

ASX RELEASE 27 January 2017

ASX:TAW

CORPORATE DIRECTORY

Non-Executive Chairman Robert Benussi

Managing Director Mark Calderwood

Executive Director, CFO & Co. Sec. Michael Naylor

CONTACT DETAILS

288 Churchill Avenue Subiaco Perth WA 6008 Email | admin@tawana.com.au Website | www.tawana.com.au Phone | +61 8 9489 2600

PROMISING RESULTS AT THE BALD HILL MINE WITH HIGH GRADE LITHIUM RESULTS

Tawana Resources NL ("Tawana" or the "Company") is pleased to announce high-grade lithium and tantalum results from resource drilling at multiple locations at the Bald Hill lithium and tantalum mine in Western Australia.

These results, which will contribute to the upcoming maiden lithium Resource estimate to be completed by the first quarter of 2017, further demonstrate the strong position of the Company to become a spodumene producer in 2017.

Refer to the attached Joint Announcement in relation to exploration results at the Bald Hill Mine.

Highlights

- Stacked lithium and/or tantalum rich pegmatites from surface to 140m;
- Three high grade intercepts over 300m strike of the central area;
 - i. LRC0048 10m at 3.82% Li₂O and 243ppm Ta₂O₅ from 159m including 8m at 4.43% Li₂O₅;
 - ii. LRC0049 4m at 2.39% Li₂O and 246ppm Ta₂O₅ from 23m;
 - iii. LRC0052 7m at 1.93% Li₂O and 261ppm Ta_2O_5 from 32m including 4m at 2.9% Li₂O₅ and 310ppm Ta_2O_5 ;
 - iv. LRC0048 and 49 intercepted other mineralised pegmatites;
- Drilling at the current north-western limit of the Western Pegmatite also intercepted very high grade mineralisation in LRC0015 - 6m at 1.61% Li₂O and 586ppm Ta₂O₅ from 74m including 4m at 2.2% Li₂O and 766ppm Ta₂O₅;
- Extensions to LRDD0006 intercepted 6.9m at 1.29% Li₂0 and 288ppm Ta₂0₅ from 141m in addition to 23m at 1.15% Li₂O from 107m and 4m at 1.33% Li₂0₅ and 485ppm Ta₂0₅ from 74m previously reported.
- Strong patterns of zonation and very coarse-grained spodumene apparent with potential to use visual/analytical processes in grade control to separately stockpile Li, Li/Ta and Ta rich pegmatite during mining.
- Infill resource drilling is the current focus with the recent completion of initial metallurgical and sterilisation holes.
- Initial assays from the extensive St John pegmatite swarm returned significant near surface intercepts including 4m at 1.6% Li₂O from 22m and 4m at 1.19% Li₂O from 38m. The St John pegmatites located 4km northwest of the Bald Hill plant, occur in an area of at least 1.2km² and are covered by mining leases.
- 13,300m has been drilled since 12 October 2016 and Tawana is increasing drill rigs from 2 to 3.
- Feasibility study is due for completion by the end of March 2017 with the aim of commissioning of the spodumene concentrator to commence in October 2017.

Managing Director Mark Calderwood stated: "Resource infill drilling is focusing on an initial block extending for 1,000m by 300m with multiple pegmatites extending from near-surface to about 140m depth. This drilling will enable a significant resource upgrade. At recent pricing, the in-ground combined values of the lithium and tantalum mineralisation is significant, and tantalum byproduct credits have the potential to cover a large share of mining costs."

About Tawana (ASX & JSE: TAW)

Tawana Resources NL, is focused on becoming a spodumene producer in 2017 with its high-quality lithium projects in Western Australia and Namibia.

Tawana's principal projects are the Bald Hill Lithium and Tantalum Mine (earning a 50% interest) and the adjacent Cowan Lithium Project. The projects have numerous high quality spodumene-rich pegmatites, some of which have been historically mined and processed for tantalum at the existing Bald Hill processing facility.

The Company also owns rights to the giant Uis pegmatite tailings stockpile in Namibia, estimated to be 20 million tonnes. Drilling has been completed and assays are pending. Metallurgical test work to confirm acceptable recoverable grades will likely commence in the first quarter of 2017 and if favourable, there is potential for a low capex/opex operation.

The Company also owns the Mofe Creek iron ore project in coastal Liberia. The deposits are characterised by exceptionally coarse grained, high-grade free-dig, itabirite that have the potential to deliver a premium, low cost product. The Company is completing a Mineral Development Agreement (MDA) with the Government of Liberia and is considering initially collaborating with owners of the under-utilized port of Monrovia or others with a desire to develop a low capital cost DSO operation.

Competent Persons Statement

The information in this news release that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Mark Calderwood, an employee of the Company. Mr Calderwood is a member of The Australasian Institute of Mining and Metallurgy. Mr Calderwood has sufficient experience relevant to the style of mineralisation under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Calderwood consents to the inclusion in this report of the matters based on their information in the form and context in which it appears.

Forward Looking Statement

This report may contain certain forward looking statements and projections regarding estimated, resources and reserves; planned production and operating costs profiles; planned capital requirements; and planned strategies and corporate objectives. Such forward looking statements/projections are estimates for discussion purposes only and should not be relied upon. They are not guarantees of future performance and involve known and unknown risks, uncertainties and other factors many of which are beyond the control of Tawana Resources NL. The forward looking statements/projections are inherently uncertain and may therefore differ materially from results ultimately achieved.

Tawana Resources NL does not make any representations and provides no warranties concerning the accuracy of the projections, and disclaims any obligation to update or revise any forward looking statements/projects based on new information, future events or otherwise except to the extent required by applicable laws. While the information contained in this report has been prepared in good faith, neither TAW or any of its directors, officers, agents, employees or advisors give any representation or warranty, express or implied, as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. Accordingly, to the maximum extent permitted by law, none of TAW, its directors, employees or agents, advisers, nor any other person accepts any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy or completeness of the information or for any of the opinions contained in this announcement or for any errors, omissions or misstatements or for any loss, howsoever arising, from the use of this announcement.

www.tawana.com.au

PROMISING RESULTS AT THE BALD HILL MINE WITH HIGH GRADE LITHIUM RESULTS

27 January 2017

Tawana Resources NL ("Tawana" or the "Company") and Alliance Mineral Assets Limited (SGX: AMAL) are pleased to announce high-grade lithium and tantalum results from resource drilling at multiple locations at the Bald Hill lithium and tantalum mine in Western Australia.

These results, which will contribute to the upcoming maiden lithium Resource estimate to be completed by the first quarter of 2017, further demonstrate the strong position of the Company and AMAL to become a spodumene producer.

Initial drill results from the large St John (refer figure 1) pegmatite swarm located 4km from Bald Hill have also confirmed the presence of high grade spodumene mineralisation.

Highlights

- Stacked lithium and/or tantalum rich pegmatites from surface to 140m;
- Three high grade intercepts over 300m strike of the central area;
 - i. LRC0048 10m at 3.82% Li₂O and 243ppm Ta₂O₅ from 159m including 8m at 4.43% Li₂O₅;
 - ii. LRC0049 4m at 2.39% Li₂O and 246ppm Ta₂O₅ from 23m;
 - iii. LRC0052 7m at 1.93% Li₂O and 261ppm Ta₂O₅ from 32m including 4m at 2.9% Li₂O₅ and 310ppm Ta₂O₅; and
 - iv. LRC0048 and 49 intercepted other mineralised pegmatites.
- Drilling at the current north-western limit of the Western Pegmatite also intercepted very high grade mineralisation in LRC0015 - 6m at 1.61% Li₂O and 586ppm Ta₂O₅ from 74m including 4m at 2.2% Li₂O and 766ppm Ta₂O₅;
- Extensions to LRDD0006 intercepted 6.9m at 1.29% Li₂0 and 288ppm Ta₂0₅ from 141m in addition to 23m at 1.15% Li₂O from 107m and 4m at 1.33% Li₂0₅ and 485ppm Ta₂0₅ from 74m previously reported.
- Strong patterns of zonation and very coarse-grained spodumene apparent with potential to use visual/analytical processes in grade control to separately stockpile Li, Li/Ta and Ta rich pegmatite during mining.
- Infill resource drilling is the current focus with the recent completion of initial metallurgical and sterilisation holes.
- Initial assays from the extensive St John pegmatite swarm returned significant near surface intercepts including 4m at 1.6% Li₂O from 22m and 4m at 1.19% Li₂O from 38m. The St John pegmatites located 4km north-west of the Bald Hill plant, occur in an area of at least 1.2km² and are covered by mining leases.
- 13,300m has been drilled since 12 October 2016 and Tawana is increasing drill rigs from 2 to 3.
- Feasibility study is due for completion by the end of March 2017 with the aim of commissioning of the spodumene concentrator to commence in October 2017.

Bald Hill Project (AMAL 100%, TAW Earning 50%)

The Bald Hill Project ("Project") area is located 50km south east of Kambalda in the Eastern Goldfields of Western Australia. It is located approximately 75km south east of the Mt Marion Lithium project and is adjacent to the Tawana's Cowan Lithium Project. The Project, owned by Alliance Mineral Assets Limited ("AMAL"), includes a permitted tantalum (pegmatite) mine, processing facility and associated infrastructure.

Lithco No 2 Pty Ltd, a wholly-owned subsidiary of Tawana, had on 3 June 2016 entered into Binding Term Sheet in relation to *inter alia*, a Farm-In and Joint Venture arrangement with AMAL for the purpose of joint exploration and exploitation of lithium and other minerals.

Recent Drilling

Except for a six-day period over Christmas, drilling has continued on the Bald Hill Mining Lease and 13,300m has been drilled since 12 October 2016. Drilling has defined a zone extending for 2km by 0.5km that remains open to the West and South, containing multiple lithium-tantalum pegmatites between surface and 140m. The Bald Hill pegmatites range from tantalum rich to spodumene rich and the larger pegmatites (up to 30m wide) can exhibit strong internal zonation which is typical of the most fractionated lithium-tantalum deposits (such as Greenbushes and Wodgina). The zone pegmatites have excellent potential to support separation of mineralisation types during mining.

Tawana is currently increasing the number of RC rigs from 2 to 3 with the intention of completing the initial infill and sterilisation drilling for an updated Resource/Reserve estimate and associated mine design, and to continue expanding the footprint of the mineralised pegmatite swarm.

The feasibility study is due for completion by the end of March with the aim of commissioning of the spodumene DMS (Dense Medium Separation) circuit to commence in October (Refer Tawana ASX announcement on 16 January 2017 and AMA SGXNet announcement on 18 January 2017).

Table 1 | Notable Lithium and Tantalum Intercepts

Hole ID		From m	To m	Interval m	Li ₂ O %	Ta₂O₅ ppm	Nb₂O₅ ppm	SnO₂ ppm
LDD0002		33	42	9	0.58	836	176	297
	incl	35	39	4	0.92	1,075	205	320
LDD0003		68.1	86	17.9	0.11	434	199	122
LRCD0006 ³		73	81	8	0.95	381	173	166
	incl	74	78	4	1.33	485	217	212
		107	130	23	1.15	166	107	10
	incl	108	123	15	1.33	173	113	10
		177.1	184	6.9	1.29	288	141	16
LRC0015		74	80	6	1.61	586	197	35
	incl.	75	79	4	2.20	766	262	33
LRC0040		124	127	3	1.19	106	72	19
	incl	124	126	2	1.61	118	82	22
		128	163	35	1.05	106	110	11:
	incl	131	133	2	1.40	176	100	150
	and	125	139	14	1.47	108	131	11
	and	140	145	5	1.40	58	58	9
	and	149	151	2	1.52	117	143	7
	and	153	155	2	1.37	117	111	7
	and	157	161	4	1.61	98	93	17
_RC0044	unu	45	57	12	1.00	249	89	1
	incl	47	49	2	1.99	184	82	33
	mor	53	55	2	1.44	330	107	13
LRC0047		86	104	18	0.50	324	91	17
	incl	87	91	4	0.28	484	116	17
	and	94	100	6	0.76	430	119	16
	unu	146	155	9	0.90	235	109	13
	incl	146	147	, 1	0.37	808	329	20
	and	147	149	2	1.69	154	72	16
	una							
Hole ID		From m	To m	Interval m	Li ₂ O %	Ta₂O₅ ppm	Nb₂O₅ ppm	SnO₂ ppr
LRC0048		68	71	3	0.08	687	234	12
		122	137	15	0.68	123	104	10
	incl	122	124	13	1.77	99	104	8
	and	123	135	4	1.27	139	100	15
	ana	151	159	- 3	0.16	556	198	21
	incl	158	159	3 1	0.10	1,324	465	11
	mer	158	169	10	3.82	243	405 92	21
	incl	159	167	8	3.02 4.43	243 237	92 92	21
_RC0049	mor	23	27	4	2.39	237	92 91	23
_1100047	Incl.	23 24	27	4 2	2.39 3.84	240 255	91 97	20 36
	IIICI.	24 147	20 151	2 4	3.84 1.47	∠55 43	97 45	30
	Incl.	147	151	4 2	2.05	43 42	45 50	8 7
DCOOFO	ITICI.							
LRC0050		38	41 47	3	0.07	383	112 92	18
		41	47	6	1.33	363	82	17
		47	48	1	0.14	230	43	10
LRC0052	Incl	32	39 27		1.93	261	101	30
	Incl.	33	37	4	2.90	310	116	32

Notes

1) The true width of pegmatites are generally considered 85-95% of the intercept width.

2) Details of Drill Holes and Pegmatite Intercepts and all significant intercepts are contained in Tables 2 & 3

3) Intercepts to 123m previously reported

The first few holes drilled on the St John mining leases has confirmed that the extensive pegmatite swarm contains spodumene. The St John pegmatites range from a few metres to 30m in width.

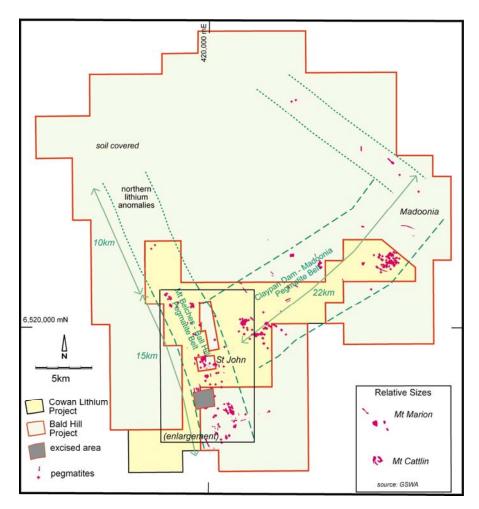


Figure 2 | High-grade spodumene in drill core - Bald Hill Mine

Terms of Bald Hill Mine Earn in and Joint Venture

Through Tawana's 100% owned subsidiary Lithco No 2 Pty Ltd, Tawana has entered into a legally binding terms sheet that outlines the terms for a Farm-In and Joint Venture arrangement with Alliance Mineral Assets Limited ("AMAL") with respect to AMAL's Bald Hill project in Western Australia for the purpose of joint exploration and exploitation of lithium and other minerals.

The commercial terms require Tawana:

- i. to spend, by 31 December 2017 (or such later date as may be agreed between the parties), a minimum of \$7.5 million on exploration, evaluation and feasibility (including administrative and other overhead costs in relation thereto) ("Expenditure Commitment"); and
- ii. to spend, \$12.5 million in capital expenditure required for upgrading and converting the plant for processing ore derived from the Project, infrastructure costs, pre-stripping activities and other expenditures including operating costs ("Capital Expenditure").

Upon completion of the Expenditure Commitment, Tawana shall be entitled to 50% of all rights to lithium minerals from the tenements comprising the Project ("Tenements").

Upon completion of the Expenditure Commitment and Capital Expenditure, Tawana will be entitled to a 50% interest in the Project (being all minerals from the tenements and the processing plant and infrastructure at Bald Hill).

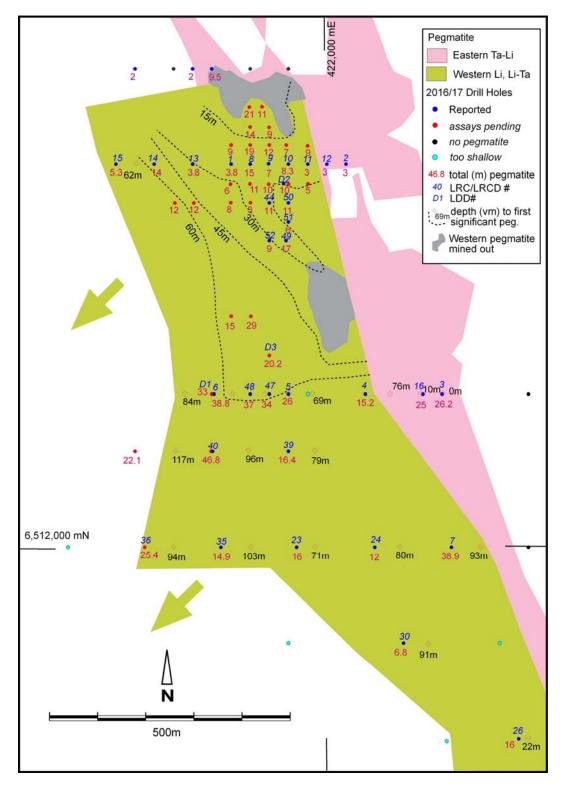


Figure 3 | Bald Hill Mine Area

Figure 4 | Cross Section at 6,5123,20N - Interpreted Pegmatite Swarm

Table 2| Drill Summary, Deeper Extensional Holes with Pegmatite Intercepts

Hole ID	Easting m	Northing m	RL m	Depth m	Azm	Dec.	Туре	From m	To m	Width m	Pegmatite Type
LDD0001	421755	6512320	284	283.9	270	-60	DD Met	22.9	24	1.1	Та
								82.1	83.2	1.1	Li
								100.3	113.3	13.0	Li
								146.7	153.9	7.2	Li
LDD0002	421910	6512760	294	60	90	-60	DD Met	31.7	42	10.3	Ta, Li
LDD0003	421880	6512400	286	150.4	90	-60	DD Met	68.2	88.4	20.2	Та
LRCD0006	421760	6512320	284	208	90	-60	RC/DD	73	80	7	Li, Ta
								108	130	22	Li, Ta
								177.1	185.4	8.3	Li, Ta
LRCD0024	422100	6512000	276	172	90	-60	RC/DD	96	108	12	Li, Ta
LRCD0032	422420	6512000	278	175	90	-60	RC/DD	91	92	1	Та
LRCD0039	421920	6512200	280	149.5	90	-60	RC/DD	97.5	102	4.5	Та
								116.8	128.5	11.7	Li, Ta
LRCD0041	421600	6512200	280	172	90	-60	RC/DD	79.2	80.7	1.5	barren
								116.6	120	3.4	Та
								146	156	10	Li, Ta
LRC0009	421880	6512800	292	52	90	-60	RC	34	41	7	Li, Ta
LRC0010	421920	6512800	293	46	90	-60	RC	28.8	37.1	8.3	Li, Ta
LRC0011	421960	6512800	294	40	90	-60	RC	29.1	32	2.9	Ta, Li
LRC0012	422000	6512800	296	74	90	-60	RC	60	63.1	3.1	Ta, Li
LRC0013	421720	6512800	289	100	90	-60	RC	41.4	45.2	3.8	Ta, Li
								69	70	1	Та
LRC0014	421640	6512800	287	136	90	-60	RC	25	26	1	Li, Ta
								65.1	79	13.9	Li, Ta
LRC0015	421560	6512800	286	122	90	-60	RC	0	1	1	Ta?
								74.7	80	5.3	Li?
LRC0016	422200	6512320	286	126	270	-60	RC	11.8	28	16.2	Li, Ta
								77.2	86.1	8.9	Li, Ta
LRC0019	421760	6513000	290	58	90	-60	RC	2.6	11.2	8.6	Та
LRC0021	421600	6513000	287	100	90	-60	RC	54	56	2	Та
LRC0022	421720	6513000	290	52	90	-60	RC	13.4	15.4	2	Та
LRC0023	422100	6512000	282	123	90	-60	RC	80.9	96.9	16	Li
LRC0025	422250	6511595	272	76	90	-60	RC	24.6	28	3.4	Та
LRC0026	422400	6511600	272	82	90	-60	RC	38	42	4	Li, Ta
								58	72	14	Li, Ta
LRC0027	422240	6511200	270	82	90	-60	RC	65.2	68.2	3	barren
LRC0028	422390	6511200	270	160	90	-60	RC	26	32	6	Li
								127.7	129	1.3	Та
LRC0030	422160	6511800	274	160	90	-60	RC	106.7	109.9	3.2	Li, Ta
								120	121	1	Та
								124	126	2	Та
LRC0035	421777	6512000	279	171	90	-60	RC	126.3	129	2.7	Li, Ta
								142	153	11	Li, Ta
								158.9	160.1	1.2	Та
LRC0036	421620	6512000	300	160	90	-60	RC	67.1	68.2	1.2	barren
								111	119.4	8.4	Li, Ta
								130	135	5	Li, Ta
								130	135	3	Та
LRC0040	421760	6512200	281	178	90	-60	RC	89.6	91.4	1.8	Та
	421700	0312200	201	170	70	-00	NO.	123.6	91.4 166.1	42.5	Li, Ta
LRC0044	421880	6512720	292	118	90	-60	RC	45	56	42.5	
LKC0044	421000	0312720	292	σII	70	-00	КU	45	00		Li, Ta

Hole ID	Easting m	Northing m	RL m	Depth m	Azm	Dec.	Туре	From m	To m	Width m	Pegmatite Type
LRC0046	421960	6512320	283	100	90	-60	RC	70	74	4	Li, Ta
LRC0047	421880	6512320	283	160	90	-60	RC	77	80	3	Та
								86	103	17	Li, Ta
								116	122	6	Li, Ta
								146	154	8	Li, Ta
LRC0048	421840	6512320	284	180	90	-60	RC	68	71	3	Та
								112	114	2	Li, Ta
								122	136	14	Li, Ta
								156	174	18	Li, Ta
LRC0049	421915	6512640	291	160	90	-60	RC	25	31	6	Li, Ta
								145	154	9	Li, Ta
LRC0050	421920	6512720	293	54	90	-60	RC	12	14	2	Та
								39	48	9	Li, Ta
LRC0051	421920	6512680	292	49	0	-90	RC	36	42	6	Li, Ta
LRC0052	421880	6512640	291	46	90	-60	RC	32	41	9	Li, Ta
LRC0101	420320	6516400	320	80	90	-60	RC	77	80	3	barren
LRC0102	420400	6516400	320	80	90	-60	RC	20	28	8	Li
LRC0103	420440	6516400	320	80	90	-60	RC	37	44	7	Li

Notes

The true width of pegmatites are generally considered 85-95% of the intercept width.
 Only pegmatites of 1m or more in width included

Table 3 | Significant Intercepts

Hole ID		From m	To m	Interval m	Li ₂ O %	Ta₂O₅ ppm	Nb₂O₅ ppm	SnO₂ ppm
LDD0001		100.3	107	7	1.09	277	149	176
	incl	100.3	106	6	1.21	310	163	133
LDD0002		107.3 33	<u>113</u> 42	6	Pending 0.58	836	176	297
LDD0002	incl	35	42 39	9 4	0.58	1,075	205	320
LDD0003		68.1	86	17.9	0.11	434	199	122
	incl	74	86	12	0.01	538	238	107
LRCD0006 ²		73	81	8	0.95	381	173	166
	incl	74	78	4	1.33	485	217	212
	inal	107	130	23	1.15 1.33	166 173	107	107 107
	incl incl	108 120	123 123	15 3	1.33 2.10	1/3	113 119	107
	IIICI	177.1	123	6.9	1.29	288	141	167
LRCD0024		95	101	10	1.20	85	71	153
		105	108	3	0.18	490	98	247
LRCD0032		91	93	2	0.04	373	367	176
LRCD0039		98	102	4	0.08	286	88	111
LRCD0041		47	49	2	0.16	165	25	143
		64 114	65	1	0.08	431	122	104
		116 146	119 154	3 8	0.13 1.00	305 159	191 127	99 98
	incl	140	154 150	8	1.00	159	127	98 73
LRC0009	IIICI	34	40	6	1.04	176	86	195
2.1000007	incl.	35	38	3	1.52	134	67	183
LRC0010		29	37	8	0.38	424	106	293
	incl.	32	33	1	2.18	296	93	287
LRC0011		29	33	4	0.21	492	80	625
LRC0012		60	64	4	0.23	415	119	216
LRC0013		42 69	45 70	3	0.25	296 327	89 79	96
LRC0014		68	70	1 5	0.14	<u>327</u> 95	69	<u>486</u> 96
LK00014		78	79	1	0.01	296	43	136
LRC0015		74	80	6	1.61	586	197	357
	incl.	75	79	4	2.20	766	262	330
LRC0016		12	19	7	0.31	206	92	140
		24	28	4	0.04	228	109	104
1000010		78	81	3	0.77	65	90	74
LRC0019 LRC0021		0 55	4 57	4 2	0.10 0.06	198 175	48	106 343
LRC0021 LRC0022		55 13	57 17	2	0.06	201	46 77	343 496
LRC0022		83	97	14	0.08	201	124	98
	incl	87	96	9	0.91	303	144	123
	incl	92	96	4	1.10	295	148	115
LRC0025		24	28	4	0.04	164	88	96
LRC0026		38	41	3	0.11	299	91	119
		41 F0	43	2	0.54	106	54 120	116
		59 60	60 61	1 1	0.20 0.39	381 49	129 50	69 52
		60 62	70	8	0.39	49 118	50 86	52 96
	incl	66	68	2	1.05	212	147	111
		71	72	1	0.13	176	173	86
LRC0028		30	31	1	0.33	48	47	71
		127	128	1	0.09	167	164	70
LRC0030		107	111	4	0.53	161	158	159
		120	121	1	0.04	1,304	1287	117
		121 124	124 125	3 1	0.36 0.12	45 181	44 178	100 79
		124	125	2	0.12	181	178 154	135
		120	120	2 1	0.11	79	78	209
		141	142	1	0.09	259	254	188
LRC0035		126	130	4	0.71	322	105	100
	incl	127	130	3	0.91	373	24	116
		142	153	11	0.50	202	89	87

Hole ID		From m	To m	Interval m	Li ₂ O %	Ta₂O₅ ppm	Nb₂O₅ ppm	SnO₂ ppm
	incl	145	149	4	1.20	194	93	111
	mor	158	160	2	0.10	153	64	79
LRC0036		50	52	2	0.08	281	36	230
ERODOGO		111	119	8	0.62	262	81	99
	incl	114	115	1	1.30	531	107	159
	and	114	113	1	2.10	198	62	127
	anu	131		2	1.44		82 39	70
			133			103	39	70
		133	135	2	Pending	100	10/	
		146	148	2	0.03	408	136	74
LRC0040		48	49	1	0.08	225	86	76
		89	92	3	0.13	256	100	111
		124	127	3	1.19	106	72	196
	incl	124	126	2	1.61	118	82	228
		128	163	35	1.05	106	110	112
	incl	131	133	2	1.40	176	100	156
	and	125	139	14	1.47	108	131	116
	and	140	145	5	1.40	58	58	95
								79
	and	149	151	2	1.52	117 117	143	
	and	153	155	2	1.37	117	111	74
	and	157	161	4	1.61	98	93	179
		163	166	3	0.14	188	129	100
LRC0044		19	20	1	0.03	374	100	100
		45	57	12	1.00	249	89	12
	incl	47	49	2	1.99	184	82	332
		53	55	2	1.44	330	107	133
LRC0047		33	34	1	0.08	640	114	168
Encourt		63	64	1	0.10	305	86	93
		78	79	1	0.02	212	79	103
		86	104	18	0.50	324	91	173
	incl	87	91	4	0.28	484	116	179
	and	94	100	6	0.76	430	119	169
		116	122	6	0.36	223	101	99
		146	155	9	0.90	235	109	130
	incl	146	147	1	0.37	808	329	209
	and	147	149	2	1.69	154	72	164
LRC0048		68	71	3	0.08	687	234	129
		81	83	2	0.27	223	86	154
		112	115	3	0.15	385	119	229
		112		15				
	inal		137		0.68	123 99	104	109
	incl	123	124	1	1.77		114	83
	and	131	135	4	1.27	139	100	158
		156	159	3	0.16	556	198	211
	incl	158	159	1	0.14	1,324	465	114
		159	169	10	3.82	243	92	212
	incl	159	167	8	4.43	237	92	231
		169	173	4	0.07	224	63	96
LRC0049		23	27	4	2.39	246	91	286
	Incl.	24	26	2	3.84	255	97	366
		27	31	4	0.29	251	129	114
		60		4			82	114
			62		0.07	332		
		147	151	4	1.47	43	45	88
	Incl.	147	149	2	2.05	42	50	79
		153	155	2	0.15	217	61	121
LRC0050		13	14	1	0.03	343	72	248
		38	41	3	0.07	383	112	189
		41	47	6	1.33	363	82	179
		47	48	1	0.14	230	43	100
LRC0051		16	19	3	0.45	196	57	140
		36	42	6	0.76	205	90	121
LRC0052		30	42 39	7	1.93	203	101	308
LICOUDZ	Incl							
	Incl.	33	37	4	2.90	310	116	322
LRC0102		22	26	4	1.60	52	113	72
		23	35	2	2.17	52	125	73
LRC0103		38	42	4	1.19	38	102	54
	incl	39	41	2	1.43	34	97	56

Notes

1) 2) Only intercepts of 0.3% Li_2O or 150ppm Ta_2O_5 considered significant. Intercepts to 123m previously reported as LRC0006

Competent Persons Statement

The information in this news release that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Mark Calderwood, an employee of Tawana. Mr Calderwood is a member of The Australasian Institute of Mining and Metallurgy. Mr Calderwood has sufficient experience relevant to the style of mineralisation under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Calderwood consents to the inclusion in this report of the matters based on their information in the form and context in which it appears.

Forward Looking Statement This report may contain certain forward looking statements and projections regarding estimated, resources and reserves; planned production and operating costs profiles; planned capital requirements; and planned strategies and corporate objectives. Such forward looking statements/projections are estimates for discussion purposes only and should not be relied upon as representation or warranty, express or implied, of TAW and/or Alliance Mineral Assets Limited. They are not guarantees of future performance and involve known and unknown risks, uncertainties and other factors many of which are beyond the control of Tawana Resources NL and/or Alliance Mineral Assets Limited. The forward looking statements/projections are inherently uncertain and may therefore differ materially from results ultimately achieved.

Tawana Resources NL and/or Alliance Mineral Assets Limited does not make any representations and provides no warranties concerning the accuracy of the projections, and disclaims any obligation to update or revise any forward looking statements/projects based on new information, future events or otherwise except to the extent required by applicable laws. While the information contained in this report has been prepared in good faith, neither TAW and/or Alliance Mineral Assets Limited or any of their directors, officers, agents, employees or advisors give any representation or warranty, express or implied, as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. Accordingly, to the maximum extent permitted by law, none of TAW and/or Alliance Mineral Assets Limited, their directors, employees or agents, advisers, nor any other person accepts any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy or completeness of the information or for any of the opinions contained in this announcement or for any errors, omissions or misstatements or for any loss, howsoever arising, from the use of this announcement.

Appendix 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the	Reverse Circulation Drilling, 1m samples collected
	minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Diamond drilling, ½ core nominally 2m crushed to 10mm
	Include reference to measures taken to ensure sample representivity and the appropriate	Samples jaw crushed and riffle split to 2-2.5kg for pulverizing to 80% passing 75 microns.
	calibration of any measurement tools or systems used.	Prepared samples are fused with sodium peroxide and digested in dilute hydrochloric acid. The
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would	resultant solution is analysed by ICP, by Nagrom. Certified standards or blanks. Field duplicates
	be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for	submitted at irregular intervals at the rate of approximately 1:25.
	fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Check assays yet to be undertaken.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic,	RC and Diamond drilling conducted in line with general industry standards.
	etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is	All drill holes are angled
	oriented and if so, by what method, etc.).	Core has been oriented where possible
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Chip recovery or weights for RC drilling were not conducted.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Each metre of drill sample recovery and moisture content is visually estimated and recorded.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Opportunity for sample bias is considered negligible for dry samples.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical	Geological logs exist for all drill holes with lithological codes via an established reference legend.
	studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography	Drillholes have been geologically logged in their entirety. Where logging was detailed the subjective indications of spodumene content
	The total length and percentage of the relevant intersections logged.	Assays have generally only been submitted through and adjacent to the pegmatites.

Critorio	IODC Code Evaluation	Commentany
Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	RC samples were collected at 1m intervals and
and sample	If non-core, whether riffled, tube sampled, rotary	riffle split on-site to produce a subsample less than 5kg.
preparation	split, etc. and whether sampled wet or dry.	than sky.
preparation	For all sample types, the nature, quality and	The RC drilling samples are considered robust for
	appropriateness of the sample preparation	sampling the spodumene and tantalite
	technique.	mineralisation.
	Quality control procedures adopted for all sub-	
	sampling stages to maximise representivity of	Most samples were dry.
	samples.	
	Measures taken to ensure that the sampling is	Sampling is in line with general sampling
	representative of the in situ material collected,	practices.
	including for	
	instance results for field duplicate/second-half	Field duplicates, laboratory standards and
	sampling.	laboratory repeats are used to monitor analyses.
	Whether sample sizes are appropriate to the grain	
	size of	Sample size for RC drilling is considered
	the material being sampled.	appropriate.
Quality of	The nature, quality and appropriateness of the	The assay technique is considered to be robust as
assay data	assaying and laboratory procedures used and	the method used (see above) offers total
and	whether the technique is considered partial or	dissolution of the sample and is useful for
laboratory tests	total. For geophysical tools, spectrometers, handheld XRF	mineral matrices that may resist acid digestions.
lesis	instruments, etc., the parameters used in	Standards, blanks and duplicates were submitted
	determining the analysis including instrument make	in varying frequency throughout the exploration
	and model, reading times, calibrations factors	campaign and internal laboratory standards,
	applied and their derivation, etc.	duplicates and replicates are used for
	Nature of quality control procedures adopted (e.g.	verification
	standards, blanks, duplicates, external laboratory	Vormoution
	checks) and whether acceptable levels of accuracy	
	(i.e. lack of bias) and precision have been	
	established.	
Verification	The verification of significant intersections by	twinning of holes undertaken to date show good
of sampling	either independent or alternative company	continuity
and assaying	personnel.	
		The Ta and Li assays show a marked correlation
	The use of twinned holes.	with the pegmatite intersections via elevated
		downhole grades.
	Documentation of primary data, data entry	
	procedures, data verification, data storage	Drill logs exist for all holes as both electronic
	(physical and electronic) protocols.	files and hardcopy.
	Discuss any adjustment to assay data	All drilling data has been loaded to a database
	Discuss any adjustment to assay data.	All drilling data has been loaded to a database
		and validated prior to use.
Location of	Accuracy and quality of surveys used to locate drill	Collar coordinates are currently only
data points	holes (collar and down-hole surveys), trenches,	approximate and considered accurate to within
	mine workings and other locations used in Mineral	4m measured using hand held GPS. Accurate
	Resource estimation.	surveying will be undertaken at a later time.
		Hole collars have been preserved until
	Specification of the grid system used.	completion of survey.
	Quality and adequacy of topographic control.	
		-

Criteria	JORC Code Explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The spacing of holes is considered not currently adequate for the Mineral Resource estimation and classification. There has been no sample compositing.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drilling is angled. The lithium tantalite-bearing pegmatites are generally flat to shallowly dipping in nature. The true width of pegmatites are generally considered 85-95% of the intercept width, with minimal opportunity for sample bias.
Sample security	The measures taken to ensure sample security.	The RC samples are taken from the rig by experienced personal and stored securely and transport to the laboratory by a registered courier and handed over by signature.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken to date.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The portfolio of mineral tenements, comprising mining leases, exploration licences, prospecting licences, miscellaneous licences, a general-purpose lease, and a retention lease are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Alluvial tantalite has been mined periodically from the early 1970s. Gwalia Consolidated Limited undertook exploration for tantalite-bearing pegmatites from 1983-1998. Work included mapping, costeaning, and several phases of drilling using RAB, RC, and diamond methods. The work identified mineral resources that were considered uneconomic at the time. Haddington entered agreement to develop the resource and mining commenced in 2001 and continued until 2005. Haddington continued with exploration until 2009. Living Waters acquired the project in 2009 and continued with limited exploration to the north of the main pit area.

Criteria	Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The Bald Hill area is underlain by generally north-striking, steeply dipping Archaean metasediments (schists and greywackes) and granitoids.
		Felsic porphyries and pegmatite sheets and veins have intruded the Archaean rocks. Generally, the pegmatites parallel the regional foliation, occurring as gently dipping sheets and as steeply dipping veins.
		The pegmatites vary in width and are generally comprised quartz-albite- muscovite-spodumene in varying amounts. Late-stage albitisation in the central part of the main outcrop area has resulted in fine- grained, banded, sugary pegmatites with visible fine-grained, disseminated tantalite. A thin hornfels characterised by needle hornblende crystals is often observed in adjacent country rocks to the pegmatite.
		Intrusives. Tantalite generally occurs as fine disseminated crystals commonly associated with fine-grained albite zones, or as coarse crystals associated with cleavelandite.
		Weathering of the pegmatites yields secondary mineralised accumulations in alluvial/eluvial deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Only results for drill holes that have intercepted lithium and or tantalum pegmatites of 1m or more in width that have been assayed for lithium have been included in the release. All drill hole details are contained in Table 2 and 3 of the release.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high	No cutting to intercept grades has been undertaken. Assays are report as pure elements such as Li, Ta, Nb, Sn and converted to oxides using atomic formulas.
	 grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any 	Reported intervals in Table 1 and 3 represent the aggregation of the intercepts containing samples of at least 0.3% Li ₂ O and/or 150ppm Ta ₂ O ₅ , lower grade zones are included adjacent to higher grade zones where the grade varies significantly from the average of the entire width of the mineralised pegmatite. Only lithium, tin and niobium tantalum oxide results are tabled, other potential by-products are currently considered to be insignificant in economic importance.
	reporting of metal equivalent values should be clearly stated.	

Criteria	Explanation	Commentary
Relationship	These relationships are particularly	All recent drilling is angled.
between	important in the reporting of	An recent arming is angled.
mineralisation	Exploration Results.	The lithium tantalite-bearing pegmatites are generally flat to
widths and		shallowly dipping in nature. The true width of pegmatites are
intercept	If the geometry of the mineralisation	generally considered 85-95% of the intercept width, with
lengths	with respect to the drill hole angle is	minimal opportunity for sample bias
lengths	known, its nature should be reported	mininal opportantly for sample blas
	If it is not known and only the down	
	hole lengths are reported, there	
	should be a clear statement to this	
	effect (e.g. 'down hole length, true	
	width not known').	
Diagrams	Appropriate maps and sections (with	Drilling locations are shown on figure 1 of the release.
Diagrafiis	scales) and tabulations of intercepts	Diffining locations are shown on figure 1 of the release.
	should be included for any significant	
	discovery being reported These	
	should include, but not be limited to	
	a plan view of drill hole collar	
	locations and appropriate sectional	
	views.	
Balanced	Where comprehensive reporting of	Results for all drill holes that have intercepted lithium
reporting	all Exploration Results is not	pegmatites that have been assayed for lithium have been
reporting	practicable, representative reporting	included in the release.
	of both low and high grades and/or	
	widths should be practiced to avoid	
	misleading reporting of Exploration	
	Results.	
Other	Other exploration data, if meaningful	
substantive	and material, should be reported	
exploration data	including (but not limited to):	
exploration data	geological observations; geophysical	
	survey results; geochemical survey	
	results; bulk samples – size and	
	method of treatment; metallurgical	
	test results; bulk density,	
	groundwater, geotechnical and rock	
	characteristics; potential deleterious	
	or contaminating substances.	
Further work	The nature and scale of planned	Further RC and diamond drilling is warranted at the various
	further work (e.g. tests for lateral	deposits to explore for additional resources and improve the
	extensions or depth extensions or	understanding of the current resources prior to mining.
	large-scale step-out drilling).	
	<u> </u>	
	Diagrams clearly highlighting the	
	areas of possible extensions,	
	including the main geological	
	interpretations and future drilling	
	areas, provided this information is	
	not commercially sensitive.	
	not commercially scholare.	