74	6	1.32	6 metres @ 1.32 ppm Bi from 68 metres
	Те	ppm	56	57	1	0.52	1 metres @ 0.52 ppm Te from 56 metres
	Мо	ppm	68	74	6	35.18	6 metres @ 35.18 ppm Mo from 68 metres
	Cu	%	0	17	17	0.15	17 metres @ 0.15% Cu from surface
			22	32	10	0.11	10 metres @ 0.11% Cu from 22 metres
			52	96	44	0.21	44 metres @ 0.21% Cu from 52 metres
	Au	g/t	79	80	1	0.20	1 metre @ 0.20g/t Au from 79 metres
	Ag	g/t	0	24	24	0.81	24 metres @ 0.81g/t Ag from surface
WRAC045			59	60	1	0.57	1 metre @ 0.57g/t Ag from 59 metres
			80	81	1	0.59	1 metre @ 0.59g/t Ag from 80 metres
	Bi	ppm	78	84	6	3.08	6 metres @ 3.08ppm Bi from 78 metres
			90	96	6	1.64	6 metres @ 1.64 ppm Bi from 90 metres
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	58	82	24	40.79	24 metres @ 40.79 ppm Mo from 58 metres
			90	92	2	47.95	2 metres @ 47.95 ppm Mo from 90 metres
	Cu	%	29	30	1	0.11	1 metre @ 0.11% Cu from 29 metres
			34	37	3	0.11	3 metres @ 0.11% Cu from 34 metres
			40	52	12	0.13	12 metres @ 0.13% Cu from 40 metres
			68	99 (EOH)	31	0.16	31 metres @ 0.16% Cu from 68 metres to EOH
	Au	g/t	-	-	-	-	NSR
WRAC046	Ag	g/t	34	35	1	0.52	1 metre @ 0.52g/t Ag from 34 metres
			72	84	12	0.90	12 metres @ 0.90g/t Ag from 72 metres
	Bi	ppm	92	99 (EOH)	7	5.15	7 metres @ 5.15 ppm Bi from 92 metres to EOH
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	35	52	17	37.34	17 metres @ 37.34 ppm Mo from 35 metres
			68	84	16	21.44	16 metres @ 21.44 ppm Mo from 68 metres
	Cu	%	56	64	8	0.12	8 metres @ 0.12% Cu from 56 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	8	16	8	0.69	16 metres @ 0.69g/t Ag from 8 metres
WRAC047			56	60	4	0.90	4 metres @ 0.90g/t Ag from 56 metres
	Bi	ppm	-	-	-	-	NSR
	Te	ppm	8	12	4	0.52	4 metres @ 0.52 ppm Te from 8 metres
			60	64	4	0.52	4 metres @ 0.52 ppm Te from 60 metres
	Мо	ppm	32	44	12	21.77	12 metres @ 21.77 ppm Mo from 32 metres
			56	68	12	36.1	12 metres @ 36.1 ppm Mo from 56 metres
	Cu	%	-	-	-	-	NSR
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	4	12	8	0.59	8 metres @ 0.59g/t Ag from 4 metres
WRAC048			32	36	4	0.58	4 metres @ 0.58g/t Ag from 32 metres
	Bi	ppm	-	-	-	-	NSR
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	-	-	-	-	NSR
	Cu	%	56	68	12	0.11	12 metres @ 0.11% Cu from 56 metres

			Dept	h (m)	Intercept		
Hole ID	Element	Value	From	То	(m)	Result	Intercept Summary
	Au	g/t	32	36	4	0.13	4 metres @ 0.13g/t Au from 32 metres
			40	44	4	0.28	4 metres @ 0.28g/t Au from 40 metres
			59	60	1	0.24	1 metre @ 0.24g/t Au from 59 metres
WRAC049			62	63	1	0.29	1 metre @ 0.29g/t au from 62 metres
			66	67	1	0.15	1 metre @ 0.15g/t au from 66 metres
	Ag	g/t	65	72	7	0.68	7 metres @ 0.68g/t Ag from 65 metres
	Bi	ppm	4	40	36	6.83	36 metres @ 6.83 ppm Bi from 4 metres
	Te	ppm	16	40	24	0.83	24 metres @ 0.83 ppm Te from 16 metres
	Мо	ppm	4	40	36	118.30	36 metres @ 118.30 ppm Mo from 4 metres
			52	54	2	61.30	2 metres @ 61.30 ppm Mo from 52 metres
	Cu	%	0	28	28	0.13	28 metres @ 0.13% Cu from surface
			48	90	42	0.13	42 metres @ 0.13% Cu from 48 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	56	57	1	0.78	1 metre @ 0.78g/t Ag from 56 metres
WRAC050			85	86	1	0.54	1 metre @ 0.54g/t Ag from 85 metres
	Bi	ppm	52	58	6	2.64	6 metres @ 2.64 ppm Bi from 52 metres
			78	79	1	2.24	1 metre @ 2.24ppm Bi from 78 metres
			92	93	1	1.16	1 metre @ 1.16ppm Bi from 92 metres
	Te	ppm	95	96	1	0.55	1 metre @ 0.55 ppm Te from 95 metres
	Мо	ppm	52	57	5	24.18	5 metres @ 24.18 ppm Mo from 52 metres
	Cu	%	8	72	64	0.13	64 metres @ 0.13% Cu from 8 metres
			96	101	5	0.17	5 metres @ 0.17% Cu from 96 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	24	28	4	1.06	4 metres @ 1.06g/t Ag from 24 metres
WRAC051			49	50	1	1.24	1 metre @ 1.24g/t Ag from 49 metres
	Bi	ppm	59	88	29	2.33	29 metres @ 2.33 ppm Bi from 59 metres
	Te	ppm	59	60	1	0.54	1 metres @ 0.54 ppm Te from 59 metres
	Мо	ppm	50	51	1	21.80	1 metre @ 21.80 ppm Mo from 50 metres
			60	88	28	58.44	28 metres @ 58.44 ppm Mo from 60 metres
			96	100	4	24.56	4 metres @ 24.56 ppm Mo from 96 metres
	Cu	%	48	52	4	0.11	4 metres @ 0.11% Cu from 48 metres
			56	60	4	0.12	4 metres @ 0.12% cu from 56 metres
			74	85	11	0.20	11 metres @ 0.20% Cu from 74 metres
	Au	g/t	-	-	-	-	NSR
WRAC052	Ag	g/t	36	52	12	0.54	12 metres @ 0.54g/t Ag from 36 metres
	Bi	ppm	-	-	-	-	NSR
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	75	85	10	33.73	10 metres @ 33.73 ppm Mo from 75 metres
			96	99 (EOH)	3	119.00	3 metres @ 119 ppm Mo from 96 metres to EOH
	Cu	%	76	120	44	0.14	44 metres @ 0.14% Cu from 76 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	-	-	-	-	NSR
	Bi	ppm	0	4	4	1.49	4 metres @ 1.49ppm Bi from surface

WRAC053	Lement Te Mo Cu Cu Au	Value ppm ppm % g/t	From 132 87 16 36 80 128 4 58	To 133 (EOH) 88 24 44 90 133 (EOH) 32	Intercept (m) 1 1 8 8 8 10 5	Result 2.41 1.02 33.15 60.20 24.20	Intercept Summary 1 metre @ 2.41 ppm Bi from 132 metres to EOH 1 metre @ 1.02 ppm Te from 87 metres 8 metres @ 33.15 ppm Mo from 16 metres 8 metres @ 60.20 ppm Mo from 36 metres 10 metres @ 24.20 ppm Mo from 80 metres
	Mo Cu Au	ppm %	87 16 36 80 128 4 58	(EOH) 88 24 44 90 133 (EOH)	1 8 8 10	1.02 33.15 60.20 24.20	EOH 1 metre @ 1.02 ppm Te from 87 metres 8 metres @ 33.15 ppm Mo from 16 metres 8 metres @ 60.20 ppm Mo from 36 metres 10 metres @ 24.20 ppm Mo from 80 metres
	Mo Cu Au	ppm %	16 36 80 128 4 58	24 44 90 133 (EOH)	8 8 10	33.15 60.20 24.20	8 metres @ 33.15 ppm Mo from 16 metres 8 metres @ 60.20 ppm Mo from 36 metres 10 metres @ 24.20 ppm Mo from 80 metres
	Cu Au	%	36 80 128 4 58	44 90 133 (EOH)	8 10	60.20 24.20	8 metres @ 60.20 ppm Mo from 36 metres 10 metres @ 24.20 ppm Mo from 80 metres
	Au		80 128 4 58	90 133 (EOH)	10	24.20	10 metres @ 24.20 ppm Mo from 80 metres
	Au		128 4 58	133 (EOH)			
	Au		4 58	(EOH)	5		
	Au		58	32		91.56	5 metres @ 91.56 ppm Mo from 128 metres to EOH
		g/t			28	0.10	28 metres @ 0.10% Cu from 4 metres
		g/t		85	27	0.11	27 metres @ 0.11% Cu from 58 metres
	Aq		48	52	4	0.72	4 metres @ 0.72g/t Au from 48 metres
	Aa		58	78	20	0.17	20 metres @ 0.17g/t Au from 58 metres
	5	g/t	36	40	4	0.58	4 metres @ 0.58g/t Ag from 36 metres
			72	73	1	0.51	1 metre @ 0.51g/t Ag from 72 metres
			74	75	1	0.50	1 metre @ 0.50g/t Ag from 74 metres
WRAC054			84	86	2	1.61	2 metres @ 1.61g/t Ag from 84 metres
	Bi	ppm	4	8	4	2.07	4 metres @ 2.07 ppm Bi from 4 metres
			28	52	24	4.07	24 metres @ 4.07 ppm Bi from 28 metres
			59	60	1	2.73	1 metre @ 2.73 ppm Bi from 59 metres
			74	76	2	1.29	2 metres @ 1.29 ppm Bi from 74 metres
			84	86	2	1.39	2 metres @ 1.39 ppm Bi from 84 metres
			88	90	2	1.63	2 metres @ 1.63 ppm Bi from 88 metres
	Te	ppm	44	48	4	0.55	4 metres @ 0.55 ppm Te from 44 metres
			84	89	5	0.52	5 metres @ 0.52 ppm Te from 84 metres
	Мо	ppm	48	56	8	33.30	8 metres @ 33.30 ppm Mo from 48 metres
	Cu	%	-	-	-	-	NSR
	Au	g/t	33	34	1	0.19	1 metre @ 0.19g/t Au from 33 metres
	Ag	g/t	32	40	8	1.00	8 metres @ 1.00g/t Ag from 32 metres
WRAC055		9	54	64	10	0.64	10 metres @ 0.64g/t Ag from 54 metres
	Bi	ppm	31	34	3	2.38	3 metres @ 2.38 ppm Bi from 31 metres
			38	40	2	1.36	2 metres @ 1.36 ppm Bi from 38 metres
	Te	ppm	32	33	1	1.46	1 metre @ 1.46 ppm Te from 32 metres
	Mo	ppm	-	-	-	-	NSR
	Cu	%	_	-	-	-	NSR
	Au	g/t	_	_	_	_	NSR
	Ag		_	_	_	_	NSR
	Bi	ppm	16	20	4	1.52	4 metres @ 1.52 ppm Bi from 16 metres
WRAC056		PP	56	60	4	3.22	4 metres @ 3.22 ppm Bi from 56 metres
			62	64	2	1.13	2 metres @ 1.13 ppm Bi from 62 metres
	Те	ppm	-	-		-	NSR
	Мо	ppm	20	28	8	28.45	8 metres @ 28.45 ppm Mo from 20 metres
		~~'''	52	65	13	39.95	13 metres @ 39.95 ppm Mo from 52 metres
	Cu	%	52	0.5	IJ	J7.7J	NSR
	Au	% g/t	- 88	- 96	- 8	- 0.15	8 metres @ 0.15g/t Au from 88 metres
	Au Ag	g/t	72	76	4	2.61	4 metres @ 2.61g/t Ag from 72 metres

			Dont	h (m)			
	F I	Value			Intercept	Decula	Internet Comments
Hole ID	Element	Value	From	To	(m)	Result	Intercept Summary
	Bi	ppm	48	52	4	1.14	4 metres 1.14 ppm Bi from 48 metres
WRAC057			68	80 100	12	1.54	12 metres @ 1.54 ppm Bi from 68 metres 16 metre @ 2.18 ppm Bi from 84 metres to
			84	(EOH)	16	2.18	EOH
	Te	ppm	72	92	20	0.53	20 metres @ 0.53 ppm Te from 72 metres
	Мо	ppm	44	52	8	37.15	8 metres @ 37.15 ppm Mo from 44 metres
			68	100 (EOH)	32	53.64	32 metres @ 53.64 ppm Mo from 68 metres to EOH
	Cu	%	78	79	1	0.11	1 metre @ 0.11% Cu from 78 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	16	24	8	0.52	8 metres @ 0.52g/t Ag from 16 metres
	Bi	ppm	76	82	6	3.52	6 metres @ 3.52 ppm Bi from 76 metres
WRAC058			120	124 (EOH)	4	1.18	4 metres @ 1.18 ppm Bi from 120 metres from EOH
	Te	ppm	16	20	4	0.51	4 metres @ 0.51 ppm Te from 16 metres
			52	56	4	0.50	4 metres @ 0.50 ppm Te from 52 metres
			76	78	2	0.70	2 metres @ 0.70 ppm Te from 76 metres
	Мо	ppm	72	79	7	25.97	7 metres @ 25.97 ppm Mo from 72 metres
			10/	124		F1 00	20 metres @ 71.20 ppm Mo from 104
			104	(EOH)	20	71.20	metres
	Cu	%	60	68	8	0.11	8 metres @ 0.11% Cu from 60 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	32	40	8	1.09	8 metres @ 1.09g/t Ag from 32 metres
WRAC059	Bi	ppm	-	-	-	-	NSR
	Те	ppm	0	20	20	0.65	20 metres @ 0.65 ppm Te from surface
			52	56	4	0.52	4 metres @ 0.52 ppm Te from 52 metres
	Мо	ppm	-	-	-	-	NSR
	Cu	%	-	-	-	-	NSR
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	20	24	4	0.61	4 metres @ 0.61g/t Ag from 20 metres
WRAC060			32	40	8	0.68	8 metres @ 0.68g/t Ag from 32 metres
	Bi	ppm	-	-	-	-	NSR
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	-	-	-	-	NSR
	Cu	%	4	20	16	0.15	20 metres @ 0.15% Cu from 4 metres
	Au	g/t	-	-	-	-	NSR
WRAC061	Ag	g/t	-	_	-	-	NSR
	Bi	ppm	-	-	-	-	NSR
	Те	ppm	-	_	-	-	NSR
	Мо	ppm	-	-	-	_	NSR
	Cu	%	-	-	-	-	NSR
	Au	g/t	-	-	_	_	NSR
	Ag	g/t	-	_	_	_	NSR
WRAC062	Bi	ppm	7	9	2	2.25	2 metres @ 2.25 ppm Bi from 7 metres
		<u> </u>	12	14	2	1.56	2 metres @ 1.56 ppm Bi from 12 metres
	Te	nnm	-	-	-	-	NSR
	10	ppm	-		-	_	I INJIN

			Dept	h (m)	Intercent		
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
	Мо	ppm	-	-	-	-	NSR
	Cu	%	-	-	_	-	NSR
	Au	g/t	18	19	1	0.12	1 metre @ 0.12g/t Au from 18 metres
	Ag	g/t	13	14	1	0.53	1 metre @ 0.53g/t Ag from 13 metres
WRAC063			60	64	4	0.78	4 metres @ 0.78g/t Ag from 60 metres
	Bi	ppm	-	-	-	-	NSR
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	-	-	-	-	NSR
	Cu	%	-	-	-	-	NSR
	Au	g/t	68	69	1	0.18	1 metre @ 0.18g/t Au from 68 metres
WRAC064	Ag	g/t	-	-	-	-	NSR
	Bi	ppm	51	58	7	2.53	7 metres @ 2.53 ppm Bi from 51 metres
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	16	20	4	23.10	4 metres @ 23.10 ppm Mo from 16 metres
	Cu	%	99	100	1	0.17	1 metre @ 0.17% Cu from 99 metres
	Au	g/t	32	36	4	0.19	4 metres @ 0.19g/t Au from 32 metres
			64	68	4	0.33	4 metres @ 0.33g/t Au from 64 metres
			97	98	1	0.13	1 metre @ 0.13g/t Au from 97 metres
	Ag	g/t	100	101 (EOH)	1	5.04	1 metre @ 5.04g/t Ag from 100 metres to EOH
WRAC065	Bi	ppm	28	36	8	6.54	8 metres @ 6.54ppm Bi from 28 metres
			96	101 (EOH)	5	5.40	5 metres @ 5.40 ppm Bi from 96 metres to EOH
	Te	ppm	28	36	8	0.85	8 metres @ 0.85 ppm Te from 28 metres
			99	100	1	0.81	1 metre @ 0.81 ppm Te from 99 metres
	Мо	ppm	28	44	16	104.29	16 metres @ 104.29 ppm Mo from 28 metres
			92	101 (EOH)	9	271.67	9 metres @ 271.67 ppm Mo from 92 metres to EOH
	Cu	%	18	20	2	0.11	2 metres @ 0.11% Cu from 18 metres
			64	68	4	0.11	4 metres @ 0.11% Cu from 64 metres
	Au	g/t	26	31	5	0.10	5 metres @ 0.10g/t Au from 26 metres
			40	48	8	0.10	8 metres @ 0.10g/t Au from 40 metres
WRAC066	Ag	g/t	6	7	1	5.50	1 metre @ 5.50g/t Ag from 6 metres
	Bi	ppm	28	36	8	2.67	8 metres @ 2.67 ppm Bi from 28 metres
			64	68	4	1.52	4 metres @ 1.52 ppm Bi from 64 metres
	Te	ppm	-	-	-	-	NSR
	Мо	ppm	27	48	21	60.09	21 metres @ 60.09 ppm Mo from 27 metres
	Cu	%	4	5	1	0.71	1 metre @ 0.71% Cu from 4 metres
		ļ	20	32	12	0.10	12 metres @ 0.10% Cu from 20 metres
			40	54 (EOH)	14	0.14	14 metres @ 0.14% Cu from 40 metres to EOH
	Au	g/t	-	-	-	-	NSR
WRAC067	Ag	g/t	4	5	1	1.71	1 metre @ 1.71g/t Ag from 4 metres
			48	54(EO H)	6	1.71	6 metres @ 1.71g/t Ag from 48 metres to EOH

			Dept	h (m)			
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
	Bi	ppm	4	5	1	25.10	1 metre @ 25.10 ppm Bi from 4 metres
	Te	ppm	3	4	1	0.60	1 metre @ 0.60 ppm Te from 3 metres
	Ма		E 2	54 (FOU)	2	39.40	2 metres @ 39.40 ppm Mo from 52 metres to EOH
	Mo	ppm	52	(EOH)			
	Cu	%	36	40	<u> 4 8</u>	0.12	4 metres @ 0.12% Cu from 36 metres
	۸	/4	56	64		0.11	8 metres @ 0.11% Cu from 56 metres
	Au	g/t	-	-	-	-	NSR
WRAC068	Ag	g/t	40	44	4	1.00	4 metres @ 1.00g/t Ag from 40 metres
WRALUOO	D:		60	64	4	0.52	4 metres @ 0.52g/t Ag from 60 metres
	Bi	ppm	40	44	4	9.04	4 metres @ 9.04 ppm Bi from 40 metres
	Te	ppm	16	24	8	2.25	8 metres @ 2.25 ppm Te from 16 metres
			40	44	4	2.26	4 metres @ 2.26 ppm Te from 40 metres
	Мо	ppm	8	12	4	25.40	4 metres @ 25.40 ppm Mo from 8 metres
			40	56	16	22.54	16 metres @ 22.54 ppm Mo from 40 metres
	Cu	%	52	56	4	0.11	4 metres @ 0.11% Cu from 52 metres
			80	84	4	0.11	4 metres @ 0.11% Cu from 80 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	41	44	3	0.56	3 metres @ 0.56g/t Ag from 41 metres
WRAC069			80	88	8	2.06	8 metres @ 2.06g/t Ag from 80 metres
	Bi	ppm	76	80	4	1.14	4 metres @ 1.14 ppm Bi from 76 metres
	Te	ppm	43	44	1	0.84	1 metre @ 0.84 ppm Te from 43 metres
			56	60	4	0.57	4 metres @ 0.57 ppm Te from 56 metres
	Мо	ppm	28	32	4	25.80	4 metres @ 25.80 ppm Mo from 28 metres
			76	84	8	26.25	8 metres @ 26.25 ppm Mo from 76 metres
	Cu	%	76	92	16	0.11	16 metres @ 0.11% Cu from 76 metres
	Au	g/t	-	-	-	-	NSR
	Ag	g/t	37	39	2	1.55	2 metres @ 1.55g/t Ag from 37 metres
			63	68	5	0.80	5 metres @ 0.80g/t Ag from 63 metres
WRAC070			76	100	24	3.47	24 metres @ 3.47g/t Ag from 76 metres Including 4 metres @ 15.70g/t Ag
	Bi	ppm	-	-	-	-	NSR
	Te	ppm	4	8	4	0.57	4 metres @ 0.57 ppm Te from 4 metres
			76	80	4	0.76	4 metres @ 0.76 ppm Te from 76 metres
	Мо	ppm	61	63	2	22.75	2 metres @ 22.75 ppm Mo from 61 metres
		<u> </u>	76	80	4	22.80	4 metres @ 22.80 ppm Mo from 76 metres
	Cu	%	-	-	-	-	NSR
	Au	g/t	-	-	-	-	NSR
WRAC071	Ag	g/t	-	-	-	-	NSR
	Bi	ppm	-	-	-	-	NSR
	Te	ppm	68	80	12	0.59	12 metres @ 0.59 ppm Te from 68 metres
	Мо	ppm	-	-	-	-	NSR

			Dept	h (m)	Intercent		
Hole ID	Element	Value	From	То	Intercept (m)	Result	Intercept Summary
	Cu	%	84	85	1	0.03	1 metre @ 0.03% Cu from 84 metres
	Au	g/t	-	-	-	-	NSR
FPAC004	Ag	g/t	84	85	1	10.85	1 metre @ 10.85g/t Ag from 84 metres
	Bi	ppm	-	-	-	-	NSR
	Те	ppm	20	28	8	0.64	8 metres @ 0.64ppm Te from 20 metres
	Мо	ppm	28	32	4	11.25	4 metres @ 11.25ppm Mo from 28 metres
	Cu	%	68	72	4	0.05	4 metres @ 0.05% Cu from 68 metres
	Au	g/t	-	-	-	-	NSR
FPAC011	Ag	g/t	68	72	4	32.00	4 metres @ 32g/t Ag from 68 metres
	Bi	ppm	72	78 (EOH)	6	1.66	6 metres @ 1.66ppm Bi from 72 metres
	Te	ppm	76	78 (EOH)	2	0.62	2 metres @ 0.62ppm Te from 76 metres
	Мо	ppm	16	20	4	20.80	4 metres @ 20.80ppm Mo from 16 metres

Appendix 2 – Wodger & Forrest AC Drilling Table 2: Forrest Prospect - Table of Significant Intercepts

Forrest-Wodger AC Drilling JORC Code, 2012 Edition Table 1 Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 <u>Aircore Drilling</u> Four metre speared composite samples were taken from a one metre split sample from the aircore rig. Where areas of alteration and visible copper sulphides were seen, one metre spear samples were taken from each aircore sample pile. Aircore drilling was used to obtain a one metre split, from which a four metre composite sample (or one metre) was taken and sent to ALS laboratory in Perth. This 3kg composite sample will then be pulverized to produce a 30g pulp for aqua regia gold analysis and four acid digest for a full multi element analysis.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	• Aircore drilling
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• <u>Aircore Drilling</u> Sample material from one metre intervals were ground dumped from the rig in rows of 20. Throughout the sample process, sample recovery and moisture was recorded by the field assistant for each sample collected and subsequently entered into the database once compiled into the RNI logging template.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. 	 Chip samples were taken from each metre interval, were sieved, washed and stored in metre marked soil chip trays. Hole ID's were marked on the top, side and base of the chip tray to ensure that a record of the Hole ID is not lost. Each metre interval was logged to

Criteria	JORC Code explanation	Commentary
	 The total length and percentage of the relevant intersections logged. 	significant geological boundaries (change in geology, alteration, mineralogy and quartz vein content).
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Aircore Drilling All samples were spear sampled as four metre composite samples using 50mm PVC pipe. All sample moisture content was recorded using the RNI logging template with all samples being sampled dry. Samples from this program will be coarse crushed through a jaw crusher to better than 70% passing 6mm. Samples will then be fine crushed to 70% passing 2mm in a Boyd crusher. A rotary split will then be taken of this fine material and 3kg pulverized to a nominal 85% passing 75 microns, with a 30g charge taken for analysis. This is deemed industry practice.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Standards, blanks and duplicates were included systematically throughout each program. Standards were inserted into every 50th pre numbered calico bag with blank material used in every ¼ of standards used. Duplicates were taken every opposing 50th sample The nature, quality and appropriateness of the assaying was reviewed by Dr Nigel Brand prior to the commencement of the drill program and found the laboratory and detection limit for each element adequate for the exploration methodology
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All assays results have been reviewed, analysed and modelled by Dr Nigel Brand Documentation of primary data was recorded on hard copy sheets which are now stored at the RNI office in Perth. These have also been scanned and sent through via email and stored in the RNI company directory. All primary data has also been entered electronically using the drill log template and imported into the RNI database
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic 	 Drill holes were located using a handheld Garmin GPS 64S Grid system used: MGA94 zone 50 Topography is flat so had no bearing on collar location

Criteria	JORC Code explanation	Commentary
	control.	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Aircore drilling was completed on 50m (N-S) by 50m (E-W) drill lines and is an adequate spacing in determining geological continuity Four metre composites apply to the majority of samples. Single metre samples were only taken where areas of alteration and mineralisation was detected from drill chips.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 From the geochemical analysis of the samples, the copper mineralisation >0.1% Cu has the following parameters: Dip: -60 degrees to the west Overall trend: 340 degrees As the drilling was completed to 090 degrees azimuth, it can postulated that drilling is perpendicular to subperpendicular to the strike of mineralisation.
Sample security	The measures taken to ensure sample security.	• Each sample calico was collected, placed in a green polyethylene bag (5 samples per bag), zip tied and placed in a large bulka bag. Aircore samples were flagged with orange flagging tape. Sample information (number of samples, company info, sample destination etc) was written on the outside of the bulka bag and strapped securely to a core pallet. Samples were dispatched from Meeka via Toll West and a copy of each sample submission sheet was stored with the samples. The consignment note was included on the sample submission number and submitted to both laboratories prior to the samples arriving at their lab.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Sampling techniques have been reviewed by Dr Nigel Brand.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Tenements E52/1659 & E52/1671 are owned RNI 80%, Fe Ltd 20% (ASX: FEL). Interest is free carried until a decision to mine. Westgold Resources Limited (ASX: WGX) own the gold rights over the RNI interest. The native title heritage group and Traditional Owners of the land are The Nharnuwangga, Wajarri and Ngarla People.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• Exploration RAB drilling across the tenure in 1989 by Homestake Australia Ltd defined a broad gold anomaly deemed the Wodger Prospect. Due to the low gold tenor and the fact that no other elements were analysed for the project was relinquished. In 2014 a regional review of historic drilling encountered malachite in the historic RAB drill chips and now forms part of RNI's key exploration VMS prospect.
Geology	 Deposit type, geological setting and style of mineralisation. 	• Wodger, Big Billy and Forrest all sit within the Ravelstone Formation turbiditic sediments which sit above the Narracoota Fm Volcanics as part of the Bryah Basin package. The style of mineralisation and stratigraphic horizon is identical to the Horseshoe Lights deposit (re-mobilised VMS deposit) that sits 25km north-east of the Big Billy, Wodger and Forrest VMS prospects.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• Please see Appendix 1 – Table 1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 VMS elements were statistically analysed to determine their overall "anomalous" value. Cu = >0.1% Ag = > 1g/t Au = > 0.1g/t Bi = >1ppm Te = > 0.5ppm Mo = >20ppm Full results using the "anomalous" cutoff values are seen in Appendix 2 – Table 1

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 From the geochemical analysis of the samples, the copper mineralisation >0.1% Cu has the following parameters: Dip: -60 degrees to the west Overall trend: 340 degrees As the drilling was completed to 090 degrees azimuth, it can postulated that drilling is perpendicular to subperpendicular to the strike of mineralisation
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Maps are included in the ASX announcement
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The accompanying document is considered to be a balanced report with a suitable cautionary note
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Ground gravity surveys across the greater Big Billy, Wodger and Forrest VMS prospects has delineated three gravity low areas proximal to known VMS mineralisation. At Wodger, the gravity low is measures at 1,500m long and 250m wide with a density contrast of 0.5 g/cc. These areas are interpreted to be hydrothermally altered and the source of the VMS mineralisation.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step- out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Complete the alteration analysis on all of the existing drill chips Complete infill aircore drilling to determine the overall mineralisation halo at the Wodger Prospect Complete additional aircore holes to the north of the Wodger Prospect to close off the northern alteration halo Complete additional aircore lines to the south of Forrest to map the main controlling VMS structure Complete first pass aircore drilling at Big Billy to determine the offset position of the copper intercepts from the historic RC holes to the north.