ASX Release: 27 April 2017

Venus Metals Corporation Limited ACN 123 250 582

CORPORATE DIRECTORY

Mr Matthew Hogan Non-Executive Chairman

Mr Kumar Arunachalam Chief Executive Officer

Mr Terence Hogan Non-Executive Director

CAPITAL STRUCTURE Issued Shares (ASX: VMC): 69,964,693

Issued Options (ASX: VMCOA): 31,449,491

Market Cap: \$8.4 million

CONTACT DETAILS

Mezzanine Level BGC Centre, 28 The Esplanade, Perth Western Australia, 6000 **Tel:** +61 (0) 8 9321 7541 **Fax:** +61 (0) 8 9486 9587 **Email:** info@venusmetals.com.au

www.venusmetals.com.au

PINCHER WELL ZINC PROSPECT (YOUANMI): SHALLOW, HIGH-GRADE ZINC INTERCEPTS

HIGHLIGHTS

- Thick high-grade Zinc mineralisation has been intersected, at shallow depth, in recent RC drilling at the Pincher Well Zinc-Copper Prospect (E57/1019).
- The drill results include:

VPW40	10m @ 7.31% Zinc from 52 m
including	6m @ 9.5% Zinc from 55 m
VPW60	7m @ 4.2% Zinc from 87 m
VPW62	10m @ 5.1% Zinc from 68 m

- This reconnaissance drilling, over an established IP anomaly, confirms the presence of significant thick, shallow, 'up-dip/plunge' extensions to the south of the known North Dome zinc-copper mineralisation.
- Mineralisation remains open along strike, and at depth, and appears to projecting to surface to the south, towards the 'Linda Gossan'.
- An accelerated exploration program is now being planned by Venus Metals. This program will include additional geophysical surveys (ground magnetic and IP surveys) and drilling in order to continue to delineate the high-grade zones of Zinc mineralisation along the highly prospective southern extensions of the Pincher Well prospect.
- The Pincher Well Volcanogenic Massive Sulphide Trend covers more than 5 kilometres of strike and hosts a number of known zinc and copper prospects including a substantial body of zinc mineralisation at North Dome (ASX Release: 28 October 2016).

ASX Code: VMC

1.0 Introduction

The Directors of Venus Metals Corporation Limited (ASX: VMC) are pleased to announce that the reconnaissance RC drilling was successfully completed along two east-west IP anomaly lines (ASX release 28 October 2016) at Pincher Well North Dome Zinc-Copper Prospect.

2.0 Pincher Well Zinc-Copper VMS Trend

The Pincher Well VMS Trend is located 600km north-northeast of Perth and forms part of Venus Metals Corporation Ltd.'s ('Venus') Youanmi gold & base metal project. The tenements (E 57/986 & 1019) hosting the Trend are situated 15 km southwest of the Youanmi Gold Mine and processing plant. The Youanmi region is well serviced by significant infrastructure associated with historical and ongoing mining operations in the region including those at Windimurra & Sandstone.

The Pincher Dome VMS Trend covers more than 5 kilometres of strike and hosts a number of known zinc and copper prospects including the Linda & Franca Gossans, PW17 zinc discovery and a substantial body of zinc mineralisation at **North Dome** (Figure 1).

Figure 1– Interpreted Pincher Well geology with prospects, mineralisation defined by drilling (red) and Partially tested IP target (purple).

3.0 RC Drilling on IP Targets:

An Induced Polarisation (IP) survey has identified significant shallow 'up-dip' extensions, to the south, of the known North Dome mineralisation (ASX release 28 October 2016). A higher chargeability zone up to 15mV/V was reported in two southernmost east-west lines which remain open to the south. Eight RC drillholes (Table 1) were drilled for a total of 980 metres, along these two east-west oriented lines spaced 200m apart (6821700 N and 6821900 N) with 100m spacing between the drill holes.

Drill Line	Drillhole ID	Easting GDA94 Z50	Northing GDA94 Z50	Depth	Azi	Dip
E-W Line 1	VPW38	673900	6821700	120	270	-60
	VPW40	674000	6821700	120	270	-60
	VPW42	674100	6821700	120	270	-60
	VPW44	674200	6821700	120	270	-60
E-W Line 2	VPW60	673900	6821900	120	270	-60
	VPW62	674000	6821900	126	270	-60
	VPW64	674100	6821900	114	270	-60
	VPW66	674200	6821900	140	270	-60

Table-1. Details of RC Drillholes

4.0 Drill Results-High Grade Zinc Mineralisation:

Seven drillholes has intercepted a **high-grade Zinc mineralisation at shallow depth.** Better intercepts include:

VPW40	10m @ 7.31% Zinc from 52 m
including	g 6m @ 9.5% Zinc from 55 m
	1m@ 15% Zinc from 56m
VPW60	7m @ 4.2% Zinc from 87 m
VPW62	10m @ 5.1% Zinc from 68 m

The locations of drillholes are shown in Figure 2. The assay results of mineralised zones (>1% Zinc) are presented in Table-2 and JORC Table in Appendix-1.

The lack of mineralisation at VPW44 is interpreted as being due to the hole possibly being drilled parallel to dipping direction of the folded mineralised formations. A historical vertical drillhole, located just north, reportedly intersected Zinc mineralisation.

Figure 2: VMC drillholes with significant high grade Zn intercepts (>5% Zn) shown on Regional Aeromagnetic Map

Conclusion:

This reconnaissance drilling, over an established IP anomaly, confirms the presence of significant thick, shallow, 'up-dip/plunge' extensions of Zinc mineralisation to the south of the identified North Dome Zinc-Copper mineralisation. These South Extensions to the Zinc mineralisation remain open along strike, and at depth, and appear to be projecting to surface in the south, towards the outcrop of the 'Linda Gossan' (Figure 1).

The Pincher Well Volcanogenic Massive Sulphide Trend covers more than 5 kilometres of strike and hosts a number of known zinc and copper prospects including a substantial body of zinc mineralisation at North Dome (ASX Release: 28 October 2016).

An accelerated exploration program is now being planned by Venus Metals. This program will include additional geophysical surveys (ground magnetic and IP surveys) and drilling in order to continue to delineate the high-grade zones of Zinc mineralisation along the highly prospective southern extensions of the Pincher Well prospect.

Exploration Targets

The term 'Exploration Target' should not be misunderstood or misconstrued as an estimate of Mineral Resources and Reserves as defined by the JORC Code (2012), and therefore the terms have not been used in this context.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Venus Metals Corporation Limited planned exploration program and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward-looking statements. Although Venus Metals Corporation Ltd believes that its expectations reflected in these forward-looking statements are reasonable, such statements involve risks and uncertainties and no assurance can be given that actual results will be consistent with these forward-looking statements.

Competent Person's Statement

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr T. Putt of Exploration & Mining Information Systems, who is a member of The Australian Institute of Geoscientists. Mr Putt has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Putt consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Hole ID	SampleID	From	То	Zn ppm	Cu ppm	Ag ppm	Au ppm	S ppm	Sn ppm	In ppm	Fe%	Ti %	Significant Zn Mineralisation in Wtd Avg
VPW38	4026	63	64	46400	1420		0.2	128000)	24.3	13.9	0.02	
VPW38	4027	64	65	11100	1750		0.21	256000		20	23.4		2m @ 2.88% Zn (63-65m)
VPW40	4068	49	50	18600	255		0.06	18100)	11	9.77	0.05	
VPW40	4071	52	53	11300	550		0.05	13400)	5.4	13.9	0.04	
VPW40	4072	53	54	90800	455		0.07	90600	270	74	13.1	0.03	
VPW40	4073	54	55	26600	530		0.1	85800	140	18.4	11.8	0.05	
VPW40	4074	55	56	83500	515	5	0.09	101000)	41.8	10.5	0.02	
VPW40	4075	56	57	150000	635		0.45	147000	510	113	11.7	0.03	
VPW40	4076	57	58	92500	550		0.15	120000	160	72.6	13.7	0.02	10 m @ 7.31 % Zn (52-62m), Including 6m @ 9.53% Zn from 55m and
VPW40	4077	58	59	85200	540		0.17	117000)	63.6	14.2	0.01	1m@15%Zn from 56m
VPW40	4078	59	60	89100	480		0.09	108000)	73.5	13.7	0.02	
VPW40	4079	60	61	71700	1140		0.11	163000)	61.9	24.2	0.02	
VPW40	4080	61	62	30200	1390	7	0.11	187000)	27.8	30.2	0.03	
VPW40	4081	62	63	10700	830		0.31	266000)	9.4	42.5	0.02	
VPW40	4083	64	65	21000	620		0.18	102000)	15.3	18.6	0.02	
VPW40	4086	67	68	19900	540		0.12	148000)	17.1	31.7	0.05	
VPW42	4134	79	80	13700	275		0.05	42700)	6.3	7.93	0.05	
VPW42	4135	80	81	28200	340		1.68	73900)	16.1	9.91	0.02	3m @ 1.76% Zn (79-82m), including 1m @ 1.68 g/t Au from 80m
VPW42	4136	81	82	10800	275		0.06	51800)	6.7	10.2	0.05	
VPW42	4143	90	91	19100	590	22	0.09	74300)	6.6	11.1	0.05	1m @ 1.91% Zn and 22 g/t Ag (90-91m)
VPW42	4146	95	96	28600	1290	8	0.25	130000)	13.1	16.9	0.04	
VPW42	4147	96	97	16300	1450	8	0.28	148000	140	6.9	21.8	0.03	Am = 2.27% Zn including 0 Eq./t Aq/0E 00m)
VPW42	4148	97	98	14900	1430	9	0.41	118000)	6.2	18.6	0.03	411 @ 2.27% 21, including 5.5g/t Ag(55-5511)
VPW42	4149	98	99	31000	1470	13	0.16	210000)	11.5	29.9	0.07	
VPW66	4250	116	117	12300	235		0.07	43300)	3	22.8	0.09	
VPW66	4252	118	119	33900	265		0.24	71700)	8	18.5	0.09	
VPW66	4254	120	121	27300	150		0.03	36600)	3.7	21.5	0.05	
VPW66	4255	121	122	45700	255		0.11	76200)	10.5	20.8	0.03	Am @ 2 21% 7n (120 124m) including 1m @ 4 57% 7n from 121m
VPW66	4256	122	123	39900	240		0.07	63400)	17.5	21.6	0.02	4m @ 3.31% 2h (120-124m) including 1m @ 4.37% 2h from 121m
VPW66	4257	123	124	19500	385		0.07	56400)	4.8	20.9	0.02	
VPW66	4261	127	128	16000	165		0.13	28900)	12.5	23.8	0.02	
VPW60	4296	60	61	10500	395		0.04	10000)	4.9	14.2	1.15	
VPW60	4315	87	88	38300	195		0.09	48400)	21.5	10.3	0.11	
VPW60	4316	88	89	30000	385		0.24	72700)	21.3	11.8	0.11	
VPW60	4317	89	90	77800	465		0.24	86300)	93.2	9.81	0.05	
VPW60	4318	90	91	18500	160		0.16	33000)	7.9	6.77	0.07	7m @ 4.16% Zn (87-94m) including 1m @7.78% Zn from 89m
VPW60	4319	91	92	38900	225		0.37	56900)	30.4	8.69	0.14	
VPW60	4320	92	93	50900	550		0.22	113000	140	50.5	22.9	1.48	
VPW60	4321	93	94	37100	390		0.31	87000	110	21.5	18.7	0.18	
VPW62	4360	64	65	45500	375		0.19	51000)	21.8	8.57	0.04	
VPW62	4361	65	66	51700	300		0.17	48300	130	31.4	13	0.03	
VPW62	4362	66	67	23300	375		0.13	65400)	16.4	18.7	0.05	

Table-2 Assay results of RC drillholes with Zinc mineralisation >1% Zn

Hole ID	SampleID	From	То	Zn_ppm	Cu_ppm	Ag_ppm	Au_ppm	S_ppm	Sn_ppm	In_ppm	Fe%	Ti %	Significant Zn Mineralisation in Wtd Avg
VPW62	4363	67	68	36300	400		0.11	67200		32.7	14.5	0.07	
VPW62	4364	68	69	44200	705		0.37	85200		19.3	12.4	0.06	
VPW62	4365	69	70	76300	700		0.22	75500		25.3	8.18	0.03	
VPW62	4366	70	71	71500	490		0.11	106000		36.6	14	0.12	
VPW62	4367	71	72	33800	240		0.19	47300		8.6	9.19	0.19	16m @ 4.36 % Zn (64-80m), including 10m @5.11 % Zn
VPW62	4368	72	73	53400	605		0.18	56400		18.4	8.48	0.1	from 68m
VPW62	4369	73	74	32800	295		0.09	51600	110	24.5	8.99	0.14	
VPW62	4370	74	75	21200	240		0.24	45100		12.8	11.9	0.21	
VPW62	4371	75	76	80700	495		0.16	85100	190	39.6	10.3	0.11	
VPW62	4372	76	77	61100	400		0.16	69000	120	38.9	9.17	0.07	
VPW62	4373	77	78	36300	350		0.32	63200	110	24.9	9.88	0.11	
VPW62	4374	78	79	19200	395		0.08	52600		13.9	10	0.12	
VPW62	4375	79	80	10700	165		0.05	25000		6.7	5.47	0.08	
VPW64	4428	91	92	11300	225		0.04	31300		2.4	17.6	0.03	
VPW64	4431	94	95	12900	200		0.12	36700		10.1	23.9	0.06	
VPW64	4433	96	97	16300	190		0.07	33900		11.6	15.9	0.06	
VPW64	4434	97	98	24900	220		0.09	51200		9.9	17.6	0.02	
VPW64	4435	98	99	40900	140		0.11	44300		4.9	13.5	0.03	6m @ 2.33% Zn (96-102m) including 1m @ 4.09% Zn
VPW64	4436	99	100	24400	265		0.08	52600		5.1	19.8	0.03	from 98m
VPW64	4437	100	101	13500	390		0.19	57900		5.6	9.62	0.02	
VPW64	4438	101	102	19900	435		0.12	89400		10.9	13.8	0.07	
VPW64	4447	112	113	19400	185		0.05	45700		6.1	22.6	0.14	
VPW64	4448	113	114	23200	120		0.04	37600		6.7	18.5	0.38	

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information 	 Venus Metals Corporation carried out an exploration Reverse Circulation (RC) drilling program comprising 8 holes within their Pincher Well tenement (E5701019). Chip samples from the RC drilling were sampled for the complete drill holes using a combination of 3m and 2m composite chip samples and 1m chip samples. 1 m sample intervals were selected for assaying using elevated Zinc values based on a handheld XRF instrument. All the samples were sent for assay at SGS, Lab Perth
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The RC drilling comprised 980 m of drilling from 8 drill holes (VPW38, 40, 42, 44, 60, 62, 64 and 66) All the RC drill holes drilled west with an orientation of 270° N and a dip of -60°.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Visual assessment of the RC chip samples suggests good recovery with minimal losses, if any. Sampling was undertaken using the Spear method to ensure representativeness of the samples. Relationship between the sample recovery and grade is difficult to establish in this initial phase of RC drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical 	 The drill holes have been qualitatively logged using visual findings by the VMC Project Geologist. The logged information can be correlated with future resource

Criteria	JORC Code explanation	Commentary
	 studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	estimation models.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RC samples were collected from the rig-mounted rotary splitter. The RC chip samples were sampled using the Spear method and 2-3 kg of samples were collected and placed in calico bags labelled with respective Sample ID's. For the 3m and 2m composite samples, two scoops of samples from each meter were collected using the Spear method and the sampled were placed in the calico bags labelled with the Sample ID. The calico bags were secured and a series of 5 calico bags were further placed in plastic bags. All the plastic bags were placed together in a bulka Bag and sent for assay to SGS Lab, Perth.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The SGS, Perth laboratory assaying techniques utilized for analysis were appropriate for the submitted samples. Samples were prepared by drying and pulverizing the samples using SGS -PRP86 method. Sample digestion using Sodium Peroxide fusion method (DIG90Q followed by ICP-MS analysis (IMS90Q) for Ga, In, Sc, Sn, Tl, & W; ICP OES analysis (ICP90Q) for Ag, As, Co, Cu, Fe, Ni, Pb, S, Ti, V and Zn Fire Assay method (FAA303) for Au
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All composite and 1m split samples were verified by the accompanying Company Project Geologist in the field before submitting to the Laboratory for assaying. No adjustments to assay were done.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 The drill hole collars were located using a hand held GPS (accurate to <10m) in MGA 94, Zone 50.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill holes were drilled along two east-west oriented lines spaced 200m apart (6821700 N and 6821900 N). 100m spacing was maintained between the drill holes within a line.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All the drill holes were inclined and drilled to the west following 270° Azi and 60° dip.
Sample security	The measures taken to ensure sample security.	 RC chip samples were collected and properly secured in calico bags labelled with respective Sample ID's by the Field staff and the accompanying Project Geologist. Further, a series of 5 calico bags were grouped together and placed in plastic bags and secured with zip ties. All the plastic bags were placed together in a Bulka Bag and sent for assay to SGS Lab, Perth.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 In this preliminary exploratory phase of drilling, no audits of sampling techniques were conducted.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration License (E5701019) is granted by DMP and is 100% owned by VMC.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historical exploration drilling data (Diamond, RC, PER, RAB), and geophysical data by previous companies were utilised.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 VHMS-styled Zn-Cu-Au deposit within felsic to intermediate volcano- sedimentary tuff sequence and commonly associated with exhalative BIF and chert layers.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• The drill hole collar data is summarised in Table-1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Weighted average grade with Zn > 1% was used
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation intersected in the drillholes represents downhole length and true thickness and width of mineralization is yet to be ascertained.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps are presented in ASX announcement
Balanced	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades 	• Drill hole assay results including high and low grades of Zn% is

Criteria	JORC Code explanation	Commentary
reporting	and/or widths should be practiced to avoid misleading reporting of Exploration Results.	reported in Table 2, no balanced reporting is required.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The current exploration drilling was aimed targeting an inferred IP anomaly. The drilling also aimed to understand the dip /trend of mineralization reported from some historic drill holes in the vicinity. No other current exploration work is reported and historic records and repots of the exploration and drilling by previous companies are available.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• The current exploration reveals a shallow flat lying North-east plunging ore body. The boundaries of the ore body appear to remain open in all dimensions especially along the North and South which needs to be ascertained by another systematic drilling program.