MANNAR PROJECT DRILLING COMPLETED ENCOUNTERING SIGNIFICANT HEAVY MINERAL CONCENTRATIONS PRIORITY AREAS FOR RESOURCE EXPANSION DRILLING IDENTIFIED

HIGHLIGHTS

- Drilling by the project vendor has encountered significant heavy mineral concentrations up to 3 kilometres inland from the previously reported resource envelope.
- High grade heavy mineral occurrences have been noted up to 400 m landward of the previously reported JORC inferred resource envelope on the adjacent mainland.
- Preparation of samples from the 2016 drilling have now been completed and will be consigned to a specialist mineral sands laboratory.
- The Company anticipates being able to lodge a notice of meeting seeking shareholder approval for the acquisition of the Sri Lankan heavy minerals sands projects this month.

Abstract

The Board of Titanium Sands Limited (ASX:TSL) ("TSL") is pleased to report that it has received an update from the Mannar Island mineral sands project vendor that concentrations of heavy minerals have been identified at surface in locations up to 450 m landward of the previously reported JORC resource envelope at the Mannar Island Project in Sri Lanka (Figure 1).

Figure 2 shows high concentrations of heavy mineral sands at a location (HG1 in Figure 1) 250 m inland of the previously reported JORC resource envelope.* In another location on the mainland shoreline north east of Mannar Island (HG2 in Figure 1) heavy mineral accumulations have been observed from the coast up to 450 m inland.

A panned concentrate sample from 400 m inland is shown in Figure 3.

As a result priority drilling zones have been defined to expand the resource envelope further landward by 400 to 500 m at three locations with the total area of proposed drilling exceeding $10 \mathrm{~km}^{2}$ (Figure 1). Following completion of the acquisition of Srinel Holdings Ltd ("Srinel") it is anticipated that TSL will commence this drilling in the June quarter of this year.

Srinel has advised that during 2016 a total of 608 drill holes (of 1,000 in total) were drilled on the tenure that is to be acquired by TSL. Visual logging of the drilling has identified areas of heavy mineral concentration up to 3 Km inland from the previously reported JORC inferred resource envelope along the north east shoreline of Mannar Island (Figure 1). This area is contained within the expanded project area (as announced $29^{\text {th }}$ January 2016).

Samples from these 608 holes are those to be sent for laboratory analysis. Accordingly an amended collar and total depth list of drill holes is appended here and replaces any previous tabulation of the 2016 drilling (Table 1).

Figure 1 Mannar Island Project, showing resource extension priority drilling.

Figure $\mathbf{2}$ High grade heavy mineral sand concentrations 250 m landward of the JORC resource envelope at location HG1 in Figure 1.

Figure 3 Concentrate of heavy minerals panned from a $\boldsymbol{\sim} \mathbf{2 k g}$ sample from $\mathbf{4 5 0 m}$ inland at location HG2 in Figure 1.
*An initial JORC inferred mineral resource of 10.3 Mt with total heavy mineral (THM) of 11.7\% compiled by independent consultants was reported in full to the Australian Securities Exchange on the 22 April 2015. This resource was based on a historical drill hole data base of 785 auger drill holes and from the 115 holes drilled in early 2015. The drilling and the defined resource envelope was largely confined to within 150m of the Mannar Island shoreline. The Company confirms that this resource statement remains current in regards to the areas covered by the drilling used in the resource model.

Except where indicated, exploration results above have been compiled by James Searle BSc (hons), PhD, a Member of the Australian Institute of Mining and Metallurgy, with over 34 years of experience in metallic and energy minerals exploration and development, and as such has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Searle is the Managing Director of Titanium Sands Limited and consents to the inclusion of this technical information in the format and context in which it appears.

Table 1 Mannar Island Project drill holes drilled in 2016

DHID	Northing W	Easting WG	Total Depth
MA083	9.0893	79.7422	1.4
MA084	9.0908	79.7469	1.4
MA085	9.0912	79.747	1.5
MA086	9.0916	79.7472	1.5
MA087	9.0915	79.7389	1.5
MA088	9.0214	79.739	1.8
MA089	9.0925	79.7392	1.5
MA090	9.0929	79.7395	1.3
MA091	9.0932	79.7398	1.7
MA092	9.0935	79.74	1.5
MA093	9.0938	79.7403	1.3
MA094	9.0942	79.7406	0.8
MA095	9.0948	79.7405	1.8
MA096	9.0950	79.7409	1.5
MA097	9.0954	79.7411	1.3
MA098	9.0959	79.7412	1.8
MA099	9.0963	79.7415	1.5
MA100	9.0967	79.7415	1.4
MA101	9.0971	79.7419	1.2
MA102	9.0976	79.742	2.2
MA103	9.0979	79.7422	2.5
MA104	9.0983	79.7424	1.0
MA105	9.0988	79.7426	2.9
MA106	9.0992	79.7428	2.1
MA107	9.0995	79.743	1.4
MA108	9.1000	79.2431	2.5
MA109	9.1004	79.7432	2.0
MA110	9.1009	79.7434	2.3
MA111	9.1014	79.7435	1.7
MA112	9.1017	79.7436	1.7
MA113	9.1022	79.7438	1.8
MA114	9.1026	79.7441	1.9
MA115	9.1030	79.7441	1.8
MA116	9.1035	79.7442	2.0
MA116	9.1035	79.7442	1.6
MA118	9.1043	79.7522	3.0
MA119	9.1039	79.7522	3.0
MA120	9.1035	79.7518	2.5
MA121	9.1031	79.7516	1.4
MA122	9.1027	79.7512	2.0
MA123	9.1024	79.751	1.3

DHID	Northing W	Easting WG	Total Depth
MA125	9.1016	79.7505	1.3
MA126	9.1013	79.7502	1.3
MA127	9.1010	79.7497	1.5
MA128	9.1005	79.7496	1.3
MA129	9.1000	79.7497	1.9
MA130	9.0996	79.7495	2.0
MA131	9.0992	79.7493	3.0
MA132	9.0988	79.7493	1.5
MA133	9.1026	79.7666	1.3
MA134	9.1022	79.7665	1.5
MA135	9.1017	79.7664	1.9
MA136	9.1014	79.7659	1.6
MA137	9.0921	79.7474	1.4
MA138	9.0924	79.7477	1.5
MA139	9.0928	79.7479	1.5
MA140	9.0933	79.748	2.5
MA141	9.0938	79.7482	2.3
MA142	9.0941	79.7484	1.6
MA143	9.0946	79.7485	1.5
MA144	9.0950	79.7486	1.3
MA145	9.0954	79.7487	1.5
MA146	9.0960	79.7486	1.8
MA147	9.0965	79.7485	2.5
MA148	9.0970	79.7484	2.0
MA149	9.0974	79.7485	2.7
MA150	9.0978	79.7488	3.0
MA151	9.0981	79.7492	2.0
MA152	9.0986	79.7493	2.3
MA153	9.0902	79.7546	0.9
MA154	9.0906	79.7548	1.5
MA155	9.0910	79.755	1.3
MA156	9.0915	79.7551	1.4
MA157	9.0919	79.7552	1.3
MA158	9.0923	79.7552	1.5
MA159	9.0928	79.7554	1.4
MA160	9.0932	79.7556	1.8
MA161	9.0936	79.7558	1.5
MA162	9.0941	79.7558	1.5
MA163	9.0945	79.7559	1.4
MA164	9.0949	79.7561	1.3
MA165	9.0953	79.7563	1.5

DHID	Northing W	Easting WG	Total Depth
MA166	9.0957	79.7565	1.2
MA167	9.0962	79.7567	1.3
MA168	9.0966	79.7568	2.0
MA169	9.0969	79.7571	1.8
MA170	9.0973	79.7573	1.4
MA171	9.0978	79.7575	1.5
MA172	9.0982	79.7576	1.9
MA173	9.0986	79.7577	2.0
MA174	0.0990	79.758	2.1
MA175	9.0994	79.7582	4.0
MA176	9.1000	79.7582	6.0
MA177	9.1002	79.7584	5.8
MA178	9.0971	79.7647	1.3
MA179	9.0897	79.7625	0.6
MA180	9.0901	79.7625	0.8
MA181	9.0905	79.7628	0.8
MA182	9.0909	79.7631	1.0
MA183	9.0914	79.7632	0.7
MA184	9.0918	79.7633	1.0
MA185	9.0922	79.7634	0.9
MA186	9.0927	79.7635	0.4
MA187	9.0931	79.7637	1.8
MA188	9.0935	79.764	0.6
MA189	9.0939	79.764	0.7
MA190	9.0944	79.764	0.5
MA191	9.0948	79.7642	0.5
MA192	9.0952	79.7643	0.5
MA193	9.0957	79.7644	1.0
MA194	9.0961	79.7645	0.5
MA195	9.0966	79.7646	0.8
MA196	9.0974	79.7649	1.5
MA197	9.0978	79.7652	3.5
MA198	9.0982	79.7655	1.4
MA199	9.0983	79.7657	1.7
MA200	9.0986	79.7657	1.7
MA201	9.0991	79.7658	3.6
MA202	9.0995	79.7659	2.5
MA203	9.0999	79.7663	1.5
MA204	9.1006	79.766	0.5
MA205	9.1002	79.7733	0.5
MA206	9.0997	79.7731	0.5
MA207	9.0991	79.773	1.2
MA208	9.0988	79.7728	3.7

DHID	Northing W	Easting WG	Total Depth
MA209	9.0984	79.7727	1.8
MA210	9.0979	79.7726	1.0
MA211	9.0975	79.7725	1.0
MA212	9.0970	79.7724	0.5
MA213	9.0966	79.7723	0.5
MA214	9.0961	79.7722	0.5
MA215	9.0957	79.772	0.8
MA216	9.0953	79.7719	0.5
MA217	9.0949	79.7717	0.5
MA218	9.0944	79.7716	0.4
MA219	9.0940	79.7717	0.5
MA220	9.0936	79.7714	0.4
MA221	9.0931	79.7711	0.4
MA222	9.0927	79.7711	0.5
MA223	9.0923	79.771	0.5
MA224	9.0918	79.7709	0.5
MA225	9.0914	79.7708	0.7
MA226	9.0909	79.7706	0.5
MA227	9.0904	79.7705	0.5
MA228	9.0900	79.7704	0.2
MA229	9.0895	79.7702	0.5
MA230	9.0890	79.7701	0.4
MA231	9.0886	79.7777	1.5
MA232	9.0890	79.7777	2.0
MA233	9.0895	79.7778	0.5
MA234	9.0899	79.7781	1.0
MA235	9.0904	79.7784	0.5
MA236	9.0909	79.7782	0.5
MA237	9.0913	79.7783	0.7
MA238	9.0917	79.7785	0.4
MA239	9.0921	79.7788	0.8
MA240	9.0926	79.7789	0.4
MA241	9.0930	79.7788	0.5
MA242	9.0934	79.779	0.6
MA243	9.0939	79.7788	0.8
MA244	9.0942	79.7794	1.0
MA245	9.0947	79.7794	0.5
MA246	9.0952	79.7795	1.4
MA247	9.0957	79.7796	0.5
MA248	9.0961	79.7798	0.8
MA249	9.0965	79.7799	0.5
MA250	9.0970	79.78	0.4
MA251	9.0974	79.7801	0.5

DHID	Northing W	Easting WG	Total Depth
MA252	9.0978	79.7802	0.8
MA253	9.0881	79.7853	0.8
MA254	9.0885	79.7853	1.0
MA255	9.0890	79.7855	1.0
MA256	9.0894	79.7856	0.9
MA257	9.0899	79.7857	0.9
MA258	9.0903	79.7858	0.7
MA259	9.0908	79.786	0.4
MA260	9.0911	79.7861	0.5
MA261	9.0916	79.7863	1.2
MA262	9.0920	79.7864	1.0
MA263	9.0924	79.7865	0.7
MA264	9.0929	79.7866	0.7
MA265	9.0933	79.7869	0.7
MA266	9.0938	79.7869	0.9
MA267	9.0941	79.7872	0.7
MA268	9.0946	79.7871	0.5
MA269	9.0951	79.7872	0.8
MA270	9.0956	79.7873	0.5
MA271	9.0962	79.7873	0.6
MA272	9.0967	79.7875	0.3
MA273	9.0970	79.7877	0.5
MA274	9.0974	79.7879	0.8
MA275	9.0979	79.788	0.7
MA276	9.0959	79.7949	1.6
MA277	9.0954	79.7947	1.8
MA278	9.0950	79.7946	2.0
MA279	9.0945	79.7947	1.4
MA280	9.0941	79.7945	2.5
MA281	9.0937	79.7943	0.6
MA282	9.0933	79.7942	0.5
MA283	9.0928	79.7941	0.8
MA284	9.0928	79.794	0.5
MA285	9.0920	79.7939	0.8
MA286	9.0915	79.7939	0.5
MA287	9.0910	79.7938	0.6
MA288	9.0906	79.7936	0.8
MA289	9.0902	79.7933	0.6
MA290	9.0896	79.7934	0.5
MA291	9.0892	79.7933	0.5
MA292	9.0887	79.7932	0.6
MA293	9.0883	79.7931	0.5
MA294	9.0879	79.793	0.5

DHID	Northing W	Easting WG	Total Depth
MA295	9.0875	79.7929	1.2
MA296	9.0923	79.8014	2.0
MA297	9.0919	79.8013	2.4
MA298	9.0915	79.8011	1.4
MA299	9.0910	79.8011	1.3
MA300	9.0906	79.8009	1.3
MA301	9.0901	79.801	0.8
MA302	9.0897	79.8007	6.0
MA303	9.0893	79.8006	1.3
MA304	9.0888	79.8005	0.7
MA305	9.0883	79.8003	1.5
MA306	9.0879	79.8002	1.3
MA307	9.0875	79.8001	1.0
MA308	9.0870	79.8	0.7
MA309	9.0864	79.8072	3.8
MA310	9.0868	79.8074	5.5
MA311	9.0873	79.8075	3.8
MA312	9.0877	79.8076	3.0
MA313	9.0882	79.8078	3.3
MA314	9.0885	79.8079	2.8
MA315	9.0890	79.808	2.5
MA316	9.0894	79.8081	2.2
MA317	9.0898	79.8083	2.5
MA318	9.0903	79.8084	1.0
MA319	9.0907	79.8085	2.5
MA320	9.0889	79.8136	1.9
MA321	9.0885	79.8134	4.5
MA322	9.0880	79.8133	3.1
MA323	9.0876	79.8132	2.5
MA324	9.0872	79.813	2.3
MA325	9.0867	79.8129	2.3
MA326	9.0863	79.8127	2.1
MA328	9.0892	79.7378	2.0
MA329	9.0896	79.7379	0.6
MA330	9.0903	79.7382	0.7
MA331	9.0907	79.7384	0.7
MA332	9.0912	79.7386	0.6
MA333	9.0862	79.745	0.8
MA334	9.0866	79.7452	0.7
MA335	9.0871	79.7454	0.7
MA336	9.0875	79.7455	1.0
MA337	9.0879	79.7456	0.6
MA338	9.0883	79.7458	0.7

DHID	Northing W	$\begin{gathered} \text { Easting } \\ \text { WG } \end{gathered}$	Total Depth
MA339	9.0887	79.746	0.8
MA340	9.0891	79.7462	0.6
MA341	9.0896	79.7464	0.7
MA342	9.0899	79.7465	0.6
MA343	9.0902	79.7466	0.5
MA344	9.0906	79.7467	0.5
MA344	9.0906	79.7467	0.5
MA345	9.0896	79.7544	0.6
MA346	9.0892	79.7543	0.7
MA347	9.0888	79.7541	1.5
MA348	9.0884	79.754	0.7
MA349	9.0880	79.7537	1.3
MA350	9.0875	79.7536	0.5
MA351	9.0871	79.7534	1.0
MA352	9.0867	79.7533	0.7
MA353	9.0863	79.7532	0.8
MA354	9.0859	79.7529	1.0
MA355	9.0854	79.7528	0.9
MA356	9.0850	79.7527	0.5
MA357	9.0847	79.7526	0.5
MA358	9.0843	79.7524	0.7
MA359	9.0839	79.7523	0.8
MA360	9.0834	79.7521	0.8
MA361	9.0625	79.7999	0.9
MA362	9.0630	79.7999	0.9
MA363	9.0632	79.8005	0.5
MA364	9.0635	79.8007	0.5
MA365	9.0639	79.801	0.5
MA366	9.0642	79.8013	0.5
MA367	9.0647	79.8015	0.8
MA368	9.0650	79.8018	1.0
MA369	9.0654	79.8021	0.5
MA370	9.0657	79.8023	0.6
MA371	9.0661	79.8026	1.0
MA372	9.0664	79.8029	1.3
MA373	9.0669	79.8032	1.0
MA374	9.0674	79.8031	1.0
MA375	9.0893	79.7624	1.0
MA376	9.0888	79.7623	1.0
MA377	9.0884	79.7621	0.9
MA378	9.0880	79.762	0.8
MA379	9.0875	79.7618	1.0
MA380	9.0872	79.7615	1.0

DHID	Northing W	Easting WG	Total Depth
MA381	9.0867	79.7617	1.1
MA382	9.0862	79.7614	2.3
MA383	9.0857	79.7611	1.0
MA384	9.0854	79.7612	2.5
MA385	9.0849	79.7611	1.3
MA386	9.0846	79.7609	5.3
MA387	9.0842	79.7607	1.0
MA388	9.0838	79.7606	1.0
MA389	9.0834	79.7605	1.0
MA390	9.0830	79.7603	1.8
MA391	9.0775	79.7666	0.9
MA392	9.0780	79.7668	0.8
MA393	9.0784	79.7669	0.9
MA394	9.0788	79.7671	0.7
MA395	9.0793	79.7671	1.0
MA396	9.0797	79.7673	0.8
MA397	9.0801	79.7674	0.8
MA398	9.0805	79.7675	0.8
MA399	9.0810	79.7677	0.9
MA400	9.0814	79.7678	0.8
MA401	9.0818	79.7679	0.9
MA402	9.0823	79.7681	0.8
MA403	9.0827	79.7682	0.8
MA404	9.0831	79.7683	0.8
MA405	9.0836	79.7685	0.9
MA406	9.0840	79.7686	0.9
MA407	9.0844	79.7687	0.8
MA408	9.0848	79.7688	0.8
MA409	9.0851	79.7689	0.8
MA410	9.0855	79.7691	0.7
MA411	9.0859	79.7692	0.9
MA412	9.0864	79.7694	0.9
MA413	9.0868	79.7694	0.9
MA414	9.0872	79.7696	0.9
MA415	9.0877	79.7697	0.9
MA416	9.0880	79.7697	0.4
MA417	9.0885	79.97	1.0
MA418	9.0882	79.7776	1.8
MA419	9.0877	79.7774	1.4
MA420	9.0873	79.7772	1.0
MA421	9.0869	79.7771	1.3
MA422	9.0865	79.7771	1.3
MA423	9.0860	79.7769	2.3

DHID	Northing W	Easting WG	Total Depth
MA424	9.0856	79.7768	1.0
MA425	9.0851	79.7767	1.0
MA426	9.0847	79.7765	0.8
MA427	9.0843	79.7764	0.8
MA428	9.0838	79.7763	1.0
MA429	9.0834	79.7762	0.9
MA430	9.0830	79.7761	1.0
MA431	9.0825	79.776	1.0
MA432	9.0821	79.7758	0.9
MA433	9.0817	79.7757	0.8
MA434	9.0812	79.7756	0.8
MA435	9.0808	79.7755	0.8
MA436	9.0804	79.7753	0.9
MA437	9.0800	79.7752	1.0
MA438	9.0795	79.7751	0.8
MA439	9.0791	79.775	1.0
MA440	9.0786	79.7749	1.0
MA441	9.0782	79.7747	1.0
MA442	9.0778	79.7746	1.0
MA443	9.0773	79.7745	0.9
MA444	9.0769	79.7744	1.0
MA445	9.0765	79.7743	1.9
MA446	9.0760	79.7741	1.0
MA447	9.0756	79.774	1.8
MA448	9.0751	79.7739	0.9
MA449	9.0748	79.7738	0.9
MA450	9.0877	79.7851	1.5
MA451	9.0873	79.785	1.4
MA452	9.0868	79.7848	1.3
MA453	9.0864	79.7847	1.4
MA454	9.0859	79.7846	1.0
MA455	9.0855	79.7845	1.4
MA456	9.0851	79.7843	1.3
MA457	9.0848	79.784	1.5
MA458	9.0842	79.7837	1.0
MA459	9.0838	79.784	2.0
MA460	9.0834	79.7839	1.0
MA461	9.0829	79.7838	1.0
MA462	9.0825	79.7837	1.0
MA463	9.0821	79.7836	1.3
MA464	9.0816	79.7835	1.2
MA465	9.0812	79.7833	1.0
MA466	9.0808	79.7833	0.9

DHID	Northing W	Easting WG	Total Depth
MA467	9.0803	79.7832	0.9
MA468	9.0799	79.783	0.8
MA469	9.0795	79.7829	1.0
MA470	9.0791	79.7828	1.0
MA471	9.0787	79.7827	0.7
MA472	9.0783	79.7826	1.0
MA473	9.0778	79.7824	1.0
MA474	9.0774	79.7824	0.7
MA475	9.0770	79.7823	0.8
MA476	9.0765	79.7822	1.3
MA477	9.0761	79.782	1.0
MA478	9.0757	79.7819	0.9
MA479	9.0752	79.7818	0.7
MA480	9.0748	79.7817	0.9
MA481	9.0744	79.7816	0.9
MA482	9.0739	79.7815	0.9
MA483	9.0734	79.7814	1.0
MA484	9.0730	79.7813	0.9
MA485	9.0727	79.7811	0.5
MA486	9.0721	79.7811	0.8
MA487	9.0717	79.7809	1.0
MA488	9.0870	79.7927	1.0
MA489	9.0865	79.7926	1.8
MA490	9.0861	79.7925	1.5
MA491	9.0856	79.7924	0.8
MA492	9.0852	79.7923	1.3
MA493	9.0848	79.7921	0.8
MA494	9.0843	79.792	1.0
MA495	9.0839	79.7919	0.9
MA496	9.0835	79.7912	0.8
MA497	9.0830	79.7917	1.0
MA498	9.0826	79.7916	1.0
MA499	9.0821	79.7915	1.0
MA500	9.0817	79.7914	0.8
MA501	9.0813	79.7912	1.0
MA502	9.0810	79.7912	1.0
MA503	9.0804	79.7911	0.8
MA504	9.0800	79.791	0.8
MA505	9.0795	79.7908	1.0
MA506	9.0791	79.7907	0.8
MA507	9.0787	79.7906	0.8
MA508	9.0782	79.7905	0.8
MA509	79.7904	79.7904	0.8

DHID	Northing W	Easting WG	Total Depth
MA510	9.0774	79.7903	0.3
MA511	9.0769	79.7902	0.8
MA512	9.0765	79.7901	1.0
MA513	9.0749	79.7969	0.9
MA514	9.0753	79.797	0.7
MA515	9.0758	79.7972	0.5
MA516	9.0762	79.7972	0.8
MA517	9.0766	79.7974	0.9
MA518	9.0771	79.7975	1.4
MA519	9.0775	79.7976	0.9
MA520	9.0779	79.7977	1.0
MA521	9.0783	79.7978	1.0
MA522	9.0788	79.7979	2.0
MA523	9.0793	79.798	1.0
MA524	9.0797	79.7982	1.9
MA525	9.0801	79.7983	1.5
MA526	9.0805	79.7984	0.8
MA527	9.0809	79.7985	0.8
MA528	9.0814	79.7986	0.7
MA529	9.0818	79.7987	1.0
MA530	9.0822	79.7988	0.7
MA531	9.0827	79.7989	1.0
MA532	9.0831	79.799	1.0
MA533	9.0835	79.7992	0.9
MA534	9.0840	79.7993	1.3
MA535	9.0845	79.7994	1.1
MA536	9.0849	79.7995	0.9
MA537	9.0853	79.7996	1.0
MA538	9.0857	79.7997	0.9
MA539	9.0862	79.7998	1.0
MA540	9.0866	79.7999	1.0
MA541	9.0675	79.8037	0.8
MA542	9.0678	79.8042	0.8
MA543	9.0681	79.8044	1.0
MA544	9.0685	79.8046	1.0
MA545	9.0689	79.8048	1.0
MA546	9.0693	79.8051	0.9
MA547	9.0697	79.8053	0.6
MA548	9.0700	79.8056	0.9
MA549	9.0703	79.8059	1.0
MA550	9.0706	79.8061	1.2
MA551	9.0709	79.8064	0.8
MA552	9.0713	79.8066	0.9

DHID	Northing W	Easting WG	Total Depth
MA553	9.0717	79.8069	0.8
MA554	9.0721	79.807	0.8
MA555	9.0724	79.8074	0.7
MA556	9.0727	79.8077	1.0
MA557	9.0731	79.808	0.8
MA558	9.0734	79.8082	0.8
MA559	9.0738	79.8085	0.9
MA560	9.0742	79.8088	1.0
MA561	9.0745	79.8091	1.4
MA562	9.0749	79.8093	2.0
MA563	9.0752	79.8096	1.0
MA564	9.0756	79.8099	0.6
MA565	9.0760	79.8101	1.0
MA566	9.0763	79.8104	0.7
MA567	9.0767	79.8107	0.5
MA568	9.0730	79.8169	0.9
MA668	9.0726	79.8262	1.8
MA669	9.0729	79.8265	1.5
MA670	9.0733	79.8268	2.0
MA671	9.0737	79.827	2.0
MA672	9.0740	79.8274	1.4
MA673	9.0744	79.8276	2.0
MA674	9.0695	79.8327	1.9
MA675	9.0687	79.8323	2.1
MA676	9.0687	79.832	2.0
MA677	9.0684	79.8317	2.0
MA678	9.0680	79.8314	2.0
MA679	9.0677	79.8311	1.5
MA680	9.0673	79.8308	1.6
MA681	9.0670	79.8305	1.8
MA682	9.0667	79.8302	1.9
MA683	9.0664	79.8301	1.7
MA684	9.0659	79.8297	0.9
MA685	9.0656	79.8294	2.0
MA687	9.0647	79.829	1.0
MA1071	9.0638	79.8375	2.0
MA1072	9.0642	79.8376	2.3
MA1073	9.0647	79.8377	2.5
MA1074	9.0652	79.8378	2.1
MA1075	9.0697	79.8329	2.7
MA1076	9.0701	79.8331	2.3
MA1077	9.0705	79.8335	2.3
MA1078	9.0712	79.834	2.5

DHID	Northing W	Easting WG	Total Depth
MA1079	9.0716	79.8342	2.5
MA1080	9.0719	79.8345	2.3
MA1081	9.0723	79.8348	2.5
MA1082	9.0726	79.835	2.2
MA1083	9.0729	79.8352	2.5
MA1084	9.0732	79.8355	2.5
MA1085	9.0735	79.8357	2.5
MA1086	9.0746	79.8279	2.4
MA1087	9.0751	79.8281	2.5
MA1088	9.0755	79.8284	2.1
MA1089	9.0758	79.8287	2.8
MA1090	9.0761	79.829	2.4
MA1091	9.0765	79.8293	2.5
MA1096	9.0782	79.8307	2.5
MA1097	9.0788	79.8306	2.5
MA1098	9.0804	79.7715	1.6
MA1099	9.0809	79.771	1.5
MA1100	9.0814	79.771	1.5
MA1101	9.0822	79.7715	1.7
MA1102	9.0830	79.7719	1.5
MA1103	9.0838	79.7723	1.5
MA1104	9.0834	79.7721	1.3
MA1105	9.0842	79.7725	1.4
MA1106	9.0847	79.7728	1.4
MA1107	9.0856	79.7732	1.5
MA1108	9.0865	79.7734	1.4
MA1109	9.0873	79.7737	1.5
MA1110	9.0869	79.7736	1.5
MA1111	9.0877	79.7738	1.5
MA1112	9.0880	79.7945	1.5
MA1113	9.0884	79.7746	1.3
MA1114	9.0888	79.7748	1.5
MA1115	9.0893	79.7749	2.4
MA1116	9.0899	79.7745	1.9
MA1117	9.0904	79.7745	1.3
MA1118	9.0907	79.7748	1.8
MA1119	9.0916	79.7751	1.2
MA1120	9.0925	79.7753	1.8
MA1121	9.0920	79.7752	1.5
MA1122	9.0929	79.7755	1.5
MA1123	9.0933	79.7756	1.5
MA1124	9.0937	79.7757	1.8
MA1125	9.0942	79.7759	2.9

DHID	Northing W	Easting WG	Total Depth
MA1126	9.0946	79.776	1.9
MA1127	9.0950	79.7761	1.6
MA1128	9.0955	79.7763	1.5
MA1129	9.0963	79.7765	1.5
MA1130	9.0959	79.7764	1.5
MA1131	9.0968	79.7767	1.8
MA1132	9.0972	79.7768	1.8
MA1133	9.0976	79.7769	1.5
MA1134	9.0980	79.7771	1.5
MA1135	9.0985	79.7772	2.2
MA1136	9.0990	79.7774	2.1
MA1137	9.0995	79.7775	1.7
MA1138	9.1000	79.7776	1.0
MA1139	9.0811	79.7634	1.7
MA1140	9.0820	79.7638	1.5
MA1141	9.0829	79.7641	1.5
MA1142	9.0825	79.764	1.4
MA1143	9.0833	79.7644	1.5
MA1144	9.0837	79.7645	1.5
MA1145	9.0846	79.7648	1.6
MA1146	9.0842	79.7647	1.5
MA1147	9.0850	79.765	1.6
MA1148	9.0854	79.7652	1.6
MA1149	9.0859	79.7653	1.5
MA1150	9.0863	79.7655	1.5
MA1151	9.0867	79.7656	1.5
MA1178	9.0716	79.8009	1.9
MA1179	9.0713	79.8006	1.0
MA1180	9.0709	79.8003	0.9
MA1181	9.0706	79.8	0.9
MA1182	9.0703	79.7997	1.0
MA1183	9.0699	79.7994	1.0
MA1184	9.0695	79.7991	1.1
MA1185	9.0692	79.7989	1.0
MA1186	9.0688	79.7986	1.0
MA1187	9.0685	79.7983	1.0
MA1188	9.0682	79.7979	1.0
MA1189	9.0677	79.7977	1.3
MA1190	9.0674	79.7974	1.6
MA1191	9.0670	79.7971	1.6
MA1196	9.0663	79.8074	1.0
MA1197	9.0659	79.8072	0.9
MA1198	9.0655	79.8069	0.9

DHID	Northing W	Easting WG	Total Depth
MA1199	9.0651	79.8067	0.9
MA1200	9.0649	79.8062	1.1
MA1201	9.0646	79.8055	1.0
MA1202	9.0640	79.8055	2.8

MA1203	9.0637	79.8052	1.3
MA1204	9.0634	79.8049	1.9
MA1205	9.0631	79.8046	1.9
MA1206	9.0627	79.8043	1.9
MA1207	9.0623	79.8041	1.9

Appendix 1

JORC TABLE 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)
All drilling, sampling and sample splitting procedures were designed and audited by Dr James Searle, the Competent Person named in the body of this report.

Criteria	Explanation	Commentary
Sampling techniques	- Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	- 100% of recovered sample collected, riffle split, and bagged at drill site. - Sample interval down hole every 0.5 m or part interval. - No sampling below water table.
Drilling techniques	- Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc.).	- Hand auger, vertical, Dormer type shell auger $75 \mathrm{~mm}, 608$ holes, maximum depth 6 m - All holes vertical.

Criteria	Explanation	Commentary
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	- Weight of sample recovered logged against estimate of 100% recovery weight. - For the hand auger holes, reentry depth of auger tip noted against depth achieved before auger withdrawn to recover sample. Hole abandoned if more 3 cm of fall back in hole noted.
Logging	- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. - Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. - The total length and percentage of the relevant intersections logged.	- Recovered samples logged in standardized format for all relevant visual parameters including sediment, rounding, sorting etc. - Logging of visual parameters qualitative but referenced to standard parameter sheets. - All drill hole samples logged at drill site.
Sub-sampling techniques and sample preparation	- If core, whether cut or sawn and whether quarter, half or all core taken. - If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. - For all sample types, the nature, quality and appropriateness of the sample preparation technique. - Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. - Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. - Whether sample sizes are appropriate to the grain size of the material being sampled.	- Samples split at drilling site using a riffle splitter, one pass split. - 12 chute riffle splitter. Sample loaded evenly into splitter on top of removable baffle to ensure optimal split across the splitter. - Custody chain of samples maintained from drill site to controlled storage.
Quality of assay data and laboratory tests	- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. - For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. - Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory	- Sample not yet consigned to laboratory.

Criteria	Explanation	Commentary
	checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	
Verification of sampling and assaying	- The verification of significant intersections by either independent or alternative company personnel. - The use of twinned holes. - Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. - Discuss any adjustment to assay data.	- Prior to the completion of the program the following verification procedures will be undertaken. 1. Independently supervised repeat drilling will twin between 5 and 10\% of holes showing significant heavy mineral mineralisation. 2. One in 20 duplicate samples from splitting and sample preparation will be will be submitted for separate analysis.
Location of data points	- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. - Specification of the grid system used. - Quality and adequacy of topographic control.	- Drill collars located using GPS WGD84 to an accuracy typically of better than 6 m - Topographic control to be determined from subsequent survey and DTM tie in.
Data spacing and distribution	- Data spacing for reporting of Exploration Results. - Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. - Whether sample compositing has been applied.	- Drilling spacing varying from 50 m to 100 m along lines at 800m nominal separations along the mineralisation trend.
Orientation of data in relation to geological structure	- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. - If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	- Shoreline concentrated heavy minerals when preserved by net coastal progradation seaward form strands of mineralisation that can vary from 10s to hundreds of metres wide but many hundreds or metres and kilometres long. Drill lines are therefore optimally oriented across the trend direction of the paleo shoreline positions. Drill hole spacing along the lines were designed to find HM strands as narrow as 25 to 50 m wide. Separation of the drill lines along the paleo shoreline orientations reflects the much greater along shore dimensions of any potentially economic strands.

Criteria	Explanation	Commentary
Sample security	• The measures taken to ensure sample security.	Custody of samples documented, and integrity of packaging monitored.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Duplicated sample splits and samples from twinned holes will be used to demonstrate QA/QC

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Explanation	
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- Granted exploration licenses. - No known overriding interests at this stage. - Normal state royalty regime.
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- Previously reported to the ASX.
Geology	- Deposit type, geological setting and style of mineralisation.	- Holocene to Modern coastal sand deposit hosted heavy mineral sands
Drill hole Information	- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. - If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	- Tabulation of all drill hole information contained within Table 1 of the announcement above, with the exception of RL which will be provided later when a DTM is available. At this time collar elevation is considered not material due to the lack of significant elevation changes over the area.
Data aggregation methods	- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are	- No laboratory results available at this time.

Criteria	Explanation	
	usually Material and should be stated. - Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. - The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	- These relationships are particularly important in the reporting of Exploration Results. - If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. - If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	- Heavy mineral zones in beach sediments are flat or only very shallowly dipping. All drill holes were vertical.
Diagrams	- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	- Plans of drill hole locations historical and subject of this announcement are provided. - Sectional representations not considered relevant as the drill depths were rarely more than 2 m .
Balanced reporting	- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	- All holes drilled on the controlled tenure are contained in Table 1.
Other substantive exploration data	- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	- Not applicable.
Further work	- The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). - Diagrams clearly highlighting the areas of possible extensions, including the main geological	- Drilling will now be carried out to decrease spacing to 400 m $x 50$ to 100 m in the areas reported to date. - First pass drilling will also commence in a 10 km 2 zone landward of the previously

Criteria	Explanation	
	interpretations and future drilling	report JORC inferred
	areas, provided this information is	resource envelope.
	not commercially sensitive.	Shown in Figure 1

