ASX ANNOUNCEMENT

30 April 2017

MARCH 2017 QUARTERLY REPORT

The Board of Salt Lake Potash Limited (**the Company** or **Salt Lake**) is pleased to present its Quarterly Report for the period ending 31 March 2017. Highlights for the quarter and subsequently include:

Corporate

Pilot Plant

- After discussions with major international Sulphate of Potash (SOP) producers and distributors, the Company has formed the view that the best path forward for the Goldfields Salt Lakes Project (GSLP) is to construct a Pilot Plant to demonstrate the technical and commercial viability of brine SOP production, before expanding to long term optimal production levels on a staged, modular basis.
- The Company has appointed Amec Foster Wheeler (AMEC) to prepare an analysis of the options for constructing a 20,000-40,000tpa SOP Pilot Plant, processing brine feed drawn from the near surface Measured Resource.

Capital Raising and Executive Appointment

- The Company is currently completing a bookbuild to raise funds to be used for the planning and initial construction costs of the Pilot Plant, as well as ongoing exploration and development costs and working capital. Results of the placement are expected to be announced on 2 May 2017.
- Mr Will Longworth, an experienced potash mining executive, was appointed as Chief Operating Officer.

Development and Processing

- Expansion of the Goldfields Salt Lakes Project to now comprise nine salt lakes totalling over 4,750km².
- > The Lake Wells surface aquifer trenching program continued with a further 89 shallow test pits and an additional 125m long trial trench in the shallow aquifer excavated.
- The off-lake aircore drilling program, targeting the Lake Wells paleochannel, was completed successfully intersecting Basal Paleochannel Sediments along the entire length of the paleochannel unit. Planning for a further on-lake drilling program at Lake Wells has commenced and a drill rig is expected to be mobilised when available.
- The Site Evaporation Trial (SET) at Lake Wells continued to process brine and produce harvest salts. The SET has to date processed approximately 189 tonnes of brine and producing harvest salts on a continuous basis.
- A range of process development testwork continues to significantly enhance the Lake Wells process model. The Company successfully produced 5.5kg of SOP at 98% purity at SGS Laboratories in Perth. Initial evaporation testwork on Lake Ballard brine also indicates excellent potential to produce Sulphate of Potash (SOP) and additional co-products.
- The Company completed a heritage survey of Lake Ballard with a number of senior traditional custodians. A field team will mobilise shortly to undertake a comprehensive staged work program at Lake Ballard.

Enquiries: Matthew Syme Telephone: +61 (8) 9322 6322

PILOT PLANT

As announced on 20 April 2017, Amec Foster Wheeler (AMEC) has been appointed to prepare an analysis of the alternatives for the Company to construct a Pilot Plant at the Goldfields Salt Lakes Project (GSLP), intended to be the first salt-lake brine Sulphate of Potash (SOP) production operation in Australia.

A PFS on the full-scale production model is continuing and the Pilot Plant will form a part of the feasibility study process.

Salt Lake has been in discussions since last year with a range of international industry SOP and specialist fertiliser producers and distributors, including several global market leaders, about the optimal way to realise Salt Lake's outstanding potential in the global SOP market.

Based on those discussions, the Company has formed the view that the appropriate path forward is to initially construct a Pilot Plant to demonstrate the technical and commercial viability of brine SOP production from the GSLP, before expanding the plant to long term optimal production levels on a staged, modular basis. AMEC have been engaged to initially consider a 20,000-40,000tpa Pilot Plant processing only brine feed drawn from the near surface Measured Resource.

The Company believes the advantages of the Pilot Plant approach are:

- Proof of concept for SOP production from salt-lake brines in Australia. This will substantially
 de-risk the full-scale project, with commensurate improvement in financing costs and
 alternatives. While substantial salt-lake brine production of SOP is undertaken in China, Chile
 and the USA, it is new in Australia and overseas production models need to be tested and
 adapted for Australian conditions.
- Refinement of design and costing of engineering elements at Pilot Plant scale may result in considerable cost savings at larger scale.
- Market acceptance of a new product in conservative agricultural markets is best achieved progressively and in conjunction with existing, established partner(s). It is important to establish Salt Lake's product(s) as premium, sustainable nutrients in the key long term markets and staged production increases are the best way to achieve this objective.
- A Pilot Plant offers an accelerated pathway to initial production, with limited infrastructure requirements and a faster, simpler approval process. The Pilot Plant is intended to operate for 12-24 months to establish parameters for larger scale production, and the Company's objective is to commence construction in 2017, harvesting first salts in 2018.
- Relative ease of financing a Pilot scale plant. Initial indications are that a Pilot Plant of this scale (40,000tpa) would cost up to US\$35m. While the Pilot Plant's principal objective is to prove the technical concept, the Company intends for it to still be cashflow positive. While economies of scale for a Pilot Plant are limited, the Goldfields Salt Lakes Project's considerable location and infrastructure advantages will be important in sustaining its economic parameters.

Several of the global SOP industry parties have expressed a keen interest in partnering with Salt Lake to market and distribute Pilot Plant production, as well as to provide technical and financial assistance in design and construction of the Plant. Those discussions are ongoing however, Salt Lake notes that the discussions are incomplete and there is no guarantee the discussions will result in any firm offtake, technical or other arrangements.

CAPITAL RAISING

The Company is currently completing a bookbuild in the United Kingdom and Australia to raise funds to be used for the planning and initial construction costs of the Pilot Plant, as well as ongoing exploration and development costs and working capital. Results of the placement are expected to be announced on 2 May 2017.

EXPERIENCED POTASH MINING EXECUTIVE APPOINTED AS COO

Subsequent to the end of the quarter, the Company appointed an experienced international potash mining engineer, Mr Will Longworth, as Chief Operating Officer (a non-board appointment). Mr Longworth is an Australian Mining Engineer with over 25 years of experience across a broad range of mining operations as well as in project analysis and development. For the past 10 years, Mr Longworth has principally been involved in large potash projects around the world, including for Vale and Rio Tinto on the Kronau Potash Project in Saskatchewan, Canada and Potasio Rio Colorado Potash Project in Argentina.

LAKE WELLS

Surface Aquifer Trenching Program

An 8.5 tonne amphibious excavator was mobilised late last year to gather further geological and hydrological data about the shallow brine aquifer hosted by the Quaternary Alluvium stratigraphic sequence in the upper 20 meters of Lake Wells.

The aim of the program is to evaluate the geology of the shallow Lake Bed Sediments, and to undertake pumping trials to provide estimates of the potential brine yield from trenches in the shallow sediment.

The excavator program is also providing important geological and geotechnical information for potential siting and construction of trenches and on-lake brine evaporation ponds.

A total of 89 test pits and one trench of 125m were excavated in the quarter, bringing the total program to date to 232 test pits and 8 trenches over the lake playa (refer to Figure 1).

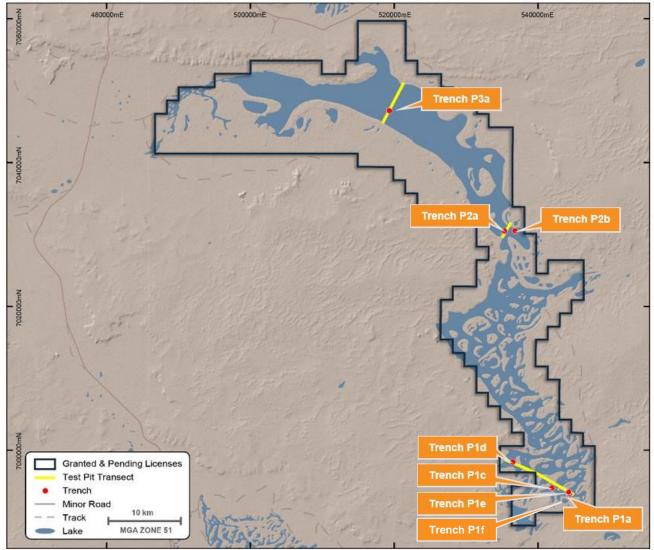
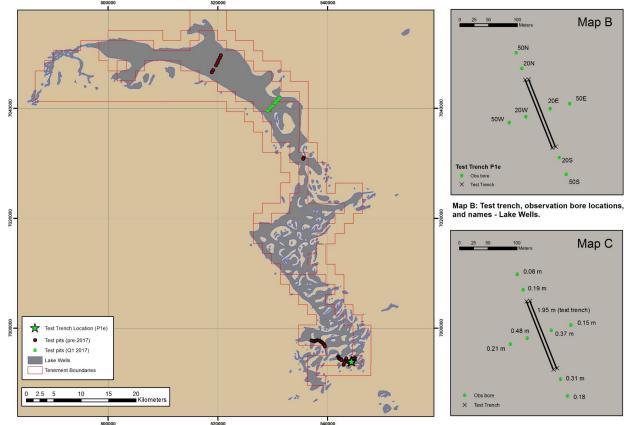


Figure 1: Map of Lake Wells Trench Locations

Of the total of 89 test pits that were constructed for this quarter, three included geotechnical sampling pits in the south and the rest (86) were standard test pits in transects across the northern arm of the lake. The pits confirm lithology and permeability of upper lake bed sediments and demonstrate spatial continuity of the surface aquifer. The test pits are 1m wide x 1.5m long and 4.5 m deep. The test pits were logged for geology descriptions while the brine inflow locations and mechanisms were noted. The geological material was sampled and stored for PSD (Particle Size Distribution) analyses and further processing.

The work completed during the quarter built on previous investigations of the shallow aquifer throughout 2016, including hydraulic testing of test pits and medium term pumping tests at 2 test trenches.


Long Term Pumping Test – Test Trench P1e

The Company conducted a long term pumping test on test trench P1e located at the south-eastern extent of Lake Wells (Figure 2 – Maps A and B). The trial involved excavating a trench with dimensions 125m (length) x 4.5m (average depth) x 3m (average width) and pumping the trench for 25 days with groundwater level monitoring in the trench itself and at nearby observation bores (Figure 2 – Map C). The testing was conducted as a "constant head test" whereby flow rate was adjusted to maintain a constant trench water level. Drawdown was observed at nearby observation bores placed at distances of 20 and 50m (Figure 2 – Map B) in four main directions around the trench.

Results from the testing are provided in Figures 4 through 8 while findings are summarised as follows:

- The initial pumping rate ranged between 3-6 L/s for the first 4 days while removing trench storage which subsequently dropped to 0.8 - 1.5 L/s. This coincided with the trench storage being dewatered and brine flowing from the surrounding aquifer.
- An average pumping rate was recorded at ~1.2 L/s over the full 25 days. Cumulative pumping volume during the test were measured at 2,666 m³ (Figure 5) or 2.7 megalitres (ML).
- After ~ 3.5 days pumping, the trench water levels stabilised at approximately 2.10m below ground or 1.95m drawdown.
- Small rainfall events (≤ 2 mm) were recorded over the duration of the test however this had negligible impact on groundwater levels (Figures 4,7 and 8).
- Of note is the delayed response to drawdown at wells further from the trench (observation bores at 50m distance). This is consistent with an unconfined aquifer, where the draw down cone of dewatered sediment propagates outward from the pumping centre.
- Drawdown was observed at all observation bores and after 25 days ranged between 0.08 and 0.48m (Figure 7). Drawdown at all bores demonstrates spatial connection of the Lake Bed Aquifer.
- Highest drawdown was observed to the west of the trench while moderate drawdown was observed to the south and east. Lowest drawdown was observed to the north (observation bore 50 N). The above findings indicates that aquifer permeability is slightly lower toward the north when compared to the east, south and west of the immediate aquifer material surrounding the trench (Figure 9).
- This spatial variability in drawdown is likely a reflection of some aquifer heterogeneity within the shallow Lake Bed sediments.
- Brine chemistry was consistent throughout the duration of the test with the potassium concentrations reported an average at 5,600 mg/l.

Map A: Location Map and Site Activities during Q1, 2017 - Lake Wells.

Map C: Test Trench P1e: final drawdown (m) after 25 days pumping.

Figure 3: Test trench P1e before and during the pumping test

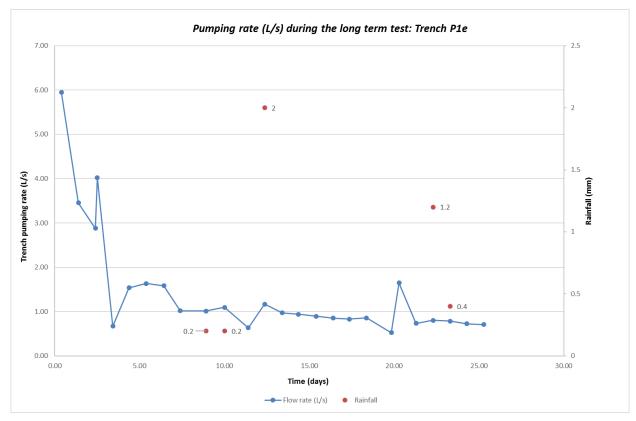


Figure 4: Pumping rate (L/s) during the long-term test at P1e

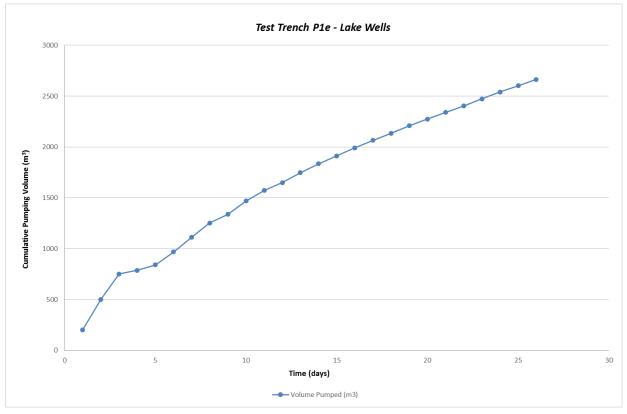
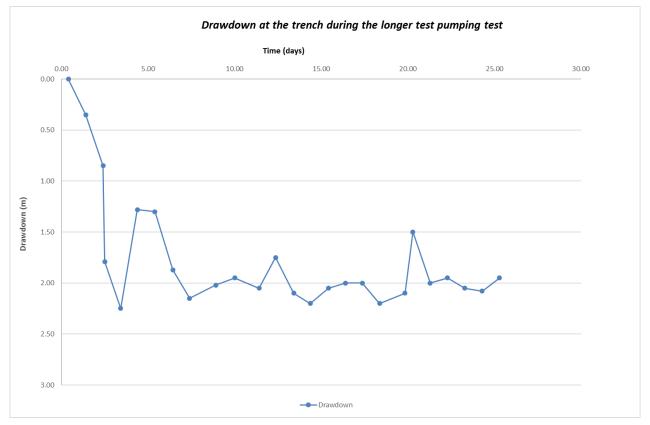



Figure 5: Cumulative pumping volume during the long-term test at P1e

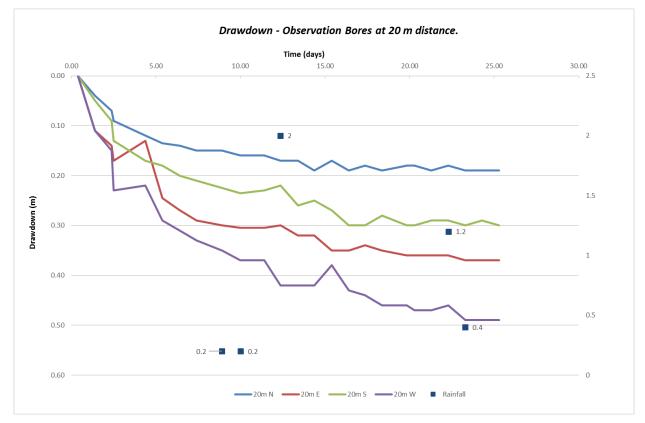


Figure 7: Drawdown at observation bores spaced at 20 m distance from the test trench at P1e

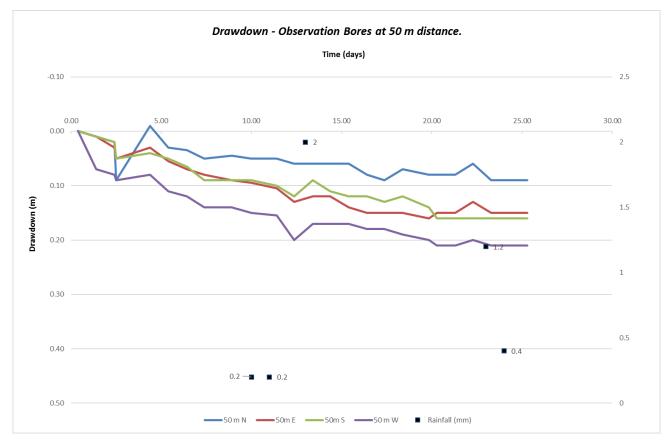


Figure 8: Drawdown at observation bores spaced at 50 m distance from the test trench at P1e

Hydraulic Testing of Additional Test Pits

Hydraulic testing in the shallow test pits continued throughout the quarter. An additional 89 pits were excavated across the Lake and pump recovery tests were conducted on 15 test pits. The pump recovery tests consist of installation of a water level logger and then rapid evacuation of brine from the test pit with a high yield brine pump. After drainage, the recovery of the brine water level in the pit from the surrounding aquifer is measured with the water level loggers. The recovery data is fitted to slug test algorithms and the hydraulic conductivity (K) values tabled. The slug test algorithms included the Horslev (1951) and Bouwer & Rice (1976) methods.

Analysis of drawdown-recovery data was undertaken to obtain permeability data from the Lake Bed Aquifer in the northern part of the lake and the calculated hydraulic conductivity (K) ranged between 0.3 and 20m/day for 9 test pits, ranging from LTTT208 through LTWW216. These values are considered moderate to high for sedimentary aquifers and support the potential of the Lake Bed Aquifer to yield brine to a trenching system.

Hydraulic conductivity of the test pits are consistent with values obtained from other locations across Lake Wells. A summary of all permeability data from test pits is presented in Figure 9. The sample values recorded in 2017 fall within the medium to upper range of values to date.

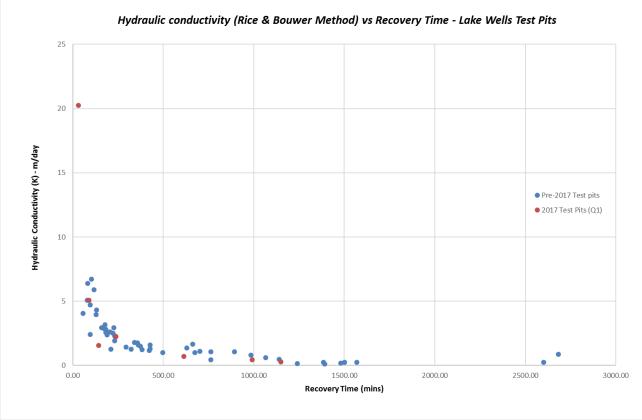


Figure 9: Hydraulic conductivity (m/day) at all test pits

Process Testwork

The proposed process for production of SOP at Lake Wells is based on evaporating brine in a series of solar ponds to induce the sequential precipitation of salts, firstly eliminating waste halite and eventually producing potassium-containing salts (harvest salts) in harvest ponds. These harvest salts are then processed by a combination of attrition, flotation, conversion and crystallisation into SOP and other end products.

Site Evaporation Trial

A large scale, continuous Site Evaporation Trial (SET) continued at Lake Wells to refine process design criteria for the halite evaporation ponds and subsequent harvest salt ponds (see Figure 10).

The objectives of the SET are to:

- Refine the solar evaporation pathway, under actual site conditions, for Lake Wells brine. The analysis of this pathway will refine the salting points of the various salts along the evaporation pathway allowing for the completion of a detailed mass balance for the pond system;
- Confirm the quality and quantity of brine and salts produced at the various points along the evaporation path;
- Define the distribution in various salts of potassium, magnesium and sulphate through the evaporation system;
- Provide design information for brine in-flow requirements, pond area, required number of ponds and flow requirements between ponds for a commercial facility; and
- Determine opportunities for recycle of bittern or salt that may improve potassium, magnesium or sulphate recovery to the harvest salts.
- Provide bulk salt samples for further process testwork and production of bulk SOP samples for potential offtake partners and customers.
- Provide inputs for crystallisation test work.

Brine is introduced daily to the first halite pond, from a small, hand dug surface trench. The brine progresses on a continuous basis through a series of six progressively smaller ponds as it concentrates through evaporation: two halite ponds; two transition ponds; and two harvest salt ponds.

The initial Train of evaporation ponds was established in October 2016 and Train 2 was established and brought up to capacity in the March quarter.

Figure 10: SET with both brine trains in operation

To date approximately 189 tonnes of Lake Wells brine has been processed through the SET across Trains 1 and 2, establishing an initial continuous load of salts and enriched brine. During the quarter, approximately 75t of Lake Wells brine was processed through both trains of the SET. Approximately 750kg of harvest salt was collected at an average potassium grade of 6.4% and optimum harvests have had potassium grades up to 9.7%.

The SET is currently producing over 100 kilograms of harvest salts per week for further testing. The harvest salts recovered from the SET contain up to 50% Kainite (KMg(SO₄)Cl.3(H2O)), a potassium double salt which the Company has successfully processed into SOP in laboratory tests.

The large quantity of salt produced via the SET is being collected for further work including larger scale production of commercial samples for potential customers and partners around the world.

Figure 11: Harvest salts produced by the SET

Process Testwork - SGS

The Company has also been undertaking ongoing process optimisation work at SGS Laboratories in Perth to improve the attrition, flotation, conversion and crystallisation process for production of SOP from harvest salts.

An initial SOP production program was also undertaken to generate samples for further product testwork and distribution to potential customers and marketing partners. The process route used was based on previous SOP production testwork by Hazen Laboratories in Colorado, with some variations to take account of equipment availability and different harvest salt characteristics. A 46kg sample of Lake Wells harvest salt was processed by SGS Laboratories and after initial "sighter tests" to assess attritioning methods, pH and reagent properties, the sample was batch processed to successfully produce 5.5kg of SOP, with the following properties:

	Unit	Actual
Potassium Sulfate Equivalent (K ₂ SO ₄)	%	98
Potassium Oxide Equivalent (K ₂ O)	%	52
Chloride (CI)	%	0.2
Magnesium (Mg)	%	0.05
Sulfate (SO ₄)	.%	57
Sulfur Equivalent (S)	%	19
Moisture (H ₂ O)	.%	1.4

Table 1: Chemical composition of sample (BCR06-LW) produced at SGS

Figure 12: Lake Wells standard grade SOP samples

Laboratory testwork completed to date indicates:

- Halite waste salt is readily separated from Kainite double salts via flotation under standard flotation conditions using modest additions of commercially available reagents; and
- Conversion and crystallisation of flotation products can produce SOP which complies with or exceeds industry quality standards;

Laboratory scale work on Lake Wells harvest salts is ongoing, to further refine and enhance the process flowsheet to prefeasibility study standard and to produce further bulk samples for customers and for granulation, compaction and other studies.

Harvest salt samples have also been distributed to other internationally recognised laboratories to verify and refine the results achieved to date at Hazen and SGS.

LAKE BALLARD

Lake Ballard is located in the Goldfields region of Western Australia approximately 140km north of Kalgoorlie. Salt Lake's holding comprises 788km² of granted and 66km² of exploration license applications, substantially covering the Lake Ballard playa. The Company also holds exploration licence applications covering Lake Marmion and the paleochannel joining the two lakes.

Lake Ballard and its sister lake, Lake Marmion, share potentially the best location of any brine SOP project in Australia; located either side of the Goldfields Highway, Leonora-Esperance rail line and the Goldfields gas pipeline, within the major Goldfields mining centre of Western Australia.

The Lakes and the paleochannel beneath them host a very large brine pool. Limited sampling indicates that Lake Ballard has different brine chemistry to Lake Wells, so initial evaporation tests were important to understand the potential to produce viable salts from Lake Ballard brine for production of SOP.

The Lake Ballard area is not presently covered by native title and does not have any registered Aboriginal heritage sites. The Company has recently completed a heritage clearance survey over the area, receiving full approval to commence exploration.

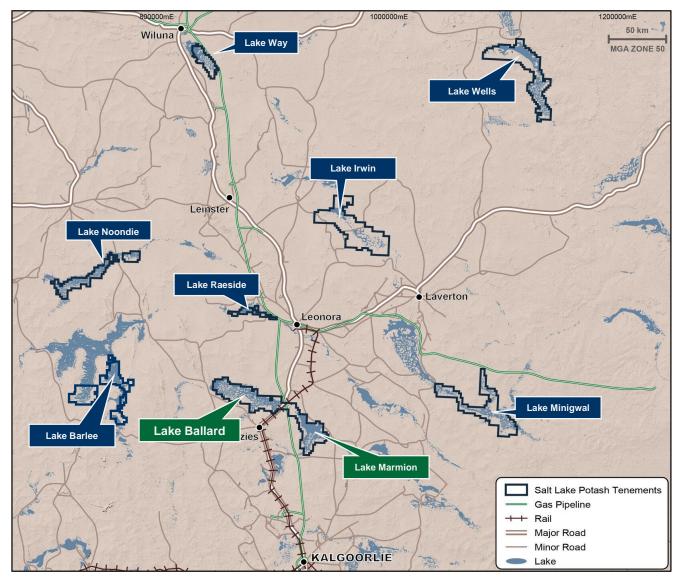


Figure 13: Goldfields Salt Lakes Project Tenements

Process Development Testwork

The Company engaged international laboratory and testing company, Bureau Veritas (BV), in Perth, to conduct the initial brine evaporation test under simulated average Lake Ballard site conditions.

The aim of the BV trials was to monitor the chemical composition of the brine and salts produced through the evaporation process to establish:

- Types of product salts that may be produced through the natural solar evaporation path;
- Concentration thresholds in the brine chemistry which can be used to maximise the recovery of harvest salts and minimise the quantity of dilutive salts into a process plant;
- The quantity and composition of SOP product salts for the plant feed in potential commercial production; and
- The potential for any additional co-products that may be produced with minimal additional inputs.

The chemistry of Lake Ballard's brine differs from Lake Wells' brine. An objective of the testwork was to determine the impact on the evaporation process with the different chemistry and the effect this has on the precipitation pathway and production of different salts.

The preliminary test consisted of evaporation of 260L of brine at simulated Lake Ballard average weather conditions using infra-red lamps for temperature control and air flow across the brine surface provided by a fan.

The bulk sample chemistry was broadly similar to the historical average of Lake Ballard brine samples:

Brine Chemistry	K (mg/L)	Mg (mg/L)	SO₄ (mg/L)	TDS (mg/L)
Bulk Sample	1,940	11,600	15,200	279,346

From the initial 308kg charge, 5.6kg of harvest salts (dry basis) containing a potassium equivalent of 12.5% SOP by weight were collected and analysed for chemical composition and crystal structure. Note this harvest was not intended to be representative of operating harvest parameters.

The results of the trial can be seen in Figure 14 below:

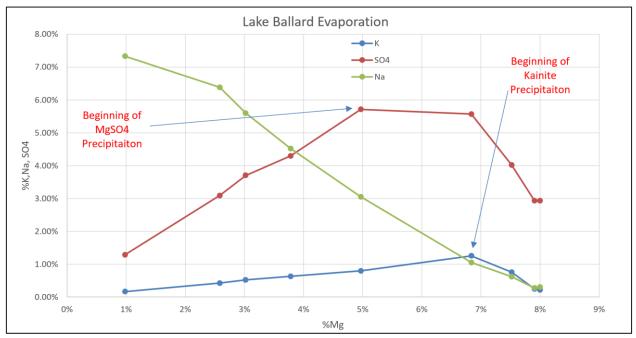


Figure 14: Major ion concentration in brine as a function of magnesium concentration

This chart shows the sharp transition from halite dominated salts to a magnesium sulphate mixed salt and finally to potassium harvest salts.

Observations from the preliminary evaporation trial include:

- The starting brine was highly saturated with dissolved salts in its natural state, meaning the time taken to begin precipitation of salt was relatively short. The potassium concentration of the brine increased to 4,000 mg/L, similar to Lake Wells brine, in approximately 10 days (note, summertime evaporation rates will be higher than other seasons).
- 2) High purity halite (>97% on a dry basis) is produced initially in substantial quantities.
- 3) There is a clear transition to production of magnesium salts, with up to 35% kieserite (MgSO₄.H₂O) identified by XRD analysis.
- 4) Potassium magnesium salts are then produced in various phases, including kainite and carnalite. These salts are readily amenable for processing into SOP, in a similar process to Lake Wells.

The magnesium sulphate salt precipitation phase differs from the evaporation pathway for Lake Wells brine. kieserite and epsom salts (MgSO₄.7H₂O) are valuable fertiliser products for both the domestic and export markets. In particular, kieserite has a substantial market in South-East Asia and Lake Ballard's considerable transport cost advantages support the potential for production of kieserite and other by-products, including potentially MgCl₂ and NaCl.

The short evaporation timeframe for potassium concentration; the potential to produce valuable co-products and Lake Ballard's size and location advantages gives considerable encouragement for the Project's capacity to support a large, long life SOP (and co-product), brine evaporation operation.

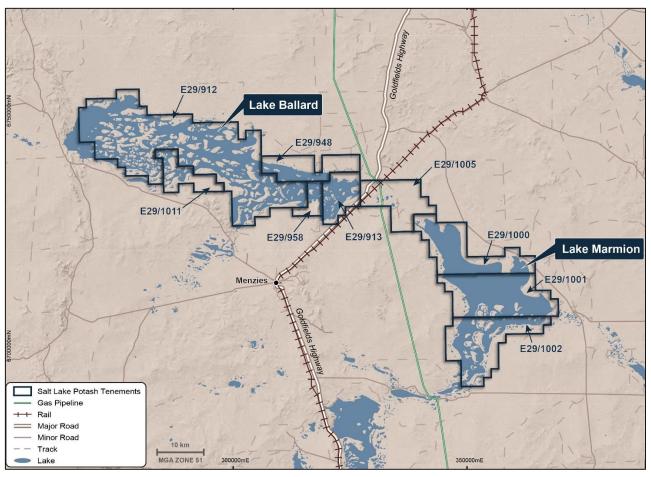


Figure 15: Lakes Ballard and Marmion

Geophysical Survey Substantiates Historical Investigations

The Lake Ballard and Lake Marmion area has been the subject of considerable historical exploration. Previous hydrogeological investigations, including geophysical surveys and drilling programs, were undertaken by the Geological Survey of Western Australia. The most useful data were three North-South transects drilled between Lake Ballard and Lake Marmion to explore the trunk palaeodrainage that originates to the west of Lake Ballard and flows to the east beneath Lake Marmion before discharging into the Eucla/Officer Basins. The 31 holes were drilled using wireline coring with samples being retained and stored at the GSWA core library in Carlisle (see Figure 16).

A description of the hydrogeology between the two lakes was provided by Langford (1997). The lower Tertiaryaged paleochannel sequence comprises an upper alluvium / colluvium (10 to 20m), dense plasticine clay (50 to 60m) and basal sands (10 to 20m thick) that are incised into the Archaean granite and greenstone basement. In places, there are silcrete and sandy intervals within the plasticine clay providing a different stratigraphy to other paleodrainages. The basal sands are commonly fine to coarse-grained sand that form a deeper aquifer being about 80m bgl (below ground level) in the west (estimated from ground-based geophysics) and about 120m bgl at the east of Lake Ballard (see Figure 17).

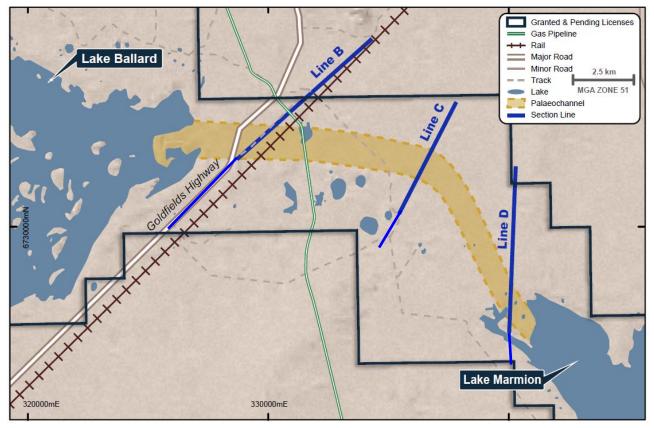
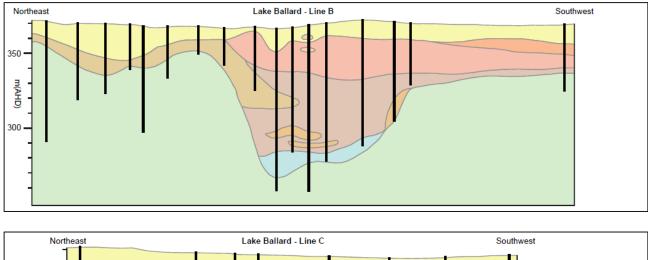
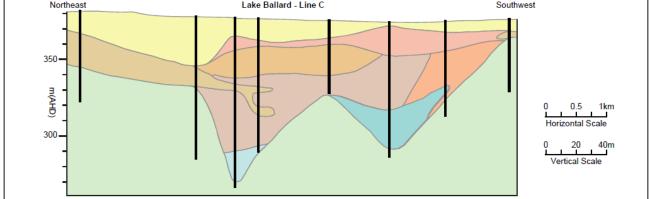




Figure 16: Location of GSWA paleochannel drilling transects

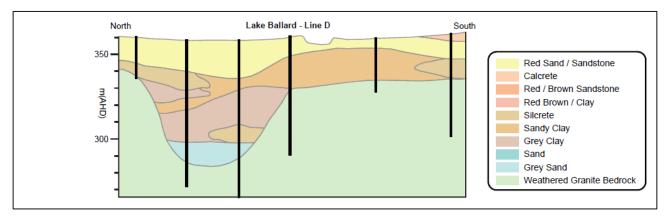


Figure 17: Paleochannel cross-section interpreted from GSWA drilling

Geophysics Survey Underway

Salt Lake Potash engaged Atlas Geophysics to undertake a geophysical survey at Lake Ballard with the primary objectives of resolving the geometry of the paleovalley, and to define the position, depth and thickness of the paleochannel.

Gravity data was collected on 14 transects during November and December 2016. Transect lengths were between 6 and 20 km with gravity data collected at 100 m intervals (see Figure 18).

Figure 18: Completed geophysical transects

Preliminary interpretation of the gravity data confirmed the presence of the paleochannel thalweg (deepest part of the paleochannel) beneath Lake Ballard and deepening towards Lake Marmion. There is good correlation between the preliminary gravity profiles and geological data from the exploratory drilling transects drilled by the Geological Survey of Western Australia in the late 1980s – this further demonstrates the continuation of the paleochannel between Lakes Ballard and Marmion.

In addition to the ground gravity survey, historical gravity data was also obtained from previous leaseholders. This data was collected from airborne surveys in the mid-2000s at 500 m intervals along 1000 m spaced N-S lines that extended over the eastern portion of Lake Ballard and Lake Marmion. Combined with the ground gravity data over Lake Ballard, a preliminary analysis was undertaken by Core Geophysics suggesting the combined datasets would be useful for more precise mapping of the paleochannel.

In the next quarter, the existing datasets will be further analysed and interpreted to generate a 3-D appreciation of the paleochannel extent and distribution. There will be specific modelling of each gravity profile and integration with the historical airborne data to support site selection for proposed exploratory drilling.

The geophysical survey work completed has confirmed the deep paleochannel aquifer has been encountered in the west and east of the lake, supporting the inferred paleochannel being continuous beneath the lake. The inferred paleochannel is interpreted to have a depth of between 80 and 120m below ground level. The full length of the inferred paleochannel beneath Lakes Ballard and Marmion is presented in Figure 19 below.

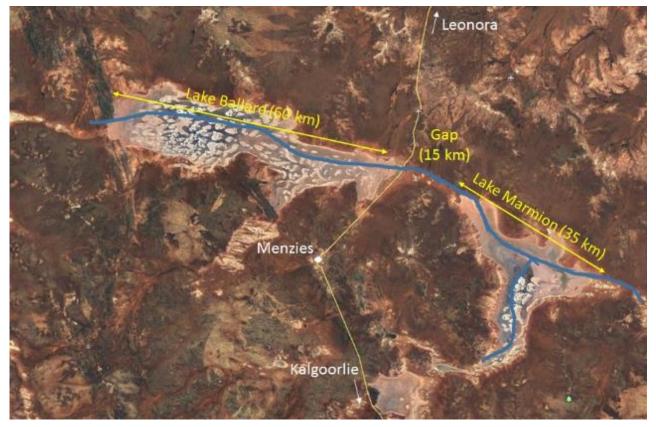


Figure 19: Ballard Marmion inferred paleochannel

Planned Further Work

During the quarter, the Company completed heritage surveys of Lakes Ballard and Marmion with a number of senior traditional custodians, in conjunction with Company personnel and led by Daniel de Gand (anthropologist).

The surveys concluded that the current proposed exploration work will not affect any Sites of Significance.

A field team will mobilise shortly to undertake a comprehensive staged work program at Lake Ballard. This program will likely include:

- 1) Ground reconnaissance and mapping.
- 2) Completion of geophysical surveying and modelling.
- 3) Widespread surface brine sampling.
- 4) Investigation of surface geology and aquifer (to 4.5m) using an amphibious excavator.
- 5) Excavating and test pumping a number of surface trenches.
- 6) Shallow core drilling across the lake.
- 7) Drilling and test pumping of deep paleochannel sand targets.

Golden Eagle Uranium and Vanadium Project

During the quarter, Salt Lake disposed of its residual exploration interest in the Golden Eagle Uranium and Vanadium Project. This was achieved through the sale of the Company's US subsidiary, Golden Eagle Uranium LLC, in exchange for a nominal amount. The disposal allows management to focus on the development of the SOP Potash Projects. The Company's interest in the Golden Eagle Uranium LLC has previously been fully impaired.

Competent Persons Statement

The information in this report that relates to Exploration Results, or Mineral Resources for Lake Wells is based on information compiled by Mr Ben Jeuken, who is a member Australian Institute of Mining and Metallurgy. Mr Jeuken is employed by Groundwater Science Pty Ltd, an independent consulting company. Mr Jeuken has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Jeuken consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to geophysical data and interpretation for Lake Ballard is based on information compiled by Mr Seth Johnson, who is a member of the Australian Institute of Geoscienctists and International Association of Hydrogeology. Mr Johnson is a consultant of Hydroconcept Pty Ltd. ("Hydroconcept"). Hydroconcept is engaged as a consultant by Salt Potash Limited. Mr Johnson has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Johnson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Process Testwork Results is based on, and fairly represents, information compiled by Mr Bryn Jones, BAppSc (Chem), MEng (Mining) who is a Fellow of the AusIMM, a 'Recognised Professional Organisation' (RPO) included in a list promulgated by the ASX from time to time. Mr Jones is a consultant of Inception Consulting Engineers Pty Ltd. ("Inception"). Inception is engaged as a consultant by Salt Potash Limited. Mr Jones has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Jones consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Table 2 - Summary of Exploration and Mining Tenements

As at 31 March 2017, the Company holds interests in the following tenements:

Australian Projects:

Project	Status	Type of Change	License Number	Area (km²)	Term	Grant Date	Date of First Relinquish- ment	Interest (%) 1-Jan-17	Interest (%) 31-Mar-17
<u>Western Australia</u>									
Lake Wells									
Central	Granted	-	E38/2710	192.2	5 years	05-Sep-12	4-Sep-17	100%	100%
South	Granted	-	E38/2821	131.5	5 years	19-Nov-13	18-Nov-18	100%	100%
North	Granted	-	E38/2824	198.2	5 years	04-Nov-13	3-Nov-18	100%	100%
Outer East	Granted	-	E38/3055	298.8	5 years	16-Oct-15	16-Oct-20	100%	100%
Single Block	Granted	-	E38/3056	3.0	5 years	16-Oct-15	16-Oct-20	100%	100%
Outer West	Granted	-	E38/3057	301.9	5 years	16-Oct-15	16-Oct-20	100%	100%
North West	Granted	-	E38/3124	39.0	5 years	30-Nov-16	29-Nov-21	100%	100%
West	Granted	Granted	L38/262	113.0	20 years	3-Feb-17	2-Feb-38	100%	100%
East	Granted	Granted	L38/263	28.6	20 years	3-Feb-17	2-Feb-38	100%	100%
South West	Granted	Granted	L38/264	32.6	20 years	3-Feb-17	2-Feb-38	100%	100%
Lake Ballard									
West	Granted	-	E29/912	607.0	5 years	10-Apr-15	10-Apr-20	100%	100%
East	Granted	-	E29/913	73.2	5 years	10-Apr-15	10-Apr-20	100%	100%
North	Granted	-	E29/948	94.5	5 years	22-Sep-15	21-Sep-20	100%	100%
South	Granted	-	E29/958	30.0	5 years	20-Jan-16	19-Jan-21	100%	100%
South East	Application	-	E29/1011	68.2	-	-	-	-	100%
Lake Irwin									
West	Granted	-	E37/1233	203.0	5 years	08-Mar-16	07-Mar-21	100%	100%
Central	Granted	-	E39/1892	203.0	5 years	23-Mar-16	22-Mar-21	100%	100%
East	Granted	-	E38/3087	139.2	5 years	23-Mar-16	22-Mar-21	100%	100%
North	Granted	-	E37/1261	107.3	5 years	14-Oct-16	13-Oct-21	100%	100%
Central East	Granted	-	E38/3113	203.0	5 years	14-Oct-16	13-Oct-21	100%	100%
South	Granted	-	E39/1955	118.9	5 years	14-Oct-16	13-Oct-21	100%	100%
North West	Application	-	E37/1260	203.0	-	-	-	100%	100%
South West	Application	-	E39/1956	110.2	-	-	-	100%	100%
Lake Minigwal									
West	Granted	-	E39/1893	246.2	5 years	01-Apr-16	31-Mar-21	100%	100%
East	Granted	-	E39/1894	158.1	5 years	01-Apr-16	31-Mar-21	100%	100%
Central	Granted	-	E39/1962	369.0	5 years	8-Nov-16	7-Nov-21	100%	100%
Central East	Granted	-	E39/1963	93.0	5 years	8-Nov-16	7-Nov-21	100%	100%
South	Granted	-	E39/1964	99.0	5 years	8-Nov-16	7-Nov-21	100%	100%
South West	Application	-	E39/1965	89.9	-	-	-	100%	100%
Lake Way									
Central	Granted	-	E53/1878	217.0	5 years	12-Oct-16	11-Oct-21	100%	100%
South	Application	-	E53/1897	77.5	-	-	-	100%	100%
Lake Marmion									
North	Application	-	E29/1000	167.4	-	-	-	100%	100%
Central	Application	-	E29/1001	204.6	-	-	-	100%	100%
South	Application	-	E29/1002	186.0	-	-	-	100%	100%
West	Application	-	E29/1011	68.2	-	-	-	-	100%
Lake Noondie									
North	Application	Application Lodged	E57/1062	217.0	-	-	-	-	100%
Central	Application	Application Lodged	E57/1063	217.0	-	-	-	-	100%
South	Application	Application Lodged	E57/1064	55.8	-	-	-	-	100%
West	Application	Application Lodged	E57/1065	120.9	-	-	-	-	100%
Lake Barlee									
North	Application	Application Lodged	E49/495	217.0	-	-	-	-	100%
Central	Application	Application Lodged	E49/496	220.1	-	-	-	-	100%
South	Application	Application Lodged	E77/2441	173.6	-	-	-	-	100%
Lake Raeside		· · · · · · · · · · · · · · · · · · ·							
North	Application	Application Lodged	E37/1305	155.0	-	-	-	-	100%
Northern Territory	· ·								
Lake Lewis									
South	Granted	-	EL 29787	146.4	6 years	08-Jul-13	7-Jul-19	100%	100%
North	Granted	-	EL 29903	125.1	6 years	21-Feb-14	20-Feb-19	100%	100%

Other Projects:

Location	Status	Type of Change	Name	Resolution Number	Percentage Interest (1-Jan-17)	Percentage Interest (31-Mar-17)
USA – Colorado	-	Disposed	C-SR-10	C-SR-10	80%	-
USA – Colorado	-	Disposed	C-JD-5A	C-JD-5A	80%	-
USA – Colorado	-	Disposed	C-SR-11A	C-SR-11A	80%	-
USA – Colorado	-	Disposed	C-SR-15A	C-SR-15A	80%	-
USA – Colorado	-	Disposed	C-SR-16	C-SR-16	80%	-
USA – Colorado	-	Disposed	C-WM-17	C-WM-17	80%	-
USA – Colorado	-	Disposed	C-LP-22A	C-LP-22A	80%	-
USA – Colorado	-	Disposed	C-LP-23	C-LP-23	80%	-

APPENDIX 1 - LAKE WELLS TEST PIT LOCATION DATA

Hole_ID	East	North	EOH	Hole_ID	
LWTT129	540306	6995187	3.8	LWTT194	_
LWTT130	540500	6995350	3.8	LWTT195	
LWTT131	540692	6995471	3.5	LWTT196	
LWTT132	540922	6995561	3.1	LWTT197	
LWTT133	540922	6995561	3.3	LWTT198	
LWTT134	541357	6995668	2.5	LWTT199	
LWTT135	541590	6995088	4	LWTT200	
LWTT136	541781	6995552	4	LWTT201	
LWTT137	541777	6995303	4	LWTT202	
LWTT138	544404	6993831	4	LWTT203	
LWTT139	544259	6994144	1.5	LWTT204	
LWTT140	544275	6994099	2	LWTT205	
LWTT141	544303	6994058	4	LWTT206	
LWTT142	544324	6994011	3.5	LWTT207	
LWTT143	544345	6993966	3.2	LWTT208	
LWTT144	544338	6993989	3.2	LWTT209	
LWTT145	544311	6994035	4	LWTT210	
LWTT147	542857	6993193	3	LWTT211	
LWTT148	542892	6993287	3.1	LWTT212	
LWTT149	542938	6993373	3.9	LWTT213	
LWTT150 LWTT151	542967	6993474	3	LWTT214	
LWTT151 LWTT152	542967	6993474 6993650	3.5	LWTT215	
	543050		3	LWTT216 LWTT217	
LWTT153 LWTT154	543052	6993750	3	LWTT217	
LWTT154	543138	6993851 6993949	3.5	LVVIIZIO	
LWTT155	543136 543227	6993949 6994050	3.5		
LWTT156	543268	6994030	2.5		
LWTT158	543306	6994254	3.25		
LWTT159	543335	6994351	4.2		
LWTT160	543369	6994452	4		
LWTT161	543406	6994552	4.1		
LWTT162	543435	6995149	3.5		
LWTT163	543508	6995356	4		
LWTT164	543577	6995759	3.7		
LWTT165	543610	6995953	3.25		
LWTT166	543647	6996151	3.1		
LWTT167	543695	6996350	3		
LWTT168	543743	6996550	3.5		
LWTT169	543795	6996754	3.4		
LWTT170	543818	6996960	3.5		
LWTT171	543625	6997093	3		
LWTT172	543472	6997184	3.5		
LWTT173	543279	6997265	3.5		
LWTT175	542862	6997295	2.2		
LWTT178	542662	6997312	3		
LWTT179	542471	6997301	3		
LWTT180	542262	6997275	3.5		
LWTT181	542066	6997211	3.6		
LWTT182	541864	6997128	3		
LWTT183	541663	6997068	3.6		
LWTT184	541463	6997042	2.75		
LWTT185	541259	6997026	3.6		
LWTT186	541061	6997040	3.2		
LWTT187	540862	6997054	4.2		
LWTT188	540659 540457	6997061 6997080	3.6		
LWTT189	540457	6997080 6007005	3.5		
LWTT190 LWTT191	540261 540051	6997095 6997085	3 3.5		
LWTT191 LWTT192	539855	6997085 6997076	3.5 3.4		
LWTT192	539655	6997076	3.4		
LVVII193	009000	0331011	5	I	

Hole_ID	East	North	EOH
LWTT194	539457	6997068	3.5
LWTT195	536166	6997791	3.25
LWTT196	536158	6997916	3.5
LWTT197	536144	6998092	3.4
LWTT198	536115	6998427	3.6
LWTT199	536106	6998559	3.6
LWTT200	536091	6998728	3.5
LWTT201	536076	6998871	3.5
LWTT202	536051	6999077	3.6
LWTT203	536035	6999283	3.6
LWTT204	536015	6999456	3.45
LWTT205	536860	6999324	3.15
LWTT206	536662	6999264	3.5
LWTT207	536465	6999203	2.5
LWTT208	531201	7041850	3
LWTT209	530963	7041563	3.5
LWTT210	530685	7041256	2.5
LWTT211	530428	7040959	2.5
LWTT212	530180	7040681	2.4
LWTT213	529953	7040394	3.2
LWTT214	529636	7040107	3.5
LWTT215	529339	7039800	3.8
LWTT216	529052	7039503	3.5
LWTT217	528784	7039216	3.5
LWTT218	528527	7038959	3.5

APPENDIX 2 - BRINE CHEMISTRY ANALYSIS

HOLE ID	From (m)	To (m)	K (kg/m³)	Cl (kg/m ³)	Na (kg/m ³)	Ca (kg/m³)	Mg (kg/m³)	SO₄ (kg/m³)	TDS (g/kg)
LWTT138	0	4.2	4.250	148.800	87.900	0.704	5.050	13100	260
LWTT139	0	1.5	4.600	154.900	90.500	0.669	6.100	13700	270
LWTT140	0	1.5	4.510	163.100	93.400	0.611	6.270	13500	281
Trench P1e	0	2.5	4.350	154.900	90.600	0.654	5.590	13500	270
Trench P1e	0	2.5	4.680	166.500	95.800	0.573	6.370	14300	288
Trench P1e	0	2.5	4.820	166.250	96.200	0.559	6.550	14200	289
LWTT147	0	3	4.750	168.350	99.500	0.546	7.320	15300	296
LWTT148	0	3.1	4.310	153.350	91.300	0.672	6.660	13800	270
LWTT149	0	3.9	3.480	124.150	73.000	0.876	5.320	12600	219
LWTT150	0	3	3.110	106.350	61.700	1.030	4.390	11500	188
LWTT151	0	3.5	3.260	104.950	62.000	1.090	4.090	10600	186
LWTT152	0	3	3.740	117.000	68.400	1.030	4.460	11200	206
LWTT153	0	3	4.070	131.000	76.100	0.887	4.470	11300	228
LWTT154	0	3	4.550	147.550	88.900	0.742	5.400	12900	260
LWTT155	0	3.6	3.380	66.200	40.400	0.046	2.330	7200	120
LWTT156	0	3.4	4.500	146.000	86.800	0.732	5.600	13100	257
LWTT157	0	2.5	4.490	143.900	86.600	0.771	5.470	12800	254
LWTT158	0	3.25	3.330	107.950	64.700	1.050	4.150	11300	192
LWTT159	0	4.2	2.300	79.650	47.100	1.260	3.460	9720	143
LWTT160	0	4	2.110	77.000	46.100	1.190	3.330	10000	140
LWTT161	0	4.1	1.530	60.450	35.500	1.300	2.480	8220	109
LWTT162	0	3.5	2.060	82.600	48.100	1.100	4.120	11200	149
LWTT162	0	3.5	2.090	81.750	48.800	1.100	4.150	11500	149
LWTT163	0	4	4.580	154.050	91.300	0.718	6.150	12600	269
LWTT165	0	3.25	4.950	160.850	94.700	0.615	6.020	13300	280
LWTT166	0	3.1	4.770	151.750	90.800	0.715	5.790	13000	267
LWTT167	0	3	5.180	156.650	94.300	0.707	5.230	12500	275
LWTT168	0	3.5	3.420	107.400	65.000	1.130	3.920	10500	191
LWTT169	0	3.4	4.540	145.500	85.400	0.863	5.130	11100	253
LWTT178	0	3	4.730	173.750	101.000	0.475	8.180	16700	305
LWTT179	0	3	4.740	173.750	101.000	0.449	8.510	17400	306
LWTT180	0	3.5	4.930	171.650	101.000	0.474	7.760	16800	303
LWTT181	0	3.6	4.350	143.400	84.400	0.684	6.130	14600	254
LWTT182	0	3	4.250	155.950	92.900	0.601	6.560	15800	276
LWTT183	0	3.6	3.970	148.250	89.700	0.640	6.100	15000	264
LWTT184	0	2.75	4.590	167.300	99.400	0.502	7.420	16300	296
LWTT185	0	3.6	4.280	158.750	92.700	0.551	7.110	16300	280
LWTT186	0	3.2	4.120	157.000	90.400	0.574	7.310	15900	275
LWTT187	0	4.2	4.020	152.450	90.200	0.577	7.080	15800	270
LWTT188	0	3.6	4.480	165.900	96.200	0.495	7.270	16500	291
LWTT189	0	3.5	4.560	153.850	90.400	0.575	6.440	15600	271
LWTT190	0	3	4.150	142.350	83.700	0.683	5.740	13900	251

HOLE ID	From (m)	To (m)	K (kg/m³)	Cl (kg/m³)	Na (kg/m ³)	Ca (kg/m³)	Mg (kg/m³)	SO₄ (kg/m³)	TDS (g/kg)
LWTT191	0	3.5	4.400	143.400	87.600	0.683	5.880	15.100	257
LWTT192	0	3.4	4.240	139.900	83.100	0.688	5.630	14.900	248
LWTT193	0	3	4.420	139.900	84.900	0.682	5.390	14.900	250
LWTT194	0	3.5	3.720	144.100	85.700	0.609	6.320	15.800	256
LWTT195	0	3.25	3.150	121.550	71.500	0.742	6.190	15.000	218
LWTT197	0	3.4	3.840	146.500	85.300	0.521	7.810	18.900	263
LWTT198	0	3.6	3.970	148.600	87.200	0.537	7.580	18.900	267
LWTT201	0	3.5	3.980	128.000	77.100	0.709	5.550	15.500	231
LWTT202	0	3.6	2.180	70.900	41.900	1.150	3.210	10.700	130
LWTT202	0	3.6	2.150	70.200	42.100	1.130	3.200	10.700	129
LWTT203	0	3.6	1.500	48.050	28.800	0.910	2.140	7.620	89
LWTT205	0	3.15	4.090	141.650	86.000	0.660	5.740	15.700	254
LWTT206	0	3.5	4.290	136.750	82.100	0.661	5.410	16.100	245
LWTT147	0	3	4.630	169.050	99.000	0.531	7.250	14.900	295
LWTT148	0	3	4.430	162.750	95.200	0.573	6.970	15.100	285
LWTT149	0	3	3.570	129.750	75.900	0.815	5.510	13.300	229
LWTT150	0	3.2	3.250	110.350	65.700	1.020	4.640	11.800	197
LWTT152	0	3.2	3.910	120.700	72.300	0.966	4.490	11.300	214
LWTT154	0	3.2	4.900	199.600	97.400	0.627	5.610	13.600	322
LWTT156	0	3	4.660	150.550	91.200	0.711	5.680	13.700	267
LWTT158	0	3	3.490	111.050	68.900	1.090	4.350	11.600	200
LWTT61	0	3	4.040	125.750	76.300	0.975	4.330	11.200	223
LWTT62	0	3.5	4.110	126.250	75.100	0.966	4.260	11.200	222
LWTT63	0	3.5	4.030	123.100	75.000	0.957	4.270	11.600	219
LWTT64	0	3	3.750	111.750	69.800	1.090	3.880	11.100	201
LWTT41	0	3	5.560	169.950	104.000	0.589	5.890	13.700	300
LWTT42	0	3	4.680	147.900	90.800	0.748	5.240	12.900	262
LWTT43	0	3.2	4.280	149.850	91.200	0.696	5.810	15.200	267
LWTT44	0	3.5	4.050	125.900	77.300	0.886	4.540	12.300	225
LWTT77	0	3.5	3.870	113.850	69.200	1.040	3.980	11.000	203
LWTT78	0	3.2	4.110	118.250	72.200	1.000	4.110	11.700	211
LWTT79	0	3.2	4.980	140.950	87.200	0.825	4.770	12.700	251
LWTT80	0	3.5	4.340	132.550	80.800	0.829	4.770	13.100	236
LWTT160	0	3	2.190	78.050	47.900	1.260	3.420	10.200	143
LWTT28	0	3.5	5.220	173.400	107.000	0.519	6.630	15.300	308
LWTT29	0	3.5	5.370	171.300	109.000	0.562	6.630	15.000	308
LWTT30	0	3.5	5.200	170.300	106.000	0.575	6.650	14.800	304
Trench P1e	0	3	5.300	179.550	111.000	0.500	7.260	15.000	319
Trench P1e	0	3	5.320	178.500	110.000	0.495	7.090	15.200	317
Trench P1e	0	3	6.730	187.200	114.000	0.362	9.400	19.100	337
LWTB011	0	60	4.120	136.900	85.300	0.579	7.050	18.600	253

APPENDIX 3 – JORC TABLE ONE

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Geological samples were obtained from the excavator bucket at regular depth intervals. Brine samples were taken from the discharge of trench dewatering pumps.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	
	Aspects of the determination of mineralisation that are Material to the Public Report.	
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Excavation with a low ground pressure excavator.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Not applicable for trenching.
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All trenches were geologically logged qualitatively by a qualified geologist, noting in particular moisture content of sediments, lithology, colour, induration, grainsize and shape, matrix and structural observations. Flow rate data
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	was logged to note water inflow zones.
<u> </u>	The total length and percentage of the relevant intersections logged.	
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	Brine samples were taken from the discharge of trench dewatering pumps.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Sample bottles are rinsed with brine which is discarded prior to sampling.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All brine samples taken in the field are split into two sub- samples: primary and duplicate. Reference samples were
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	analysed at a separate laboratory for QA/QC. Representative chip trays and bulk lithological samples are
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	kept for records.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered	Primary samples were sent to Bureau Veritas Minerals Laboratory, Perth.
laboratory tests	partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Brine samples were analysed using ICP-AES for K, Na, Mg, Ca, with chloride determined by Mohr titration and alkalinity determined volumetrically. Sulphate was calculated from the ICP-AES sulphur analysis. Reference standard solutions were sent to
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Bureau Veritas Minerals Laboratory to check accuracy

Criteria	JORC Code explanation	Commentary		
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Data entry is done in the field to minimise transposition errors.		
assaying	The use of twinned holes.	Brine assay results are received from the laboratory in		
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	digital format, these data sets are subject to the quality control described above. All laboratory results are entered in to the company's database and validation completed.		
	Discuss any adjustment to assay data.	Independent verification of significant intercepts was not considered warranted given the relatively consistent nature of the brine.		
Location of data	Accuracy and quality of surveys used to locate drill holes (collar and	Trench co-ordinates were captured using hand held GPS.		
points	down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Coordinates were provided in GDA 94_MGA Zone 51.		
	Specification of the grid system used.	Topographic control is obtained using Geoscience Australia's 1-second digital elevation product.		
	Quality and adequacy of topographic control.			
Data spacing	Data spacing for reporting of Exploration Results.	Trench hole spacing is shown on the attached map an		
and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	varies due to irregular access along the lake edge.		
	Whether sample compositing has been applied.			
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Trenches and pits were vertical. Geological structure is considered to be flat lying.		
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.			
Sample security	The measures taken to ensure sample security.	All brine samples were marked and kept onsite before transport to the laboratory.		
		All remaining sample and duplicates are stored in the Perth office in climate-controlled conditions.		
		Chain of Custody system is maintained.		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data review is summarised in Quality of assay data, laboratory tests and Verification of sampling and assaying. No audits were undertaken.		

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Tenements drilled were granted exploration licences 38/2710, 38/2821, 38/2824, 38/3055, 38/3056 and 38/3057 in Western Australia. Exploration Licenses are held by Piper Preston Pty Ltd (fully owned subsidiary of ASLP).
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No other known exploration has occurred on the Exploration Licenses.
Geology	Deposit type, geological setting and style of mineralisation.	Salt Lake Brine Deposit
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Details are presented in the report.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	

Criteria	JORC Code explanation	Commentary
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Within the salt lake extent no low grade cut-off or high grade capping has been implemented.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	The unit is flat lying and trenches and pits are vertical hence the intersected downhole depth is equivalent to the inferred thickness of miscapilication
mineralisation widths and intercept	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	of mineralisation.
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Addressed in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results have been included.
Other substantive exploration	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk	Gravity survey was completed by Atlas Geophysics using a Hi Target V100 GNSS receiver for accurate positioning and CG-5 Digital Automated Gravity Meter.
data	samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Gravity data was gained using the contractors rapid acquisition, high accuracy UTV borne techniques. The company's own in- house reduction and QA software was used to reduce the data on a daily basis to ensure quality and integrity. All gravity meters were calibrated pre and post survey and meter drift rates were monitored daily. 3 to 5 % of the stations are repeated for quality control.
		Western Geophysics were engaged to manage and process the gravity survey. Processing the survey involved reducing the gravity data and integrating to the regional data to a residual anomaly which shows there is a semi-continuous distinct residual gravity low of negative 2 to 2.5 milligals present along eastern to central areas to the entire tenement area.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further trench testing and numerical hydrogeological modelling to be completed that incorporates the results of the test pumping. The model will be the basis of the annual brine abstraction rate
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	and mine life.

+Rule 5.5

Appendix 5B

Mining exploration entity and oil and gas exploration entity quarterly report

Introduced 01/07/96 Origin Appendix 8 Amended 01/07/97, 01/07/98, 30/09/01, 01/06/10, 17/12/10, 01/05/13, 01/09/16

Name	of	entity
------	----	--------

Salt Lake Potash Limited

ABN

98 117 085 748

31	March	2017

Consolidated statement of cash flows		Current quarter \$A'000	Year to date (9 months) \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers		
1.2	Payments for		
	(a) exploration & evaluation	(1,399)	(4,321)
	(b) development	-	-
	(c) production	-	-
	(d) staff costs	(383)	(1,050)
	(e) administration and corporate costs	(157)	(485)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	22	92
1.5	Interest and other costs of finance paid	-	-
1.6	Income taxes paid	-	-
1.7	Research and development refunds	-	-
1.8	Other (provide details if material) - Business Development	(205)	(295)
1.9	Net cash from / (used in) operating activities	(2,122)	(6,059)
2.	Cash flows from investing activities		
2.1	Payments to acquire:		
	(a) property, plant and equipment	(27)	(116)
	(b) tenements (see item 10)	-	-
	(c) investments	-	-
	(d) other non-current assets	-	-

+ See chapter 19 for defined terms

1 September 2016

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date (9 months) \$A'000
2.2	Proceeds from the disposal of:		
	(a) property, plant and equipment	-	-
	(b) tenements (see item 10)	-	-
	(c) investments	-	-
	(d) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	-
2.5	Other (provide details if material)	-	-
2.6	Net cash from / (used in) investing activities	(27)	(116)

3.	Cash flows from financing activities		
3.1	Proceeds from issues of shares	-	-
3.2	Proceeds from issue of convertible notes	-	-
3.3	Proceeds from exercise of share options	-	-
3.4	Transaction costs related to issues of shares, convertible notes or options	-	(4)
3.5	Proceeds from borrowings	-	-
3.6	Repayment of borrowings	-	-
3.7	Transaction costs related to loans and borrowings	-	-
3.8	Dividends paid	-	-
3.9	Other (provide details if material)	-	-
3.10	Net cash from / (used in) financing activities	-	(4)

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	3,470	7,500
4.2	Net cash from / (used in) operating activities (item 1.9 above)	(2,122)	(6,059)
4.3	Net cash from / (used in) investing activities (item 2.6 above)	(27)	(116)
4.4	Net cash from / (used in) financing activities (item 3.10 above)	-	(4)
4.5	Effect of movement in exchange rates on cash held	-	-
4.6	Cash and cash equivalents at end of period	1,321	1,321

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	1,321	3,470
5.2	Call deposits	-	-
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	-	-
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	1,321	3,470

6.	Payments to directors of the entity and their associates	Current quarter \$A'000
6.1	Aggregate amount of payments to these parties included in item 1.2	(162)
6.2	Aggregate amount of cash flow from loans to these parties included in item 2.3	-
6.3 Include below any explanation necessary to understand the transactions included in items 6.1 and 6.2		
	ents include director and consulting fees, superannuation and provision istration services, and a fully serviced office.	of corporate,

7. Payments to related entities of the entity and their associates

- 7.1 Aggregate amount of payments to these parties included in item 1.2
- 7.2 Aggregate amount of cash flow from loans to these parties included in item 2.3
- 7.3 Include below any explanation necessary to understand the transactions included in items 7.1 and 7.2

Not ap	plicable.
--------	-----------

Current quarter \$A'000	
	-
	-

8.	Financing facilities available Add notes as necessary for an understanding of the position	Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
8.1	Loan facilities	-	-
8.2	Credit standby arrangements	-	-
8.3	Other (please specify)	-	-
8.4	Include below a description of each facil	ity above including the lender	interest rate and

8.4 Include below a description of each facility above, including the lender, interest rate and whether it is secured or unsecured. If any additional facilities have been entered into or are proposed to be entered into after quarter end, include details of those facilities as well.

Not applicable

9.	Estimated cash outflows for next quarter	\$A'000
9.1	Exploration and evaluation	1,600
9.2	Development	-
9.3	Production	-
9.4	Staff costs	350
9.5	Administration and corporate costs	140
9.6	Other (provide details if material) - Business Development	90
9.7	Total estimated cash outflows	2,180

10.	Changes in tenements (items 2.1(b) and 2.2(b) above)	Tenement reference and location	Nature of interest	Interest at beginning of quarter	Interest at end of quarter
10.1	Interests in mining tenements and petroleum tenements lapsed, relinquished or reduced		Refer to Table 2		
10.2	Interests in mining tenements and petroleum tenements acquired or increased				

Compliance statement

- 1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Sign here: (Director/Company secretary)

Date: 30 April 2017

Print name: Sam Cordin

Notes

- 1. The quarterly report provides a basis for informing the market how the entity's activities have been financed for the past quarter and the effect on its cash position. An entity that wishes to disclose additional information is encouraged to do so, in a note or notes included in or attached to this report.
- 2. If this quarterly report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.