

Capital Mining Limited

ASX: CMY

Level 11, 216 St Georges Tce Perth WA 6000 Telephone +61 8 9481 0389 Fax +61 8 9463 6103 www.capitalmining.com.au

Directors Mr Peter Torney Mr Peter Dykes Mr Anthony Dunlop

Company Secretary Mrs Elizabeth Hunt

HIGH GRADE ZINC & SILVER INTERSECTIONS AT MAYFIELD PROJECT

Highlights

ASX Release

15 February 2017

- Capital Mining has intersected high grade zinc and silver in its recently completed drill program at the Mayfield Project in NSW
 - Significant high grade intersection: $_{\odot}$ 7.20m @ 4.31%Zn, 0.58% Cu and 16g/t Ag from 198.50 metres in hole MAY2
 - Assay results from drill hole MAY2 include:
 - $\,\circ\,$ Zinc values to 28.7%
 - $\circ~$ Copper values to 2.20%
 - $\,\circ\,$ Silver values to 48.9 grams/tonne
- Drilling has identified a significant high grade zinc zone and confirms that the prospect is open along strike to the north and down dip
- Down hole EM Survey completed as part of planning for next drill program results pending

Capital Mining Limited (ASX: CMY) ("Capital" or "the Company") is pleased to announce high grade assay results from its recently completed reverse circulation (RC) and diamond drilling program at the base and precious metals, Mayfield Project (EL6358) in south-eastern New South Wales.

The Mayfield Project (EL6358, ELA5415) covers a significant gold-copper skarn deposit, and is located within a highly mineralized part of the Lachlan Fold Belt as illustrated in Figure 1.

The drill program targeted down-dip and along-strike extensions of known mineralisation at the Mayfield Project (see Figures 2 and 3), and was designed to confirm the continuity and consistency of the high-grade mineralisation within the project area.

The program was highly successful and intersected significant high grade base metals and silver mineralisation in the targeted skarn zones, including a highlight intersection of; **7.2m @ 4.31% Zn, 0.58% Cu and 16g/t Ag from 198.50 metres, in drill hole MAY2.**

Assay results from drill hole MAY2 graded as high as; 28.7% Zinc, 2.20% Copper and 48.9g/t Silver.

In addition, the entire skarn zone exhibits strong copper values with peak copper values located higher on the hanging wall of the skarn. An intersection of **17.97 metres** @ 0.75% Cu from 187.03 metres in drill hole MAY2 was recorded.

These assays have successfully identified a high grade zone of zinc located at the base of the skarn zone and confirm that the target area is open along strike to the north as well as down dip.

In drill hole MAY1, assay data results have highlighted an extensive down hole intercept with anomalous lead (Pb) and (Zn) zinc values within the entire extent of the skarn zone, as well as within the footwall and hanging wall. Maximum Pb and Zn are 0.224% and 0.265% respectively over a 33-34 metre interval, commencing from 216 metres downhole. Anomalous tin and silver values were also noted. The results of geological logging of both drill holes are summarized in Tables 1 and 2 attached, with the assay data for MAY2 attached as Table 3.

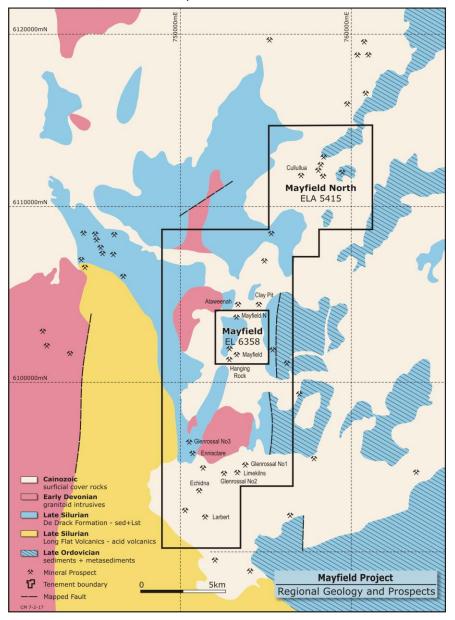


Figure 1: Location of EL6358 and ELA5415 showing Mayfield and other gold/base-metal prospects

Background to Mayfield Drill Program

During the December quarter, two angled (-60 deg) drill holes were completed - MAY1 and MAY2. These two holes were commenced initially as Reverse Circulation (RC) percussion holes but due to poor ground conditions, were completed as diamond drill holes. MAY1 was terminated at 261.6 metres and MAY2 was terminated at 216.5 metres. The location of these two drill holes are illustrated in Figures 2 and 3.

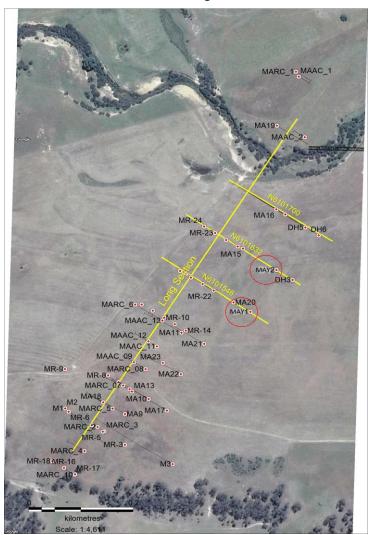


Figure 2: Location of MAY1 and MAY2 drill holes (circled red) and historic drill holes

Next phase of Field Work

Based on the highly successful results from the drill program, Capital has completed a downhole electro-magnetic (DHEM) geophysical survey of MAY1 and MAY2 drill holes, in order to better define the extent and tenor mineralisation – and to help generate targets for the next phase of drilling. The results from this survey are pending.

The Company will also assess and interpret newly acquired geochemical and geophysical data in the context of historic information to assist its drill targeting process. Capital will advise of plans for the next phase of drilling at Mayfield in due course.

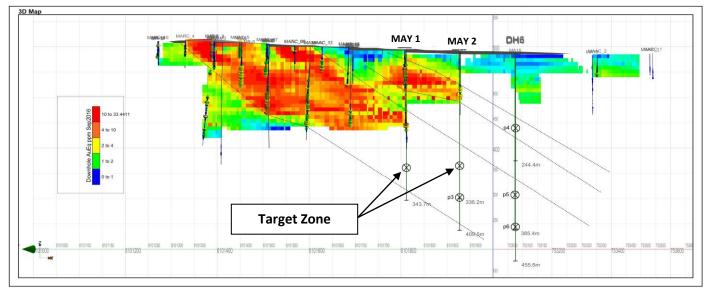
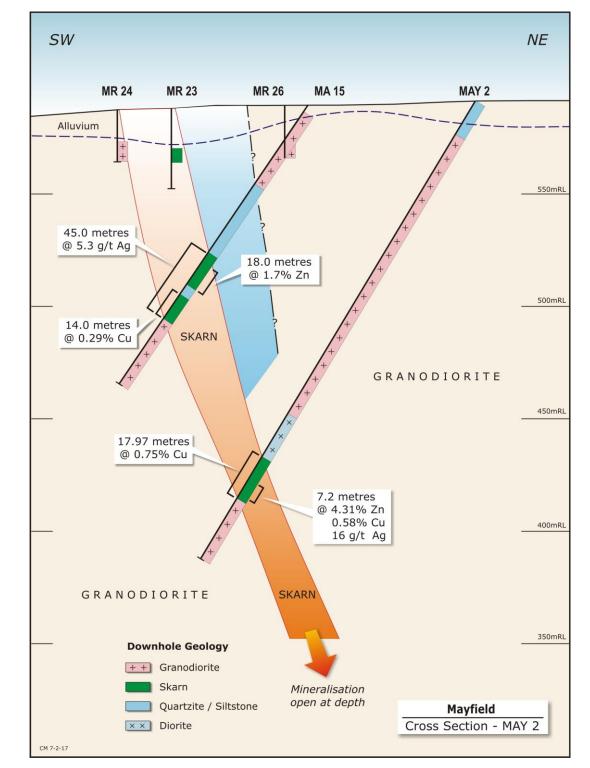



Figure 3: Trend of high metal content tested by MAY 1 and MAY 2.

		Table 1: MAY 1 Summary Log	
Downhole	Interval(m)	Summary Geology	Comments
000.00 - 220.20	220.00	Granodiorite + Diorite + Quartzite	
220.20 - 221.20	1.00	Aplite	
221.20 - 223.70	1.60	Diorite	
223.70 - 224.20	0.50	Chilled margin	
224.20 - 224.80	0.60	Aplite	
224.80 - 225.30	0.50	Chilled margin	
225.30 - 226.10	0.80	Diorite	
226.10 - 226.30	0.20	Chilled margin	
226.30 - 249.40	23.10	Skarn	Mineralised
249.40 - 252.00	2.60	Diorite	
252.00 - 261.60	9.60	Granodiorite	
261.60		End of hole	

		Table 2: MAY 2 Summary Log	
Downhole	Interval(m)	Summary Geology	Comments
000.00 - 186.00	186.00	Granodiorite + Diorite + Quartzite	
186.00 - 186.10	0.10	Chilled margin	
186.10 - 187.00	0.90	Skarn	
187.00 - 187.30	0.20	Chilled margin	
187.30 - 192.30	5.10	Skarn	Highly mineralised
192.30 - 198.80	6.50	Skarn – Fault breccia	Highly mineralised
198.80 - 207.80	9.00	Skarn	Highly mineralised
207.80 - 208.60	0.80	Diorite	
208.60 - 216.50	7.90	Granodiorite	
216.50		End of hole	

The above results are illustrated in Figure 4 which shows the tenor of copper and zinc mineralization increasing with depth when compared to the results from MA15 (which was drilled during the previous drilling campaign).

Figure 4: Cross section through MAY2 and MA15 (drilled in previous campaign) showing highly encouraging assay data

About the Mayfield Project

The Mayfield Project is located in the minerals endowed Lachlan Fold Belt of eastern Australia within the highly prospective Braidwood Granodiorite geology, and hosts a significant gold-copper skarn deposit (Figure 5 - Project Location Map). . Capital has a 51% equity interest in the Project. The remaining project ownership is held by Rutila Resources (46.5%) and Roberts Consulting (2.5%). The Mayfield Project forms part of an active exploration area, and is situated in close proximity to the world-class Majors Creek Gold Field, which hosts the significant Dargues Reef Gold Project, near the town of Braidwood.

-ENDS-

Peter Dykes Director Capital Mining Limited

Statements contained in this report relating to exploration results and mineral resources on the Mayfield Project is based on information compiled by Mart Rampe, who is a Member of the Australasian Institute of Mining and Metallurgy and is an independent consultant geologist engaged by Capital Mining Limited. He has sufficient relevant experience in relation to the mineralization styles being reported on, to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC Code). Mart Rampe consents to the use of applicable information in this report in the form and context in which it appears.

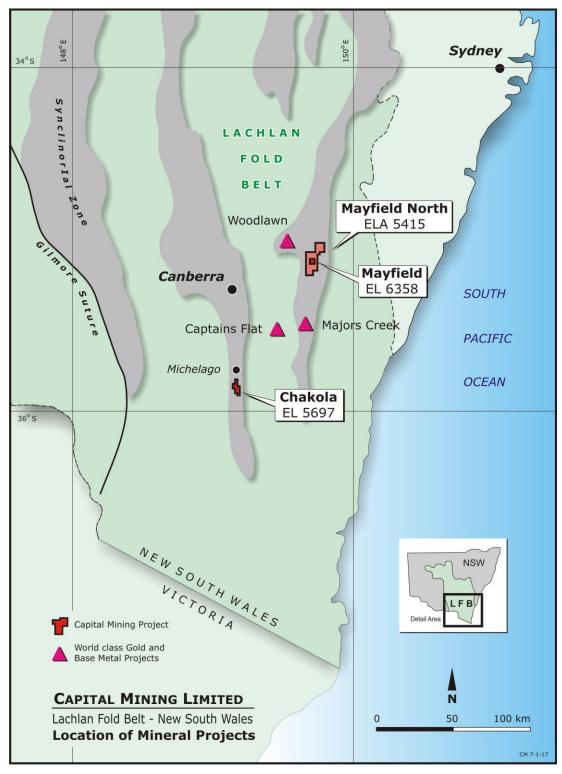


Figure 5: Capital Mining Limited exploration projects in NSW

TABLE 3 - /	ASSAY RES	ULTS FOI	R DRILL H	OLE MA	(2				
ANALYTICAL M		Au-ICP22	ME-MS61L	ME-MS61L	ME-MS61L	ME-MS61L	ME-MS61L	ME-MS61L	
ELEMENT	ETHOD	Au-ICP22	Ag	Cu	Fe	Mn	Pb	Sn	ME-MS61L Zn
REPORTED AS		ppm	ppm	%	%	ppm	ppm	ppm	%
	AL (METRES)	P P	PP			PP	PP	P P	
FROM	TO								
175.35	176.00	< 0.001	0.1	<0.10	0.99	488	32	13	<0.10
176.00	177.00	< 0.001	0.1	<0.10	1.10	593	28	13.95	<0.10
177.00	177.80	< 0.001	0.1	<0.10	1.63	652	16	15.5	<0.10
177.80 178.80	178.80 179.85	<0.001 <0.001	0.1	<0.10 <0.10	3.35 3.41	884	18 18	10.15 7.34	<0.10 <0.10
178.80	179.85	<0.001	0.1	<0.10	4.11	978	22	11.65	<0.10
175.65	180.00	< 0.001	0.1	<0.10	2.71	922	23	11.05	<0.10
181.10	182.05	< 0.001	0.1	<0.10		1195	23	10.5	<0.10
182.05	183.02	< 0.001	0.1	<0.10	3.60	1035	17	11	<0.10
183.02	184.00	< 0.001	0.1	<0.10	3.28	1135	17	11.8	<0.10
184.00	185.00	< 0.001	0.1	<0.10	3.34	1060	16	18.3	<0.10
185.00	186.00	0.00	0.1	<0.10	2.12	700	16	9	<0.10
186.00	186.50	0.01	0.2	<0.10	5.11 10.05	12250	28	58.7 94	<0.10
186.50 187.03	187.03 187.65	0.00	21.7	<0.10 0.99	22.30	11350 2750	138	>500	<0.10 <0.10
187.05	187.03	0.59	30.0	2.20	22.30	2730	54	>500	<0.10
188.03	188.50	0.13	12.0	0.62	27.90	2840	26	>500	<0.10
188.50	189.05	0.05	18.9	1.11	26.90	3360	28	>500	<0.10
189.05	189.96	0.02	10.7	0.63	33.00	4120	34	490	0.12
189.96	190.50	0.02	14.5	0.99	26.80	3270	30	>500	<0.10
190.50	191.00	0.02	10.8	0.67	26.80	3180	50	>500	<0.10
191.00	191.35	0.01	7.7	0.35	27.30	3360	73	>500	0.42
191.35	191.77	0.01	8.8	0.56	24.90	4310	91	>500	0.21
191.77	192.42	0.03	13.8	0.74	26.80	2960	138	>500	0.21
192.42 193.90	193.90 194.10	0.02	18.8 5.7	1.14 0.67	28.00 21.30	4190 3000	230 241	412 >500	0.39
193.90	194.10	0.10	8.9	0.07	21.30	3810	451	>500	0.27
194.80	194.80	0.13	6.8	0.31	30.10	5610	166	500	0.46
195.50	196.00	0.09	12.3	0.79	28.80	4390	96	>500	0.29
196.00	196.90	0.06	11.6	0.74	27.50	4700	158	>500	0.40
196.90	197.50	0.09	10.6	0.69	26.70	5170	334	412	0.73
197.50	198.00	0.03	12.2	0.80	22.90	4500	126	338	0.81
198.00	198.50	0.01	13.8	0.68	24.20	4550	101	313	0.93
198.50	198.80	0.02	17.2	0.81	24.90	4090	183	256	1.37
198.80 199.27	199.27 199.70	0.01	<u>12.7</u> 1.8	0.45	19.95 11.85	5450 4510	321 58	210 157.5	5.33 0.84
199.70	200.15	0.00	5.6	0.03	11.85	6360	168	75.4	3.37
200.15	200.10	0.01	11.1	0.46	21.50	6580	341	88.6	3.86
200.70	201.00	0.02	14.1	0.45	18.80	5290	882	500	4.11
201.00	201.50	0.02	14.3	0.64	22.70	4470	244	171.5	4.36
201.50	202.00	0.02	19.2	0.77	28.70	5980	152	>500	0.98
202.00	202.50	0.03	11.5	0.39	27.90	5850	223	>500	0.85
202.50	203.00		11.3	0.43	23.90	4860	812	>500	0.53
203.00	203.50	0.10	48.9	1.62	24.00 14.75	4500	4290	>500	1.49
203.50 204.10	204.10 204.65	0.04	34.1 13.6	1.09 0.55	14.75	3490 3900	2450 461	>500 >500	1.55 2.91
204.10	204.65		13.0	0.55	22.90	5190	1545	>500	4.87
205.00	205.47	0.40	3.9	0.09	19.80	5580	1343	67.2	28.70
205.47	205.70	0.28	7.2	0.32	23.40	5230	180	377	4.50
205.70	206.36	0.01	0.6	<0.10	17.60	3900	38	>500	0.50
206.36	206.90		0.5	<0.10		3730	38	>500	0.25
206.90	207.33	0.01	0.5	<0.10		3390	16	>500	0.10
207.33	207.90	0.02	1.1	0.12	26.90	3990	33	>500	<0.10
207.90 208.67	208.67 209.03	0.00	0.3	<0.10		4220 2070	54 29	32.4 20.8	<0.10 <0.10
208.67	209.03	0.00	0.2	<0.10 <0.10		1705	30	20.8	<0.10
209.03	210.00		0.7	<0.10		1705	23	39.8	<0.10
210.00	211.00		0.2	<0.10		866	19	10.85	<0.10
212.00	213.00	0.001	0.1	<0.10		829	16	15.15	<0.10
213.00	214.00	<0.001	0.1	<0.10		599	18	11.9	<0.10
214.00	215.00	<0.001	0.1	<0.10	1.45	614	16	10	<0.10
215.00	216.00	< 0.001	0.0	<0.10		621	20	12.5	<0.10
216.00	216.49	< 0.001	0.0	<0.10	1.33	593	16	13.5	<0.10

Zones of highly anomalous or high grade mineralizartion

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond Drilling (DD) core is the sample type. DD Core samples. Half core samples taken for analysis. DD Drilling carried out to industry standard to obtain drill core samples, which are split longitudinally in half along the core axis using a diamond saw. Core samples taken at lithological boundaries or around 0.5 metre intervals. The sample is crushed with a 1kg split taken to pulverization, to obtain four (4) 250 gram pulp samples. A 30g charge is taken from one of the 250 gram pulp packets for fire assay gold analysis and base metal analysis. The remaining pulp samples are retained in a secure storage for future reference.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling from surface by Reverse Circulation method until bad ground and/or excess water prevented further progress. Then, from 52 meters downhole length switch to NQ – 47.6mm diameter Diamond coring Drill hole was collared with PVC until well bedded in competent bedrock. Drill core orientation is measured using Ezy-Mark frontend core orientation tool.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For each core run, total core length is measured with the recovery calculated against drilled length. Recovery averaged around 95%, which is considered acceptable. RC samples homogenized and collected using 'cyclone' system. Sample recovery is maximized by monitoring and adjusting drilling parameters (eg. Mud mix, drill bit hardness, rotation speed, etc). No known relationship has yet to be observed between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Core logging of the mineralized zone has been undertaken to a sufficient level of detail to enable geological interpretation to be undertaken. Lithology, structure, mineralization, alteration, sulphide mineralogy, and Rock Quality Designation (RQD), including fracture density, core recovery, is observed, measured and recorded by the site

Criteria	JORC Code explanation	Commentary
	 The total length and percentage of the relevant intersections logged. 	 geologist and a technician, and entered into a database. Detailed logging is carried out on mineralized sections. A photographic record is also obtained.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All drill core is sawn longitudinally in half – along the core axis using a diamond saw. The core rests in a specifically designed cradle to ensure straight and accurate cutting. No non-core drill hole sampling has been carried out for the purposes of this report. Sample preparation techniques are to industry standard. The sample preparation procedure employed follows volume and grainsize reduction protocols to ensure that a representative aliquot sample is taken for analysis. Core sample submission sizes vary between 2-5kg depending upon sampling interval and recovery. The assay sample sizes are considered to be appropriate for the style of mineralization.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Sample preparation and analytical procedures for gold and base metals are based on industry standards. Quality control for assaying work is based on well established laboratory procedures. Grade control samples have been incorporated into the sample suite. Blank inserted as first sample, and standards and duplicates as every twentieth sample Internal laboratory checks indicate acceptable levels of accuracy and precision External QA/QC procedures are yet to be established but will follow when more data is available
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant core is logged by the on-site geologist and verified by the site supervising geologist. Twinned holes are not appropriate Geological logging of drill core is initially hand written and then transferred to a digital record. All data is stored on the field geologists and supervisors database. Where appropriate, data is transferred to dedicated exploration software for processing.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes are positioned based on locational data available from historic drill hole collar data. Hand held GPS units for positioning are considered adequate at this stage of exploration. All data are projected in WGS84 SUTM Zone 55 grid system. A Digital Terrain Model (DTM) was generated from relief spot heights surveyed every 25 meters, along 100- meters-apart lines transverse to strike of mineralized structure.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing based on providing adequate certainty of existing mineralization trends, and which could be used for resource estimation at an 'Inferred' level of confidence. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mineralisation is hosted in the main by skarn deposits, the orientation of which have been relatively well established. All drilling is carried out at highest possible angles to the deposit, thereby reducing the potential for biased sampling. At this point in the exploration program, the impact of other (ie, not skarn) mineralized structures is not considered material.
Sample security	The measures taken to ensure sample security.	• Drilling is supervised by Company appointed geological consultants and exploration personnel. All samples are retrieved from the drill site at the first opportunity and taken to a secure compound where the core is logged, photographed and sampled. Samples are collected in tagged plastic bags and stored in the compound prior to transportation to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audits or reviews of sampling techniques and data have been undertaken to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration Licence, Title No. 6358, 'Mayfield', located 15km southeast of Tarago, NSW. Capital Mining Ltd has 51% interest in this licence, with the remaining 46.5% interest owned by Rutila Resources Ltd and 2.5% by Roberts Consulting. Licence anniversary date is 23 December 2016. An application for renewal has been lodged with NSW Department of Industry, Resources and Energy. The application is currently pending.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Prospect has been explored by other parties in the past and all data generated by these parties has been assessed as part of Capital Mining's exploration process.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Endoskarn in Devonian granodiorite, Lachlan Fold Belt of southeast Australia Polymetallic copper, zinc, silver, gold, iron in sulphides and oxides

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Drill Hole MAY1 Easting: 753630.7 mE Northing: 6101521 mN RL: 591.5 m End of Hole Length: 261.60 m Collar Dip: -60° Collar Azimuth (Magnetic): 288.7° Drill Hole MAY2: Easting: 753581.2 mE Northing: 6101437 mN RL: 594.1 m End of Hole Length: 216.50 m Collar Dip: -60° Collar Azimuth (Magnetic): 288.7°
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top cutting of assays was done for the reporting of exploration results. Short lengths of high grade (of Cu, Zn or Ag) included within composited intercept are also individually reported. Metal equivalent values are not reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Down hole length of mineralized skarn in MAY 1 is 23.1 meters and in MAY 2 is 20.5 metres. True width is currently unknown although an estimate of between 15-18 metres is considered reasonable.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Plan view of recently completed and historic drill holes is provided in report. Cross sections and other diagrams will be made available after all drill hole results (including geophysical surveys) have been come assessed and interpreted.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The detailed reporting of the MAY 2 results from 66 samples in this announcement is considered balanced.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 These results should be read in the context of other exploration results about this project and released previously to the market by the Company

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Upon the analysis and interpretation of all geological and geophysical data (including that data yet to be acquired), the Company will release appropriate plans and diagrams of any proposed exploration program going forward.