

TAMPIA HIGH GRADE GOLD CONTINUOUS OVER 900m AND AT DEPTH

Highlights

- Shallow, high grade gold mineralisation at Tampia now continuous over 900m strike length and 350m down dip (approximately 180m below surface); remaining open at depth.
- New results received from the Leicester (southern) gold zone include significant intercepts of:
 - THRC157 7m at 20.55 g/t Au from 135m (incl. 2m at 67.45 g/t from 135m),
 - THRC166 3m at 3.62 g/t Au from 35m,
 - THRC177 6m at 5.30 g/t Au from 63m (incl. 1m at 27.20 g/t from 63m),
 - THRC178 3m at 2.16 g/t Au from 50m; 11m at 4.84 g/t Au from 67m (incl. 2m at 12.18 g/t from 67m); 3m at 5.00 g/t Au from 89m, and 3m at 3.19 g/t Au from 115m,
 - THRC180 4m at 8.89 g/t Au from 5m (incl. 1m at 26.50 g/t from 6m) and 8m at 4.13 g/t Au from 70m,
 - THRC184 5m at 1.16 g/t Au from 83m,
 - THRC187 10m at 5.32 g/t Au from 86m (incl. 1m at 32.60 g/t from 90m),
 - THRC188 1m at 24.70 g/t Au from 27m and 1m at 15.90 g/t Au from 126m,
 - THRC189 4m at 5.19 g/t Au from 129m,
 - THRC193 7m at 5.82 g/t Au from 112m (incl. 1m at 18.95 g/t from 116m),
 - THRC195 15m at 1.26 g/t Au from 104m,
 - THRC213 4m at 5.27 g/t Au from 16m (incl. 1m at 17.30 g/t from 17m).
- Gold mineralisation confirmed to continue for 200m down dip of the northern (Wanjalonar) high grade gold zone, with results including:
 - THRC196 3m at 12.65 g/t Au from 57m (incl. 1m at 35.70 g/t from 58m),
 - THRC198 6m at 1.39 g/t Au from 70m,
 - THRC226 9m at 2.10 g/t Au from 107m.
- First gold mineralisation confirmed from the Merino gold zone, with results including:
 - THRC210 1m at 14.55 g/t Au from 12m,
 - THRC224 1m at 8.84 g/t Au from 28m,
- Excellent continuity (and therefore predictability) of high grade mineralisation has been a feature of drilling to date in both the Leicester and Wanjalonar gold zones, with additional high-grade gold mineralisation continuing to be intersected in both zones;
- 173 RC holes have been completed for 23,408m to date. These assay results from 60 drill holes are in addition to the 56 holes reported previously (12 April 17 and 5 May 17), with the next round of assays (57 RC holes) pending.
- Drilling of the remaining 9,160m (program expanded to 32,568m due to the discovery of new mineralisation) is expected to be completed in early-mid July 2017.

Explaurum Limited ("**Explaurum**" or the "**Company**") (ASX:EXU) is pleased to announce the third batch of results from the resource RC drilling program at the Tampia Gold Project, located 300km east of Perth near the wheat belt township of Narembeen (Figure 1). A total of 173 RC holes totalling 23,408m have been completed, from an initial planned program of 26,200m, which has since been increased to 32,568m.

Results have been received from an additional 60 holes to the 56 holes reported on 12 April 17 and 2 May 17 (Figure 1). Drill collar details are given in Table 1 and a list of intersections in these holes using a 0.7 g/t Au cut off are given in Table 2. A total of 56 of the holes are mineralised and 4 holes are unmineralised, including significant intercepts of:

3m at 1.84 g/t Au from 20m,
7m at 20.55 g/t Au from 135m (incl. 2m at 67.45 g/t from 135m),
3m at 3.62 g/t Au from 35m,
4m at 1.56 g/t Au from 94m,
7m at 1.29 g/t Au from 96m,
6m at 5.30 g/t Au from 63m (incl. 1m at 27.20 g/t from 63m),
5m at 1.90 g/t Au from 82m,
3m at 2.16 g/t Au from 50m,
6m at 1.76 g/t Au from 60m,
11m at 4.84 g/t Au from 67m (incl. 2m at 12.18 g/t from 67m),
3m at 5.00 g/t Au from 89m,
3m at 3.19 g/t Au from 115m,
4m at 8.89 g/t Au from 5m (incl. 1m at 26.50 g/t from 6m),
8m at 4.13 g/t Au from 70m,
5m at 1.16 g/t Au from 83m,
10m at 5.32 g/t Au from 86m (incl. 1m at 32.60 g/t from 90m),
1m at 24.70 g/t Au from 27m,
5m at 1.31 g/t Au from 74m,
1m at 15.90 g/t Au from 126m,
4m at 5.19 g/t Au from 129m,
7m at 5.82 g/t Au from 112m (incl. 1m at 18.95 g/t from 116m),
15m at 1.26 g/t Au from 104m,
3m at 12.65 g/t Au from 57m (incl. 1m at 35.70 g/t from 58m),
6m at 1.39 g/t Au from 70m,
1m at 14.55 g/t Au from 12m,
4m at 5.27 g/t Au from 16m (incl. 1m at 17.30 g/t from 17m),
1m at 8.84 g/t Au from 28m,
9m at 2.10 g/t Au from 107m.

Results to date, particularly in the Leicester gold zone, continue to return better results than estimated by the 2015 resource estimate model. Importantly, gold continues to be intersected from the surface to 150m depth (Figure 1, Figure 2, Figure 3 and Figure 4). All intersections fall within the economic limits of an open cut operation. Of the 131 holes with assays returned, 101 holes returned better results, 21 holes returned similar results, and 9 holes were worse than predicted by the geological model estimate.

There are now sufficient results to confirm the orientation and continuity of the gold mineralisation at Tampia. The geology and gold mineralisation forms an open fold that plunges 30[°] to the south east (Figure 4). The fold defines the circular gravity anomaly and the stacked zones of gold mineralisation have been intersected over a 900m strike length and 350m down dip (Figure 1, Figure 2, Figure 3 and Figure 4). The strike extent of the gold mineralisation has been closed off to the north and south, but

the down dip extent of mineralisation remains open to the south east. The gold mineralisation forms a series of stacked zones of mineralisation between four granite sheets that are continuous along strike and down dip (Figure 1, Figure 2, Figure 3 and Figure 4). The stacked shoots of gold mineralisation have been intersected from the surface to a depth of 180m.

Holes targeting the extensions to the new Leicester gold zone continued to expand the mineralised area to the south, east and at depth (Figure 1, Figure 3 and Figure 4). The holes in the Leicester gold zone continue to intersect high grade mineralisation from the near surface to a depth of 150m, confirming grade continuity and extending the mineralisation to the south, including 6m at 3.80 g/t Au from 104m (THRC163), 8m at 2.59 g/t Au from 53m (THRC167), 4m at 5.11 g/t Au from 83m (THRC172), 9m at 4.11 g/t Au from 10m (THRC185), 10m at 5.32 g/t Au from 86m (THRC187), 1m at 24.70 g/t Au from 27m and 6m at 1.35 g/t Au from 74m (THRC188), 4m at 5.19 g/t Au from 129m (THRC189), 7m at 5.82 g/t Au from 112m (THRC193) and 15m at 1.26 g/t Au from 104m (THRC195). The results from these holes continue the trend of high grade gold mineralisation at surface to moderate depths through the middle of the Leicester gold zone. The continuity of gold mineralisation between 40m spaced holes continues to improve in this area. Drilling to the south of the Leicester gold zone continues to intersect near surface high grade mineralisation at depth in this area appear to be of limited extent and lower grade and narrower than the main gold zones to the north. Gold mineralisation now appears to be closed off in this direction in the Leicester gold zone.

Drilling down dip and to the south of the Wanjalonar gold zone towards the Merino gold zone continued to intersect gold mineralisation (Figure 1 and Figure 2 and Figure 3). The results from this phase of drilling confirm gold mineralisation continuing to the south and east, including 3m at 12.65 g/t Au from 57m (THRC196), 3m at 3.67 g/t Au from 54m and 6m at 1.39 g/t Au from 70m (THRC198), 12m at 2.70 g/t Au from 98m (THRC228) and 4m at 1.76 g/t Au from 80m (THRC244). The holes to the south of the Wanjalonar gold zone intersect significant deeper gold mineralisation like the high grade near surface gold mineralisation further north, with these intersections suggesting the Wanjalonar gold zone may join up with the Merino gold zone at depth.

Results have been returned from the first holes drilled to test the gap between the Leicester and Merino gold zones (Figure 1). 6m at 4.17 g/t Au from 77m (THRC169), 6m at 5.30 g/t Au from 63m (THRC177), 11m at 4.84 g/t Au from 67m (THRC178), 4m at 8.89 g/t Au from 5m and 8m at 4.13 g/t Au from 70m (THRC180), 1m at 8.95 g/t Au from 46m (THRC206), 4m at 1.15 g/t Au from 33m (THRC216) and 1m at 8.84 g/t Au from 28m (THRC224).

The new holes continue to confirm the geological model of a series of 1-10m wide high-grade gold ore zones that dip to the south east from the surface to a maximum intersection depth of 170m. These high-grade gold shoots are surrounded by low grade gold mineralisation with grades between 0.1-0.5 g/t Au (Figure 2 and Figure 3 and Figure 4). These new results from the northern and southern zones at Tampia continue to validate the accuracy and continuity of the geological and gold grade models, which provides more confidence that the 40m by 40m drill spacing being used to for the resource drilling will allow as a minimum an Indicated JORC 2012 compliant resource to be estimated.

The QAQC data for the program and sampling KPIs remain at acceptable levels. Data quality is overall at a level that will allow an Indicated JORC 2012 compliant resource to be estimated. The aims of the resource drilling program are:

• To provide sufficient drill density coverage over the known resource area, which has more than doubled in area to 1000m x 750m, to calculate a 2012 JORC compliant Measured and Indicated resource.

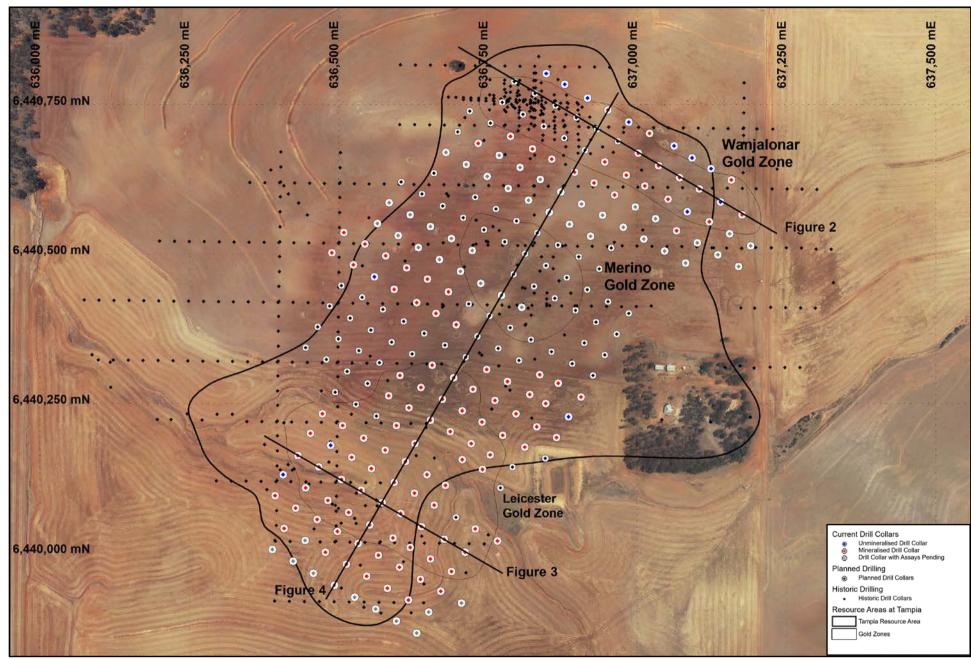


Figure 1. Drill plan of current resource RC drill holes in relation to farm infrastructure and showing location of drill sections.

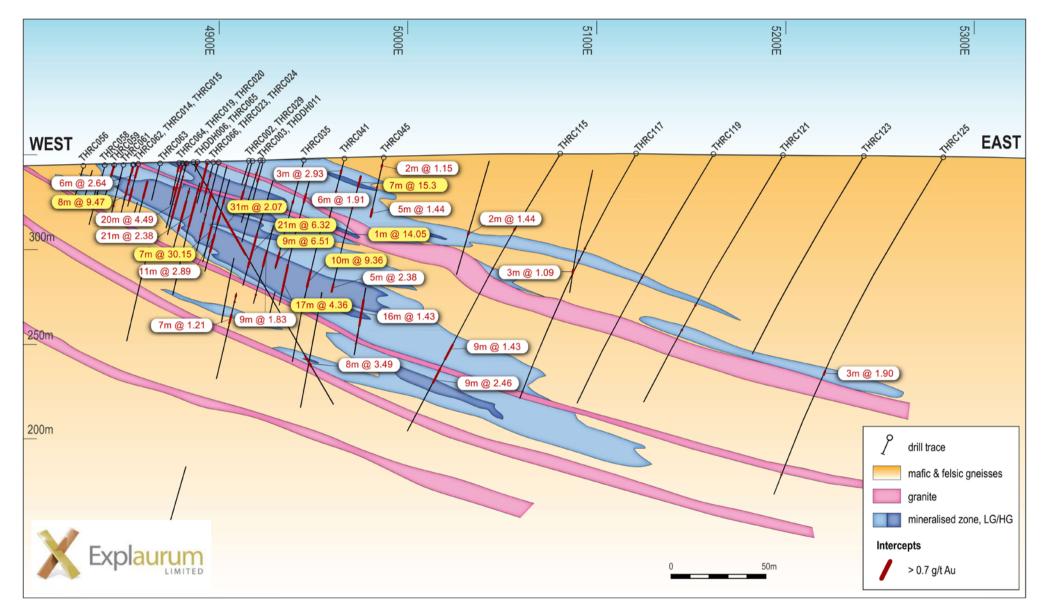


Figure 2. Cross section through the Wanjalonar gold zone showing down dip extension to gold mineralisation (see Figure 1 for location in plan).

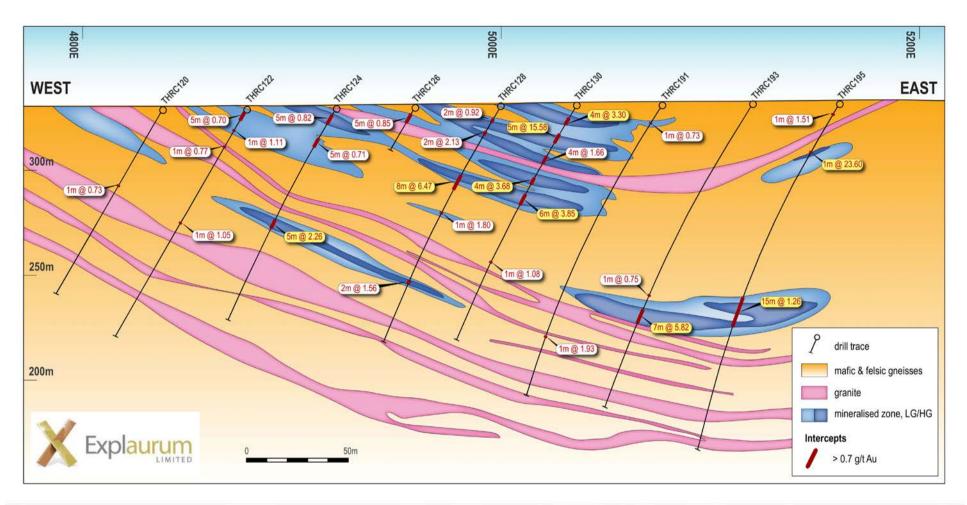


Figure 3. Cross section through the Leicester gold zone showing near surface high grade gold mineralisation (see Figure 1 for location in plan).

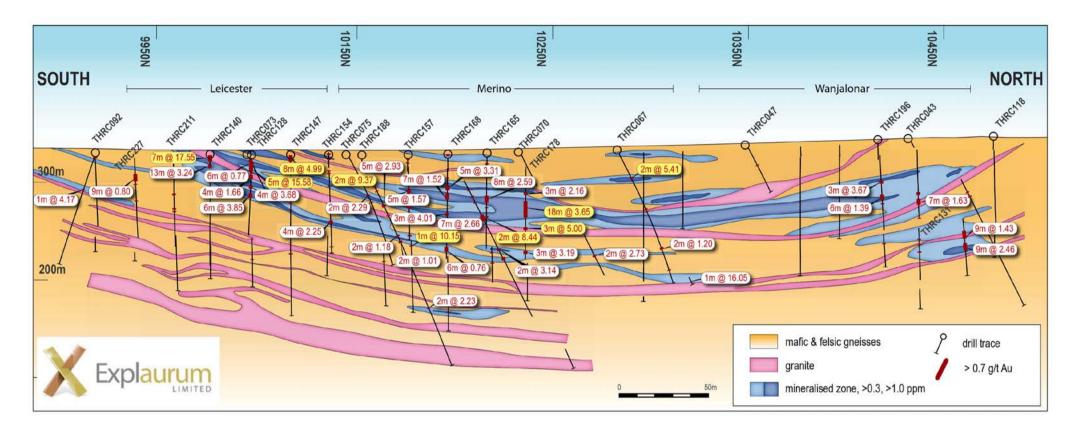


Figure 4. Long section from the Wanjalonar gold zone through to the Leicester gold zone in the south, showing overall structure of the gold zones in relation to geology, note relationship of granite sheets to gold mineralisation (see Figure 1 for location in plan).

- To test and infill the new areas of gold mineralisation intersected by 2016 exploration drilling programs and their potential extensions, including the 300m long gravity trend extending to the south-east of the northern gold zone.
- To drill to the margins of the resource area and extend the drill area where required.
- To drill the complete resource area at a 40 x 40m pattern as a high priority.

A review of the remaining planned holes has been completed to prioritise the drilling to target gaps in the geological understanding and adjust the depths of holes based on results to date. The priority of drilling now is to complete drilling in the Merino gold zone so that the geological model can be completed between the Wanjalonar and Leicester gold zones, and then finish the holes targeting the margins of the resource area.

Next Steps

There is approximately 9,000m of resource drilling left to be completed, which at current drilling rates should be finished by mid July 2017. This will be followed immediately by resource estimation and the announcement of a new Tampia JORC 2012 compliant Indicated resource.

Soil geochemical data have been collected over regional target areas defined by the recent geological mapping and gravity programs. Data have been collected to the west and north of the Tampia project area focussing on new mafic gneisses that appear geologically similar to the mafic gneiss that hosts gold mineralisation at Tampia. The results are being integrated with the new gravity data and are under review. The results from the soil sampling program should be available in July.

Bottle roll test work to determine the indicative gold recovery on mineralised intervals from the Leicester zone is in progress and should be available in July.

3D geological and structural modelling has started to develop constraining domains for the resource estimation that will immediately follow the completion of the resource drilling.

Preparation for feasibility studies to follow the release of the new resource estimate are underway and these are expected to commence in June/July.

For further information, contact:

John Lawton Managing Director Explaurum Limited +61 7 3333 2722

Competent Person's Statement

The information in this announcement that relates to Exploration Results and Mineral Resources is based on information compiled by Dr Gregor Partington, who is a Member of the Australasian Institute of Mining and Metallurgy. Dr Partington is also a Member of the Australian Institute of Geoscientists. Dr Partington is General Manager Operations and full-time employee of Explaurum Limited and has sufficient experience relevant to the style of mineralisation under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Partington consents to the inclusion in this report of the matters based on their information in the form and context in which it appears.

Hole	Zone	Status	East mE	North mN	RL m	Azo	Dip ^o	Depth
THRC108	Wanjalonar	Unmineralised	636,986	6,440,721	351	300	-60	144
THRC109	Wanjalonar	Mineralised	637,021	6,440,702	351	300	-60	144
THRC110	Wanjalonar	Unmineralised	637,062	6,440,681	351	300	-60	144
THRC111	Wanjalonar	Unmineralised	637,124	6,440,643	350	300	-60	180
THRC112	Wanjalonar	Unmineralised	636,848	6,440,802	346	300	-60	50
THRC113	Wanjalonar	Unmineralised	637,092	6,440,661	351	300	-60	150
THRC114	Wanjalonar	Unmineralised	636,879	6,440,784	347	300	-60	84
THRC115	Wanjalonar	Mineralised	637,002	6,440,669	351	300	-60	168
THRC116	Wanjalonar	Unmineralised	636,917	6,440,761	349	300	-60	126
THRC117	Wanjalonar	Mineralised	637,036	6,440,648	351	300	-60	144
THRC118	Wanjalonar	Mineralised	636,951	6,440,741	350	300	-60	120
THRC119	Wanjalonar	Mineralised	637,071	6,440,628	350	300	-60	150
THRC120	Leicester	Mineralised	636,432	6,440,163	330	300	-60	102
THRC121	Wanjalonar	Mineralised	637,104	6,440,609	350	300	-60	150
THRC122	Leicester	Mineralised	636,467	6,440,144	330	300	-60	126
THRC123	Leicester	Unmineralised	637,140	6,440,587	349	300	-60	120
THRC124	Leicester	Mineralised	636,505	6,440,123	330	300	-60	114
THRC125	Wanjalonar	Mineralised	637,176	6,440,566	349	300	-60	200
THRC126	Leicester	Mineralised	636,538	6,440,105	331	300	-60	24
THRC127	Wanjalonar	Mineralised	637,158	6,440,624	350	300	-60	168
THRC128	Leicester	Mineralised	636,573	6,440,084	331	300	-60	126
THRC129	Wanjalonar	Mineralised	636,946	6,440,654	350	300	-60	180
THRC130	Leicester	Mineralised	636,604	6,440,066	331	300	-60	126
THRC131	Wanjalonar	Mineralised	636,982	6,440,632	350	300	-60	168
THRC132	Leicester	Unmineralised	636,407	6,440,131	330	300	-60	62
THRC133	Wanjalonar	Mineralised	637,013	6,440,614	349	300	-60	204
THRC134	Leicester	Mineralised	636,445	6,440,109	330	300	-60	84
THRC135	Wanjalonar	Mineralised	637,052	6,440,592	348	300	-60	160
THRC136	Leicester	Mineralised	636,482	6,440,088	331	300	-60	90
THRC137	Wanjalonar	Unmineralised	637,084	6,440,571	348	300	-60	162
THRC138	Leicester	Mineralised	636,517	6,440,068	331	300	-60	108
THRC139	Leicester	Mineralised	636,453	6,440,200	330	300	-60	60
THRC140	Leicester	Mineralised	636,552	6,440,047	331	300	-60	162
THRC141	Leicester	Unmineralised	636,487	6,440,180	330	300	-60	84
THRC142	Leicester	Mineralised	636,591	6,440,025	331	300	-60	162
THRC143	Leicester	Mineralised	636,522	6,440,160	330	300	-60	144
THRC144	Leicester	Mineralised	636,620	6,440,009	332	300	-60	144
THRC145	Leicester	Mineralised	636,555	6,440,141	331	300	-60	150
THRC146	Leicester	Mineralised	636,654	6,439,990	332	300	-60	162
THRC147	Leicester	Mineralised	636,593	6,440,118	331	300	-60	150
THRC148	Leicester	Mineralised	636,689	6,439,969	332	300	-60	117
THRC149	Leicester	Mineralised	636,627	6,440,100	331	300	-60	150
THRC150	Leicester	Mineralised	636,473	6,440,233	330	300	-60	48
THRC151	Leicester	Mineralised	636,660	6,440,080	332	300	-60	186

Hole	Zone	Status	East mE	North mN	RL m	Azo	Dip ^o	Depth
THRC152	Leicester	Mineralised	636,507	6,440,213	330	300	-60	54
THRC153	Leicester	Mineralised	636,584	6,440,263	331	300	-60	126
THRC154	Leicester	Mineralised	636,612	6,440,153	331	300	-60	156
THRC155	Leicester	Mineralised	636,618	6,440,243	331	300	-60	120
THRC156	Leicester	Mineralised	636,542	6,440,192	330	300	-60	120
THRC157	Leicester	Mineralised	636,654	6,440,222	331	300	-60	150
THRC158	Leicester	Mineralised	636,578	6,440,172	331	300	-60	160
THRC159	Leicester	Mineralised	636,687	6,440,203	331	300	-60	156
THRC160	Leicester	Mineralised	636,648	6,440,131	331	300	-60	144
THRC161	Leicester	Mineralised	636,722	6,440,183	332	300	-60	186
THRC162	Leicester	Mineralised	636,679	6,440,113	332	300	-60	144
THRC163	Leicester	Mineralised	636,754	6,440,164	332	300	-60	174
THRC164	Leicester	Mineralised	636,603	6,440,297	331	300	-60	138
THRC165	Leicester	Mineralised	636,693	6,440,293	333	300	-60	150
THRC166	Leicester	Mineralised	636,638	6,440,277	331	300	-60	156
THRC167	Leicester	Mineralised	636,725	6,440,274	333	300	-60	150
THRC168	Leicester	Mineralised	636,674	6,440,257	332	300	-60	143
THRC169	Leicester	Mineralised	636,797	6,440,233	334	300	-60	150
THRC170	Leicester	Mineralised	636,707	6,440,238	332	300	-60	186
THRC171	Leicester	Mineralised	636,832	6,440,211	334	300	-60	156
THRC172	Leicester	Mineralised	636,740	6,440,219	332	300	-60	198
THRC173	Leicester	Mineralised	636,865	6,440,193	334	300	-60	144
THRC174	Leicester	Mineralised	636,775	6,440,197	332	300	-60	168
THRC175	Leicester	Mineralised	636,657	6,440,314	332	300	-60	162
THRC176	Leicester	Mineralised	636,812	6,440,177	332	300	-60	180
THRC177	Leicester	Mineralised	636,762	6,440,255	333	300	-60	150
THRC178	Leicester	Mineralised	636,748	6,440,307	334	300	-60	144
THRC179	Leicester	Mineralised	636,837	6,440,298	336	300	-60	156
THRC180	Leicester	Mineralised	636,783	6,440,287	334	300	-60	168
THRC181	Leicester	Mineralised	636,868	6,440,284	337	300	-60	150
THRC182	Leicester	Mineralised	636,820	6,440,265	335	300	-60	174
THRC183	Leicester	Mineralised	636,906	6,440,261	338	300	-60	150
THRC184	Leicester	Mineralised	636,847	6,440,250	335	300	-60	174
THRC185	Leicester	Assays pending	636,597	6,440,213	330	300	-60	144
THRC186	Leicester	Unmineralised	636,885	6,440,228	336	300	-60	186
THRC187	Leicester	Mineralised	636,707	6,440,156	331	300	-60	174
THRC188	Leicester	Mineralised	636,628	6,440,183	331	300	-60	150
THRC189	Leicester	Mineralised	636,741	6,440,140	332	300	-60	208
THRC190	Wanjalonar	Mineralised	636,788	6,440,697	345	300	-60	111
THRC191	Leicester	Mineralised	636,639	6,440,044	332	300	-60	154
THRC192	Wanjalonar	Mineralised	636,825	6,440,676	345	300	-60	120
THRC193	Leicester	Mineralised	636,677	6,440,023	332	300	-60	162
THRC194	Wanjalonar	Mineralised	636,857	6,440,659	346	300	-60	132
THRC195	Leicester	Mineralised	636,712	6,440,001	332	300	-60	180
THRC196	Wanjalonar	Mineralised	636,895	6,440,637	347	300	-60	168
THRC197	Leicester	Mineralised	636,729	6,440,040	332	300	-60	198
THRC198	Wanjalonar	Mineralised	636,928	6,440,619	348	300	-60	144

Hole	Zone	Status	East mE	North mN	RL m	Az ^o	Dip ^o	Depth
THRC199	Leicester	Mineralised	636,766	6,440,020	333	300	-60	186
THRC200	Merino	Mineralised	636,489	6,440,502	337	300	-60	66
THRC201	Leicester	Mineralised	636,394	6,440,096	331	300	-60	78
THRC202	Merino	Mineralised	636,525	6,440,482	336	300	-60	60
THRC203	Leicester	Mineralised	636,428	6,440,075	331	300	-60	84
THRC204	Merino	Unmineralised	636,560	6,440,462	336	300	-60	102
THRC205	Leicester	Mineralised	636,464	6,440,056	332	300	-60	108
THRC206	Merino	Mineralised	636,593	6,440,441	335	300	-60	108
THRC207	Leicester	Mineralised	636,498	6,440,036	332	300	-60	120
THRC208	Merino	Mineralised	636,631	6,440,419	334	300	-60	120
THRC209	Leicester	Mineralised	636,533	6,440,016	332	300	-60	144
THRC210	Merino	Mineralised	636,663	6,440,401	334	300	-60	120
THRC211	Leicester	Mineralised	636,567	6,439,996	333	300	-60	150
THRC212	Merino	Mineralised	636,697	6,440,382	334	300	-60	120
THRC213	Leicester	Mineralised	636,602	6,439,976	333	300	-60	162
THRC214	Merino	Mineralised	636,509	6,440,536	338	300	-60	60
THRC215	Leicester	Mineralised	636,637	6,439,956	333	300	-60	162
THRC216	Merino	Mineralised	636,544	6,440,517	338	300	-60	78
THRC217	Leicester	Mineralised	636,671	6,439,936	333	300	-60	150
THRC218	Merino	Mineralised	636,579	6,440,497	337	300	-60	114
THRC219	Leicester	Mineralised	636,409	6,440,041	332	300	-60	72
THRC220	Merino	Mineralised	636,614	6,440,477	336	300	-60	113
THRC221	Leicester	Assays pending	636,444	6,440,021	333	300	-60	90
THRC222	Merino	Mineralised	636,649	6,440,458	336	300	-60	139
THRC223	Leicester	Mineralised	636,478	6,440,001	333	300	-60	108
THRC224	Merino	Mineralised	636,684	6,440,437	337	300	-60	150
THRC225	Leicester	Mineralised	636,513	6,439,981	333	300	-60	102
THRC226	Wanjalonar	Mineralised	636,962	6,440,599	348	300	-60	150
THRC227	Leicester	Mineralised	636,547	6,439,961	333	300	-60	102
THRC228	Wanjalonar	Assays pending	636,997	6,440,579	348	300	-60	150
THRC229	Leicester	Mineralised	636,582	6,439,941	334	300	-60	126
THRC230	Wanjalonar	Assays pending	637,031	6,440,559	348	300	-60	136
THRC231	Leicester	Mineralised	636,617	6,439,921	334	300	-60	108
THRC232	Wanjalonar	Mineralised	637,066	6,440,539	348	300	-60	150
THRC233	Leicester	Assays pending	636,651	6,439,901	334	300	-60	114
THRC234	Wanjalonar	Mineralised	637,121	6,440,554	348	300	-60	174
THRC235	Leicester	Assays pending	636,389	6,440,006	333	300	-60	60
THRC236	Wanjalonar	Assays pending	637,155	6,440,534	348	300	-60	159
THRC237	Leicester	Assays pending	636,424	6,439,986	333	300	-60	78
THRC238	Wanjalonar	Assays pending	637,190	6,440,514	347	300	-60	228
THRC239	Leicester	Assays pending	636,458	6,439,966	334	300	-60	72
THRC240	Wanjalonar	Assays pending	637,101	6,440,519	347	300	-60	126
THRC241	Leicester	Assays pending	636,493	6,439,946	334	300	-60	90
THRC242	Wanjalonar	Assays pending	637,135	6,440,499	347	300	-60	132
THRC243	Leicester	Assays pending	636,527	6,439,926	333	300	-60	90
THRC244	Wanjalonar	Assays pending	637,170	6,440,479	346	300	-60	192
THRC245	Leicester	Assays pending	636,562	6,439,906	334	300	-60	120

Hole	Zone	Status	East mE	North mN	RL m	Azo	Dip ^o	Depth
THRC246	Wanjalonar	Mineralised	636,734	6,440,685	345	300	-60	120
THRC247	Leicester	Assays pending	636,597	6,439,886	335	300	-60	144
THRC248	Wanjalonar	Assays pending	636,769	6,440,665	345	300	-60	114
THRC249	Leicester	Assays pending	636,631	6,439,866	333	300	-60	144
THRC250	Wanjalonar	Assays pending	636,804	6,440,645	345	300	-60	144
THRC251	Leicester	Assays pending	636,706	6,439,916	333	300	-60	150
THRC252	Wanjalonar	Assays pending	636,838	6,440,625	345	300	-60	150
THRC253	Wanjalonar	Assays pending	637,081	6,440,485	345	300	-60	134
THRC254	Wanjalonar	Assays pending	636,872	6,440,604	345	300	-60	126
THRC255	Wanjalonar	Assays pending	636,680	6,440,670	345	300	-60	72
THRC256	Wanjalonar	Assays pending	636,907	6,440,584	346	300	-60	126
THRC257	Wanjalonar	Assays pending	636,714	6,440,650	345	300	-60	87
THRC258	Wanjalonar	Assays pending	636,942	6,440,565	345	300	-60	120
THRC259	Wanjalonar	Assays pending	636,749	6,440,630	345	300	-60	120
THRC260	Wanjalonar	Assays pending	636,977	6,440,545	345	300	-60	138
THRC261	Wanjalonar	Assays pending	636,784	6,440,610	345	300	-60	138
THRC262	Wanjalonar	Assays pending	637,011	6,440,525	345	300	-60	126
THRC263	Wanjalonar	Assays pending	636,818	6,440,590	345	300	-60	168
THRC264	Wanjalonar	Assays pending	637,046	6,440,505	345	300	-60	144
THRC265	Wanjalonar	Assays pending	636,853	6,440,570	345	300	-60	132
THRC266	Merino	Assays pending	636,565	6,440,551	337	300	-60	100
THRC267	Wanjalonar	Assays pending	636,887	6,440,550	345	300	-60	150
THRC268	Merino	Assays pending	636,600	6,440,531	337	300	-60	114
THRC269	Wanjalonar	Assays pending	636,922	6,440,530	345	300	-60	162
THRC270	Merino	Assays pending	636,634	6,440,511	337	300	-60	132
THRC271	Merino	Assays pending	636,585	6,440,586	337	300	-60	60
THRC272	Merino	Assays pending	636,669	6,440,491	337	300	-60	150
THRC273	Merino	Assays pending	636,620	6,440,566	337	300	-60	132
THRC274	Merino	Assays pending	636,704	6,440,471	337	300	-60	162
THRC275	Merino	Assays pending	636,654	6,440,546	337	300	-60	144
THRC276	Merino	Assays pending	636,738	6,440,451	337	300	-60	162
THRC277	Merino	Assays pending	636,689	6,440,526	337	300	-60	156
THRC278	Merino	Assays pending	636,773	6,440,431	337	300	-60	174
THRC279	Merino	Assays pending	636,724	6,440,506	337	300	-60	162
THRC280	Merino	Assays pending	636,807	6,440,411	337	300	-60	163

Note: Details of drilling methods are included in Appendix 1.

Table 2: Next round of composited intersections from 2017 Resource RC drilling

(Using a 0.7 g/t Au cut off, minimum of 1m width, internal dilution of 3m; NSI = No significant intersection).

Hole	Gold Zone	From (m)	- To (m)	Width (m)	Au (g/t)	Hole	Gold Zone	From (m)	- To (m)	Width (m)	Au (g/t)
THRC137	Wanjalonar				NSI	Including		67	69	2	12.18
THRC138	Leicester	20	23	3	1.84	THRC178	Leicester	89	92	3	5.00
THRC141	Leicester				NSI	THRC178	Leicester	115	118	3	3.19
THRC142	Leicester	36	37	1	0.80	THRC178	Leicester	124	125	1	0.86
THRC157	Leicester	19	20	1	0.82	THRC178	Leicester	142	143	1	0.81
THRC157	Leicester	37	38	1	0.83	THRC179	Leicester	83	84	1	1.21
THRC157	Leicester	51	52	1	3.11	THRC179	Leicester	88	97	9	0.7
THRC157	Leicester	56	66	10	0.97	THRC179	Leicester	118	119	1	1.01
THRC157	Leicester	135	142	7	20.55	THRC179	Leicester	144	145	1	1.19
Including		135	137	2	67.45	THRC180	Leicester	5	9	4	8.89
THRC166	Leicester	8	20	12	0.99	Including		6	7	1	26.50
THRC166	Leicester	35	38	3	3.62	THRC180	Leicester	70	78	8	4.13
THRC166	Leicester	52	53	1	1.69	THRC180	Leicester	95	97	2	1.56
THRC166	Leicester	81	82	1	0.81	THRC180	Leicester	107	109	2	0.98
THRC166	Leicester	91	92	1	1.78	THRC181	Leicester	54	55	1	0.91
THRC173	Leicester	64	65	1	1.64	THRC181	Leicester	101	102	1	0.70
THRC173	Leicester	99	104	5	1.05	THRC181	Leicester	131	132	1	1.70
THRC174	Leicester	85	86	1	0.77	THRC182	Leicester	4	5	1	2.36
THRC174	Leicester	94	98	4	1.56	THRC182	Leicester	29	32	3	1.31
THRC174	Leicester	103	105	2	4.81	THRC182	Leicester	77	78	1	0.80
THRC174	Leicester	109	110	1	3.48	THRC182	Leicester	84	88	4	1.26
THRC175	Leicester	16	17	1	1.07	THRC182	Leicester	115	118	3	0.94
THRC175	Leicester	21	26	5	0.84	THRC182	Leicester	136	137	1	0.80
THRC175	Leicester	35	36	1	0.90	THRC182	Leicester	142	143	1	0.86
THRC175	Leicester	64	65	1	2.48	THRC183	Leicester	132	135	3	1.39
THRC176	Leicester	68	69	1	1.46	THRC184	Leicester	83	88	5	1.16
THRC176	Leicester	96	103	7	1.29	THRC184	Leicester	128	129	1	1.18
THRC176	Leicester	147	148	1	1.70	THRC184	Leicester	138	139	1	0.71
THRC177	Leicester	63	69	6	5.30	THRC184	Leicester	159	163	4	1.01
Including		63	64	1	27.20	THRC186	Leicester				NSI
THRC177	Leicester	82	87	5	1.90	THRC187	Leicester	1	2	1	1.37
THRC177	Leicester	117	118	1	1.00	THRC187	Leicester	48	49	1	0.75
THRC177	Leicester	128	129	1	4.26	THRC187	Leicester	63	71	8	0.83
THRC178	Leicester	13	14	1	0.93	THRC187	Leicester	86	96	10	5.32
THRC178	Leicester	50	53	3	2.16	Including		90	91	1	32.60
THRC178	Leicester	60	66	6	1.76	THRC187	Leicester	100	102	2	1.16
THRC178	Leicester	67	78	11	4.84	THRC187	Leicester	125	126	1	0.74

Table 2: Next round of composited intersections from 2017 Resource RC drilling

(Using a 0.7 g/t Au cut off, minimum of 1m width, internal dilution of 3m; NSI = No significant intersection).

Hole	Gold Zone	From (m)	To (m)	Width (m)	Au (g/t)	Hole	Gold Zone	From (m)	To (m)	Width (m)	Au (g/t)
THRC188	Leicester	18	20	2	1.98	THRC198	Wanjalonar	70	76	6	1.39
THRC188	Leicester	27	28	1	24.70	THRC198	Wanjalonar	80	81	1	1.47
THRC188	Leicester	35	36	1	2.58	THRC198	Wanjalonar	111	112	1	6.86
THRC188	Leicester	46	47	1	1.07	THRC198	Wanjalonar	118	119	1	2.87
THRC188	Leicester	74	79	5	1.31	THRC199	Leicester	8	9	1	1.17
THRC188	Leicester	111	115	4	0.80	THRC199	Leicester	70	73	3	0.92
THRC188	Leicester	126	127	1	15.90	THRC199	Leicester	98	102	4	1.79
THRC189	Leicester	34	35	1	0.75	THRC199	Leicester	127	128	1	0.70
THRC189	Leicester	64	65	1	1.05	THRC200	Merino	10	12	2	1.43
THRC189	Leicester	72	74	2	4.89	THRC201	Leicester	31	32	1	1.98
THRC189	Leicester	129	133	4	5.19	THRC202	Merino	32	34	2	0.73
THRC190	Wanjalonar	1	2	1	0.87	THRC203	Leicester	11	14	3	0.79
THRC190	Wanjalonar	28	30	2	2.07	THRC203	Leicester	51	52	1	0.82
THRC190	Wanjalonar	61	62	1	1.35	THRC204	Merino				NSI
THRC190	Wanjalonar	79	80	1	1.03	THRC205	Leicester	6	7	1	1.00
THRC191	Leicester	10	11	1	0.73	THRC205	Leicester	28	29	1	0.71
THRC191	Leicester	124	125	1	1.93	THRC205	Leicester	34	35	1	2.55
THRC192	Wanjalonar	113	114	1	1.40	THRC206	Merino	3	4	1	1.93
THRC193	Leicester	104	105	1	0.75	THRC206	Merino	12	13	1	0.93
THRC193	Leicester	112	119	7	5.82	THRC206	Merino	46	47	1	8.95
Including		113	114	1	14.45	THRC206	Merino	57	58	1	1.10
Including		116	117	1	18.95	THRC207	Leicester	13	15	2	1.39
THRC194	Wanjalonar	18	19	1	0.92	THRC207	Leicester	63	64	1	0.94
THRC194	Wanjalonar	26	27	1	1.05	THRC208	Merino	5	6	1	0.80
THRC194	Wanjalonar	85	87	2	3.52	THRC208	Merino	33	34	1	1.49
THRC194	Wanjalonar	111	112	1	0.75	THRC209	Leicester	123	124	1	0.98
THRC195	Leicester	6	7	1	1.51	THRC210	Merino	12	13	1	14.55
THRC195	Leicester	27	28	1	23.6	THRC210	Merino	17	19	2	1.03
THRC195	Leicester	104	119	15	1.26	THRC210	Merino	58	59	1	0.96
THRC196	Wanjalonar	43	44	1	0.95	THRC211	Leicester	17	18	1	1.84
THRC196	Wanjalonar	57	60	3	12.65	THRC211	Leicester	51	53	2	0.79
Including		58	59	1	35.70	THRC212	Merino	19	20	1	2.30
THRC196	Wanjalonar	108	109	1	0.77	THRC212	Merino	48	49	1	0.77
THRC197	Leicester	13	14	1	1.04	THRC212	Merino	112	113	1	0.70
THRC197	Leicester	25	27	2	1.84	THRC213	Leicester	16	20	4	5.27
THRC197	Leicester	127	129	2	1.68	Including		17	18	1	17.30
THRC198	Wanjalonar	54	57	3	3.67	THRC213	Leicester	26	27	1	0.96

Table 2: Next round of composited intersections from 2017 Resource RC drilling

Hole	Gold Zone	From (m)	To (m)	Width (m)	Au (g/t)
THRC213	Leicester	41	42	1	2.82
THRC213	Leicester	49	50	1	0.73
THRC214	Merino	12	14	2	0.92
THRC215	Leicester	38	43	5	0.95
THRC216	Merino	33	37	4	1.15
THRC217	Leicester	51	52	1	2.13
THRC218	Merino	51	52	1	0.86
THRC219	Leicester	8	11	3	0.84
THRC219	Leicester	30	31	1	1.05
THRC219	Leicester	41	43	2	1.31
THRC220	Merino	12	13	1	1.74
THRC220	Merino	54	55	1	1.54
THRC222	Merino	52	53	1	0.77
THRC223	Leicester	23	24	1	1.06
THRC223	Leicester	34	35	1	0.80
THRC223	Leicester	71	72	1	2.48
THRC224	Merino	14	15	1	0.76
THRC224	Merino	21	22	1	1.23
THRC224	Merino	28	29	1	8.84

Hole	Gold Zone	From (m)	To (m)	Width (m)	Au (g/t)
THRC225	Leicester	30	31	1	0.70
THRC226	Wanjalonar	70	71	1	5.86
THRC226	Wanjalonar	87	94	7	0.79
THRC226	Wanjalonar	107	116	9	2.10
THRC226	Wanjalonar	124	125	1	1.30
THRC232	Wanjalonar	94	95	1	0.81
THRC232	Wanjalonar	112	113	1	0.70
THRC232	Wanjalonar	135	136	1	2.39
THRC232	Wanjalonar	141	142	1	1.28
THRC234	Wanjalonar	124	125	1	0.96

(Using a 0.7 g/t Au cut off, minimum of 1m width, internal dilution of 3m; NSI = No significant intersection).

Note: Details of sampling methods and interpreted true widths are included in Appendix 1.

About Explaurum Limited and background to the Tampia Gold Project

Explaurum's key asset is the 90% interest in the Tampia Gold Project, located approximately 300km east of Perth in the wheat belt of Western Australia. A 2012 JORC Inferred resource of 4.7 million tonnes (MT) grading 2.0g/t Au (cut) or 2.5g/t Au (uncut) containing 310,000 – 380,000 ounces of gold, including 1.6 MT at 3.4 g/t Au (cut) or 4.6g/t Au (uncut) containing 170,000 – 237,000 ounces gold announced in April 2015 **(Table 3)**.

BHP Minerals ('BHP') discovered gold mineralisation at Tampia in 1987 from follow up of a regional BLEG stream sampling program. BHP and subsequent owners in the 1990s established the following features of the mineralisation:

- Gold mineralisation is high grade and near surface
- The resource was well drilled in part to mostly shallow depth, but open in all directions and at depth
- The resource area has significant gaps in drilling. If infill drilling is successful, an increase in resources is anticipated
- There is significant potential for further discoveries within 10km radius with a number of strong geochemical and auger/RAB anomalies
- Tampia is located on private land close to sealed roads, power, water, accommodation, services and labour
- Tampia is located 135km by road from Westonia and about 185km by road from Southern Cross and Marvel Loch.

Notable historic drill intercepts include:

GR028 NRC4 GDH01	17m at 27.5g/t Au from 8m including 4m at 108.9g/t Au from 9m; 11m at 28.1g/t Au from 21m including 5m at 57.7g/t Au from 25m; 9m at 18.3g/t Au from 19m including 1m at 55.5g/t Au from 23m and 2m at 43.5g/t Au from 25m and a deeper intercept of 11m at 10.1g/t Au from 50m including 2m at 41.9g/t Au from 50m;
GR001	25m at 11.0g/t Au from 0m to the end of the hole including 8m at 29.3g/t Au rom 14m;
GR003	25m at 10.1g/t Au from 0m to the end of the hole including 3m at 52.7g/t Au from 19m;
NRC41	5m at 34.9g/t Au from 79m including 1m at 165g/t Au from 79m;
GDH09	29m at 5.9g/t Au from 35m including 1m at 154g/t Au from 59m;
NRC16	4m at 19.2g/t Au from 33m and 6m at 16.1g/t Au from 45m including 1m at 64.0g/t Au from 49m;
GR026	9m at 16.5g/t Au from 16m including 4m at 32.5g/t Au from 19m;
GR411	31m at 3.9g/t Au from 64m;
NRC6	13m at 7.6g/t Au from 59m including 2m at 24.8g/t Au from 67m; and
NRC15	18m at 5.3g/t Au from 67m.

In 2014 and early 2015, the Company completed 10 diamond drill holes (totalling 481.3m), with six holes targeting known mineralisation near the Gault resource. A further 7 diamond drill holes were completed in July 2015 (totalling 766.5m), and 45 RC drill holes (totalling 2798m) were completed in December 2015 predominantly within the northern Wanjalonar gold zone. All results from these programs have been fully reported and available at <u>www.explaurum.com</u>.

able 5. Joke 2012 Interied Winteral Resource (gold), Gauterrospect, Fampla 110										
Cut off	Tonnes Au (cut) (Contained gold	Au (uncut)						
g/t Au	(,000)	g/t Au	Ounces	g/t Au						
0.7	7,100	1.6	370,000	2.0						
1.0	4,700	2.0	310,000	2.5						
2.0	1,600	3.4	170,000	4.6						

Table 3: JORC 2012 Inferred Mineral Resource (gold), Gault Prospect, Tampia Project

Notes:

i) approx. 90% of the resource (at 0.7g/t) is less than 100m depth (73% shallower than 80m)

ii) oxide Resources are not significant at about 15,000 ounces at a 0.7g/t cut off.

Appendix 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut channels, random	One metre samples were collected via a reverse
techniques	chips, or specific specialised industry standard	circulation drill rig. These samples were split
	measurement tools appropriate to the minerals under	using a Metzke gravity fed cone splitter system to
	investigation, such as down hole gamma sondes, or	produce a 5kg representative sample. The quality
	handheld XRF instruments, etc.). These examples should	of the sample is actively measured using various
	not be taken as limiting the broad meaning of sampling.	quality control techniques. The quality of the
	······································	sampling is deemed to be fit-for-purpose to
		define a JORC Compliant Indicated and Measured
		Resource based on the quality control metrics
		being used. Every effort is made to ensure all
		samples are drilled dry and when this is not
		. ,
		possible samples are logged as wet. Where
		samples are wet the pXRF sample is left to dry
		before analysing.
	Include reference to measures taken to ensure sample	Various quality control metrics are being actively
	representivity and the appropriate calibration of any measurement tools or systems used.	monitored to ensure the quality of samples collected. Such measures include:
		 The constant monitoring that the
		splitter system is level and unblocked.
		(further monitored through the
		weights of the two sub-samples
		collected)
		The collection of large 5kg sub-
		samples from the splitter system.the measuring and monitoring of total
		RC sample to measure total recovery
		and consistency of recovery and
		therefore monitor the metre
		delineation of the rig (after correcting
		for density based on lithology averages
		and volume differences based on bit
		size)
		 The collection of both primary and
		duplicate sub-samples and the
		weighing of these samples to ensure
		the consistency of the splitter system.
		• The collection of duplicates to test the
		homogeneity of the deposit and
		indicate adequacy of sample size.
		 The use of blanks to ensure the correct application of laboratory againment
		calibration of laboratory equipment
		and identify contamination at the
		laboratory.
		 The use of certified reference
		materials to test both accuracy and
		precision of laboratory analyses.
	Aspects of the determination of mineralisation that are	5kg samples have been dried before fine
	Material to the Public Report. In cases where 'industry	crushing, splitting using a Boyd rotary splitter to
	standard' work has been done this would be relatively	produce an 800g sub-sample, which is pulverised
	simple (e.g. 'reverse circulation drilling was used to obtain	to produce a 50g sample for fire assay and
	1 m samples from which 3 kg was pulverised to produce a	multielement analysis via ICP-MS for Cu, Ni, Co
	30g charge for fire assay'). In other cases, more	As and S.
	explanation may be required, such as where there is	
		NVPE analysis was carried out on evenuments h
	coarse gold that has inherent sampling problems.	pXRF analysis was carried out on every metre by
	Unusual commodities or mineralisation types (e.g.	taking a small 50g sample from the bulk RC
	submarine nodules) may warrant disclosure of detailed	sample and analysing using an Innovex Delta
	information.	Premium XRF Analyser with all three beams
		enabled with each beam set to 35 seconds each.
Drilling	Drill type (e.g. core, reverse circulation, open-hole	Reverse circulation drilling equipment with face
		a proming home one ways used to collect complex
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc.) and	sampling hammers were used to collect samples.

Criteria	JORC Code Explanation	Commentary
	of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	to take representative sub-samples of complete metres. Drill bit diameter is recorded as part of the logging to ensure correct volumes are used for recovery estimations from total sample weights.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	All sample recovery information was digitally recorded on the rig using locked auto-validating excel spreadsheets. Samples were weighed using digital scales and recoveries were estimated based on average density of logged lithology, bit diameter (indicating volume of sample) and total sample weight. The recovery was constantly monitored using live-updating graphs.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	An auxiliary booster is used to maximise air pressure to improve sample recovery, which allows most holes to be drilled dry. Where samples were drilled wet they have been logged as such. Furthermore, constant monitoring of recoveries via measurement and evaluation of total sample weights on the rig enable recoveries to be maximised.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship between sample recovery and grade has been observed.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All chip samples have been geologically logged to 1m resolution on the rig recording information on rock type, mineralogy, mineralisation, fabrics, textures and alteration. This logging is integrated with geological logging from downhole optical data, which can log to at least 10cm resolution and records structural information for contacts, foliation, banding and veining in the form of dip and dip direction measurements. Magnetic susceptibility, resistivity, natural gamma and density measurements are also used to assist this logging.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography	The logging for the RC drilling was qualitative for the geological data collection and quantitative for structural, geotechnical and geochemical data. A hand held XRF was used to collect continuous geochemical data and Televiewer optical and audio data collection allows the measurement of structural and geotechnical data.
	The total length and percentage of the relevant intersections logged.	All one metre samples from the drilling have been geologically logged and the geological data recorded in the drill database. Subsamples were also collected and stored in chip trays for future reference.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	No core taken.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	Samples were split using a Metzke gravity fed fixed cone splitter system. Holes were kept dry wherever possible via use of an auxiliary booster.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sub-sample taken for assay was split using a gravity fed fixed cone splitter system. A 5kg sample was collected to minimise bias. The samples were dried and fine crushed before being split with a Boyd Rotary splitter to produce a 20% (800g) subsample, which was pulverised, from which a 50g aliquot was taken for fire assay and multi-element analysis via ICP-MS. The quality of these sample has been measured via the quality control methods already described. The sample preparation method is deemed appropriate given the mineralisation style.

Criteria	JORC Code Explanation	Commentary
		pXRF samples were taken from the bulk reject sample and given their purpose this sample method is deemed appropriate. The samples undergo no sample preparation and as such indicative only.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Duplicates are taken at all sub-sampling stages from the same metre. A duplicate is taken from the splitter system, crush duplicates are taken from the Boyd Rotary splitter following fine crushing and pulp duplicates are taken from the pulverised sample before fire assay. The results of these duplicate samples are assessed as results are returned to identify problems as they may arise to allow for their resolution as soon as possible.
	Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.	Repeat and duplicate samples are submitted for all holes. The results from these will then be reviewed statistically and reported when all data have been reviewed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size is believed to be appropriate for the mineralisation style particularly given the lack of coarse gold identified to date at the project.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples from the reported RC drilling program were submitted into ALS Perth for assay.
		5kg samples have been dried before fine crushing, splitting using a Boyd rotary splitter to produce an 800g sub-sample, which is pulverised to produce a 50g sample for fire assay with an ICP-OES finish and multielement analysis via ICP- MS for Cu, Ni, Co, As and S. These techniques are total digests.
		pXRF analysis was carried out on every metre by taking a small 50g sample from the bulk RC sample and analysing using an Innovex Delta Premium XRF Analyser with all three beams enabled with each beam set to 35 seconds each. This analysis is a partial analysis as only a very small subsample is taken and analysed with known sample preparation.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	An Innovex Delta Premium pXRF analyser has been used to analyse samples using all three beams set to a read time of 35 seconds. No calibrations have yet been applied.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Quality control samples include Certified Reference Materials, blanks, field duplicates, crush duplicates and pulp duplicates. The samples are stored and comparatively assessed to determine the accuracy and precision of the laboratory analysis as the samples are returned. The laboratory conducts their own checks which are also monitored. The accuracy and precision of the geochemical data reported on has deemed to be acceptable.
		The pXRF analyses are controlled in a similar manner to laboratory assays with CRM's, blanks, duplicates and replicates inserted and taken as standard practice to ensure the robustness of the pXRF data.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	All intersections were compiled by the Project Geologist via Micromine compositing tools and cross-checked by the General Manager of Operations. A further check was conducted via

Criteria	JORC Code Explanation	Commentary
		direct compositing of the database and visual
	The use of twinned holes.	checks in Micromine's 3D software. Several twin, cross and close spaced holes have
		been completed in the project area to date and
		the comparison of results are generally good to
		very good based on the style of mineralisation.
	Documentation of primary data, data entry procedures,	The data from the historic drilling are stored in a
	data verification, data storage (physical and electronic) protocols.	digital database and were verified against hard copy assay sheets in various annual reports
		where available.
		The current data are collected via auto-validated,
		locked excel spreadsheets with drop down menu
		entries. These sheets are loaded into an Access
		database using macro's and are extensively tested for errors. The data are then validated in
		the database and loaded into Micromine and visual checks conducted. One database
		administrator conducts all data merging and
		storage into the database to ensure the integrity of the data.
	Discuss any adjustment to assay data.	No data has been adjusted
Location of data	Accuracy and quality of surveys used to locate drill holes	The drillholes reported were located using a
points	(collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Garmin GPSMAP 78s GPS unit. The holes will be located by a surveyor using a Trimble Differential
		GPS using MGA 94/ Zone 50 at the end of the
		program.
		Downhole surveys were for all holes were also
		collected using a gyroscope during the downhole
		data acquisition.
	Specification of the grid system used.	MGA 94 Zone 50
	Quality and adequacy of topographic control.	Topographic control has been developed from the Landgate database, the terrain is reasonably
		flat cropping paddocks, free of vegetation. The
		holes are draped onto the DTM created from the
		Landgate data and will be tested against the
		DGPS pickups.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The drilling reported has been designed on a 40m x 40m grid with the desired aim of achieving a
uistribution		Measured and Indicated 2012 JORC Compliant
		Resource. The holes are drilled to an average
		depth of about 140m.
	Whether the data spacing and distribution is sufficient to	The sample spacing indicates geological
	establish the degree of geological and grade continuity	continuity is evident across 40m spaced holes.
	appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Variograms and kriging efficiency estimations were conducted by an independent party on the
		drilling prior to this program and indicate a 40m
		x40m spacing is fit-for-purpose.
	Whether sample compositing has been applied.	There has been no sample compositing.
Orientation of	Whether the orientation of sampling achieves unbiased	Based on downhole optical structural data all
data in relation to	sampling of possible structures and the extent to which	reported holes have been drilled perpendicular
geological structure	this is known, considering the deposit type.	to the main mineralised structural trends.
Structure	If the relationship between the drilling orientation and the	There is no apparent bias in any of the drilling
	orientation of key mineralised structures is considered to	orientations used.
	have introduced a sampling bias, this should be assessed	
<u> </u>	and reported if material.	
Sample security	The measures taken to ensure sample security.	All samples are removed from site on the day of
		drilling and stored locked inside a secure
		warehouse facility. The samples are transported by a professional freight company to ALS
		Laboratories. The samples are not left
		unattended and a chain of custody is maintained
	1	throughout the shipping process.

Criteria	JORC Code Explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All QC data is monitored as assays are returned both internally and by an independent third party to ensure the robustness and integrity of our sampling and analysis methods.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Project area is held under E70/2132, P70/1637, P70/1645, P70/1638, M70/815 and M70/816. All the tenement area comprises private agricultural land with no Native title interests. The Company has access agreements over the area of the gold resource covered by M70/815 and M70/816 and part of E70/2132.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	See above, no other known impediments
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic exploration undertaken by Company Date
		BHP Minerals Ltd 1987-1988 Dry Creek Mining 1990-1993
		Nexus Minerals 1997-1999 IPT Systems Ltd 2000-2001
		Meridian Mining 2006-2009 Tampiagold Pty 2010-2011 Auzex Exploration 2012-2015
Geology	Deposit type, geological setting and style of	Auzex Exploration 2012-2015 The Tampia Hill project area covers a sequence of late
	mineralisation.	Archaean mafic-felsic granulite facies granitoid and gneiss. The lowest unit in the sequence as interpreted from the structural position of the units is a suite of banded feldspar-biotite-quartz granulite that also can contain graphite and pyrrhotite in augen gneiss. The original sequence for this unit is believed to be clastic sediment, wacke, arenite and graphitic shale. The next unit is feldspar-biotite-amphibole-pyroxene granulite that appears to contain a mixture of sedimentary and mafic precursor lithologies. The uppermost part of the sequence consists of a mafic granulite dominated by pyroxene- plagioclase-amphibole lithologies. Minor biotite, spinel, enstatite and quartz with pyrrhotite up to 2% also occur. The precursor lithology is inferred to be tholeiitic basalt. This sequence is intruded by quartz-feldspar granitoid dykes and sills that have complex cross-cutting relationships suggesting multiple phases of emplacement. This entire sequence is intruded by several unmetamorphosed dolerite dykes that are thought to be of Proterozoic in age.
		throughout, or concentrated within, pods of hornblende- biotite-pyroxene and hornblende-biotite-plagioclase within pyroxene and biotite-bearing mafic granulites. The gold occurs with disseminated non-magnetic pyrrhotite, arsenopyrite, chalcopyrite and rare pyrite. Total sulphide contents of mineralised intersections are between 1% and 3%, with a maximum estimated 5% sulphide. Sulphides occur along S1 foliation planes and are folded by F1 minor folds. Mineralisation occurs in elongate to ellipsoidal pods that vary in size from 1-10 m thick, 50-150 m wide (east-west) and 50- 200 m long (north-south). Four mineralised shoots were identified in the north Wanjalonar Zone of the prospect, with

Criteria	Explanation	Commentary
		another two zones in the central Merino Gold Zone and southern Leicester Gold Zone. Average grades within a zone >1g/t Au vary between 1 to 5 g/t Au over 5-10 m intervals. The northern zone has yielded the best grades with Leicester showing promising signs of additional high grade gold.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar	The contractor, Drilling Australia, provided a Schramm 450 drill rig and a Hydco 350 drill rig. Samples were collected from a rig mounted Metzke cyclone via a gravity fed fixed cone splitter. Additional air pressure was used when necessary from an all- wheel drive auxiliary/boosters supplying 2100cfm at 1000psi.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	The equipment provided by the contractor was inspected by the geologist before the start of the drilling campaign and was deemed to be well maintained, safe and fit for purpose.
	 down hole length and interception depth hole length. 	All drill holes (Table 1) were pegged as required using a Garmin GPSMAP 78s GPS unit. All holes will be accurately surveyed using a mmGNSS RTK differential GPS once the program is completed. The drill rig was positioned and oriented on the drill pad by the geologist using a geological compass to magnetic azimuth of 300° and the declination was determined by a clinometer on the mast of the rig and aligned to 60°. The magnetic declination in the region is -0.61°.
		Drill samples were collected in two calico bags on either of the ports of the gravity fed static cone splitter and the excess sample was collected into a 600mm wide plastic bag. Both calico bags are pre-numbered with the sample number clearly visible and the green bag with the bulk reject written with the metres. At the completion of each metre drilled the driller's offsiders collected the calico bags and green bag and placed them in rows. All calico bags and the total sample were weighed on the rig to check split accuracy and total recoveries/metre delineation. This data is recorded on excel spreadsheet and analysed using graphs to ensure the sampling system is in control. The geologist then collected a portion of the bulk sample from the plastic bag using a scoop and sieve. This portion was sieved, washed, logged and a spoonful saved in a chip tray into the appropriate metre interval marked on the chip tray. All data logged was recorded via laptop computer directly into an excel spread sheet saved on a USB external drive. An Olympus Delta Premium XRF analyser was used to take one reading every sample interval. The readings were taken for lengths of 35 seconds per beam for all three beams.
		Certified Reference Materials (CRM's) were inserted regularly into the sample stream at 1:20 ratio. Blanks and duplicates were taken through expected mineralisation and where mineralisation is observed at a density of around 10%. Blanks are inserted at a frequency of 5% through mineralised zones and at least 1 every 40 samples.
		The 5kg samples were dried and fine crushed before being split using a Boyd Rotary splitter to provide a 20% split (800g). This sub-sample is pulverised and a 50g aliquot is taken for fire assay. All samples undergo for two types of analysis: 50g Au Fire Assays with an ICP-OES finish and 4 acid digest ICP-MS multi element analysis for As, Cu, S, Co and Ni.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	No available information was excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of	Drill intersections reported in Table 2 include those that have an aggregate of 0.7 g/t Au over at least one metre. Internal

Criteria	Explanation	Commentary
	high grades) and cut-off grades are usually	dilution below 0.7g/t was allowed for up to 3m, provided they
	Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and	were mineralised with at least 0.1 g/t Au. Intersection aggregation is typically from 0.7g/t and higher with up to 3m of internal dilution. Where particularly high
	longer lengths of low grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	grade influences the grade significantly these grades have been reported separately to the total intersection grade, e.g. 7m at 17.55 g/t Au from 5m (including 1m at 94.30 g/t Au).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported	Most holes have been drilled orthogonally to the general dip and strike of mineralisation. However, due to the complex structural geology of the gneiss host rocks some parts of the holes are not oriented optimally and consequently will not represent true widths.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Structural measurements from downhole acoustic and optical data confirm the drill holes have been drilled perpendicular to the mineralised structures in the holes and the intersections listed in Table 2 represent within 95% of true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures 1, 2, 3 and 4 show the anomalous gold zones identified and the location of drilled holes and planned holes.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	All recent RC drill holes with assays have been included and significant intercepts have been fairly represented. Historic RC and Core intercepts in the holes nearest the reported holes have all been previously reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test	Soil sampling, stream sediment sampling, gravity, magnetics geophysics and downhole magnetic susceptibility, acoustic imagery, optical imagery, natural gamma readings, resistivity and pXRF data have been used to assist the interpretation of the target areas.
	results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	A regional and detailed gravity survey was completed to map the distribution and extent of potential host rocks for gold mineralisation at Tampia. The main resource area at Tampia is associated with a bullseye gravity anomaly that corresponds to a block of mafic gneiss that hosts the main gold mineralisation at Tampia. There are several gravity trends mapped by the detailed gravity that appear to follow known mineralised trends in the resource area. The gravity data clearly map the distribution of the mafic gneiss in the region with respect to granite and felsic gneiss, with the denser mafic gneiss (gravity highs) having a strong spatial association with anomalous gold in soil geochemistry anomalies, including the area hosting the main resource at Tampia. The soil anomalies, mafic units and gravity trends remain largely untested, but have many similarities to the known resource area. The gravity map will be used to plan future exploration and resource extension drilling.
		A bulk flotation metallurgical test work program has been completed to determine the overall gold recoveries from the main ore types at Tampia. Two composite samples were prepared from mineralised core from three diamond drill holes, representing high and low arsenic concentrations and gold grade representative of the Tampia resource model. All tests provided near complete recovery of sulphides (97% to 99%) and gold recovery to the float concentrate ranged from 65.0% to 74.6%, and 58.6% to 72.0% for the high and low gold:arsenic

Criteria	Explanation	Commentary
		(Au:As) composites respectively. Subsequent leaching of the flotation tailings resulted in an overall increase in gold recovery up to 90.8%. A bulk flotation test was then conducted to generate sufficient mass of concentrate for ultrafine grinding (UFG) and intensive cyanide leaching. The results were very positive indicating the gold associated with sulphides is not refractory, but rather free milling and apparently sensitive to grind size.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work will include infill RC drilling and downhole optical data collection to improve the structural and lithological interpretation, increase sample density and obtain bulk density data. Additional variability metallurgical test work is also planned using samples from the recently drilled core.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The zones of mineralisation are open in all directions laterally and at depth and are currently constrained be the lack of significant drilling below 80m (Figures 1, 2, 3 and 4).