

## Excellent Phase Two Drill Results at Sepeda Lithium Project

#### - For Immediate Release -

CORPORATE DIRECTORY

**Non-Executive Chair** John Fitzgerald

Managing Director - CEO **David J Frances** 

**Executive Technical Director** Francis Wedin

Non-Executive Director **Dudley J Kingsnorth** 

#### FAST FACTS

| Issued Capital: | 363.8m          |
|-----------------|-----------------|
| Options Issued: | 31.1m           |
| Market Cap:     | <b>\$21.5</b> m |
| Cash:           | \$18.0m         |

#### **CONTACT DETAILS**

25-27 Jewell Parade North Fremantle 6159 info@dakotaminerals.com.au

T: +61 8 9336 6619

www.dakotaminerals.com.au

ACN: 009 146 794

#### **Highlights:**

 All phase two RC drill results received, with excellent intercepts including 61 m @ 1.52% Li<sub>2</sub>O and 51 m @ 1.26% Li<sub>2</sub>O

 Maiden Mineral Resource modelling under way and on track for CY Q1 2017

 Phase three infill and extensional drilling to commence mid-February 2017

Dakota Minerals Limited ("Dakota", "DKO", or "Company") is pleased to provide an update on its 100% owned Sepeda Lithium Project ("Sepeda"), Portugal. Results for the phase two Reverse Circulation ("RC") drilling completed in December 2016 have now been received.

Excellent results include 61 m @ 1.52% Li<sub>2</sub>O and 16 m @ 1.25% Li<sub>2</sub>O from SC024, for a total downhole mineralised intercept from two pegmatites of 77 m @ 1.46% Li<sub>2</sub>O, as well as 51 m @ 1.26% Li<sub>2</sub>O from SC021. Modelling for the maiden Mineral Resource Estimate is under way and on track for delivery in CY Q1-2017.

Further RC drilling on the Sepeda Project at Romano, and other pegmatites within the Carvalhais Pegmatite Swarm, will commence late February 2017, the results of which will be used in future resource updates.

Dakota Minerals CEO David Frances commented: "The phase two drilling results at Sepeda continue to support our confidence in a sustainable development scenario for Sepeda. Calculation of the maiden Mineral Resource has now commenced, which will form the basis for the outputs of the Scoping Study and EIA. Mineralisation at Sepeda is still open in multiple directions, and we are confident that Sepeda will continue to grow as we resume drilling in February. We look forward to keeping the market updated on these and other developments as we commence a transformative year for Dakota".



## **Phase Two Drilling Summary**

Dakota's recently completed phase two drilling programme totalled 5,181 m, comprised of 282m of diamond drilling and 4,899m of reverse circulation (RC) drilling. The programme had multiple objectives:

- ✓ to develop a maiden resource at Sepeda, focusing on the Romano pegmatite (primary objective);
- ✓ to conduct reconnaissance drill testing on some of the surrounding lithium-bearing pegmatites within the 3 km-long Carvalhais pegmatite corridor at Sepeda;
- ✓ to provide samples for further metallurgical testwork to be used in a feasibility study;
- ✓ to collect geotechnical data for future feasibility studies; and
- ✓ to provide twinning of RC holes with large diameter (PQ) diamond drill core for grade comparison studies.



Figure 1: RC drilling at Romano, December 2016 (photo credit: I. Groves)

The RC and diamond drilling programme was conducted by SPI SA, a drilling company based in Leon, Spain, utilizing three rigs (two RC and one diamond) to carry out the work (Figure 1). Holes at Romano were drilled on 80m spaced sections, over approximately 800m of strike, with holes spaced at 50m centres along sections. Holes drilled at other prospects varied between a single reconnaissance hole to 40 x 50m spaced sectional drilling. Drill holes were logged and samples were dispatched to Nagrom Laboratories for analysis in Perth. All RC sample assay results have now been received, with results for diamond drill samples still pending.

Very wide, well-mineralised intersections of petalite-bearing pegmatite were reported on multiple sections, including 61 m @ 1.52% Li<sub>2</sub>O and 16 m @ 1.25% Li<sub>2</sub>O from SCO24 for a total downhole mineralised intercept from two pegmatites of 77 m @ 1.46% Li<sub>2</sub>O (Figure 2), and 50 m @ 1.24% Li<sub>2</sub>O from SCO21 (Figure 4). Optiro Pty Ltd, a Perth-based resource consulting company, has been commissioned to do the resource modelling



and estimation work for Sepeda, and is on track for completion in CY Q1 2017. Optiro will also carry out Whittle<sup>®</sup> pit optimisation work over the deposit following completion of the Mineral Resource, as part of Dakota's ongoing Scoping Study.

Phase three RC and diamond drilling, commencing in late February 2017, will include:

- Extensional resource development and infill drilling at the Romano pegmatite, to be included in a resource update later in the year;
- Reconnaissance drilling of other pegmatites within the Carvalhais Pegmatite Swarm at Sepeda, including resource definition drilling where appropriate; and
- Large diameter core for further ore body characterisation metallurgical test work.

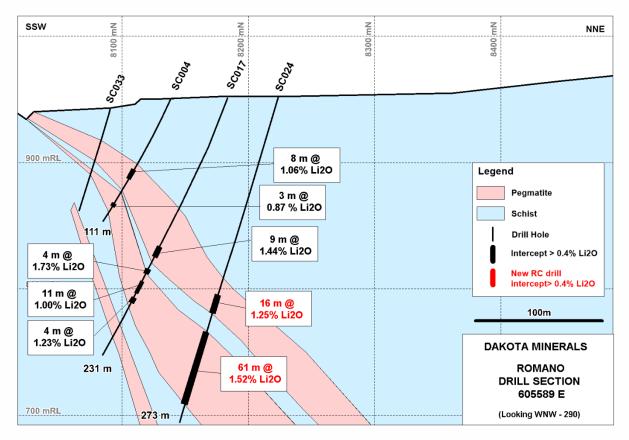



Figure 2: Drill section 605589E showing latest phase two results (downhole widths). Pegmatite is open down-dip.



Figure 3: Drilling the Romano pegmatite, looking East, showing the Romano pit (photo credit: I. Groves)

www.dakotaminerals.com.au



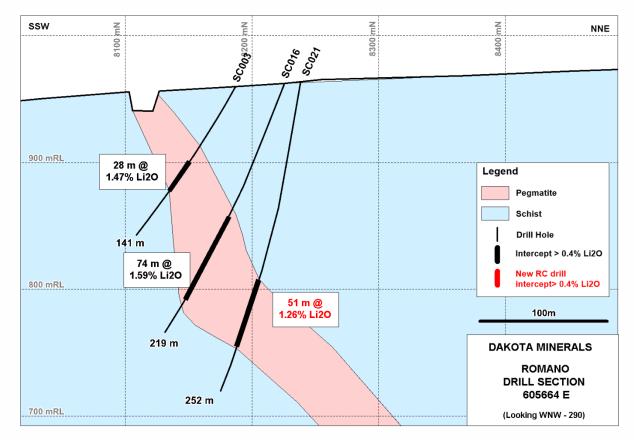



Figure 4: Drill section 605664E showing phase one and two results (downhole widths). Pegmatite is open down-dip.



Figure 5: SPI Rig 2 drilling at Sepeda (main photo) and geologist logging RC chips (inset). (photo credit: I. Groves)



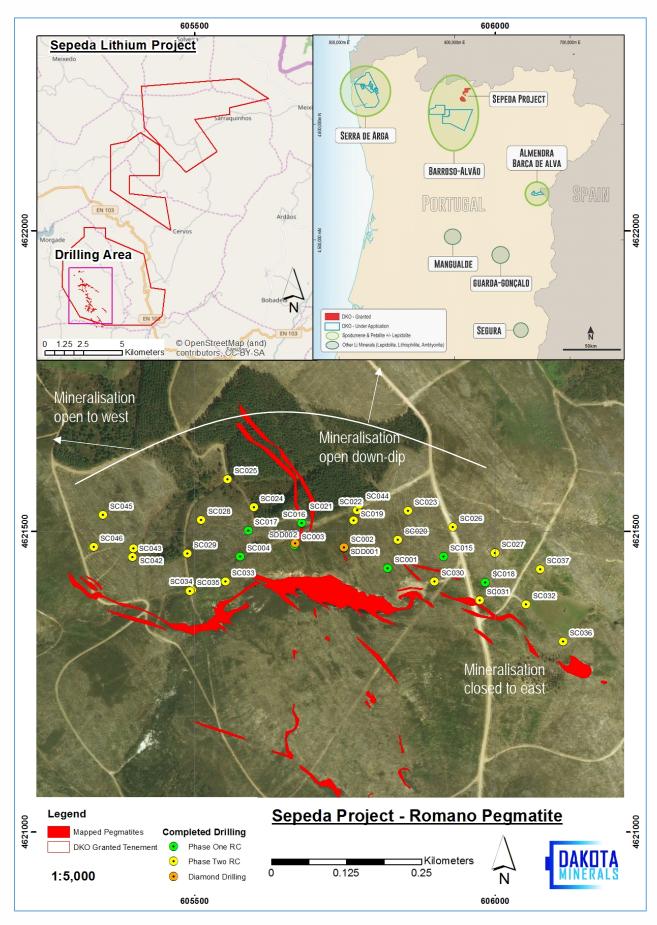



Figure 6: Drilling completed to date, Romano pegmatite, Sepeda Lithium Project



## **About Dakota Minerals**

Dakota Minerals' aim is to become a sustainable supplier of lithium carbonate/hydroxide, and potentially petalite concentrate, to the European electric vehicle and stationary storage battery markets and the glass and ceramics industry, via its projects in northern Portugal.

## Portugal: Lusidakota

Dakota's Lusidakota lithium projects in Northern Portugal, to which Dakota has 100% rights through its binding agreement with Lusorecursos LDA, are located over three broad districts of pegmatitic dyke swarms, which contain spodumene- and petalite-bearing pegmatites. The three main districts are the Serra de Arga, Barroso-Alvão and Barca de Alva pegmatite fields, all three of which are highly prospective for lithium mineralisation. The Lusidakota tenement package consists of thirteen exploration licences (one granted and twelve under application). After encouraging initial results, work at the Sepeda lithium project near the Barroso-Alvão district has accelerated, with a maiden resource on track for CY Q1 2017, and a scoping study, EIA and metallurgical testwork programme to produce lithium carbonate under way.

Portugal, as the leading lithium producer in Europe<sup>1</sup>, was identified by the Company to be a high priority jurisdiction for lithium, for the following reasons:

- Many countries in Europe are leading the world in uptake of electric vehicles (EVs) using lithium-ion batteries, with EVs already totalling 22% of all new vehicle sales in Norway.
- Lithium-ion batteries are already being produced in Europe to meet this increasing demand, and production capacity in car-producing countries such as Germany is growing dramatically to keep up.
- Dakota is tracking nine lithium-ion "megafactories" across Europe that are either already producing, under construction or planned, including Nissan<sup>2</sup>, Samsung<sup>3</sup>, BMZ<sup>4</sup>, Daimler-Mercedes<sup>5</sup>, Tesla<sup>6</sup>, Audi<sup>7</sup> and LG Chem<sup>8</sup>.
- Battery producers will require a large lithium supply from safe, nearby jurisdictions. Sourcing lithium from Europe would also significantly reduce the carbon footprint of the car production supply chain.
- Portugal has public policies deemed to be highly supportive of mining: it ranked in the global Top 10 of all countries in the Fraser Institute 2015 Survey of Mining Companies for Policy Perception Index, an assessment of the attractiveness of mining policies<sup>9</sup>.

<sup>5</sup> http://media.daimler.com/deeplink?cci=2734603

<sup>&</sup>lt;sup>1</sup> USGS Mineral Commodity Summaries, 2016

 $<sup>^{2}\</sup> http://europe.autonews.com/article/20160121/ANE/160129975/nissan-will-produce-leafs-new-advanced-batteries-in-uk$ 

<sup>&</sup>lt;sup>3</sup> http://www.samsungsdi.com/sdi-news/1482.html, https://cleantechnica.com/2015/05/25/samsung-sdi-begun-operations-former-magna-steyr-battery-pack-plant/

<sup>&</sup>lt;sup>4</sup> http://www.electronics-eetimes.com/news/european-battery-gigafactory-opens-1/page/0/1

<sup>&</sup>lt;sup>6</sup> https://electrek.co/2016/11/08/tesla-location-gigafactory-2-europe-2017-both-batteries-and-cars/

<sup>&</sup>lt;sup>7</sup> http://europe.autonews.com/article/20160120/ANE/160129994/-audi-will-build-electric-suv-in-belgium-shift-a1-output-to-spain

<sup>&</sup>lt;sup>8</sup> http://www.lgchem.com/global/lg-chem-company/information-center/press-release/news-detail-783

<sup>&</sup>lt;sup>9</sup> Fraser Institute Survey of Mining Companies 2015



For these reasons, the Company has been pursuing projects in areas most prospective for the lithium-bearing minerals, petalite and spodumene, in Portugal.

### Lithium Processing in Europe

Dakota is of the view that as the Company's Portuguese deposits of petalite are closer to potential downstream processing locations than the spodumene deposits in Australia and Canada, which tend to be in remote locations, they offer the following economic advantages:

- The established storage and transportation infrastructure associated with the distribution of minerals in Europe will reduce the investment required by Dakota for these capabilities. The net result is that deliveries of concentrates will probably be made on a daily basis.
- The proximity of potential downstream processing facilities will reduce the storage facility requirements at the mine/concentrator site.
- The proximity of the Dakota lithium projects to established communities familiar with the mining and processing of petalite will eliminate the need for fly-in fly-out arrangements.
- The combination of the above factors is likely to reduce the minimum size of an economic independent supply lithium battery supply chain in Europe; reducing the capital requirements of the supply chain.

#### **Competent Person Statement**

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Dr Francis Wedin, who is a member of the Australasian Institute of Mining and Metallurgy. Dr Wedin is a full-time employee of Dakota and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves" (JORC Code). Dr Wedin consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears. All material assumptions and technical parameters underpinning the JORC 2012 reporting tables in the relevant market announcements referenced in this text continue to apply and have not materially changed.

-END-

**Contacts:** 

**Dakota Minerals Limited** 

Tel: +61 (8) 9336 6619

**David J Frances** 

Managing Director – CEO



# Appendix 1: Complete Phase One & Two Drilling Results, Sepeda Lithium Project

| HOLE ID | НОГЕ ТҮРЕ | ТОТ DEPTH M | EAST WGS84 29N | NORTH WGS84 29N | RL M | AZI WGS84 29N | DIP | CONCESSION | TOTAL LOGGED<br>DOWNHOLE<br>PEGMATITE WIDTH | SIGNIFICANT<br>INTECEPTS                                                          |
|---------|-----------|-------------|----------------|-----------------|------|---------------|-----|------------|---------------------------------------------|-----------------------------------------------------------------------------------|
| SC001   | RC        | 135         | 605822         | 4621438         | 975  | 197           | -55 | MNPP04612  | 45 m                                        | 31m @ 1.21% Li <sub>2</sub> O from 46m, 2m<br>@ 1.28% Li <sub>2</sub> O from 101m |
| SC002   | RC        | 159         | 605750         | 4621472         | 970  | 197           | -58 | MNPP04612  | 66 m                                        | 16m @ 1.48% Li₂O from 60m, 41m<br>@ 1.16% Li₂O from 92m                           |
| SC003   | RC        | 141         | 605667         | 4621476         | 960  | 197           | -61 | MNPP04612  | 51 m                                        | 28m @ 1.47% Li <sub>2</sub> O from 69m                                            |
| SC004   | RC        | 111         | 605577         | 4621457         | 950  | 197           | -65 | MNPP04612  | 42 m                                        | 8m @ 1.06% Li₂O from 63m, 3m @<br>0.87% Li₂O from 93m                             |
| SC005   | RC        | 50          | 605877         | 4620942         | 924  | 139.5         | -85 | MNPP04612  | 5 m                                         | NSI                                                                               |
| SC006   | RC        | 48          | 605927         | 4620994         | 932  | 159           | -75 | MNPP04612  | 2 m                                         | NSI                                                                               |
| SC007   | RC        | 150         | 605968         | 4620676         | 900  | 214.5         | -60 | MNPP04612  | 7 m                                         | NSI                                                                               |
| SC008   | RC        | 114         | 605969         | 4620808         | 918  | 214.5         | -61 | MNPP04612  | 17 m                                        | 9m @ 1.29% Li₂O from 52m                                                          |
| SC009   | RC        | 64          | 606030         | 4620757         | 910  | 214.5         | -81 | MNPP04612  | 4 m                                         | NSI                                                                               |
| SC010   | RC        | 93          | 605894         | 4620718         | 909  | 213.5         | -60 | MNPP04612  | 2 m                                         | NSI                                                                               |
| SC011   | RC        | 84          | 605881         | 4620826         | 915  | 214.5         | -62 | MNPP04612  | 2 m                                         | NSI                                                                               |
| SC012   | RC        | 60          | 606315         | 4620226         | 890  | 34.5          | -51 | MNPP04612  | 37 m                                        | 2m @ 0.46% Li2O from 25m and<br>4m @ 0.48% Li <sub>2</sub> O from 35m             |
| SC013   | RC        | 48          | 606281         | 4620246         | 890  | 214.5         | -71 | MNPP04612  | 19 m                                        | NSI                                                                               |
| SC014   | RC        | 90          | 606253         | 4620273         | 891  | 214.5         | -61 | MNPP04612  | 18 m                                        | NSI                                                                               |

| HOLE ID | НОГЕ ТҮРЕ | тот рертн м | EAST WGS84 29N | NORTH WGS84 29N | RL M | AZI WGS84 29N | DIP | CONCESSION | TOTAL LOGGED<br>DOWNHOLE<br>PEGMATITE WIDTH | SIGNIFICANT<br>INTECEPTS                                                                                                                                                 |
|---------|-----------|-------------|----------------|-----------------|------|---------------|-----|------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SC015   | RC        | 150         | 605915         | 4621458         | 978  | 194.5         | -59 | MNPP04612  | 26 m                                        | 7m @ 1.52% Li₂O from 88m                                                                                                                                                 |
| SC016   | RC        | 219         | 605679         | 4621513         | 962  | 194.5         | -70 | MNPP04612  | 87 m                                        | 74m @ 1.59% Li₂O from 116m                                                                                                                                               |
| SC017   | RC        | 231         | 605590         | 4621501         | 952  | 194           | -69 | MNPP04612  | 80 m                                        | 9m @ 1.44% Li <sub>2</sub> Ofrom 131m, 4m @<br>1.73% Li <sub>2</sub> O from 151m, 11m @ 1%<br>Li <sub>2</sub> O from 162m, 4m @ 1.23% Li <sub>2</sub> O<br>from 177m     |
| SC018   | RC        | 143         | 605985         | 4621414         | 970  | 194.5         | -63 | MNPP04612  | 40 m                                        | 7m @ 0.34% Li <sub>2</sub> O from 13m                                                                                                                                    |
| SC019   | RC        | 231         | 605766         | 4621518         | 974  | 197           | -60 | MNPP04612  | 56 m                                        | 12m @ 1.14% Li <sub>2</sub> O from 97m, 14m<br>@ 1.01% Li <sub>2</sub> O from 139m, 6m @<br>0.63% Li <sub>2</sub> O from 170m, 9m @<br>0.69% Li <sub>2</sub> O from 183m |
| SC020   | RC        | 195         | 605839         | 4621486         | 979  | 197           | -63 | MNPP04612  | 37 m                                        | 16m @ 1.15% Li <sub>2</sub> O from 80m, 10m<br>@ 1.43% Li <sub>2</sub> O from 106m                                                                                       |
| SC021   | RC        | 252         | 605681         | 4621527         | 962  | 194.5         | -80 | MNPP04612  | 57 m                                        | 51m @ 1.26% Li₂O from 163m                                                                                                                                               |
| SC022   | RC        | 300         | 605772         | 4621535         | 975  | 197           | -74 | MNPP04612  | 63 m                                        | 8m @ 1.15% Li <sub>2</sub> O from 87m, 28m<br>@ 1.25% Li <sub>2</sub> O from 166m, 6m @<br>0.82% Li <sub>2</sub> O from 219m                                             |



www.dakotaminerals.com.au

| HOLE ID | НОГЕ ТҮРЕ | ТОТ DEPTH M | EAST WGS84 29N | NORTH WGS84 29N | RL M | AZI WGS84 29N | DIP | CONCESSION | TOTAL LOGGED<br>DOWNHOLE<br>PEGMATITE WIDTH | SIGNIFICANT<br>INTECEPTS                                  |
|---------|-----------|-------------|----------------|-----------------|------|---------------|-----|------------|---------------------------------------------|-----------------------------------------------------------|
|         |           |             |                |                 |      |               |     |            |                                             |                                                           |
| SC023   | RC        | 252         | 605856         | 4621534         | 982  | 197           | -64 | MNPP04612  | 35 m                                        | 7m @ 1.28% Li₂O from 105m, 4m<br>@ 1.32% Li₂O from 192m   |
| SC024   | RC        | 273         | 605599         | 4621539         | 951  | 197           | -74 | MNPP04612  | 93 m                                        | 16m @ 1.25% Li₂O from 163m, 61m<br>@ 1.52% Li₂O from 195m |
| SC025   | RC        | 279         | 605556         | 4621586         | 942  | 202           | -63 | MNPP04612  | 40 m                                        | 16m @ 1.38% Li₂O from 249m                                |
| SC026   | RC        | 240         | 605931         | 4621507         | 982  | 197           | -62 | MNPP04612  | 35 m                                        | 8m @ 1.41% Li₂O from 179m, 3m<br>@ 1.03% Li₂O from 197m   |
| SC027   | RC        | 231         | 606000         | 4621463         | 973  | 197           | -63 | MNPP04612  | 34 m                                        | 1m @ 0.575% Li₂O from 113m                                |
| SC028   | RC        | 198         | 605512         | 4621518         | 941  | 197           | -65 | MNPP04612  | 32 m                                        | NSI                                                       |
| SC029   | RC        | 240         | 605488         | 4621463         | 933  | 197           | -63 | MNPP04612  | 36 m                                        | 8m @ 0.88% Li <sub>2</sub> O from 132m                    |
| SC030   | RC        | 81          | 605900         | 4621416         | 973  | 197           | -56 | MNPP04612  | 18 m                                        | NSI                                                       |
| SC031   | RC        | 92          | 605975         | 4621385         | 968  | 197           | -55 | MNPP04612  | 41 m                                        | 26m @ 1.25% Li <sub>2</sub> O from 15m                    |
| SC032   | RC        | 106         | 606053         | 4621378         | 961  | 197           | -60 | MNPP04612  | 23 m                                        | NSI                                                       |
| SC033   | RC        | 120         | 605552         | 4621416         | 941  | 137           | -60 | MNPP04612  | 26 m                                        | NSI                                                       |
| SC034   | RC        | 90          | 605497         | 4621402         | 928  | 137           | -60 | MNPP04612  | 46 m                                        | 1m @ 0.78% Li <sub>2</sub> O from 58m                     |
| SC035   | RC        | 111         | 605493         | 4621400         | 928  | 197           | -60 | MNPP04612  | 19 m                                        | NSI                                                       |
| SC036   | RC        | 75          | 606114         | 4621316         | 953  | 197           | -60 | MNPP04612  | 30 m                                        | NSI                                                       |
| SC037   | RC        | 69          | 606076         | 4621437         | 960  | 197           | -60 | MNPP04612  | 1 m                                         | NSI                                                       |
| SC038   | RC        | 93          | 605932         | 4620830         | 919  | 217           | -60 | MNPP04612  | 12 m                                        | NSI                                                       |
| SC039   | RC        | 78          | 606008         | 4620792         | 915  | 217           | -65 | MNPP04612  | 23 m                                        | 2m @ 0.97% Li <sub>2</sub> O from 45m                     |





| SC046  | RC | 117   | 605333 | 4621473 | 926 | 197 | -54 | MNPP04612 | 33 m | 5m @ 0.67% Li <sub>2</sub> O from 81m, 10m<br>@ 0.79% Li <sub>2</sub> O from 99m |
|--------|----|-------|--------|---------|-----|-----|-----|-----------|------|----------------------------------------------------------------------------------|
| SC047  | RC | 90    | 606163 | 4620417 | 889 | 217 | -60 | MNPP04612 | 0 m  | NSI                                                                              |
| SC048  | RC | 99    | 606111 | 4620479 | 889 | 217 | -59 | MNPP04612 | 10 m | NSI                                                                              |
| SC049  | RC | 69    | 606162 | 4620191 | 883 | 357 | -90 | MNPP04612 | 3 m  | NSI                                                                              |
| SDD001 | DD | 158.3 | 605750 | 4621472 | 969 | 197 | -58 | MNPP04612 | 23 m | Assays pending Fe comparison<br>work, expected report date early<br>February     |
| SDD002 | DD | 123.9 | 605668 | 4621479 | 958 | 197 | -61 | MNPP04612 | 27 m | Assays pending Fe comparison<br>work, expected report date early                 |

NORTH WGS84 29N

4620834

4622060

4621471

4621457

4621544

4621527

**AZI WGS84 29N** 

217

237

187

187

357

197

ЫP

-64

-60

-75

-55

-89

-60

RL M

919

980

931

930

975

934

EAST WGS84 29N

605990

605562

605399

605397

605775

605348

TOT DEPTH M

111

84

201

150

162

210

HOLE TYPE

RC

RC

RC

RC

RC

RC

HOLE ID

SC040

SC041

SC042

SC043

SC044

SC045

TOTAL LOGGED DOWNHOLE PEGMATITE WIDTH

22 m

10 m

21 m

25 m

0 m

19 m

CONCESSION

MNPP04612

MNPP04612

MNPP04612

MNPP04612

MNPP04612

MNPP04612

SIGNIFICANT INTECEPTS

NSI

NSI

1m @ 0.94% Li<sub>2</sub>O from 186m

 $10m @ 1.12\% Li_2O from 108m$ 

NSI

1m @ 0.513% Li2O from 159m

February

Complete phase one and two drilling and logging to date from Sepeda, showing significant intercepts using 0.4% Li2O cut with no more than 2m internal dilution. Phase two holes are from Hole ID SC019 onwards. NSI = No significant intercepts.





# Appendix 2: Sepeda - JORC Table 1

# Section 1 Sampling Techniques and Data

| Criteria               | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>Techniques | Nature and quality of sampling (e.g. cut channels, random chips, or<br>specific specialised industry standard measurement tools<br>appropriate to the minerals under investigation, such as down hole<br>gamma sondes, or handheld XRF instruments, etc.). These examples<br>should not be taken as limiting the broad meaning of sampling.                                                                                                                                                          | DKO have drilled 49 Reverse Circulation<br>(RC) holes for 6,989m, and two diamond<br>drill (DD) holes for 282 m in phase one<br>and two. Phase one holes were reported<br>09/01/2017. All phase two RC holes<br>have now also been reported. DD<br>analyses are expected to be reported<br>early February, pending completion of<br>Fe comparison work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | Include reference to measures taken to ensure sample<br>representivity and the appropriate calibration of any measurement<br>tools or systems used.<br>Aspects of the determination of mineralisation that are Material to<br>the Public Report.                                                                                                                                                                                                                                                     | RC holes were sampled every metre,<br>with a rig-mounted cyclone splitter and<br>one tier riffle splitter, including a dust<br>suppression system, used to split<br>samples off the rig. Approximately 85%<br>of the RC chips were split to<br>600x900mm green plastic bags, for<br>potential re-sampling, whilst 15% was<br>captured at the sample port in draw-<br>string calico sample bags. Drill PQ core<br>was geologically, structurally and<br>geotechnically logged, photographed,<br>and marked up for cutting. The core<br>was cut and sampled according to the<br>geologist's instructions in Boticas,<br>Portugal. Half the core was taken for<br>metallurgical test-work purposes, the<br>remaining half core was cut again, and<br>a quarter core sample was taken for<br>assay from each sample interval. This<br>quarter core was dispatched to Nagrom<br>Laboratories in Perth for assay, and<br>results are pending |
|                        | In cases where 'industry standard' work has been done this would<br>be relatively simple (e.g. 'reverse circulation drilling was used to<br>obtain 1 m samples from which 3 kg was pulverised to produce a<br>30g charge for fire assay'). In other cases more explanation may be<br>required, such as where there is coarse gold that has inherent<br>sampling problems. Unusual commodities or mineralisation types<br>(e.g. submarine nodules) may warrant disclosure of detailed<br>information. | All reported phase one samples<br>described herein are RC in nature, with<br>split samples sent for XRF and ICP assay<br>techniques for a suite of 10 elements<br>including Li. Assays for phase two RC<br>have been reported, and diamond drill<br>samples were pending at the time of<br>writing. All diamond holes were PQ.<br>Holes were geologically logged,<br>measured and marked up on site,<br>before being sent to Boticas in Portugal<br>for cutting. Quarter-core samples were<br>submitted to Nagrom laboratory in<br>Perth for analysis using XRF and ICP<br>techniques for a suite of elements<br>including Li <sub>2</sub> O.                                                                                                                                                                                                                                                                                          |
| Drilling<br>Techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary<br>air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter,<br>triple or standard tube, depth of diamond tails, face-sampling bit or                                                                                                                                                                                                                                                                             | Drilling to date in phase two has been<br>conducted by SPI SA using a truck-<br>mounted SPIDRILL 260 rig (and<br>compressor (rated 33 bar, 35m <sup>3</sup> /min).<br>The drill rig utilized a reverse circulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| DAKOTA   |
|----------|
| MINERALS |

| Criteria                 | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | other type, whether core is oriented and if so, by what method, etc.).                                                                                                                                                                                                                                                                                                 | face sampling hammer, with 5.5-inch<br>bit. The sampling was conducted using<br>a rig-mounted cyclone with cone<br>splitter and dust suppression system.<br>In addition, DKO completed 2 PQ<br>diamond holes for 282 metres in 2016.<br>The diamond drill holes were drilled<br>predominantly for grade verification<br>and metallurgical purposes and are<br>twins of RC holes. Core was orientated<br>but orientations failed in the majority of<br>cases. Downhole surveying was<br>conducted using a Reflex Gyro system.                                                                                                                                                                                                                                                                                                                                                                                |
| Drill Sample<br>Recovery | Method of recording and assessing core and chip sample recoveries<br>and results assessed.<br>Measures taken to maximise sample recovery and ensure<br>representative nature of the samples.<br>Whether a relationship exists between sample recovery and grade<br>and whether sample bias may have occurred due to preferential<br>loss/gain of fine/coarse material. | Sample recovery in percent, sample<br>quality and moisture content was<br>recorded by the geologist for all 1m<br>intervals in RC holes. Sample recoveries<br>were measured for diamond drill holes.<br>Generally, RC samples were dry (only 3<br>wet samples within mineralized<br>intercepts), sample quality is good and<br>recoveries excellent, generally above<br>80%. Rods were flushed with air after<br>each three-metre interval to prevent<br>contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Logging                  | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.         Whether logging is qualitative or quantitative in nature. Core (or                                                                                           | One metre samples were laid out in<br>lines of 20, with RC chips collected and<br>geologically logged for each metre<br>interval on a plastic logging sheet, then<br>stored in RC chip trays marked with<br>hole IDs and depth intervals. Geological<br>logging information (including but not<br>limited to main rock types, mineralogy<br>in percent abundance, degree of<br>weathering, degree of schistosity,<br>colour and vein percent) was recorded<br>directly onto hard-copy sheets, and<br>later transferred to an Excel spread<br>sheet. The rock-chip trays are stored at<br>the Lusidakota office in Portugal for<br>future reference. PQ core was logged<br>and cut according to geological<br>boundaries, but generally at 1m<br>intervals. Geological logging<br>information was recorded directly onto<br>hard-copy sheets, and later transferred<br>to an Excel spread sheet. The PQ core |
|                          | costean, channel, etc.) photography.<br>The total length and percentage of the relevant intersections<br>logged.                                                                                                                                                                                                                                                       | <ul> <li>will be stored at the DKO Boticas</li> <li>warehouse for future reference.</li> <li>Logging has been primarily quantitative.</li> <li>The logging database contains</li> <li>lithological data for all intervals in all</li> <li>holes in the database.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



and

| Criteria                                                    | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-<br>sampling<br>techniques<br>and sample<br>preparation | If core, whether cut or sawn and whether quarter, halfor all core<br>taken. If non-core, whether riffled, tube sampled, rotary split, etc.<br>and whether sampled wet or dry. For all sample types, the nature,<br>quality and appropriateness of the sample preparation technique.<br>Quality control procedures adopted for all sub- sampling stages to<br>maximise representivity of samples.<br>Measures taken to ensure that the sampling is representative of<br>the in situ material collected, including for instance results for field<br>Whether sample sizes are appropriate to the grain size of the<br>material being sampled. | The RC samples were split at the rig<br>using a cyclone splitter, which is<br>considered appropriate and industry<br>standard. Where samples could not be<br>split due to moisture content, they<br>were speared to gain a representative<br>sample. PQ core was sawn and a<br>sample equivalent to a ¼ core size was<br>taken.<br>Three different grades of certified<br>reference material (CRM) for lithium<br>mineralisation was inserted, as well as<br>laboratory duplicates and blanks.<br>Quality Assurance and Quality Control<br>utilized standard industry practice, using<br>prepared standards, field blanks<br>(approximately 1kg), replicates sampled<br>in the field and pulp replicates at the<br>lab. 815 samples from phase one were<br>sent to Nagrom Laboratories in total,<br>including 32 field replicates, 34<br>standards, 34 blanks and 33 laboratory<br>duplicates. A further 1,609 samples<br>were sent from phase two drilling,<br>which included 82 blanks, 86 standards,<br>73 field duplicates and 84 laboratory<br>duplicates of which all samples related<br>to RC drilling have now been reported, ,<br>representing a QAQC insertion rate of<br>approximately 18%. DD analyses are<br>expected to be reported early February.<br>Drilling sample sizes are considered to<br>be appropriate to correctly represent<br>the lithium-bearing pegmatite-style<br>mineralisation at Sepeda. |
| Quality of<br>assay data<br>and<br>laboratory<br>tests      | The nature, quality and appropriateness of the assaying and<br>laboratory procedures used and whether the technique is<br>considered partial or total.<br>For geophysical tools, spectrometers, handheld XRF instruments,<br>etc., the parameters used in determining the analysis including<br>instrument make and model, reading times, calibrations factors                                                                                                                                                                                                                                                                              | Samples were sent for Li and multi-<br>element assay, using XRF with a sodium<br>peroxide fusion, and total acid digestion<br>with an ICP-MS finish.<br>No geophysical, spectral or handheld<br>XRF tools were used to determine any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

instrument make and model, reading times, calibrations factors applied and their derivation, etc.

Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established

Verification The verification of significant intersections by either independent Independent verification has not been of sampling or alternative company personnel. conducted. However, 50m on-section spaced holes show good consistency down-dip to date. assaying

> Two RC holes were twinned by the two DD holes drilled. Visual correlation was reasonable, with some pinch and swell

In line with Dakota's quality control

and duplicates were inserted at an

procedure, CRM standards, field blanks

overall rate of 18% for drilling samples.

elemental concentrations.



| Criteria                                                            | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | The use of twinned holes.                                                                                                                                                                                                                                                                                                                                                               | geometry noted, normal for pegmatite<br>veins. DD assays were pending at the<br>time of writing.                                                                                                                                                                                                                                       |
|                                                                     | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols                                                                                                                                                                                                                                                               | Field logs are entered into and<br>validated on an electronic Excel<br>database, both of which are stored at<br>the Dakota Perth office.                                                                                                                                                                                               |
|                                                                     | Discuss any adjustment to assay data.                                                                                                                                                                                                                                                                                                                                                   | For values reported, Li <sub>2</sub> O was used for<br>the purposes of reporting, as reported<br>by Nagrom. No adjustment was<br>conducted on the data.                                                                                                                                                                                |
| Location of<br>data points                                          | Accuracy and quality of surveys used to locate drill holes (collar and<br>down-hole surveys), trenches, mine workings and other locations<br>used in Mineral Resource estimation.                                                                                                                                                                                                       | All drill-hole locations were located<br>using a Leica Viva GNSS CS15, which ha<br>an accuracy of +/- 5mm vertical and +/-<br>10mm horizontal. Down hole surveying<br>of drill holes was conducted using a<br>Reflex Gyroscope.                                                                                                        |
|                                                                     | Specification of the grid system used                                                                                                                                                                                                                                                                                                                                                   | The grid system used is WGS84 Zone 29N.                                                                                                                                                                                                                                                                                                |
|                                                                     | Quality and adequacy of topographic control.                                                                                                                                                                                                                                                                                                                                            | RL data to date has been collected<br>using a Leica Viva GNSS CS15, which ha<br>an accuracy of +/- 5mm vertical and +/<br>10mm horizontal.                                                                                                                                                                                             |
| Data<br>spacing and<br>distribution                                 | Data spacing for reporting of Exploration Results.<br>Whether the data spacing and distribution is sufficient to establish<br>the degree of geological and grade continuity appropriate for the<br>Mineral Resource and Ore Reserve estimation procedure(s) and<br>classifications applied.<br>Whether sample compositing has been applied.                                             | Drill spacing between holes is generally<br>between 40 and 60m on section, and<br>generally 80m between sections,<br>depending on site accessibility.<br>No resource or reserve estimation<br>procedure has yet been applied.                                                                                                          |
| Orientation<br>of data in<br>relation to<br>geological<br>structure | Whether the orientation of sampling achieves unbiased sampling of<br>possible structures and the extent to which this is known,<br>considering the deposit type.<br>If the relationship between the drilling orientation and the<br>orientation of key mineralised structures is considered to have<br>introduced a sampling bias, this should be assessed and reported if<br>material. | The pegmatite varies between 60 to 90<br>degree dip. Most of the drilling was<br>conducted with -85 to -50 degree dip,<br>meaning samples collected were<br>generally almost perpendicular to<br>mineralisation, which is deemed<br>appropriate as per industry standard.<br>No orientation-based sampling bias ha<br>been identified. |
| Sample<br>security                                                  | The measures taken to ensure sample security                                                                                                                                                                                                                                                                                                                                            | Dakota contract geologists and field<br>assistant conducted all sampling and<br>subsequent storage in field. Samples<br>were then delivered via air and road<br>freight to Nagrom laboratories in Perth<br>for assay.                                                                                                                  |
| Audits or<br>reviews                                                | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                   | None completed to date,<br>due to early<br>reconnaissance nature<br>of work.                                                                                                                                                                                                                                                           |



# Section 2 Reporting of Exploration Results

| Criteria                                         | JORC Code Explanation                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | Type, reference name/number, location and ownership including<br>agreements or material issues with third parties such as joint<br>ventures, partnerships, overriding royalties, native title interests,<br>historical sites, wilderness or national park and environmental<br>settings. | The Lusidakota tenements and<br>interests, to which Dakota has 100%<br>rights (subject to grant of application<br>areas), comprise:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                                                                                                                                                                                                                                                                                          | <ul> <li>(a) granted exploration licence<br/>MNPP04612 (Sepeda Project);</li> <li>(b) exploration licence<br/>applications MNPPP0274, MNPPP0275,<br/>MNPPP0393, MNPPP0394,<br/>MNPPP0395, MNPPP0396,<br/>MNPPP0407, MNPPP0424,<br/>MNPPP0427, MNPPP0426,<br/>MNPPP0430, MNPPP0431;</li> <li>Tenement application MNPPP0395 is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  | The security of the tenure held at the time of reporting along with<br>any known impediments to obtaining a licence to operate in the<br>area.                                                                                                                                           | awaiting a decision on a proposed<br>hydroelectric dam development. This<br>tenement and tenement MNPPP0407<br>also have some overlapping claims. The<br>grant of MNPP0393 may be affected by<br>an overlapping national park area. All<br>tenements are understood to be in<br>good standing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Exploration<br>done by other<br>parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                            | Historical, open-source academic<br>literature from Dakota's three districts<br>in Portugal refer to historical rock-chip,<br>bulk samples, diamond drilling and<br>surface channel sampling. These consist<br>of: Martins, T, Lima, A, and Noronha, F,<br>2007. Locality No.1 – An Overview of the<br>Barroso-Alvão Aplite-Pegmatite Field.<br>Granitic Pegmatites: the state of the art<br>– International Symposium. Field Trip<br>Book; Lima, A and Noronha, F, 1999.<br>Exploration for Lithium Deposits in the<br>Barroso-Alvão Area, Northern Portugal.<br>Mineral Deposits: Processes to<br>Processing. Stanley et al (eds) 1999<br>Balkema, Rotterdam, ISBN 90 5809 068.;<br>Charoy, B, Lhote, F, and Dusausoy, Y,<br>1992. The Crystal Chemistry of<br>Spodumene in Some Granitic; Lima, A,<br>2000. Estrutura, mineralogia e génese<br>dos filões aplitopegmatíticos com<br>espodumena da região do Barroso-<br>Alvão. Dissertation – Universidade do<br>Porto; Lopes Nunes, J E, and Leal<br>Gomes, C, 1994. The Crystal Chemistry<br>of Spodumene in Some Granitic Aplite-<br>Pegmatite Bodies of Northern Portugal.<br>The Canadian Mineralogist. Vol. 32, pp<br>223-226. and Moura, S, Leal Gomes, C,<br>and Lopes Nunes, J, 2010. The LCT-NYF<br>signatures in rare-metal Variscan aplite-<br>pegmatites from NW Portugal. Revista |



| Criteria                       | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Electronics de Ciencias da Terra<br>Geosciences On-line Journal ISSN 1645-<br>0388, Vol 20, No 8. Dakota does not<br>warrant that the work completed could<br>be referred to as "industry standard",<br>but is indicative of petalite and<br>spodumene-hosted, potentially<br>economic lithium mineralisation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geology                        | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                          | The Barroso- Alvão aplite-pegmatite<br>field, located in the "Galacia-Tras-os-<br>Montes" geotectonic zone, is<br>characterized by the presence of<br>dozens of pegmatite and aplite-<br>pegmatite dykes and sills of granitic<br>composition. The Pegmatitic dykes are<br>typically intruded in the granitic rocks<br>of the region, whilst the aplite-<br>pegmatite dykes are hosted by low- to<br>medium-grade strongly deformed<br>metasedimentary rocks of Silurian age.<br>The Sepeda Project, within the northern<br>Barroso- Alvão region, contains a<br>swarm of multiple WNW-striking,<br>lithium-bearing pegmatites of the LCT<br>(Lithium-Caesium-Tantalum) type. The<br>main swarm area has recently been<br>mapped to 3,000m long by 1,000m<br>wide at its widest point. Some of the<br>pegmatites do not outcrop and are<br>visible only in historic underground<br>workings. It is thought that the<br>pegmatites form a folded system of<br>mineralised pegmatite dykes. Lithium<br>mineralisation grading up to 2.8% Li2O<br>was noted in petalite and spodumene<br>samples at surface, which has now<br>been confirmed through two phases of<br>drilling. |
| Drill hole<br>Information      | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</li> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> | Refer to Appendix 1 in this announcement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Data<br>aggregation<br>methods | In reporting Exploration Results, weighting averaging techniques,<br>maximum and/or minimum grade truncations (e.g. cutting of high<br>grades) and cut-off grades are usually Material and should be<br>stated. Where aggregate intercepts incorporate short lengths of<br>high grade results and longer lengths of low grade results, the                                                                                                                             | Length-weighted averages used for<br>results previously reported. Cutting of<br>high grades was not applied. Maximum<br>2m internal dilution, and 0.4% Li <sub>2</sub> O cut-<br>off was used for reporting, which is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Criteria                                                                        | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 | procedure used for such aggregation should be stated and some<br>typical examples of such aggregations should be shown in detail.<br>The assumptions used for any reporting of metal equivalent values<br>should be clearly stated.                                                                                                                                                                  | deemed to be appropriate for this style<br>of mineralisation.<br>No metal equivalent values were used.                                                                                                                                                                                                         |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | These relationships are particularly important in the reporting of<br>Exploration Results. If the geometry of the mineralisation with<br>respect to the drill hole angle is known, its nature should be<br>reported. If it is not known and only the down hole lengths are<br>reported, there should be a clear statement to this effect (e.g.<br>'down hole length, true width not known')          | Appendix 1 reports downhole lengths<br>of pegmatite width, which is clearly<br>stated. True widths are not known.<br>However, due to the estimated dip of<br>the pegmatites, and the -85 to -50-<br>degree dip of the drill holes, the<br>thicknesses shown are generally close<br>to approximate true widths. |
| Diagrams                                                                        | Appropriate maps and sections (with scales) and tabulations of<br>intercepts should be included for any significant discovery being<br>reported. These should include, but not be limited to a plan view of<br>drill hole collar locations and appropriate sectional views.                                                                                                                          | See Figures in body of report.                                                                                                                                                                                                                                                                                 |
| Balanced<br>reporting                                                           | Where comprehensive reporting of all Exploration Results is not<br>practicable, representative reporting of both low and high grades<br>and/or widths should be practiced to avoid misleading reporting of<br>Exploration Results.                                                                                                                                                                   | Comprehensive reporting of all drill<br>details has been provided in Appendix 1<br>of this report. Comprehensive reporting<br>of mapping and logging has been<br>carried out.                                                                                                                                  |
| Other<br>substantive<br>exploration<br>data                                     | Other exploration data, if meaningful and material, should be<br>reported including (but not limited to): geological observations;<br>geophysical survey results; geochemical survey results; bulk<br>samples – size and method of treatment; metallurgical test results;<br>bulk density, groundwater, geotechnical and rock characteristics;<br>potential deleterious or contaminating substances. | All meaningful and material data has been reported.                                                                                                                                                                                                                                                            |
| Further work                                                                    | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or largescale step-out drilling).                                                                                                                                                                                                                                                                | Resource modelling, resource<br>estimation; extensional and infill<br>drilling. Metallurgical testwork on the<br>material to produce mineral<br>concentrates and subsequently lithium<br>carbonate and lithium hydroxide<br>downstream products.                                                               |