Southern Hemisphere Mining Limited

ARBN: 17 140 494 784

283 Rokeby Road SUBIACO, WA Australia, 6008

Postal Address: PO Box 52 WEST PERTH, WA Australia, 6872

Phone: +61 (0) 8 6141 3500 Fax:: +61 (0) 8 6141 3599

Website: shmining.com.au

Directors:

Chairman David Lenigas

Directors Trevor Tennant Keith Coughlan

Company Secretary: Julia Beckett

Issued Capital: 71,636,137

Corporate Information: ASX Code: SUH

ASX / Media Announcement

2 May 2017

Southern Hemisphere Mining Enters Pilbara Lithium Sector. Li₂O grades up to 3.72% in Spodumene/Lepidolite Pegmatite swarms discovered in granites at Marble Bar – Pilbara.

HIGHLIGHTS

- SUH to acquire first significant Spodumene discovered in granite hosted pegmatite swarms in the Pilbara at the Marble Bar Lithium Project.
- Pegmatites already identified over 4km wide corridor and can be traced on surface for over 3.5kms.
- Massive 549km² Pilbara tenement package to be acquired from Denis O'Meara's Great Sandy Pty Ltd.
- Individual pegmatites were traced for up to 1km in outcrop with widths of between 5 and 15m.
- Spodumene and Lepidolite are abundant in most pegmatites.
- Surface grades up to 3.72% Li₂O and 3.32% Li₂O.
- Best drilling intercept from limited drilling of 3m @ 1.48% Li₂O from 8m, within a broader zone of 14m @ 0.58% Li₂O from 0 to 14m. (Hole MBRS006).

David Lenigas, Southern Hemisphere Mining's Chairman, said;

"There are a number of big lithium projects being developed in the Pilbara Region at the moment, and this deal gets SUH directly in to a very large and highly prospective tenement package in the heart of Australia's "Lithiumville". Excellent lithium grades have already been discovered in the right sort of mineralised environments and we see excellent potential to grow our lithium footprint in this unique lithium environment."

Southern Hemisphere Mining (ASX:SUH) is pleased to announce that it has signed agreements to jointly acquire the 100% of both the Marble Bar Lithium Project and Pippingarra Lithium Project in Western Australia ("Projects") through a 50/50 joint venture with Macarthur Minerals Limited (TSXV:MMS) ("MMS").

The Company and MMS (jointly) have entered into a Memorandum of Understanding ("MOU") with Great Sandy Pty Ltd ('Great Sandy'), a private Australian company controlled by Denis O'Meara, that will serve as a framework to acquire the Projects under a Purchase Agreement, to acquire:

- The Marble Bar Lithium project consisting of four granted Exploration Licences (E45/4669, E45/4690, E45/4724 and E45/4746) covering 368km² located between 10 and 50kms east of Marble Bar in the East Pilbara region of Western Australia.
- The Pippingarra Lithium and Tantalite project consisting of two Exploration Licence Applications (E45/4691 and E45/4759) covering 181 km² located 27kms south east of Port Hedland.

Marble Bar Lithium Project:

The Marble Bar Lithium project consists of four granted Exploration Licences (E45/4669, E45/4690, E45/4724 and E45/4746) covering 368km² located between 10 and 50kms east of Marble Bar in the East Pilbara region of Western Australia (see Figure 1).

Marble Bar is located 200kms south east of Port Hedland and approximately 100kms east of the emerging world class Pilgangoora and Wodgina lithium province.

Reconnaissance exploration in 2016 by Denis O'Meara and Brian Richardson, on behalf of Great Sandy Pty Ltd ("Great Sandy"), discovered new lithium bearing pegmatite swarms within a small area of E45/4669, with the majority of the tenement area remaining under explored. The north-south striking mineralized pegmatites occur within a 4km wide corridor and can be traced on surface for over 3.5kms. Individual pegmatites were traced for up to 1km in outcrop with widths of between 5 and 15m. The lithium minerals, spodumene and lepidolite are abundant in most pegmatites with spodumene dominant in the northern pegmatites. All pegmatites dip shallowly to the east.

Great Sandy collected 79 rock chip samples from the outcropping pegmatites and adjacent granitic country rock returning peak values of 3.72% Li₂O and 3.32% Li₂O with 30 of the collected samples assaying better than 1% Li₂O (see Table 1).

The Marble Bar project contains the first reported significant spodumene discovery in the East Pilbara outside of the Pilgangoora-Wodgina area and is the first discovery of spodumene-rich pegmatites within a granitic host rock. This discovery has opened up the entire Marble Bar Lithium project area within the granites of the Mt Edgar batholith and importantly also within the nearby greenstones.

Figure 1: Project Location Map East Pilbara.

Figure 2: (a) Thin section showing dominant spodumene; (b) Spodumene (top) and lepidolite (bottom) collected from the Marble Bar Project on tenement E45/4669.

The project is underlain by granites and gneisses of the Mt Edgar batholith, an early Archaean granitic complex composed of gneisses, granite, mafic enclaves and granitic pegmatites. Along the intrusive western contact of the batholith strongly deformed mafic and ultramafic rocks of the Warrawoona Group occur within E45/4724. The project is situated adjacent to the Moolyella tin field and near to the Moolyella Adamellite, a late Archaean (younger) granite intrusion believed to be the ultimate source of all the Sn-Ta-Li in the district (see Figure 3).

Figure 3: Marble Bar Lithium Project tenement geology and location map.

Table 1: Marble Bar L	ithium Project Rock	Chip samples > 1% Li ₂ O
-----------------------	---------------------	-------------------------------------

East	North	Sample ID	Rock Description	Li20%
797366	7654349	L103743	composite coarse spodumene feld minor qtz peg	3.72%
797369	7654349	L103744	coarse spod feld minor lepidolite "carbonate look'	1.87%
797379	7654354	L103745	coarse spodumene feld minor qtz peg	2.86%
797343	7654241	L103746	lepidolite rich peg coarse qtz feld	1.21%
797345	7654186	L103747	coarse spodumene feld peg	3.32%
797334	7654121	L103748	coarse lepidolite peg qtz feld	1.19%
797330	7654030	L103749	lepidolite rich peg	1.22%
797759	7653722	L103750	lepidolite rich peg	1.41%
797759	7653782	L103751	lepidolite rich peg	1.05%
797759	7653899	L103753	lepidolite spodumene breccia coarse feld qtz	1.85%

		1		
East	North	Sample ID	Rock Description	Li2O%
799469	7652181	L103755	lepidolite rich peg	2.07%
799419	7652274	L103756	lepidolite rich peg,large qtz	1.80%
799399	7652400	L103757	lepidolite peg	1.35%
799494	7652029	L103758	lepidolite rich peg	2.17%
799434	7652220	L103759	lepidolite rich peg	2.06%
797348	7654544	L107445	coarse green spodumene rich pegmatite	2.39%
797361	7654642	L107446	coarse green and pink spodumene rich pegmatite	3.14%
797334	7654119	L107451	coarse spodumene lepidolite rich pegmatite	1.36%
797326	7654497	L107452	coarse spodumene qtz felspar pegmatite minor lepidolite	3.12%
G94:Z50	•	•		•

Figure 4: Marble Bar Lithium project - drill hole and rock sample locations (with intercepts and assay results).

In November 2016, Blaze International Limited conducted a limited shallow 12 hole, 702m RC drilling program targeting only 3 of the known mineralised pegmatites. Drilling returned significant lithium results within broad low grade zones of mineralisation, and lithium was intercepted in most holes with 7 holes also containing narrow but higher grade zones. Hole MBRC006 returned one of the best intercepts of 14m @ 0.58% Li2O from 0 to14m including a higher grade interval of 3m @ 1.48% Li2O from 8m. The drilling confirmed the shallow 30-35 degree easterly dip to the pegmatites and also indicated that the pegmatites are often associated with broad mineralized alteration haloes indicating a large and pervasive mineralizing event. (See Tables 2 and 3).

Hole_ID	MGA50_East	MGA50_North	Orig_RL	Dip	Azimuth	Max_Depth
MBRC001	797768	7653586	213	-60	270	40
MBRC002	797807	7653576	203	-60	270	64
MBRC003	797347	7653926	222	-60	270	40
MBRC004	797383	7653929	190	-60	270	52
MBRC005	797475	7654074	210	-60	270	130
MBRC006	797797	7653845	222	-60	270	40
MBRC007	797820	7653807	216	-60	270	70
MBRC008	797837	7653799	221	-90	0	76
MBRC009	797804	7653939	216	-60	270	52
MBRC010	797394	7654675	223	-60	285	40
MBRC011	797381	7654636	225	-60	255	40
MBRC012	796870	7655294	199	-60	270	58

Table 2: Marble Bar Lithium Project – Collar co-ordinates 2016 RC drilling program.

Table 3: Marble Bar Lithium Project - Significant 2016 Drill Intercepts (E45/4669)

Hole ID	From (m)	To (m)	Width (m)	Li2O (%)
MBRC001	5	14	9	0.34
including	6	7	1	1.04
MBRC002	17	32	15	0.25
MBRC003	6	12	6	0.33
including	8	9	1	1.21
MBRC004	26	32	6	0.16
MBRC005	83	86	3	0.10
MBRC006	0	14	14	0.58
Including	8	11	3	1.48
	22	28	6	0.26
MBRC007	30	38	8	0.79
Including	32	35	3	1.63
MBRC008	43	60	17	0.26
including	56	57	1	1.54
MBRC009	0	5	5	0.35
	12	20	8	0.85
including	14	18	4	1.52
MBRC010	10	16	6	0.55
including	10	12	2	1.22
MBRC011	8	14	6	0.32
MBRC012	12	15	3	0.48

Immediate exploration will now focus on locating other mineralized pegmatite swarms within the 368 km² project area focusing initially on the extensive area of strongly deformed greenstone within E45/4724. This work will involve geological mapping and rock sampling followed by RC drilling of all priority areas.

Figure 5: E45/4724 showing the prospective granite greenstone contact area.

Pippingarra Lithium Tantalite Project:

The Pippingarra Lithium and Tantalite project consists of two Exploration Licence Applications (E45/4691 and E45/4759) covering 181 km2 located 27kms south east of Port Hedland.

The tenements are underlain by a large area of the Archaean Strelley Granite rimmed by sediments and volcanics of the Mallina Formation and the Louden Volcanics. The project also contains a regional

north east trending structure sub-paralleling the nearby Tabba Tabba Shear which hosts the Tabba Tabba tantalite deposits and historical mining centre.

The tenements surround the excised Pippingarra quarry which was recently mined for feldspar and muscovite contained within a large pegmatite body. A small tantalite, columbite, beryl mine also operated within the excised tenements in the 1950-1960's. In the south east corner of the tenement the Bore Creek alluvial tantalite prospect occurs. Extensive areas of prospective pegmatite occur within the project area.

The Pippingarra Project is prospective for pegmatite hosted lithium and tantalite mineralisation similar to the style of mineralisation discovered by Great Sandy at the Marble Bar Project. Initial targets will be the as yet undiscovered pegmatites that are the source for the alluvial tantalite at the Bore Creek prospect and the mapped pegmatites that occur straddling the regional north east structure. Initial exploration will commence when both tenements are granted.

Figure 6: Pippingarra Lithium Project – Tenement and Geology Location Map.

Acquisition of Lithium Projects – Commercial Transaction:

The Company ("SUH") and Macarthur Minerals Limited ("MMS") have entered into a Memorandum of Understanding ("MOU") with Great Sandy Pty Ltd ("Great Sandy"), a private Australian company controlled by Denis O'Meara, that will serve as a framework to acquire the Projects under a Purchase Agreement.

The key terms of the Memorandum of Understanding are:

- SUH and MMS will negotiate and enter into a 50:50 JV Agreement for the purpose of acquiring 100% of the Projects.
- Entering into the Projects Purchase Agreements are conditional upon the Company conducting due diligence, and regulatory approvals.
- The purchase price for the Projects (to be split 50/50 between SUH and MMS):
 - The JV partners will pay A\$15,000 each in on the signing of the MOU;
 - Within 60 days of signing the MOU, the JV partners have to complete all necessary due diligence and enter in to a Purchase Agreement.
 - Within 60 of signing the Purchase Agreement, the JV partners will each pay A\$125,000 of shares each in their respective companies, with the number of shares to be calculated using a 5 day VWAP price of each company prior to the share issue.
 - Within 6 months of signing the Purchase Agreement, the JV partners will each pay A\$250,000 of shares each in their respective companies, with the number of shares to be calculated using a 5 day VWAP price of each company prior to the share issue. On this final payment, the JV partners will receive 100% ownership of the Projects. Great Sandy will retain a 2% Gross Production Royalty.

BACKGROUND INFORMATION ON SOUTHERN HEMISPHERE MINING:

Southern Hemisphere Mining Limited (ASX Code "SUH") is an experienced copper-gold explorer and developer in Chile, South America, the world's leading copper producing country and one of the most prospective regions of the world for major new copper discoveries. The Company's focus is on the Llahuin Porphyry Copper-Gold Project where the company has drilled up a significant Copper Gold resource and the Los Pumas Manganese Project.

CONTACTS:

For further information on this update or the Company generally, please visit our website at <u>www.shmining.com.au</u> or contact:

Investors / Shareholders

Keith Coughlan Director Telephone: +61 (0) 419 996 333 Email: keith@europeanmet.com

Trevor Tennant Director Telephone: +61 (0) 414 895 605 Email: ttennant@shmining.com.au

COMPETENT PERSON / QUALIFIED PERSON STATEMENT:

The information in this report is based on information compiled by Mr. Brian Richardson, a Competent Person, and who is a Member of The Australasian Institute of Mining and Metallurgy. Mr. Richardson is a consulting geologist to Great Sandy Pty Ltd, the owner and potential vendor of E45/4669. Mr Richardson is a financial beneficiary if Great Sandy Pty Ltd sells the tenement to the Macarthur Minerals and Southern Hemisphere Joint Venture.

Mr. Richardson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Richardson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

FORWARD LOOKING STATEMENTS AND IMPORTANT NOTICE:

This report contains forecasts, projections and forward looking information. Although the Company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions it can give no assurance that these will be achieved. Expectations, estimates and projections and information provided by the Company are not a guarantee of future performance and involve unknown risks and uncertainties, many of which are out of Southern Hemisphere Mining's control. Actual results and developments will almost certainly differ materially from those expressed or implied. Artemis has not audited or investigated the accuracy or completeness of the information, statements and opinions contained in this presentation. To the maximum extent permitted by applicable laws, Artemis makes no

representation and can give no assurance, guarantee or warranty, express or implied, as to, and takes no responsibility and assumes no liability for (1) the authenticity, validity, accuracy, suitability or

completeness of, or any errors in or omission from, any information, statement or opinion contained in this report and (2) without prejudice to the generality of the foregoing, the achievement or accuracy of any forecasts, projections or other forward looking information contained or referred to in this report.

Investors should make and rely upon their own enquiries before deciding to acquire or deal in the Company's securities.

SCHEDULE 1: Additional Tables and JORC Statement.

Table 4: Marble Bar Lithium Project Rock Assays E45/4669:

SampleID	NAT East	NAT North	Cs ppm	Fe %	Li₂ O %	Rb ppm	Sn ppm	Ta ppm
L103743	797366	7654349	21	0.45	3.72	574	10	36.5
L103744	797369	7654349	31	0.42	1.87	1160	30	98
L103745	797379	7654354	34	0.41	2.86	839	50	125
L103746	797343	7654241	149	0.28	1.21	4700	130	65
L103747	797345	7654186	14	0.52	3.32	359	10	51.5
L103748	797334	7654121	93	0.31	1.19	3180	70	49.5
L103749	797330	7654030	167	0.25	1.22	4390	90	57.5
L103750	797759	7653722	195	0.22	1.41	4660	100	80.5
L103751	797759	7653782	170	0.23	1.05	4560	90	124
L103752	797758	7653857	85	0.28	0.14	2110	30	32
L103753	797759	7653899	75	0.33	1.85	2370	80	30
L103754	798734	7651745	195	0.22	0.69	3620	20	283
L103755	799469	7652181	363	0.16	2.08	7950	120	79
L103756	799419	7652274	414	0.22	1.81	6720	130	127
L103757	799399	7652400	195	0.18	1.35	5210	140	40.5
L103758	799494	7652029	372	0.17	2.17	7710	110	98
L103759	799434	7652220	356	0.21	2.06	7860	110	184
L103760	796452	7654111	196	0.25	0.68	3610	80	82.5
L103925	796606	7653994	127	0.76	0.31	2470	100	91.5
L103926	797328	7654609	81	0.85	0.08	2110	60	64.5
L103927	797356	7654612	66	0.65	1.19	1680	90	45
L107445	797348	7654544	47	0.46	2.41	1640	40	81.5
L107446	797361	7654642	42	0.36	3.16	1440	80	41
L107451	797334	7654119	99	0.29	1.37	2960	60	32
L107452	797326	7654497	33	0.26	3.14	662	100	23
L107501	797833	7654202	40	1.11	0.13	349	20	1
L107502	797839	7654242	47	0.55	3.38	1080	80	23.5
L107503	797266	7653267	290	0.28	1.21	4660	50	87.5
L107504	797763	7653840	82	0.47	1.35	2150	30	42
L107505	797358	7654679	47	0.55	0.58	1200	100	32.5
L107506	797416	7654831	51	0.4	0.07	1550	90	34
L107530	797357	7654637	32	0.26	0.09	1000	120	46.5
L107531	799340	7652769	22	0.61	2.82	648	80	32.5
L107532	797770	7653848	68	0.3	2.78	1760	60	44
L107533	797344	7654691	36	1.38	0.13	229	20	18.5
L107534	797345	7654690	26	0.99	0.08	192	30	2
L107535	797347	7654690	43	0.63	0.03	1080	10	35
L107536	797348	7654689	146	0.74	0.2	1800	20	40.5
L107537	797350	7654689	82	0.9	0.07	1710	30	29
L107538	797352	7654688	28	1.93	0.14	135	10	1

SampleID	NAT	NAT	Cs	Fe %	Li ₂ O	Rb	Sn	Та
	207252	7654699	ppin FO	1 26	0 1 2	405	10	12
1107540	797355	7034088	50	1.20	0.12	405	110	12
1107540	797355	7054087	69	0.04	0.29	1600	110	33 22 F
L107541	797350	7654687	54	0.39	0.17	1690	90	33.5
L107542	797358	7654686	/1	0.47	0.57	2020	110	30
L107543	797360	7654686	64	0.67	0.97	1670	110	47.5
L107544	797361	7654685	53	0.61	1.39	1870	70	22
L107545	/9/363	7654685	83	0.49	0.49	2650	100	30.5
L107546	/9/364	/654685	32	1.55	0.14	160	10	1
L107547	797367	7654685	52	1.48	0.21	282	10	1
L107548	797435	7655096	38	0.54	0.82	1900	60	55.5
L107549	797418	7655213	64	0.65	0.21	2370	110	61.5
L107550	797401	7655334	48	0.66	0.17	1920	100	49
l107551	796801	7655321	20	0.54	2.86	584	50	64.5
L107553	796829	7655189	107	0.38	0.03	2590	90	574
L107554	796830	7655022	84	0.31	0.05	1520	40	128
L107555	796801	7655454	43	0.27	0.03	1280	90	109
L107556	797365	7655403	41	0.44	0.03	1790	100	51.5
L107557	797573	7655463	43	0.76	0.11	783	30	11.5
L107558	797492	7655579	28	0.75	0.08	526	30	14
L107559	797819	7655847	40	0.38	0.07	761	50	75
L107560	797341	7655832	54	0.57	0.06	929	-10	89.5
L107561	797258	7655954	41	0.59	0.03	795	10	2
L107562	797187	7655928	51	0.41	0.06	2390	50	72
L107563	796692	7655640	64	0.29	0.07	1930	170	118
L107564	796760	7656620	78	0.5	0.26	1350	550	95
L107565	796762	7656620	192	1.61	1.29	4530	270	38
L107566	796762	7656645	99	0.41	0.19	2810	350	59
L107567	796779	7656832	65	0.58	0.23	1090	80	75.5
L107568	796777	7656832	222	2.42	1.33	4650	260	31.5
L107569	796993	7657344	40	0.34	0.04	1400	180	63
L107570	797959	7653491	109	0.26	1.18	3580	70	60.5
L107571	798126	7653672	47	0.15	0.01	1870	30	61
L107572	797944	7653736	35	0.22	0.02	2060	40	26.5
L107573	798341	7653143	47	0.2	0.19	2380	30	44.5
L107574	798295	7653294	41	0.18	0.05	1550	20	126
L107575	798924	7653416	48	0.16	0.16	1490	40	38.5
L107576	799022	7653432	30	0.32	0.02	1120	10	18
L107577	799032	7653401	38	0.16	0.01	929	40	60.5

Table 5: Marble Bar Lithium Project E45/4669 RC Drill Assay Results:

HoleID	M	M To	Sample	Li	Li2O	Cs	Fe	Sn	Ta	Rb
MBRC001	2	3	L104003	500	0.1077	58	1.44	-10	30	393
MBRC001	3	4	L104004	340	0.0732	24	1.51	-10	1.5	85.5
MBRC001	4	5	L104005	380	0.0818	30	2.14	-10	1	106
MBRC001	5	6	L104006	580	0.1249	45	1.64	10	3	288
MBRC001	6	7	L104007	4820	1.0377	95	0.52	40	83.5	1750
MBRC001	7	8	L104008	800	0.1722	52	1.1	-10	4	372
MBRC001	8	9	L104009	760	0.1636	51	0.93	10	3	457
MBRC001	9	10	L104010	4300	0.9258	71	0.42	40	47	2470
MBRC001	10	11	L104011	1020	0.2196	61	2.47	10	6	637
MBRC001	11	12	L104012	820	0.1765	53	2.21	10	7	349
MBRC001	12	13	L104013	760	0.1636	74	2.11	20	15	487
MBRC001	13	14	L104014	500	0.1077	35	1.53	-10	2	121
MBRC002	17	18	L104058	820	0.1765	87	2.61	-10	1.5	233
MBRC002	18	19	L104059	1320	0.2842	160	4.17	10	8.5	439
MBRC002	19	20	L104060	2420	0.521	90	2.61	20	36	771
MBRC002	20	21	L104061	1820	0.3918	67	2.78	20	36	1000
MBRC002	21	22	L104062	900	0.1938	110	4.73	10	3	300
MBRC002	22	23	L104063	460	0.099	26	4.93	30	1.5	86
MBRC002	23	24	L104064	700	0.1507	84	4.25	-10	4	168
MBRC002	24	25	L104065	980	0.211	125	4.47	10	5	291
MBRC002	25	26	L104066	700	0.1507	49	4.49	-10	1.5	123
MBRC002	26	27	L104067	720	0.155	53	4.51	-10	1	125
MBRC002	27	28	L104068	1000	0.2153	86	3.94	-10	8.5	285
MBRC002	28	29	L104069	2640	0.5684	92	1.87	10	50.5	1070
MBRC002	29	30	L104070	1280	0.2756	228	2.37	10	49	1500
MBRC002	30	31	L104071	960	0.2067	101	4.62	-10	3	193
MBRC002	31	32	L104072	740	0.1593	61	4.67	-10	1.5	120
MBRC003	6	7	L104111	480	0.1033	28	2.16	-10	1.5	193
MBRC003	7	8	L104112	680	0.1464	31	2.16	-10	1	131
MBRC003	8	9	L104113	5620	1.21	73	0.54	40	24.5	1910
MBRC003	9	10	L104114	1180	0.2541	93	1.2	10	29.5	1530
MBRC003	10	11	L104115	500	0.1077	26	1.95	-10	2	178
MBRC003	11	12	L104116	640	0.1378	29	4.39	-10	1	142
MBRC004	26	27	L104171	460	0.099	48	1.43	-10	9	223
MBRC004	27	28	L104172	740	0.1593	49	1.94	10	7.5	276
MBRC004	28	29	L104173	860	0.1852	49	2.12	-10	4	259
MBRC004	29	30	L104174	480	0.1033	67	0.75	10	17.5	1730
MBRC004	30	31	L104175	1220	0.2627	78	0.37	40	21.5	2280
MBRC004	31	32	L104176	620	0.1335	42	1.38	-10	12.5	563
MBRC004	32	33	L104177	420	0.0904	28	1.84	-10	2	211

HoleID	M	M	Sample	Li	Li2O	Cs	Fe	Sn	Ta	Rb
MBRC004	33	34	L104178	300	0.0646	17	1.49	-10	1.5	160
MBRC004	34	35	L104179	380	0.0818	44	1.71	-10	8	294
MBRC005	80	81	L104277	280	0.0603	17	1.81	-10	-0.5	101
MBRC005	81	82	L104278	380	0.0818	23	1.61	-10	2	245
MBRC005	82	83	L104279	220	0.0474	64	0.61	20	22.5	3030
MBRC005	83	84	L104280	480	0.1033	59	0.92	20	9	1140
MBRC005	84	85	L104281	480	0.1033	28	1.11	-10	7.5	288
MBRC005	85	86	L104282	500	0.1077	27	1.49	10	3.5	233
MBRC006	0	1	L104327	960	0.2067	33	2.98	-10	2.5	175
MBRC006	1	2	L104328	1860	0.4005	45	1.67	-10	16	563
MBRC006	2	3	L104329	1380	0.2971	56	2.65	-10	8	385
MBRC006	3	4	L104330	720	0.155	30	2.39	-10	5	299
MBRC006	4	5	L104331	860	0.1852	34	2.84	-10	1.5	149
MBRC006	5	6	L104332	1020	0.2196	75	2.34	-10	10	371
MBRC006	6	7	L104333	880	0.1895	47	2.44	-10	2	178
MBRC006	7	8	L104334	1280	0.2756	47	2.87	-10	2.5	252
MBRC006	8	9	L104335	5920	1.2746	63	0.9	20	35	2150
MBRC006	9	10	L104336	8800	1.8946	57	0.91	30	42	1700
MBRC006	10	11	L104337	5980	1.2875	73	0.7	50	46	2310
MBRC006	11	12	L104338	1880	0.4048	83	2.68	-10	10	787
MBRC006	12	13	L104339	2260	0.4866	121	1.42	10	56	1510
MBRC006	13	14	L104340	3820	0.8224	73	1.72	20	28	1360
MBRC006	22	23	L104349	820	0.1765	81	2.49	-10	10	291
MBRC006	23	24	L104350	980	0.211	73	2.89	-10	7	355
MBRC006	24	25	L104351	3100	0.6674	64	1.43	-10	23	963
MBRC006	25	26	L104352	940	0.2024	65	2.62	-10	10	374
MBRC006	26	27	L104353	680	0.1464	31	3.58	-10	2	124
MBRC006	27	28	L104354	640	0.1378	46	3.07	-10	17	314
MBRC006	33	34	L104360	220	0.0474	30	1.39	-10	6	152
MBRC006	34	35	L104361	220	0.0474	17	1.75	-10	1	108
MBRC006	35	36	L104362	100	0.0215	13	1.31	-10	1	113
MBRC007	28	29	L104395	340	0.0732	19	1.66	-10	1.5	135
MBRC007	29	30	L104396	400	0.0861	38	1.38	-10	1	149
MBRC007	30	31	L104397	860	0.1852	52	3.54	-10	2	124
MBRC007	31	32	L104398	1780	0.3832	130	1.95	10	31	1300
MBRC007	32	33	L104399	1100 0	2.3683	83	0.75	50	68.5	2010
MBRC007	33	34	L104400	5600	1.2057	96	0.57	50	60.5	2710
MBRC007	34	35	L104401	6080	1.309	86	0.7	50	47.5	2240
MBRC007	35	36	L104402	2260	0.4866	55	4.46	-10	7.5	418
MBRC007	36	37	L104403	840	0.1809	33	2.59	-10	4.5	183
MBRC007	37	38	L104404	760	0.1636	63	2.16	10	25.5	274
MBRC008	43	44	L104480	900	0.1938	51	1.68	-10	5.5	383

HoleID	М	М	Sample	Li	Li2O	Cs	Fe	Sn	Та	Rb
MPPC008	From	10 45	ID	1540	0 2216	ppm	1 04	ppm	ppm	1420
	44	45	L104401	1540	0.3510	114	0.77	50	57	1450
	45	40	L104482	1100	0.3445	120	0.77	40	53	2320
IVIBRC008	46	47	L104483	1100	0.2368	81	2.46	10	9.5	425
MBRC008	47	48	L108084	900	0.1938	47	2.78	-10	2	211
MBRC008	48	49	L104485	-999	0.1	-999	-999	-999	-999	-999
MBRC008	49	50	L104486	-999	0.1	-999	-999	-999	-999	-999
MBRC008	50	51	L104487	360	0.0775	18	1.67	-10	1	96.5
MBRC008	51	52	L104488	580	0.1249	35	1.89	-10	3	124
MBRC008	52	53	L104489	640	0.1378	38	2.53	-10	4	141
MBRC008	53	54	L104490	740	0.1593	81	2.52	-10	5.5	193
MBRC008	54	55	L104491	800	0.1722	51	2.24	10	8	193
MBRC008	55	56	L104492	1180	0.2541	58	1.94	-10	5.5	433
MBRC008	56	57	L104493	7140	1.5372	55	1.1	40	43	1280
MBRC008	57	58	L104494	1100	0.2368	80	1.11	40	36.5	1530
MBRC008	58	59	L104495	780	0.1679	36	1.92	-10	2.5	172
MBRC008	59	60	L104496	680	0.1464	35	1.39	-10	1.5	219
MBRC009	0	1	L104513	600	0.1292	40	2.25	-10	11	289
MBRC009	1	2	L104514	1720	0.3703	82	1.43	10	34	1060
MBRC009	2	3	L104515	4300	0.9258	77	0.82	40	49.5	1260
MBRC009	3	4	L104516	700	0.1507	72	1.44	-10	5.5	295
MBRC009	4	5	L104517	720	0.155	29	2.45	-10	1	128
MBRC009	12	13	L104525	840	0.1809	99	1.62	10	29	606
MBRC009	13	14	L104526	740	0.1593	31	1.95	-10	2	189
MBRC009	14	15	L108127	8520	1.8344	62	0.64	60	32	1740
MBRC009	15	16	L104528	1030	2.2176	60	0.56	70	40.5	1760
MBRC009	16	17	L104529	5000	1.0765	72	1.46	40	26.5	1690
MBRC009	17	18	L104530	4400	0.9473	65	1.46	20	40.5	1030
MBRC009	18	19	L104531	960	0.2067	41	2.41	-10	6.5	263
MBRC009	19	20	L104532	700	0.1507	22	1.99	-10	2.5	183
MBRC010	10	11	L104575	6740	1.4511	74	0.79	50	25.5	1880
MBRC010	11	12	L104576	4560	0.9818	97	0.54	50	54	2940
MBRC010	12	13	L104577	1280	0.2756	76	0.42	100	49	1950
MBRC010	13	14	L104578	1000	0.2153	74	0.57	80	57	2270
MBRC010	14	15	L104579	660	0.1421	63	0.58	20	56.5	1810
MBRC010	15	16	L104580	1240	0.267	74	1.14	10	13.5	607
MBRC011	8	9	L104613	2520	0.5426	78	0.51	30	20	2940
MBRC011	9	10	L104614	3040	0.6545	89	0.6	30	61.5	2390
MBRC011	10	11	L104615	1520	0.3273	82	0.52	100	100	2510
MBRC011	11	12	L104616	420	0.0904	71	0.51	50	42.5	2200
MBRC011	12	13	L104617	720	0.155	103	0.59	20	73.5	2230
MBRC011	13	14	L104618	860	0 1852	-00	1 28	-10	10	479
MBRC012	10	12	110/657	4460	0.1002	16	1.20	20	26	1250
WIDACU12	12	12	L104037	4400	0.9002	40	0.05	20	50	1230

HoleID	М	М	Sample	Li	Li2O	Cs	Fe	Sn	Та	Rb
	From	То	ID	ppm	pct	ppm	pct	ppm	ppm	ppm
MBRC012	13	14	L104658	1220	0.2627	46	1.41	10	25	675
MBRC012	14	15	L104659	980	0.211	63	1.88	-10	10	592

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 78 rock grab samples were collected by Great Sandy, the tenement holder as a first pass assessment of the project for lithium mineralisation associated with pegmatite intrusions. The samples were generally collected along the outcropping pegmatite dykes but some were also collected from the unmineralised country rock. Rock samples were collected as grab samples from in-situ outcropping rock, but are not regarded as representative of the outcropping vein. Representative sampling across pegmatites can only be achieved by using a diamond saw to cut channels across the outcrop. The presence or absence of mineralisation was initially determined visually by the field geologist. The rock grab sampling is a standard approach during an initial reconnaissance. as was carried out. Reverse Circulation (RC) drilling was carried out on E45/4669. The drilling was designed to obtain drill chip samples from one metre intervals, from which a 2-4 kilogram sub- sample was collected for laboratory multi- element analysis including; Li, Al , Ca, Cs, Fe, K, Mg, Mn, P, Sn, Ta, Ti, Rb and W Mineralised zones were identified visually during field logging and sample intervals selected by supervising geologist. Samples from each metre were collected through a rig mounted cyclone and split using a cone-splitter. Field duplicate and QA samples were also collected an submitted.
techniques	 Drift type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard 	• Reverse circulation drilling was completed using a RC450 track mounted rig drilling a 51/4 inch diameter hole with face sampling hammer.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recoveries are recorded by the geologist in the field during logging and sampling. If poor sample recovery is encountered during drilling, the supervising geologist and driller endeavor to rectify the problem to ensure maximum sample recovery. Visual assessments are made for recovery, moisture, and possible contamination. A cyclone and rig mounted cone splitter were used to ensure representative sampling, and were routinely inspected and cleaned. Sample recoveries during drilling completed by Blaze were high, and all samples were dry. Insufficient data exists at present to determine whether a relationship exists between grade and recovery. This will be assessed once a statistically representative amount of data is available.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 For rock chip sampling notes relating to each sample were recorded in a field note book and later transcribed to digital form. This information is of insufficient detail to support any Mineral Resource Estimation. For the RC drilling all drill chip samples are geologically logged at 1m intervals from surface to the bottom of each drillhole. It is considered that geological logging is completed at an adequate level to allow appropriate future Mineral Resource estimation. Geological logging is considered semi-quantitative due to the limited geological information available from the Reverse Circulation method of drilling. All RC drillholes completed by Blaze during the current program have been logged in full.
Sub- sampling techniques and sample preparatio n	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample 	 For rock sampling the sample preparation of the rock samples follows industry best practice, involving oven drying, crushing , pulverizing and analysis carried out by Bureau Veritas Laboratories, Perth. No measures have been taken to ensure sampling is statistically representative of the in situ

Criteria	JORC Code explanation	Commentary
	 preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 sampled material. The collection methodology is considered appropriate for this early stage assessment of the project. The sample size is considered appropriate to the material being sampled and to produce results to indicate the degree of mineralisation in the areas sampled. The RC drilling rig was equipped with a rigmounted cyclone and cone splitter, which provided one bulk sample of approximately 20-30 kilograms, and 2 representative sub-sample of approximately 2-4 kilograms for every metre drilled. The sample size of 2-4 kilograms is considered to be appropriate and representative of the grain size and mineralisation style of the deposit. The majority of samples were dry. Where wet sample was encountered, the cleanliness of the cyclone and splitter were closely monitored by the supervising geologist, and maintained to a satisfactory level to avoid contamination and ensure representative samples were being collected. Duplicate samples were collected and submitted for analysis. Reference standards inserted during drilling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Analysis was carried out by Bureau Veritas Laboratories, Perth which is a certified laboratory in compliance with AS/NZS- 9001:200. The RC drilling rig was equipped with a rig- mounted cyclone and three-tier riffle splitter, which provided one bulk sample of approximately 20-30 kilograms, and a representative sub-sample of approximately 2-4 kilograms for every metre drilled. The sample size of 2-4 kilograms is considered to be appropriate and representative of the grain size and mineralisation style of the deposit. The majority of samples were dry. Where wet sample was encountered, the cleanliness of the cyclone and splitter were closely monitored by the supervising geologist, and maintained to a satisfactory level to avoid contamination and ensure representative samples were being collected. Duplicate samples were collected and submitted for analysis. Reference standards inserted during drilling. Bureau Veritas Perth used for all samples analysis of drill and rock samples submitted. The laboratory techniques below are for all samples

Criteria	JORC Code explanation	Commentary
		submitted to Bureau Veritas and are considered appropriate for the style of mineralisation defined within E45/4669 tenement:
		 Samples above 3Kg riffle split. Pulverise to 95% passing 75 microns 50 gram Fire Assay (Au-AA26) with ICP finish - Au. Samples fused with Sodium Peroxide and subsequently the melt has been dissolved in dilute HCL for analysis. Al, Ca, Fe, K, Li ,OES, Mg, Mn, P, Ti were determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Cs,Rb,Sn,Ta,W were determined by Inductively Coupled Plasma (ICP) Mass Spectrometry Standards were used for external laboratory checks. Duplicates were used for external laboratory checks.
Verificatio n of sampling and assavina	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data. 	The results are considered acceptable and have been reviewed by multiple geologists. The company conducts internal data verification, data entry and storage protocols which have been followed.
	 data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assav data. 	No adjustments to assay data has been undertaken
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral 	 Samples and drill holes were located during collection by handheld GPS (Garmin GPS76) with a typical accuracy of +/- 5m.
	Resource estimation.Specification of the grid system used.	The grid system used is Australian Geodetic MGA Zone 52 (GDA94).
	 Quality and adequacy of topographic control. 	The level of topographic control offered by the handheld GPS is considered sufficient for the work undertaken
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 There was no predetermined grid spacing to the rock sampling program with sample sites being selected as outcrop was located, in order to give a first pass dataset to evaluate the area. Drill holes were sited to test a selection of the best mineralized pegmatite occurrences. The data spacing and distribution is not sufficient to establish the degree of geological and grade continuity appropriate for Mineral Resource estimation procedures. Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the 	 Rock sampling was carried out over small areas of outcrop but could only be taken where rock fragments could be broken from outcrops. The samples are not representative of the pegmatite dyke. RC drill holes were generally targeted to intersect the dipping pegmatites perpendicular

Criteria	JORC Code explanation	Commentary
	<i>drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	 to the strike and dip of the pegmatites. All holes were drilled at -60 unless access allowed only vertical holes.
Sample security	• The measures taken to ensure sample security.	• All samples were collected by the field geologist and stored in a secure location until completion of the program when they were delivered to Bureau Veritas laboratories, Perth by commercial courier.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• No audits or reviews of the data have been conducted at this stage

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 E45/4669 is owned by Great Sandy Pty Ltd and now subject to a Memorandum of Understanding with ASX listed Southern Hemisphere Mining Limited and TSX-V listed Macarthur Minerals Limited. All rock sampling and drilling was conducted on one granted tenement E45/4669. All this work was conducted prior to the involvement of Southern Hemisphere Mining Limited. All work was completed by Great Sandy, tenement owner or Blaze International under a JV with Great Sandy. Great Sandy's geologist supervised all aspects of the rock sampling and drilling program. The tenement is in good standing and there are no known impediments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 There is no reported lithium exploration over the tenement prior to the prospect discovery by Great Sandy in 2016. Blaze International (ASX:BLZ) conducted the 12 hole, 702 metre RC drilling program in November 2016. There is no reported drilling conducted by any other explorers over the area. Great Sandy supervised or conducted all recent exploration over the tenement.
Geology	• Deposit type, geological setting and style of mineralisation.	 The geology of the project consists of Archaean granites and gneisses of the Mt Edgar batholith intruded by nort south striking lithium bearing pegmatite dykes. The project is adjacent to the Moolyella tin field and the lithium mineralizing event is related to the intrusion of the younger Moolyella Adamellite. Pre-exisiting structures within the granite probably control the location and distribution of pegmatites.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material	 Collar information for all drillholes reported and rock samples taken in 2016 are provided in the body of this report.

Criteria	JORC Code explanation	Commentary
	 drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No averaging or cut-off grades have been applied assay results. Li₂O is calculated by multiplying Li (ppm) by 2.153 divided by 10,000.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Exploration is at an early stage and information contains insufficient data points to allow these relationships to be reported
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate 	Sample plans are attached

Criteria	JORC Code explanation	Commentary
	sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All the assay results are reported herein.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The exploration reported herein is still at an early stage and there is no other relevant historical lithium exploration reported over the tenement area.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further more detailed mapping and follow up sampling is required together with other programs described in the report above.