

#### **BOARD OF DIRECTORS**

Milan Jerkovic Non-Executive Chairman Bryan Dixon Managing Director Greg Miles Non-Executive Director Peter Rozenauers Non-Executive Director

ASX CODE BLK

CORPORATE INFORMATION 339M Ordinary Shares 29M Unlisted Options 4.2M Performance Rights

ABN: 18 119 887 606

**PRINCIPAL AND REGISTERED OFFICE** Blackham Resources Ltd L2, 38 Richardson Street West Perth WA 6005

**POSTAL ADDRESS** PO Box 1412 West Perth WA 6872

www.blackhamresources.com.au

E: info@blackhamresources.com.au

P: +61 8 9322 6418 F:\_ +61 8 9322 6398

# Further outstanding Wiluna drilling results

Blackham Resources Ltd **(ASX: BLK) ("Blackham")** is pleased to provide an update on the Reserve Definition Drilling which has been completed as part of the Expansion Study and will provide the basis for a resource and reserve update in support of the Stage 2 expansion plans. Drill results have now been received for the remainder of the program completed at the Happy Jack – Bulletin and Squib lodes at the Wiluna Gold Operation. Numerous broad, shallow high grade intercepts continue to highlight the potential for a large, long life operation underpinned by the Wiluna open pits all within 4km of the Wiluna Gold Plant.

#### Highlights:

- Further high grade shallow mineralisation on the Happy Jack Bulletin and Squib Lodes amenable to open pit mining
- Potential extensions along strike and at depth of the Bulletin and Happy Jack open pits and underground development
- Impressive drilling results (downhole widths) include:

#### <u>Bulletin Lode</u>

WUDD0022:

| •         | WURC0445: | 35m @ 4.95g/t Au from 153m &<br>14m @ 5.60g/t Au from 215m | 173g*m<br>78g*m |
|-----------|-----------|------------------------------------------------------------|-----------------|
| •         | WURC0435: | 27m @ 5.60g/t Au from 171m                                 | 151g*m          |
| •         | WURC0424: | 23m @ 5.19g/t Au from 122m                                 | 119g*m          |
| •         | WURC0423: | 21m @ 5.20g/t Au from 136m                                 | 109g*m          |
| •         | WUDD0021: | 8.5m @ 4.18g/t Au from 26m                                 | 36g*m           |
| H         | appy Jack |                                                            |                 |
| •         | WUDD0031: | 54.4m @ 3.34g/t Au from 161.6m                             | 182g*m          |
| •         | WURC0333: | 20m @ 3.11g/t Au from 103m &                               | 62g*m           |
|           |           | 6m @ 11.2g/t Au from 138m                                  | 67g*m           |
| •         | WUDD0018: | 6m @ 6.56g/t Au from 107m                                  | 39g*m           |
| <u>Sc</u> | quib      |                                                            |                 |
| •         | WURC0356: | 18m @ 5.01g/t Au from 150m                                 | 90g*m           |
| •         | WURC0357: | 17m @ 5.61g/t Au from 118m                                 | 95g*m           |

These results are in addition to the drill results reported to the ASX on 22 May 2017 "Exceptional Wiluna Drilling Results" from the East and West lodes. Blackham is currently revising the Wiluna open pit resources with results from 49,000m of drilling completed since January 2017.

8.7m @ 5.80g/t Au from 158m

50g\*m

# Wiluna Open Pit Reserve Drilling

Blackham recently published the results of a Preliminary Expansion Study ("PES" refer to ASX release 8<sup>th</sup> May 2017). The PES identified the potential for a long-life operation at Wiluna producing in excess of 200,000oz per annum, including 7.6Mt @ 2.5g/t for 610Koz of open pit Mining Inventory. Between January and May ~49,000m of RC and diamond drilling targeting shallow, open pit mineralisation was completed to increase the resource confidence level and allow open pit Ore Reserves to be estimated. Results from the first half of this program targeting the East and West lodes (refer to ASX release 22<sup>nd</sup> May 2017) intersected numerous zones of high grade mineralisation. An updated mineral resource estimate is in progress for the Wiluna open pits.

Results for the remainder of the drilling targeting the 2km strike length along the Happy Jack to Bulletin structures (Figure 1) have now been received and are reported here. Drilling has continued to intersect broad, shallow zones of high grade mineralisation within and along strike from pit shells which had been based on the previous drilling. High grade mineralisation beneath these pit shells is likely to either result in larger pits or be easily accessible from existing underground development. Resource estimation work for the remainder of the open pit lodes has now commenced and will be reported once completed.



Figure 1. Plan view showing collar locations of latest drilling results (downhole widths quoted) and updated mineralisation interpretation in relation to pre-drilling pit optimisation shells. Dashed white lines show location of cross sections A-A' (Figure 3), B-B' (Figure 5) and C-C' (Figure 6)

### Bulletin

Infill drilling at Bulletin has intersected shallow, high grade mineralisation along strike and beneath the Bulletin open pit (Figures 2 & 3). Mineralisation has also been intersected in lodes which are sub-parallel to

the main Bulletin lode (Figure 3). These recent intercepts are broader and/or higher grade than intersected by historical drilling, revealing the presence of previously unrecognised high grade shoots. These sub-parallel lodes may result in a larger open pit, or reduce underground operating costs due to higher ounces per vertical metre.

Better results shown in Figures 1 to 3 (downhole widths quoted) include:

| • | WURC0445: | 35m @ 4.95g/t from 153m including 11m @ 6.69g/t and | 173g*m |
|---|-----------|-----------------------------------------------------|--------|
|   |           | 14m @ 5.60g/t from 215m including 8m @ 8.52g/t      | 78g*m  |
| • | WURC0423: | 21m @ 5.20g/t from 136m including 5m @ 11.2g/t,     | 109g*m |
| • | WURC0424: | 23m @ 5.19g/t from 122m including 4m @ 17.5g/t,     | 119g*m |
| • | WURC0435: | <b>14m @ 1.97g/t</b> from 91m and                   | 28g*m  |
|   |           | 27m @ 5.60g/t from 171m including 8m @ 12.3g/t,     | 151g*m |
| • | WURC0441: | 13m @ 4.09g/t from 162m including 5m @ 8.25g/t,     | 53g*m  |



Figure 2. Bulletin - Gap long section looking west showing drill intercepts coloured by Au tenor, underlain with pre-drilling metal tenor contours. Recent results extend the high-grade zones both to the north and south and at depth.



Figure 3. Cross section A-A' through Bulletin looking north showing broad, high grade intercepts in a lode sub-parallel to the main Bulletin lode which remains open at depth. Latest drilling results may drive the planned pit deeper but are also close to existing underground access.

## Happy Jack

Drilling at Happy Jack focused on better defining mineralisation along strike to the north towards the Gap pit, to the south within the potential larger pit shell and at depth. Drilling results south of Happy Jack are broadly in line with expectations. Generally, drill results between the Happy Jack and Gap pits to the north of the current Happy Jack pit were higher grade than previous drilling indicated (Figure 4). Drilling beneath the pit was also broadly in line with expectations apart from an exceptional intersection in WUDD0031 which returned 54.4m @ 3.38g/t (182g\*m) where the Creek shear intersects the main Happy Jack lode (Figure 5). Other significant results from Happy Jack (downhole widths quoted) include:

Other significant high grade results beneath and along strike from the current Happy Jack pit include:

| • | WURC0328: | <b>4m @ 11.5g/t</b> from 136m       | 46g*m |
|---|-----------|-------------------------------------|-------|
| • | WURC0333: | <b>20m @ 3.11 g/t</b> from 103m and | 62g*m |
|   |           | <b>6m @ 11.2g/t</b> from 138m       | 67g*m |
| • | WUDD0018: | <b>20m @ 1.60g/t</b> from 69m       | 32g*m |
|   |           | <b>6m @ 6.56g/t</b> from 107m       | 39g*m |



Figure 4. Happy Jack long section looking west showing drill intercepts coloured by Au tenor, underlain with pre-drilling metal tenor contours. Recent results indicate the potential for the pit to extend further north.



Figure 5. Cross section B-B' through Happy Jack looking north showing zone of thick high grade mineralisation where the Creek Shear mineralisation intersects the Happy Jack lode just below the planned pit floor.

## Squib

The Squib pit lies to the west of the main Happy Jack to Bulletin trend (Figure 1). Infill drilling has confirmed the presence of high grade southerly plunging shoots (Figure 6). Significant intercepts include:

WURC0357: 17m @ 5.61g/t from 118m including 7m @ 11.1g/t 95g\*m
 WURC0356: 18m @ 5.01g/t from 150m including 7m @ 10.6g/t 90g\*m
 WUDD0022: 8.7m @ 5.8g/t from 158m including 3.4m@ 11.6g/t 50g\*m



Figure 6. Cross section C-C' through Squib pit looking grid north showing high grade results in Blackham's infill drilling, with potential to extend the final pit design deeper.

# Matilda/Wiluna Gold Operation Resources

A successful drilling campaign of 25,000m in the December 2016 quarter increased Mineral Resources at the Matilda/Wiluna gold operation by 25%. (Refer to ASX release dated 23rd of January 2017 for details). Significantly, the total Mineral Resource of 63Mt @ 3.2g/t (6.4Moz) includes 12.5Mt @ 2.6g/t for 1Moz of potential open pit mineralisation at Wiluna which could provide base load mill feed to an expanded processing plant.

The latest drilling results from the 49,000m completed since January 2017 around the Wiluna open pits have resulted in strike and depth extensions and improved geological confidence suggesting the potential for larger open pits than previously envisaged. The Wiluna open pit resources are currently being re-estimated.

# Table 1. Matilda/Wiluna Gold Operation January 2017 Measured, Indicated & Inferred Resources (JORC 2012)

| OPEN PIL RESOURCES |     |         |        |     |           |          |        |          |        |      |            |        |  |
|--------------------|-----|---------|--------|-----|-----------|----------|--------|----------|--------|------|------------|--------|--|
| Mining             |     | Measure | d      |     | Indicated | ł        |        | Inferred |        |      | Total 100% | 6      |  |
| Centre             | Mt  | g/t Au  | Koz Au | Mt  | g/t Au    | Koz Au   | Mt     | g/t Au   | Koz Au | Mt   | g/t Au     | Koz Au |  |
| Matilda            | 0.2 | 2.1     | 13     | 7.6 | 1.8       | 435      | 4.3    | 1.4      | 200    | 12.1 | 1.7        | 648    |  |
| Galaxy             |     |         |        | 0.4 | 3.1       | 42       | 0.4    | 2.2      | 25     | 0.8  | 2.6        | 68     |  |
| Williamson         |     |         |        | 3.3 | 1.6       | 170      | 3.8    | 1.6      | 190    | 7.1  | 1.6        | 360    |  |
| Wiluna             |     |         |        | 8.4 | 2.7       | 730      | 4.1    | 2.5      | 330    | 12.5 | 2.6        | 1,060  |  |
| Regent             |     |         |        | 0.7 | 2.7       | 61       | 3.1    | 2.1      | 210    | 3.8  | 2.2        | 271    |  |
| Stockpiles         |     |         |        | 0.4 | 1.0       | 13       |        |          |        | 0.4  | 1.0        | 13     |  |
| OP Total           | 0.2 | 2.1     | 13     | 21  | 2.2       | 1,451    | 16     | 1.9      | 955    | 37   | 2.1        | 2,420  |  |
|                    |     |         |        |     |           |          |        |          |        |      |            |        |  |
|                    |     |         |        | UI  | NDERGRO   | UND RESC | DURCES |          |        |      |            |        |  |
| Mining             |     | Measure | d      |     | Indicated | Ł        |        | Inferred |        |      | Total 100% | 6      |  |
| Centre             | Mt  | g/t Au  | Koz Au | Mt  | g/t Au    | Koz Au   | Mt     | g/t Au   | Koz Au | Mt   | g/t Au     | Koz Au |  |
| Golden Age         |     |         |        | 0.5 | 5.3       | 81       | 0.9    | 3.7      | 110    | 1.4  | 4.2        | 191    |  |
| Wiluna             |     |         |        | 9.4 | 5.2       | 1570     | 15.0   | 4.4      | 2165   | 24   | 4.8        | 3,735  |  |
| Matilda            |     |         |        | 0.1 | 2.5       | 10       | 0.6    | 3.6      | 70     | 0.7  | 3.6        | 80     |  |
| UG Total           |     |         |        | 10  | 5.2       | 1.661    | 17     | 4.4      | 2.345  | 26   | 4.8        | 4.006  |  |

1) Wiluna Open Pit Resources reported in announcements dated 14 December 2016 and 23rd January 2017 and include all exploration and resource definition drilling information, where practicable, up to 1<sup>st</sup> December 2016.

3,112

32

3.2

3,300

63

3.2

6,426

2) Mineral Resources are reported inclusive of Ore Reserves.

2.1

13

31

3) Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location shape and continuity of the occurrence and on the available sampling results. The figures in the above table are rounded to two significant figures to reflect the relative uncertainty of the estimate.

4) Cut off grades used in the estimations vary between deposits refer to ASX release dated 23<sup>rd</sup> January 2017 for details.

3.1

For further information on Blackham please contact:

| Bryan Dixon                | Bruce Kendall              | Jim Malone                 |
|----------------------------|----------------------------|----------------------------|
| Managing Director          | Chief Geological Officer   | Investor Relations Manager |
| Blackham Resources Limited | Blackham Resources Limited | Blackham Resources Limited |
| Office: +618 9322 6418     | Office: +618 9322 6418     | Office: +61 419 537 714    |

#### **Competent Persons Statement**

Grand Total

0.2

The information contained in the report that relates to Exploration Targets and Exploration Results at the Matilda/Wiluna Gold Operation is based on information compiled or reviewed by Mr Bruce Kendall, who is a full-time employee of the Company. Mr Kendall is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Kendall has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information contained in the report that relates to all other Mineral Resources is based on information compiled or reviewed by Mr Marcus Osiejak, who is a full-time employee of the Company. Mr Osiejak, is a Member of the Australian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Osiejak has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

With regard to the Matilda/Wiluna Gold Operation Mineral Resources, the Company is not aware of any new information or data that materially affects the information included in this report and that all material assumptions and parameters underpinning Mineral Resource Estimates as reported in the market announcements dated 14 December 2016 and 23<sup>rd</sup> January 2017 continue to apply and have not materially changed.

#### Forward Looking Statements

This announcement includes certain statements that may be deemed 'forward-looking statements'. All statements that refer to any future production, resources or reserves, exploration results and events or production that Blackham Resources Ltd ('Blackham' or 'the Company') expects to occur are forward-looking statements. Although the Company believes that the expectations in those forward-looking statements are based upon reasonable assumptions, such statements are not a guarantee of future performance and actual results or developments may differ materially from the outcomes. This may be due to several factors, including market prices, exploration and exploitation success, and the continued availability of capital and financing, plus general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance, and actual results or performance may differ materially from those projected in the forward-looking statements. The Company does not assume any obligation to update or revise its forward-looking statements, whether as a result of new information, future events or otherwise.

# **Appendix 1. Significant Intercepts**

Grid is GDA\_94 Z51S. Intercepts are calculated above a cut-off grade of 0.6g/t, maximum 2m internal dilution, minimum intercept grade of 2m @ 1.2g/t. NSI = No significant intercept. WURC = RC holes, WURD = RC pre-collar with a diamond tail WUDD = Diamond hole from surface.

| Lode             | Hole ID  | East   | North   | RL   | EOH | Dip | Azi   | From | To  | Width | Au    | True |
|------------------|----------|--------|---------|------|-----|-----|-------|------|-----|-------|-------|------|
|                  |          | (MGA)  | (MGA)   |      | (m) |     | (MGA) | (m)  | (m) | (m)   | g/t   | (m)  |
| Wotton           | WURC0248 | 225402 | 7052841 | 1505 | 84  | -60 | 256   | NSI  |     |       |       |      |
| Wotton           | WURC0249 | 225419 | 7052873 | 1506 | 126 | -60 | 252   | 50   | 51  | 1.0   | 1.50  | 0.7  |
|                  |          |        |         |      |     |     |       | 74   | 76  | 2.0   | 2.89  | 1.3  |
| Wotton           | WURC0250 | 225378 | 7052858 | 1505 | 60  | -59 | 252   | NSI  |     |       |       |      |
| Backfill         | WURC0292 | 225150 | 7051556 | 1499 | 218 | -60 | 270   | 2    | 3   | 1.0   | 4.12  | 0.7  |
| Backfill         | WURC0300 | 224934 | 7051173 | 1499 | 180 | -60 | 90    | 2    | 6   | 1.6   | 1.47  | 1.0  |
| Wotton           | WURC0318 | 225395 | 7052783 | 1504 | 43  | -59 | 243   | NSI  |     |       |       |      |
| Wotton           | WURC0319 | 225414 | 7052790 | 1505 | 78  | -60 | 251   | NSI  |     |       |       |      |
| Wotton           | WURC0320 | 225391 | 7052810 | 1504 | 54  | -60 | 251   | 38   | 39  | 1.0   | 4.09  | 0.7  |
| Wotton           | WURC0321 | 225411 | 7052816 | 1505 | 75  | -60 | 252   | NSI  |     |       |       |      |
| Wotton           | WURC0322 | 225274 | 7053198 | 1504 | 126 | -60 | 250   | NSI  |     |       |       |      |
| Wotton           | WURC0323 | 225265 | 7053221 | 1503 | 126 | -60 | 250   | NSI  |     |       |       |      |
| Golden Age North | WURC0324 | 225585 | 7052931 | 1512 | 175 | -61 | 47    | 82   | 86  | 4.0   | 1.90  | 2.7  |
|                  |          |        |         |      |     |     |       | 100  | 102 | 2.0   | 7.53  | 1.3  |
|                  |          |        |         |      |     |     | incl. | 101  | 102 | 1.0   | 11.95 | 0.7  |
|                  |          |        |         |      |     |     |       | 118  | 121 | 3.0   | 1.38  | 2.0  |
|                  |          |        |         |      |     |     |       | 124  | 127 | 3.0   | 1.71  | 2.0  |
| Golden Age North | WURC0325 | 225575 | 7052957 | 1512 | 155 | -60 | 48    | 73   | 80  | 7.0   | 1.73  | 4.7  |
| Happy Jack       | WURC0326 | 225381 | 7052979 | 1506 | 180 | -60 | 317   | 34   | 38  | 4.0   | 1.06  | 2.7  |
|                  |          |        |         |      |     |     |       | 45   | 46  | 1.0   | 4.24  | 0.7  |
|                  |          |        |         |      |     |     |       | 91   | 93  | 2.0   | 2.36  | 1.3  |
|                  |          |        |         |      |     |     |       | 99   | 101 | 2.0   | 1.09  | 1.3  |
|                  |          |        |         |      |     |     |       | 135  | 136 | 1.0   | 4.31  | 0.7  |
|                  |          |        |         |      |     |     |       | 156  | 160 | 4.0   | 4.26  | 2.7  |
|                  |          |        |         |      |     |     | incl. | 158  | 159 | 1.0   | 11.10 | 0.7  |
| Happy Jack       | WURC0327 | 225325 | 7052892 | 1504 | 162 | -55 | 317   | 53   | 56  | 3.0   | 1.86  | 2.0  |
|                  |          |        |         |      |     |     |       | 68   | 77  | 9.0   | 1.87  | 6.0  |
|                  |          |        |         |      |     |     | incl. | 71   | 72  | 1.0   | 5.84  | 0.7  |

| Lode        | Hole ID  | East   | North   | RL    | EOH | Dip | Azi   | From | То  | Width | Au    | True  |
|-------------|----------|--------|---------|-------|-----|-----|-------|------|-----|-------|-------|-------|
|             |          | (MGA)  | (MGA)   |       | (m) |     | (MGA) | (m)  | (m) | (m)   | g/t   | Width |
|             |          |        |         |       |     |     |       | 106  | 109 | 2.0   | 1.40  | (11)  |
|             |          |        |         |       |     |     |       | 13/  | 125 | 2.0   | 1.40  | 0.7   |
|             |          |        |         |       |     |     |       | 1/0  | 155 | 7.0   | 2.30  | 4.7   |
| Llanny lack |          | 225402 | 7052026 | 1507  | 140 | 60  | 216   | 145  | 10  | 7.0   | 2.72  | 4.7   |
| парру заск  | WURC0328 | 225403 | 7053030 | 1507  | 140 | -60 | 310   | 1/   | 10  | 1.0   | 3.48  | 0.7   |
|             |          |        |         |       |     |     |       | 102  | 102 | 3.0   | 0.78  | 2.0   |
|             |          |        |         |       |     |     |       | 102  | 103 | 1.0   | 1.80  | 0.7   |
|             |          |        |         |       |     |     |       | 107  | 111 | 4.0   | 0.72  | 2.7   |
|             |          |        |         |       |     |     |       | 121  | 122 | 1.0   | 2.79  | 0.7   |
|             |          |        |         | 1.500 |     |     |       | 136  | 140 | 4.0   | 11.54 | 2.7   |
| Нарру Јаск  | WURC0329 | 225239 | 7052744 | 1502  | 190 | -50 | 315   | 128  | 129 | 1.0   | 9.60  | 0.7   |
| Creek Shear | WURC0330 | 225009 | 7052327 | 1501  | 80  | -60 | 272   | NSI  |     |       |       |       |
| Wotton      | WURC0331 | 225321 | 7053213 | 1505  | 195 | -60 | 250   | NSI  |     |       |       |       |
| Happy Jack  | WURC0332 | 225279 | 7052844 | 1503  | 180 | -55 | 317   | 65   | 73  | 8.0   | 1.09  | 5.3   |
|             |          |        |         |       |     |     |       | 106  | 107 | 1.0   | 2.14  | 0.7   |
|             |          |        |         |       |     |     |       | 113  | 114 | 1.0   | 6.41  | 0.7   |
|             |          |        |         |       |     |     |       | 126  | 131 | 5.0   | 0.74  | 3.3   |
|             |          |        |         |       |     |     |       | 135  | 137 | 2.0   | 1.33  | 1.3   |
|             |          |        |         |       |     |     |       | 142  | 147 | 5.0   | 2.62  | 3.3   |
|             |          |        |         |       |     |     |       | 152  | 156 | 4.0   | 3.65  | 2.7   |
|             |          |        |         |       |     |     | incl. | 152  | 153 | 1.0   | 7.85  | 0.7   |
|             |          |        |         |       |     |     |       | 165  | 169 | 4.0   | 0.80  | 2.7   |
| Happy Jack  | WURC0333 | 225391 | 7053013 | 1506  | 180 | -60 | 320   | 59   | 63  | 4.0   | 1.40  | 2.7   |
|             |          |        |         |       |     |     |       | 95   | 96  | 1.0   | 4.37  | 0.7   |
|             |          |        |         |       |     |     |       | 103  | 123 | 20.0  | 3.11  | 13.3  |
|             |          |        |         |       |     |     | incl. | 108  | 111 | 3.0   | 3.76  | 2.0   |
|             |          |        |         |       |     |     |       | 138  | 144 | 6.0   | 11.21 | 4.0   |
| Gap         | WURC0334 | 225434 | 7053112 | 1508  | 110 | -59 | 317   | 82   | 84  | 2.0   | 1.23  | 1.3   |
|             |          |        |         |       |     |     |       | 90   | 91  | 1.0   | 1.55  | 0.7   |
| Gap         | WURC0335 | 225446 | 7053099 | 1508  | 60  | -59 | 318   | NSI  |     |       |       |       |
| Gap         | WURC0336 | 225469 | 7053109 | 1509  | 120 | -60 | 136   | 19   | 25  | 6.0   | 1.57  | 4.0   |
|             |          |        |         |       |     |     |       | 78   | 82  | 4.0   | 1.10  | 2.7   |
|             |          |        |         |       |     |     |       | 86   | 87  | 1.0   | 1.24  | 0.7   |
| Gap         | WURC0337 | 225658 | 7053247 | 1508  | 225 | -59 | 316   | 75   | 77  | 2.0   | 1.76  | 1.3   |
| Gap         | WURC0338 | 225596 | 7053212 | 1508  | 50  | -60 | 136   | NSI  |     |       |       |       |
| Gap         | WURC0339 | 225592 | 7053281 | 1507  | 114 | -60 | 138   | 3    | 6   | 3.0   | 2.35  | 2.0   |
|             |          |        |         |       |     |     |       | 25   | 28  | 3.0   | 1.32  | 2.0   |
|             |          |        |         |       |     |     |       | 102  | 103 | 1.0   | 2.79  | 0.7   |
| Gap         | WURC0340 | 225551 | 7053323 | 1507  | 150 | -60 | 136   | 22   | 26  | 4.0   | 1.13  | 2.7   |
|             |          |        |         |       |     |     |       | 115  | 119 | 4.0   | 0.73  | 2.7   |
| Gap         | WURC0341 | 225582 | 7053225 | 1508  | 72  | -60 | 134   | 0    | 16  | 16.0  | 1.08  | 10.7  |
|             |          |        |         |       |     |     |       | 38   | 39  | 1.0   | 2.11  | 0.7   |
| Gap         | WURC0342 | 225522 | 7053282 | 1507  | 135 | -59 | 133   | 2    | 4   | 2.0   | 1.14  | 1.3   |
|             |          |        |         |       |     |     |       | 56   | 59  | 3.0   | 0.92  | 2.0   |
|             |          |        |         |       |     |     |       | 78   | 79  | 1.0   | 3.36  | 0.7   |
| <u> </u>    | 1        | 1      |         | 1     |     |     | 1     |      |     | 1     |       |       |

| Lode             | Hole ID       | East   | North   | RL      | EOH | Dip      | Azi   | From     | То  | Width | Au    | True  |
|------------------|---------------|--------|---------|---------|-----|----------|-------|----------|-----|-------|-------|-------|
|                  |               | (MGA)  | (MGA)   |         | (m) |          | (MGA) | (m)      | (m) | (m)   | g/t   | Width |
|                  |               |        |         |         |     |          |       | 02       | 00  | ГО    | 1 20  | (111) |
| Gan              | W/URC03/13    | 225500 | 7053330 | 1507    | 100 | -60      | 128   | ده<br>۸3 | 00  | 1.0   | 2.40  | 0.7   |
| Gap              |               | 225555 | 7053350 | 1507    | 130 | -60      | 146   | 72       | 75  | 2.0   | 0.70  | 1.2   |
|                  |               | 225515 | 7053230 | 1500    | 150 | 50       | 270   | 110      | 117 | 7.0   | 2.54  | 1.5   |
| парру заск       | WURC0343      | 223071 | 7032272 | 1500    | 150 | -39      | incl  | 111      | 112 | 1.0   | 7.04  | 4.7   |
|                  |               |        |         |         |     |          | inci. | 121      | 112 | 1.0   | 2.40  | U.7   |
|                  |               |        |         |         |     |          | incl  | 121      | 125 | 1.0   | 7.49  | 0.7   |
| Happy Jack       |               | 225065 | 7052251 | 1500    | 156 | 60       | 260   | 124      | 123 | 2.0   | 1.40  | 1.2   |
|                  |               | 223003 | 7052251 | 1500    | 190 | -00      | 203   | 122      | 10  | 2.0   | 2.17  | 1.5   |
| парру заск       | WURC0547      | 225065 | 7052255 | 1501    | 100 | -00      | 274   | 4        | 10  | 0.0   | 2.17  | 4.0   |
| Coldon Ago North |               | 225525 | 7052056 | 1511    | 122 | 60       | 47    | 100      | 109 | 3.0   | 2.01  | 2.0   |
| Golden Age North | WURC0348      | 220000 | 7053050 | 1511    | 132 | -60      | 47    | 100      | 108 | 2.0   | 2.30  | 1.5   |
| Golden Age North | WURC0349      | 225552 | 7053074 | 1511    | 100 | -60      | 40    | 10.51    | 20  | 1.0   | 2.10  | 0.7   |
| Golden Age North | WURC0350      | 225662 | /052856 | 1512    | 90  | -60      | 40    | 28       | 29  | 1.0   | 3.10  | 0.7   |
|                  |               |        |         |         |     |          |       | 38       | 59  | 1.0   | 1.38  | 0.7   |
|                  |               |        |         |         |     |          |       | 49       | 51  | 2.0   | 1.08  | 1.3   |
| Motton           |               | 225222 | 7052105 | 1505    | 150 | <u> </u> | 252   | 54       | 55  | 1.0   | 2.47  | 0.7   |
| Wotton           | WURC0351      | 225333 | 7053105 | 1505    | 150 | -60      | 252   | INSI     |     |       |       |       |
| Wotton           | WURC0352      | 225285 | 7053090 | 1504    | 85  | -59      | 253   | NSI      |     |       |       |       |
| Нарру Јаск       | WURC0353      | 225384 | 7053055 | 1506    | 22  | -60      | 315   | NSI      |     |       | 4.54  | 12    |
| Gap              | WURC0354      | 225413 | 7053090 | 1507    | 108 | -59      | 318   | 1        | 3   | 2.0   | 1.51  | 1.3   |
|                  |               |        |         |         |     |          |       | 8        | 9   | 1.0   | 3.25  | 0.7   |
|                  |               |        |         | 1500    |     |          |       | /4       | 83  | 9.0   | 1.30  | 6.0   |
| Gap              | WURC0355      | 225431 | 7053073 | 1508    | 140 | -59      | 318   | 95       | 96  | 1.0   | 1.38  | 0.7   |
|                  |               |        |         |         |     |          |       | 106      | 108 | 2.0   | 2.94  | 1.3   |
|                  |               |        |         |         |     |          | incl. | 106      | 107 | 1.0   | 5.00  | 0.7   |
|                  |               |        |         |         |     | = 0      | 107   | 122      | 123 | 1.0   | 6.25  | 0.7   |
| Squib            | WURC0356      | 225164 | 7053385 | 1504    | 210 | -59      | 125   | 136      | 138 | 2.0   | 0.94  | 1.3   |
|                  |               |        |         |         |     |          |       | 150      | 168 | 18.0  | 5.01  | 12.0  |
|                  |               |        |         |         |     |          | incl. | 159      | 166 | 7.0   | 10.59 | 4.7   |
|                  |               |        |         |         |     |          |       | 197      | 198 | 1.0   | 1.89  | 0.7   |
| Squib            | WURC0357      | 225151 | 7053368 | 1503    | 150 | -60      | 135   | 111      | 115 | 4.0   | 1.30  | 2.7   |
|                  |               |        |         |         |     |          |       | 118      | 135 | 17.0  | 5.61  | 11.3  |
| Our als Change   | 14/1000250    | 225406 | 7052200 | 4504    | 20  | 64       | inci. | 126      | 133 | 7.0   | 11.09 | 4.7   |
| Creek Shear      | WURC0358      | 225106 | 7053280 | 1504    | 30  | -61      | 275   | NSI      |     |       |       |       |
| Creek Shear      | WURC0359      | 225105 | 7053253 | 1504    | 30  | -60      | 272   | NSI      |     |       |       |       |
| Squib            | WURC0360      | 225322 | 7053437 | 1505    | 150 | -50      | 138   | NSI      |     |       |       |       |
| Golden Age North | WURC0361      | 225590 | 7053044 | 1511    | 100 | -61      | 47    | NSI      |     |       |       |       |
| Golden Age North | WURC0362      | 2255/1 | 7053024 | 1511    | 115 | -60      | 4/    | /5       | 84  | 9.0   | 1.21  | 6.0   |
|                  |               |        |         |         | 100 |          | incl. | 78       | 79  | 1.0   | 7.16  | 0.7   |
| Golden Age North | WURC0363      | 225588 | /052969 | 1512    | 130 | -60      | 48    | 50       | 53  | 3.0   | 0.74  | 2.0   |
| <b>2</b> H - H   | 14/15 005 5 5 |        | 7070011 | 4 - 1 - | 4=- |          | 105   | 56       | 57  | 1.0   | 1.22  | 0.7   |
| Bulletin         | WURC0364      | 225932 | 7053911 | 1512    | 170 | -51      | 136   | 137      | 138 | 1.0   | 3.75  | 0.7   |
|                  |               |        |         |         |     |          |       | 153      | 158 | 5.0   | 3.78  | 3.3   |
|                  |               |        |         |         |     |          | incl. | 153      | 155 | 2.0   | 6.05  | 1.3   |

| Lode             | Hole ID       | East   | North   | RL   | EOH                                                                                         | Dip  | Azi   | From | То  | Width | Au   | True         |
|------------------|---------------|--------|---------|------|---------------------------------------------------------------------------------------------|------|-------|------|-----|-------|------|--------------|
|                  |               | (MGA)  | (MGA)   |      | (m)                                                                                         |      | (MGA) | (m)  | (m) | (m)   | g/t  | Width<br>(m) |
| Bulletin         | WURC0365      | 226024 | 7053896 | 1512 | 75                                                                                          | -60  | 137   | 38   | 43  | 5.0   | 0.64 | 3 3          |
|                  | Wonceses      | 220024 | /033050 | 1912 | /5                                                                                          |      | 137   | 61   | 62  | 1.0   | 2.03 | 0.7          |
| Bulletin         | WURC0366      | 226002 | 7053913 | 1513 | 120                                                                                         | -60  | 138   | 72   | 76  | 4.0   | 0.98 | 2.7          |
|                  |               |        |         |      |                                                                                             |      |       | 88   | 90  | 2.0   | 0.79 | 1.3          |
|                  |               |        |         |      |                                                                                             |      |       | 100  | 105 | 5.0   | 0.91 | 3.3          |
| Bulletin         | WURC0367      | 225962 | 7053920 | 1512 | 160                                                                                         | -55  | 136   | 126  | 136 | 10.0  | 2.92 | 6.7          |
|                  |               |        |         |      |                                                                                             |      | incl. | 130  | 132 | 2.0   | 8.19 | 1.3          |
| Bulletin         | WURC0368      | 226009 | 7053941 | 1513 | 260                                                                                         | -60  | 135   | 130  | 132 | 2.0   | 1.70 | 1.3          |
|                  |               |        |         |      |                                                                                             |      |       | 136  | 141 | 5.0   | 2.27 | 3.3          |
|                  |               |        |         |      |                                                                                             |      |       | 157  | 159 | 2.0   | 1.23 | 1.3          |
|                  |               |        |         |      |                                                                                             |      |       | 210  | 212 | 2.0   | 0.88 | 1.3          |
| Golden Age North | WURC0369      | 225599 | 7052907 | 1511 | 110                                                                                         | -60  | 49    | 71   | 77  | 6.0   | 2.40 | 4.0          |
|                  |               |        |         |      |                                                                                             |      | incl. | 71   | 72  | 1.0   | 6.27 | 0.7          |
| Golden Age North | WURC0370      | 225590 | 7053003 | 1511 | 100                                                                                         | -60  | 47    | NSI  |     |       |      |              |
| Happy Jack       | WURC0374      | 225022 | 7052227 | 1500 | 50                                                                                          | -61  | 272   | NSI  |     |       |      |              |
| Happy Jack       | WURC0375      | 225043 | 7052227 | 1500 | 75                                                                                          | -60  | 273   | NSI  |     |       |      |              |
| Happy Jack       | WURC0376      | 225063 | 7052227 | 1500 | 100                                                                                         | -60  | 272   | NSI  |     |       |      |              |
| Squib            | WURC0377      | 225259 | 7053432 | 1504 | 210                                                                                         | -60  | 135   | 157  | 163 | 6.0   | 0.99 | 4.0          |
|                  |               |        |         |      |                                                                                             |      |       | 169  | 170 | 1.0   | 1.23 | 0.7          |
|                  |               |        |         |      |                                                                                             |      |       | 190  | 192 | 2.0   | 1.07 | 1.3          |
| Creek Shear      | WURC0378      | 225119 | 7053330 | 1504 | 40                                                                                          | -50  | 272   | NSI  |     |       |      |              |
| Creek Shear      | WURC0379      | 225121 | 7053156 | 1503 | 55                                                                                          | -60  | 269   | NSI  |     |       |      |              |
| Creek Shear      | WURC0380      | 225098 | 7053156 | 1504 | 30                                                                                          | -59  | 272   | NSI  |     |       |      |              |
| Creek Shear      | WURC0381      | 225114 | 7053182 | 1503 | 50                                                                                          | -60  | 272   | 37   | 38  | 1.0   | 1.95 | 0.7          |
|                  |               |        |         |      |                                                                                             |      |       | 47   | 48  | 1.0   | 6.49 | 0.7          |
| Squib            | WURC0382      | 225280 | 7053410 | 1504 | 140                                                                                         | -50  | 140   | 101  | 106 | 5.0   | 3.67 | 3.3          |
|                  |               |        |         |      |                                                                                             |      |       | 120  | 122 | 2.0   | 1.48 | 1.3          |
| <b>A</b>         | 14/115-002-02 | 225204 | 7050440 | 4505 | 1.10                                                                                        | - 10 | 120   | 125  | 127 | 2.0   | 2.56 | 1.3          |
| Squib            | WURC0383      | 225301 | 7053418 | 1505 | 140                                                                                         | -49  | 138   | NSI  |     |       |      |              |
| creek Shear      | WURC0384      | 225103 | 7053207 | 1504 | 30                                                                                          | -60  | 272   | NSI  |     |       |      |              |
| Creek Shear      | WURC0385      | 225100 | 7053232 | 1504 | - <u>-</u> | -60  | 272   | 2    | 4   | 1.0   | 1 21 | 0.7          |
| CIEER Shear      | WURC0380      | 223131 | 7033232 | 1505 | 00                                                                                          | -39  | 2/1   | 17   | 18  | 1.0   | 1.21 | 0.7          |
|                  |               |        |         |      |                                                                                             |      |       | 58   | 60  | 2.0   | 3.89 | 1.3          |
| Happy Jack       | WURC0387      | 225038 | 7052327 | 1501 | 100                                                                                         | -60  | 272   | NSI  |     | 2.0   | 5.05 | 1.5          |
| Happy Jack       | WURC0388      | 225049 | 7052347 | 1501 | 135                                                                                         | -59  | 269   | 29   | 36  | 7.0   | 1.28 | 4.7          |
| Golden Age North | WURC0389      | 225560 | 7052971 | 1513 | 110                                                                                         | -60  | 47    | 85   | 87  | 2.0   | 0.69 | 1.3          |
| Creek Shear      | WURC0393      | 225123 | 7053206 | 1503 | 60                                                                                          | -60  | 271   | NSI  |     |       |      |              |
| Creek Shear      | WURC0394      | 225127 | 7053332 | 1504 | 65                                                                                          | -70  | 272   | NSI  |     |       |      |              |
| Creek Shear      | WURC0395      | 225134 | 7053357 | 1504 | 65                                                                                          | -69  | 276   | 9    | 17  | 8.0   | 1.06 | 5.3          |
|                  |               |        |         |      |                                                                                             |      |       | 20   | 23  | 3.0   | 3.46 | 2.0          |
|                  |               |        |         |      |                                                                                             |      | incl. | 20   | 21  | 1.0   | 7.19 | 0.7          |
|                  |               |        |         |      |                                                                                             |      |       | 39   | 41  | 2.0   | 0.94 | 1.3          |
| Creek Shear      | WURC0396      | 225122 | 7053382 | 1504 | 45                                                                                          | -79  | 278   | NSI  |     |       |      |              |
| 1                | 1             | 1      | 1       | 1    |                                                                                             |      |       |      | 1   | 1     | I    | 1            |

| Lode             | Hole ID    | East    | North   | RL   | EOH   | Dip      | Azi   | From | То  | Width | Au           | True  |
|------------------|------------|---------|---------|------|-------|----------|-------|------|-----|-------|--------------|-------|
|                  |            | (MGA)   | (MGA)   |      | (m)   |          | (MGA) | (m)  | (m) | (m)   | g/t          | Width |
|                  | 14/1000007 | 225466  | 7050050 | 4504 | 4.0.6 | 54       | 107   | 0.4  | 07  | 2.0   | 0.70         | (111) |
| squib            | WURC0397   | 225166  | /053353 | 1504 | 186   | -51      | 137   | 84   | 8/  | 3.0   | 0.70         | 2.0   |
|                  |            |         |         |      |       |          | incl  | 101  | 102 | 1.0   | 2.54<br>E 44 | 2.0   |
|                  |            |         |         |      |       |          | inci. | 101  | 102 | 2.0   | 2.44         | 2.0   |
|                  |            |         |         |      |       |          |       | 174  | 127 | 3.0   | 2.50         | 2.0   |
|                  |            |         |         |      |       |          |       | 140  | 162 | 4.0   | 0.06         | 0.7   |
| Crock Shoor      |            | 225122  | 7052422 | 1504 | 50    | 60       | 275   | NCI  | 102 | 1.0   | 5.50         | 0.7   |
| Happy Jack       | WURC0390   | 225152  | 7052697 | 1504 | 156   | -50      | 275   | 122  | 12/ | 2.0   | 2 1 7        | 1 2   |
|                  |            | 225210  | 7052057 | 1507 | 120   | -50      | 219   | 132  | 134 | 4.0   | 2.17<br>9.20 | 2.5   |
| парру заск       | WUKC0400   | 225564  | /055050 | 1507 | 150   | -00      | incl  | 44   | 40  | 4.0   | 0.30         | 2.7   |
|                  |            |         |         |      |       |          | inci. | 44   | 47  | 3.0   | 10.00        | 2.0   |
| Colden And North | M/UDC0401  | 225.674 | 7052070 | 1511 | F0    | <u> </u> |       | 15   | 19  | 2.0   | 1.00         | 1.3   |
| Golden Age North | WURC0401   | 225074  | /0528/0 | 1511 | 50    | -00      | 44    | 15   | 17  | 2.0   | 1.52         | 1.3   |
| Colden And North | MUDC0402   | 225.004 | 7052005 | 1512 | 100   | <u> </u> | 40    | 28   | 30  | 2.0   | 1.05         | 1.3   |
| Golden Age North | WURC0402   | 225604  | 7052985 | 1512 | 100   | -60      | 49    | 26   | 27  | 1.0   | 1.23         | 0.7   |
|                  |            |         |         |      |       |          | • •   | 32   | 41  | 9.0   | 1.90         | 6.0   |
|                  |            |         |         |      |       |          | inci. | 36   | 3/  | 1.0   | 8.70         | 0.7   |
|                  |            |         |         |      |       |          |       | /0   | /1  | 1.0   | 1.68         | 0.7   |
| Golden Age North | WURC0403   | 225638  | 7053056 | 1511 | 60    | -60      | 35    | 22   | 23  | 1.0   | 1.30         | 0.7   |
| Golden Age North | WURC0404   | 225625  | 7053079 | 1511 | 50    | -60      | 48    | NSI  |     |       |              |       |
| Golden Age North | WURC0405   | 225609  | 7052996 | 1512 | 95    | -50      | 46    | 26   | 27  | 1.0   | 9.45         | 0.7   |
|                  |            |         |         |      |       |          |       | 32   | 43  | 11.0  | 1.40         | 7.3   |
|                  |            |         |         |      |       |          | incl. | 33   | 34  | 1.0   | 6.40         | 0.7   |
| Golden Age North | WURC0406   | 225570  | 7053057 | 1513 | 100   | -59      | 46    | NSI  |     |       |              |       |
| Golden Age North | WURC0407   | 225578  | 7053064 | 1511 | 75    | -50      | 48    | NSI  |     |       |              |       |
| Golden Age North | WURC0408   | 225598  | 7053051 | 1511 | 75    | -51      | 46    | NSI  |     |       |              |       |
| Gap              | WURC0409   | 225534  | 7053084 | 1510 | 100   | -60      | 315   | 54   | 55  | 1.0   | 1.89         | 0.7   |
| Gap              |            |         |         |      |       |          |       | 86   | 87  | 1.0   | 2.42         | 0.7   |
| Golden Age North | WURC0410   | 225538  | 7053094 | 1511 | 100   | -60      | 46    | 16   | 21  | 5.0   | 3.26         | 3.3   |
|                  |            |         |         |      |       |          | incl. | 16   | 18  | 2.0   | 5.98         | 1.3   |
|                  |            |         |         |      |       |          |       | 35   | 49  | 14.0  | 3.50         | 9.3   |
|                  |            |         |         |      |       |          | incl. | 39   | 40  | 1.0   | 6.10         | 0.7   |
|                  |            |         |         |      |       |          | and   | 43   | 46  | 3.0   | 11.10        | 2.0   |
|                  |            |         |         |      |       |          |       | 75   | 78  | 3.0   | 0.67         | 2.0   |
| Golden Age North | WURC0411   | 225555  | 7053113 | 1510 | 100   | -61      | 46    | 31   | 32  | 1.0   | 1.69         | 0.7   |
| Golden Age North | WURC0412   | 225586  | 7053110 | 1510 | 50    | -60      | 44    | 41   | 42  | 1.0   | 2.56         | 0.7   |
| Golden Age North | WURC0413   | 225569  | 7053091 | 1510 | 75    | -60      | 45    | NSI  |     |       |              |       |
| Gap              | WURC0414   | 225518  | 7053221 | 1507 | 80    | -60      | 136   | 54   | 55  | 1.0   | 1.44         | 0.7   |
| Gap              | WURC0415   | 225545  | 7053264 | 1506 | 90    | -60      | 136   | 20   | 21  | 1.0   | 9.75         | 0.7   |
|                  |            |         |         |      |       |          |       | 25   | 32  | 7.0   | 1.42         | 4.7   |
|                  |            |         |         |      |       |          |       | 64   | 68  | 4.0   | 2.99         | 2.7   |
|                  |            |         |         |      |       |          | incl. | 66   | 67  | 1.0   | 6.28         | 0.7   |
| Gap              | WURC0416   | 225574  | 7053301 | 1508 | 150   | -60      | 136   | 17   | 20  | 3.0   | 0.72         | 2.0   |
|                  |            |         |         |      |       |          |       | 72   | 73  | 1.0   | 5.50         | 0.7   |
|                  |            |         |         |      |       |          |       | 128  | 134 | 6.0   | 0.65         | 4.0   |

| Lode             | Hole ID        | East   | North   | RL   | EOH | Dip      | Azi   | From       | То  | Width | Au    | True  |
|------------------|----------------|--------|---------|------|-----|----------|-------|------------|-----|-------|-------|-------|
|                  |                | (MGA)  | (MGA)   |      | (m) |          | (MGA) | (m)        | (m) | (m)   | g/t   | Width |
|                  |                |        |         |      |     |          |       | 140        | 144 | 4.0   | 1.07  | (111) |
| Gan              |                | 225575 | 7052266 | 1507 | 100 | 60       | 129   | 140<br>NSI | 144 | 4.0   | 1.97  | 2.7   |
| Golden Age North | WURC0417       | 225575 | 7052200 | 1512 | 50  | -60      | 138   |            |     |       |       |       |
| Golden Age North |                | 225000 | 7052873 | 1512 | 50  | -00      | 45    | 17         | 20  | 11.0  | 1 4 2 | 7.2   |
| Golden Age North | WURC0419       | 225005 | 7052892 | 1511 | 50  | -60      | 40    | 17         | 28  | 2.0   | 1.43  | 1.3   |
| Golden Age North | WURC0420       | 225660 | /05288/ | 1513 | 100 | -75      | 40    | 23         | 25  | 2.0   | 2.27  | 1.3   |
| Car              |                | 225644 | 7052262 | 1507 | 150 | <u> </u> | 210   | 32         | 38  | 0.0   | 0.95  | 4.0   |
| Сар              | WURC0421       | 225644 | /053263 | 1507 | 150 | -60      | 318   | 84         | 85  | 1.0   | 2.66  | 0.7   |
|                  |                |        |         |      |     |          |       | 100        | 104 | 4.0   | 0.85  | 2.7   |
|                  |                |        |         |      |     |          |       | 114        | 11/ | 3.0   | 3.25  | 2.0   |
|                  | 11/1/15 00 400 | 225504 | 7050050 | 4500 | 420 | 60       | inci. | 114        | 115 | 1.0   | 7.66  | 0.7   |
| Gap              | WURC0422       | 225581 | /053352 | 1508 | 130 | -60      | 136   | 84         | 86  | 2.0   | 1.98  | 1.3   |
|                  |                |        |         |      |     |          |       | 92         | 94  | 2.0   | 1.15  | 1.3   |
|                  |                |        |         |      |     |          |       | 111        | 114 | 3.0   | 3.83  | 2.0   |
|                  |                |        |         |      |     |          | incl. | 111        | 112 | 1.0   | 6.06  | 0.7   |
|                  |                |        |         |      |     |          |       | 125        | 130 | 5.0   | 2.95  | 3.3   |
| Bulletin         | WURC0423       | 225588 | 7053380 | 1508 | 162 | -59      | 136   | 46         | 52  | 6.0   | 2.39  | 4.0   |
|                  |                |        |         |      |     |          |       | 47         | 48  | 1.0   | 8.84  | 0.7   |
|                  |                |        |         |      |     |          |       | 85         | 89  | 4.0   | 2.41  | 2.7   |
|                  |                |        |         |      |     |          |       | 99         | 103 | 4.0   | 1.36  | 2.7   |
|                  |                |        |         |      |     |          |       | 136        | 157 | 21.0  | 5.20  | 14.0  |
|                  |                |        |         |      |     |          | incl. | 139        | 140 | 1.0   | 11.85 | 0.7   |
|                  |                |        |         |      |     |          | and   | 143        | 148 | 5.0   | 11.16 | 3.3   |
|                  |                |        |         |      |     |          | and   | 151        | 153 | 2.0   | 8.83  | 1.3   |
| Bulletin         | WURC0424       | 225646 | 7053502 | 1509 | 152 | -59      | 137   | 109        | 110 | 1.0   | 1.93  | 0.7   |
|                  |                |        |         |      |     |          |       | 114        | 119 | 5.0   | 0.89  | 3.3   |
|                  |                |        |         |      |     |          |       | 122        | 145 | 23.0  | 5.19  | 15.3  |
|                  |                |        |         |      |     |          | incl. | 134        | 138 | 4.0   | 17.48 | 2.7   |
|                  |                |        |         |      |     |          | and   | 142        | 144 | 2.0   | 13.91 | 1.3   |
| Bulletin         | WURC0425       | 225672 | 7053511 | 1511 | 95  | -61      | 135   | 55         | 57  | 2.0   | 2.60  | 1.3   |
|                  |                |        |         |      |     |          |       | 93         | 95  | 2.0   | 1.41  | 1.3   |
| Bulletin         | WURC0426       | 225646 | 7053534 | 1509 | 155 | -56      | 137   | NSI        |     |       |       |       |
| Bulletin         | WURC0427       | 225665 | 7053552 | 1509 | 120 | -50      | 137   | 78         | 82  | 4.0   | 2.20  | 2.7   |
|                  |                |        |         |      |     |          | incl. | 78         | 79  | 1.0   | 6.65  | 0.7   |
|                  |                |        |         |      |     |          |       | 101        | 102 | 1.0   | 1.22  | 0.7   |
|                  |                |        |         |      |     |          |       | 110        | 115 | 5.0   | 1.04  | 3.3   |
|                  |                |        |         |      |     |          |       | 119        | 120 | 1.0   | 4.13  | 0.7   |
| Bulletin         | WURC0428       | 225663 | 7053555 | 1510 | 154 | -60      | 138   | 84         | 89  | 5.0   | 0.94  | 3.3   |
| Bulletin         | WURC0429       | 225732 | 7053721 | 1510 | 190 | -60      | 137   | 0          | 2   | 4.0   | 0.72  | 2.7   |
|                  |                |        |         |      |     |          |       | 139        | 144 | 5.0   | 0.97  | 3.3   |
|                  |                |        |         |      |     |          |       | 184        | 187 | 3.0   | 6.85  | 2.0   |
|                  |                |        |         |      |     |          | incl. | 184        | 185 | 1.0   | 17.80 | 0.7   |
| Bulletin         | WURC0430       | 225665 | 7053587 | 1511 | 176 | -60      | 137   | 85         | 86  | 1.0   | 1.47  | 0.7   |
| Bulletin         | WURC0431       | 225667 | 7053584 | 1511 | 147 | -50      | 136   | 3          | 5   | 2.0   | 1.48  | 1.3   |
|                  |                |        |         |      |     |          |       | 130        | 131 | 1.0   | 2.09  | 0.7   |

| Lode      | Hole ID  | East   | North   | RL   | EOH | Dip | Azi   | From | То  | Width | Au    | True      |
|-----------|----------|--------|---------|------|-----|-----|-------|------|-----|-------|-------|-----------|
|           |          | (MGA)  | (MGA)   |      | (m) |     | (MGA) | (m)  | (m) | (m)   | g/t   | Width (m) |
| Bulletin  |          | 225605 | 7053618 | 1510 | 167 | -60 | 12/   | 61   | 64  | 3.0   | 1 50  | 2.0       |
| Dunctin   | WORC0432 | 223033 | /055010 | 1510 | 107 | 00  | 134   | 73   | 79  | 6.0   | 0.90  | 4.0       |
|           |          |        |         |      |     |     |       | 83   | 87  | 4.0   | 2.82  | 2.7       |
|           |          |        |         |      |     |     | incl. | 85   | 86  | 1.0   | 5.10  | 0.7       |
| Bulletin  |          |        |         |      |     |     |       | 91   | 93  | 2.0   | 5.22  | 1 3       |
|           |          |        |         |      |     |     | incl. | 91   | 92  | 6.3   | 6.26  | 1.3       |
|           |          |        |         |      |     |     |       | 111  | 114 | 3.0   | 2.31  | 2.0       |
|           |          |        |         |      |     |     |       | 117  | 118 | 1.0   | 1.35  | 0.7       |
|           |          |        |         |      |     |     |       | 139  | 142 | 3.0   | 2.96  | 2.0       |
|           |          |        |         |      |     |     |       | 160  | 167 | 7.0   | 3.08  | 4.7       |
|           |          |        |         |      |     |     | incl. | 166  | 167 | 1.0   | 11.35 | 0.7       |
| Bulletin  | WURC0433 | 225703 | 7053611 | 1510 | 125 | -54 | 135   | 1    | 4   | 3.0   | 0.62  | 2.0       |
|           |          |        |         |      |     |     |       | 19   | 23  | 3.0   | 1.09  | 2.0       |
|           |          |        |         |      |     |     |       | 110  | 111 | 1.0   | 1.50  | 0.7       |
|           |          |        |         |      |     |     |       | 123  | 124 | 1.0   | 2.14  | 0.7       |
| Bulletin  | WURC0434 | 225691 | 7053596 | 1510 | 137 | -61 | 135   | 93   | 99  | 6.0   | 1.57  | 4.0       |
| Bulletin  | WURC0435 | 225704 | 7053651 | 1510 | 200 | -60 | 137   | 91   | 105 | 14.0  | 1.97  | 9.3       |
|           |          |        |         |      |     |     | incl. | 94   | 95  | 1.0   | 5.49  | 0.7       |
|           |          |        |         |      |     |     |       | 171  | 198 | 27.0  | 5.60  | 18.0      |
|           |          |        |         |      | _   |     | incl. | 173  | 181 | 8.0   | 12.28 | 5.3       |
|           |          |        |         |      |     |     | and   | 192  | 196 | 4.0   | 7.50  | 2.7       |
| Bulletin  | WURC0436 | 225716 | 7053639 | 1510 | 170 | -50 | 137   | 32   | 36  | 4.0   | 0.66  | 2.7       |
|           |          |        |         |      |     |     |       | 64   | 66  | 2.0   | 1.34  | 1.3       |
|           |          |        |         |      |     |     |       | 98   | 100 | 2.0   | 2.39  | 1.3       |
|           |          |        |         |      |     |     |       | 119  | 121 | 2.0   | 1.34  | 1.3       |
| Bulletin  | WURC0437 | 225724 | 7053666 | 1510 | 185 | -50 | 134   | 87   | 91  | 4.0   | 1.54  | 2.7       |
|           |          |        |         |      |     |     |       | 136  | 140 | 4.0   | 1.31  | 2.7       |
|           |          |        |         |      |     |     |       | 145  | 152 | 7.0   | 7.58  | 4.7       |
|           |          |        |         |      |     |     | incl. | 145  | 151 | 6.0   | 8.44  | 4.0       |
| Bulletin  | WURC0438 | 225734 | 7053687 | 1510 | 185 | -55 | 136   | 83   | 89  | 6.0   | 1.54  | 4.0       |
|           |          |        |         |      |     |     |       | 94   | 100 | 6.0   | 1.14  | 4.0       |
|           |          |        |         |      |     |     |       | 150  | 152 | 2.0   | 0.95  | 1.3       |
|           |          |        |         |      |     |     |       | 157  | 160 | 3.0   | 1.73  | 2.0       |
| Abandoned | WURC0439 | 225765 | 7053727 | 1512 | 18  | -55 | 135   | NSI  |     |       |       |           |
| Bulletin  | WURC0440 | 225765 | 7053727 | 1512 | 200 | -56 | 138   | 103  | 105 | 2.0   | 1.70  | 1.3       |
|           |          |        |         |      |     |     |       | 109  | 111 | 2.0   | 1.62  | 1.3       |
|           |          |        |         |      |     |     |       | 155  | 180 | 25.0  | 1.97  | 16.7      |
|           |          |        |         |      |     |     | incl. | 168  | 169 | 1.0   | 7.65  | 0.7       |
|           |          |        |         |      |     |     |       | 191  | 197 | 6.0   | 1.53  | 4.0       |
| Bulletin  | WURC0441 | 225750 | 7053702 | 1511 | 210 | -56 | 136   | 158  | 159 | 1.0   | 2.63  | 0.7       |
|           |          |        |         |      |     |     |       | 162  | 175 | 13.0  | 4.09  | 8.7       |
|           |          |        |         |      |     |     | incl. | 168  | 173 | 5.0   | 8.25  | 3.3       |
|           |          |        |         |      |     |     |       | 190  | 192 | 2.0   | 1.49  | 1.3       |
| Bulletin  | WURC0442 | 225804 | 7053759 | 1511 | 180 | -60 | 137   | 132  | 134 | 2.0   | 1.81  | 1.3       |

| (MGA) (MGA) (m) (MGA) (m) (m) (m) g                                                                                                                      | /t Width<br>(m)  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                                                                          | (111)            |
|                                                                                                                                                          | 32 0.7           |
|                                                                                                                                                          | 90 10.7          |
| incl. 167 168 1.0 6                                                                                                                                      | <b>43</b> 0.7    |
|                                                                                                                                                          | 25 2.0           |
| Bulletin W/URC0///3 225812 7053752 1511 150 -55 136 80 81 10 5                                                                                           | <b>04</b> 0.7    |
| Durietin         Workcorrs         223012         7033732         1511         150         55         150         60         61         1.0         5.   | 97 10.0          |
|                                                                                                                                                          | 08 0.7           |
|                                                                                                                                                          | 25 2.7           |
| incl 110 120 4.0 4                                                                                                                                       | <b>05</b> 0.7    |
|                                                                                                                                                          | <b>.55</b> 0.7   |
| Bulletic         WUDC0444         22F780         70F2720         1511         10F         61         102         110         7.0         2               | 77 5.5<br>F1 4.7 |
| Bulletin WORC0444 225789 7053739 1511 195 -61 136 103 110 7.0 2                                                                                          | 51 4.7           |
|                                                                                                                                                          | 51 0.7           |
|                                                                                                                                                          | 59 0.7           |
|                                                                                                                                                          | /6 2./           |
|                                                                                                                                                          | 35 0.7           |
|                                                                                                                                                          | 44 12.0          |
|                                                                                                                                                          | .80 0.7          |
| Bulletin WURC0445 225765 7053758 1511 234 -60 136 142 150 8.0 1.                                                                                         | 23 5.3           |
|                                                                                                                                                          | 95 23.3          |
| incl. 161 172 11.0 6                                                                                                                                     | <b>69</b> 7.3    |
| and 176 185 9.0 6.                                                                                                                                       | <b>63</b> 6.0    |
|                                                                                                                                                          | 51 2.0           |
| incl. 207 208 1.0 5                                                                                                                                      | 18 0.7           |
|                                                                                                                                                          | <b>60</b> 9.3    |
| incl. 217 225 8.0 8                                                                                                                                      | <b>52</b> 5.3    |
|                                                                                                                                                          | 98 0.7           |
| Happy Jack         WURC0451         225408         7053067         1508         150         -59         317         72         73         1.0         4. | 84 0.7           |
|                                                                                                                                                          | <b>53</b> 2.0    |
| incl. 89 91 2.0 10                                                                                                                                       | .48 1.3          |
| 95 96 1.0 1                                                                                                                                              | 37 0.7           |
| Gap         WURC0452         225480         7053067         1511         150         -60         316         58         60         2.0         0         | 73 1.3           |
| <u>    69  76  7.0  1</u>                                                                                                                                | 68 4.7           |
| 89 95 6.0 2                                                                                                                                              | 99 4.0           |
| incl. 89 90 1.0 6                                                                                                                                        | <b>70</b> 0.7    |
|                                                                                                                                                          | 19 4.0           |
| incl. 138 139 1.0 5.                                                                                                                                     | <b>36</b> 0.7    |
| Gap         WURC0453         225449         7053138         1508         90         -60         137         35         38         3.0         7          | <b>94</b> 2.0    |
| incl. 35 36 1.0 16                                                                                                                                       | <b>.85</b> 0.7   |
|                                                                                                                                                          | 68 1.3           |
| 70 76 6.0 3.                                                                                                                                             | 16 4.0           |
| incl. 72 73 1.0 12                                                                                                                                       | .15 0.7          |
| Gap         WURC0454         225426         7053159         1508         144         -60         138         4         5         1.0         1           | 66 0.7           |
|                                                                                                                                                          | 22 0.7           |
| 57         59         2.0         2                                                                                                                      | 47 1.3           |

| Lode          | Hole ID  | East   | North   | RL    | EOH | Dip | Azi   | From  | То    | Width | Au    | True    |
|---------------|----------|--------|---------|-------|-----|-----|-------|-------|-------|-------|-------|---------|
|               |          | (MGA)  | (MGA)   |       | (m) |     | (MGA) | (m)   | (m)   | (m)   | g/t   | Width   |
|               |          |        |         |       |     |     |       | 100   | 100   |       |       | (111)   |
|               |          | 225027 | 7052270 | 1.400 |     |     | 270   | 122   | 123   | 1.0   | 2.55  | 0.7     |
| нарру Јаск    | WURC0455 | 225027 | 7052278 | 1499  | 90  | -60 | 270   | INSI  | 0.1   | 1.0   | 2.22  |         |
| Нарру Јаск    | WURC0456 | 225049 | /052304 | 1499  | 110 | -65 | 304   | 80    | 84    | 4.0   | 2.22  | 2.7     |
|               |          |        |         |       |     |     | incl. | 80    | 81    | 1.0   | 5.05  | 0.7     |
|               |          |        |         |       |     |     |       | 89    | 90    | 1.0   | 1.86  | 0.7     |
| Squib         | WURC0457 | 225266 | 7053394 | 1504  | 190 | -50 | 138   | 99    | 104   | 5.0   | 1.91  | 3.3     |
|               |          |        |         |       |     |     |       | 107   | 108   | 1.0   | 1.49  | 0.7     |
|               |          |        |         |       |     |     |       | 114   | 116   | 2.0   | 2.22  | 1.3     |
| Gap           | WURC0458 | 225612 | 7053295 | 1507  | 150 | -60 | 318   | 16    | 19    | 3.0   | 0.80  | 2.0     |
|               |          |        |         |       |     |     |       | 41    | 45    | 4.0   | 1.34  | 2.7     |
|               |          |        |         |       |     |     |       | 96    | 98    | 2.0   | 1.73  | 1.3     |
| Gap           | WURC0459 | 225567 | 7053365 | 1507  | 114 | -59 | 138   | 71    | 73    | 2.0   | 0.87  | 1.3     |
|               |          |        |         |       |     |     |       | 78    | 81    | 3.0   | 6.67  | 2.0     |
|               |          |        |         |       |     |     | incl. | 79    | 80    | 1.0   | 14.50 | 0.7     |
|               |          |        |         |       |     |     |       | 102   | 106   | 4.0   | 1.82  | 2.7     |
| Bulletin      | WURC0460 | 225629 | 7053380 | 1509  | 70  | -60 | 136   | 3     | 7     | 4.0   | 0.83  | 2.7     |
|               |          |        |         |       |     |     |       | 17    | 18    | 1.0   | 1.69  | 0.7     |
| Bulletin      | WURC0461 | 225610 | 7053398 | 1509  | 110 | -59 | 137   | 86    | 87    | 1.0   | 1.22  | 0.7     |
| Bulletin      | WURC0462 | 225636 | 7053408 | 1508  | 80  | -60 | 137   | NSI   |       |       |       |         |
| Bulletin      | WURC0463 | 225617 | 7053426 | 1508  | 114 | -61 | 137   | 66    | 67    | 1.0   | 2.14  | 0.7     |
| Bulletin      | WURC0464 | 225630 | 7053447 | 1510  | 90  | -61 | 136   | 58    | 60    | 2.0   | 1.75  | 1.3     |
|               |          |        |         |       |     |     |       | 78    | 82    | 4.0   | 0.88  | 2.7     |
| Gap           | WURC0465 | 225536 | 7053238 | 1507  | 155 | -61 | 138   | 14    | 16    | 2.0   | 0.96  | 1.3     |
|               |          |        |         |       |     |     |       | 145   | 147   | 2.0   | 2.38  | 1.3     |
| Gap           | WURC0466 | 225561 | 7053180 | 1509  | 66  | -60 | 137   | NSI   |       |       |       |         |
| Central Lodes | WURC0472 | 225140 | 7051806 | 1499  | 50  | -60 | 47    | 21    | 24    | 3.0   | 1.15  | Unknown |
|               |          |        |         |       |     |     |       | 38    | 43    | 5.0   | 1.08  | Unknown |
|               |          |        |         |       |     |     |       | 47    | 52    | 5.0   | 0.72  | Unknown |
|               |          |        |         |       |     |     |       | 72    | 76    | 4.0   | 5.95  | Unknown |
|               |          |        |         |       |     |     | incl. | 72    | 73    | 1.0   | 21.50 | Unknown |
| Wotton        | WURD0042 | 225397 | 7052918 | 1506  | 115 | -60 | 249   | 72.0  | 73.6  | 1.6   | 4.48  | 1.1     |
| Wotton        |          |        |         |       |     |     | incl. | 72.8  | 73.2  | 0.4   | 12.75 | 0.3     |
| Wotton        | WURD0043 | 225429 | 7053011 | 1507  | 250 | -50 | 255   | 116   | 118   | 2.0   | 6.25  | 1.3     |
|               |          |        |         |       |     |     | incl. | 116   | 117   | 1.0   | 11.40 | 0.7     |
|               |          |        |         |       |     |     |       | 135.4 | 137   | 1.6   | 4.65  | 1.1     |
|               |          |        |         |       |     |     | incl. | 135.4 | 136.1 | 0.6   | 11.05 | 0.4     |
|               |          |        |         |       |     |     |       | 146.3 | 148.7 | 2.4   | 2.10  | 1.6     |
|               |          |        |         |       |     |     |       | 151   | 154   | 3.0   | 2.17  | 2.0     |
|               |          |        |         |       |     |     |       | 171   | 172   | 1.0   | 2.53  | 0.7     |
|               |          |        |         |       |     |     |       | 174.5 | 177   | 2.5   | 1.08  | 1.7     |
|               |          |        |         |       |     |     |       | 184.7 | 186.4 | 1.8   | 7.14  | 1.2     |
|               |          |        |         |       |     |     | incl. | 185.5 | 186.4 | 0.9   | 11.55 | 0.6     |
|               |          |        |         |       |     |     |       | 205   | 208.7 | 3.7   | 5.02  | 2.5     |
|               |          |        |         |       |     |     | incl. | 207.5 | 208.7 | 1.2   | 13.25 | 0.8     |
|               |          |        |         |       |     |     |       |       |       |       |       | 0.0     |

| Lode             | Hole ID  | East   | North   | RL   | EOH      | Dip      | Azi       | From  | То    | Width | Au    | True  |
|------------------|----------|--------|---------|------|----------|----------|-----------|-------|-------|-------|-------|-------|
|                  |          | (MGA)  | (MGA)   |      | (m)      |          | (MGA)     | (m)   | (m)   | (m)   | g/t   | Width |
|                  |          |        |         |      |          |          |           | 210   | 217.4 | 1.4   | 1.24  | (11)  |
|                  |          |        |         |      |          |          |           | 210   | 217.4 | 2.9   | 2.24  | 2.6   |
| Watton           |          | 225211 | 7053230 | 1504 | 105      | -50      | 247       |       | 230.9 | 3.5   | 2.21  | 2.0   |
| Coldon Age North |          | 225511 | 7053233 | 1504 | 215      | -50      | 247<br>49 | 111.2 | 112 E | 22    | E E 6 | 1 5   |
| Golden Age North |          | 225571 | 7052912 | 1512 | 100      | -60      | 48        | 111.2 | 113.5 | 2.3   | 5.50  | 1.5   |
| парру заск       | WUKDUU46 | 225217 | /052078 | 1502 | 190      | -50      | 272       | 147.8 | 152   | 4.2   | 4.10  | 2.8   |
|                  |          |        |         |      |          |          |           | 150   | 151   | 1.0   | 1.71  | 0.7   |
|                  |          |        |         |      |          |          |           | 155   | 170   | 1.0   | 1.71  | 0.7   |
| Hanny Iash       |          | 225405 | 7053255 | 1500 | <u> </u> | <u> </u> | 270       | 1/0   | 1/2   | 2.0   | 0.93  | 1.3   |
| нарру јаск       | WURD0047 | 225105 | /052355 | 1500 | 60       | -60      | 270       | 50    | 58    | 2.0   | 7.66  | 1.3   |
|                  |          |        |         |      |          |          | Inci.     | 50    | 57    | 1.0   | 14.50 | 0.7   |
|                  |          |        |         |      |          |          |           | 117   | 119   | 2.0   | 1.3   | 1.3   |
| нарру Јаск       |          |        |         | 1700 | 100      |          |           | 139   | 145.5 | 6.5   | 2.26  | 4.3   |
| Gap              | WURD0048 | 225620 | /053126 | 1509 | 100      | -50      | 315       | NSI   |       |       |       |       |
| East Lode        | WUDD0012 | 225372 | /05113/ | 1497 | 330      | -64      | 2/3       | 266.0 | 283.7 | 1/./  | 2.19  | 11.8  |
|                  |          |        |         |      |          |          | incl.     | 269.6 | 270.0 | 0.4   | 5.46  | 0.3   |
|                  |          |        |         |      |          |          | and       | 272.0 | 272.9 | 0.9   | 5.93  | 0.6   |
|                  |          |        |         |      |          |          | and       | 281.0 | 281.9 | 0.9   | 8.13  | 0.6   |
|                  |          |        |         |      |          |          |           | 286.7 | 312.0 | 25.3  | 5.58  | 16.9  |
|                  |          |        |         |      |          |          | incl.     | 288.0 | 289.0 | 1.0   | 5.63  | 0.7   |
|                  |          |        |         |      |          |          | and       | 292.8 | 293.5 | 0.7   | 5.31  | 0.5   |
|                  |          |        |         |      |          |          | and       | 304.6 | 311.6 | 7.0   | 14.16 | 4.7   |
| East Lode        | WUDD0015 | 225342 | 7050884 | 1497 | 294      | -55      | 310       | 127.6 | 129   | 1.4   | 2.69  | 0.9   |
|                  |          |        |         |      |          |          | incl.     | 127.6 | 128   | 0.4   | 7.62  | 0.3   |
|                  |          |        |         |      |          |          |           | 185   | 186   | 1.0   | 1.37  | 0.7   |
|                  |          |        |         |      |          |          |           | 188.6 | 190.1 | 1.5   | 6.21  | 1.0   |
|                  |          |        |         |      |          |          | incl.     | 188.6 | 189.5 | 0.9   | 9.07  | 0.6   |
|                  |          |        |         |      |          |          |           | 192.7 | 195.9 | 3.3   | 4.00  | 2.2   |
|                  |          |        |         |      |          |          | incl.     | 193   | 194   | 1.0   | 5.96  | 0.7   |
|                  |          |        |         |      |          |          |           | 270.6 | 290   | 19.4  | 4.73  | 12.9  |
|                  |          |        |         |      |          |          | incl.     | 270.6 | 281   | 10.4  | 8.40  | 6.9   |
| Happy Jack       | WUDD0017 | 225063 | 7052328 | 1501 | 67       | -60      | 271       | 15    | 23    | 8.0   | 1.34  | 5.3   |
|                  |          |        |         |      |          |          | incl.     | 20.5  | 21    | 0.5   | 7.39  | 0.3   |
|                  |          |        |         |      |          |          |           | 25.8  | 38    | 12.2  | 1.48  | 8.1   |
|                  |          |        |         |      |          |          | incl.     | 34    | 35    | 1.0   | 6.72  | 0.7   |
|                  |          |        |         |      |          |          |           | 46    | 49.8  | 3.8   | 1.74  | 2.5   |
|                  |          |        |         |      |          |          |           | 52.35 | 56    | 3.7   | 0.70  | 2.4   |
|                  |          |        |         |      |          |          |           | 59    | 62    | 3.0   | 1.10  | 2.0   |
| Happy Jack       | WUDD0018 | 225266 | 7053067 | 1503 | 131      | -45      | 137       | 69    | 89    | 20.0  | 1.60  | 1.3   |
|                  |          |        |         |      |          |          | incl.     | 83    | 85    | 2.0   | 6.14  | 1.3   |
|                  |          |        |         |      |          |          |           | 100   | 103   | 3.0   | 1.62  | 2.0   |
|                  |          |        |         |      |          |          |           | 107   | 113   | 6.0   | 6.56  | 4.0   |
|                  |          |        |         |      |          |          | incl.     | 111   | 113   | 2.0   | 15.33 | 1.3   |
|                  |          |        |         |      |          |          |           | 127   | 128   | 1.0   | 2.24  | 0.7   |
| Happy Jack       | WUDD0019 | 225389 | 7053119 | 1506 | 50       | -60      | 316       | 30    | 32.3  | 2.3   | 0.84  | 1.5   |

| Lode       | Hole ID   | East    | North   | RL   | EOH | Dip      | Azi         | From        | То         | Width | Au    | True         |
|------------|-----------|---------|---------|------|-----|----------|-------------|-------------|------------|-------|-------|--------------|
|            |           | (MGA)   | (MGA)   |      | (m) |          | (MGA)       | (m)         | (m)        | (m)   | g/t   | Width<br>(m) |
| East Lode  | WUDD0020  | 225015  | 7051042 | 1500 | 170 | -50      | 91          | NSI         |            |       |       | (111)        |
| Bulletin   | WUDD0021  | 225649  | 7053429 | 1508 | 50  | -60      | 136         | 16.6        | 17.9       | 1.3   | 3.29  | 0.9          |
|            |           |         |         |      |     |          |             | 26          | 34.5       | 8.5   | 4.18  | 5.7          |
|            |           |         |         |      |     |          |             | 38.5        | 40.8       | 2.3   | 0.62  | 1.5          |
|            |           |         |         |      |     |          |             | 45          | 49         | 4.0   | 2.94  | 2.7          |
| Squib      | WUDD0022  | 225178  | 7053400 | 1504 | 223 | -61      | 138         | 158         | 166.7      | 8.7   | 5.80  | 5.8          |
|            |           |         |         |      |     |          | incl.       | 162.7       | 166.1      | 3.4   | 11.58 | 2.3          |
|            |           |         |         |      |     |          |             | 196.7       | 197        | 0.3   | 23.60 | 0.2          |
| Bulletin   | WUDD0023  | 225691  | 7053592 | 1511 | 113 | -50      | 137         | 69          | 78         | 9.0   | 1.98  | 6.0          |
|            |           |         |         |      |     |          | incl.       | 69          | 70         | 1.0   | 5.15  | 0.7          |
| Bulletin   | WUDD0024  | 225937  | 7053899 | 1513 | 130 | -39      | 130         | 90.5        | 94.5       | 4.0   | 0.72  | 2.7          |
|            |           |         |         |      |     |          |             | 109.9       | 116.5      | 6.6   | 2.43  | 4.4          |
|            |           |         |         |      |     |          |             | 115.9       | 116.5      | 0.6   | 17.80 | 0.4          |
| Happy Jack | WUDD0025  | 225228  | 7052717 | 1502 | 150 | -41      | 317         | 93          | 94         | 1.0   | 2.54  | 0.7          |
| Happy Jack |           |         |         |      |     |          |             | 125         | 127        | 2.0   | 1.93  | 1.3          |
| Bulletin   | WUDD0026  | 225976  | 7053906 | 1512 | 111 | -41      | 135         | 71          | 75         | 4.0   | 1.58  | 2.7          |
| Bulletin   | WUDD0027  | 225929  | 7053886 | 1512 | 150 | -50      | 134         | 97.3        | 98         | 0.7   | 2.22  | 0.5          |
| Bulletin   |           |         |         |      |     |          |             | 118         | 125        | 7.0   | 2.44  | 4.7          |
| Bulletin   |           |         |         |      |     |          |             | 122         | 123        | 1.0   | 5.55  | 0.7          |
| Happy Jack | WUDD0028  | 224921  | 7052676 | 1502 | 181 | -36      | 92          | 162.5       | 164        | 1.5   | 3.59  | 1.0          |
| Bulletin   | WUDD0029  | 225760  | 7053731 | 1512 | 228 | -59      | 139         | 107.0       | 109.0      | 2.0   | 2.35  | 1.3          |
| Bulletin   |           |         |         |      |     |          |             | 122.0       | 130.0      | 8.0   | 1.21  | 5.3          |
| Bulletin   |           |         |         |      |     |          |             | 155.0       | 156.0      | 1.0   | 1.45  | 0.7          |
| Bulletin   |           |         |         |      |     |          |             | 191.0       | 193.0      | 2.0   | 3.04  | 1.3          |
| Bulletin   |           |         |         |      |     |          |             | 209.0       | 215.0      | 3.0   | 2.13  | 2.0          |
| Bulletin   |           |         |         |      |     |          | incl.       | 109.0       | 110.0      | 1.0   | 5.22  | 0.7          |
| Bulletin   |           |         |         |      |     |          |             | 220.0       | 221.0      | 1.0   | 2.37  | 0.7          |
| Happy Jack | WUDD0030  | 225358  | 7052948 | 1505 | 165 | -54      | 318         | 77          | 81         | 4.0   | 8.51  | 2.7          |
| Happy Jack |           |         |         |      |     |          | incl.       | 78          | 80         | 2.0   | 16.05 | 1.3          |
| Happy Jack |           |         |         |      |     |          |             | 99          | 100        | 1.0   | 1.51  | 0.7          |
| Happy Jack |           |         |         |      |     |          |             | 106         | 108        | 2.0   | 2.34  | 1.3          |
| Happy Jack |           |         |         |      |     |          |             | 112         | 116        | 4.0   | 0.66  | 2.7          |
| Happy Jack |           |         |         |      |     |          |             | 121         | 122        | 1.0   | 2.42  | 0.7          |
| Happy Jack |           |         |         |      |     |          |             | 125         | 127        | 2.0   | 1.31  | 1.3          |
| Happy Jack |           |         |         |      |     |          |             | 136         | 138        | 2.0   | 5.49  | 1.3          |
| Happy Jack |           |         |         |      |     |          | incl.       | 136         | 137        | 1.0   | 10.30 | 0.7          |
| Happy Jack |           |         |         | 1=00 |     |          |             | 145         | 146.9      | 1.9   | 0.70  | 1.3          |
| Нарру Јаск | WUDD0031  | 224909  | 7052626 | 1502 | 245 | -31      | 93          | 161.6       | 216        | 54.4  | 3.34  | 36.3         |
| Нарру Јаск |           |         |         |      |     |          | inci.       | 163.6       | 164.6      | 1.0   | 7.38  | 0.7          |
| нарру јаск |           | 225.420 | 7053344 | 1500 | 105 | <u> </u> | and         | 1/1.0       | 181.0      | 10.0  | 9.44  | b./          |
| Gap        | VV0DD0032 | 225428  | 7053241 | 1506 | 185 | -60      | 138<br>incl | 74          | 78         | 4.0   | 2.78  | 2.7          |
| Gap        |           |         |         |      |     |          | inci.       | 01          | / <b>5</b> | 1.0   | 0.55  | 0.7          |
| Happy Jack |           | 224904  | 7052574 | 1501 | 240 | 20       | 02          | δ1<br>109.0 | 82         | 1.0   | 1.22  | 0.7          |
| парру заск | VVUDUU033 | 224891  | /0525/4 | 1501 | 240 | -30      | 92          | 198.0       | 200.0      | 2.0   | 1.89  | 1.3          |

# JORC Code, 2012 Edition – Compliance

# JORC Code, 2012 Edition – Table 1 (Wiluna Gold Operation)

#### Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was</li> </ul> | <ul> <li>Blackham Resources has used i) reverse circulation drilling to obtain 1m samples from which ~3kg samples were collected using a cone splitter connected to the rig, and ii) NQ2 or HQ core with ½ core and ¼ core sampling. Samples from RC and diamond drilling are reported herein.</li> <li>Blackham's sampling procedures are in line with standard industry practice to ensure sample representivity. Core samples are routinely taken from the right-hand-side of the cut line. For Blackham's RC drilling, the drill rig (and cone splitter) is always jacked up so that it is level with the earth to ensure even splitting of the sample. It is assumed that previous owners of the project had procedures in place in line with standard industry practice to ensure sample representivity.</li> <li>Historically (pre-Blackham Resources), drill samples were taken at predominantly 1m intervals in RC holes, or as 2m or 4m composites in AC holes. Historical core sampling is at various intervals so it appears that sampling was based on geological observations at intervals determined by the logging geologist.</li> <li>At the laboratory, samples &gt;3kg were 50:50 riffle split to become &lt;3kg. The &lt;3kg splits were crushed to &lt;2mm in a Boyd crusher and pulverized via LMS to 90% passing 75µm to produce a 50g charge for fire assay. Historical assays were obtained using either aqua regia digest or fire assay, with AAS readings.</li> <li>Blackham Resources analysed samples using ALS laboratories in Perth. Analytical method was Fire Assay with a 50g charge and AAS finish. Historically, gold analyses were obtained using industry standard methods; split samples were pulverized in an LMS bowl to produce a 50g charge for assay or Aqua Regia with AAS finish at the Wiluna Mine site laboratory.</li> </ul> |

|                          | pulverised to produce a 30 g charge for fire<br>assay'). In other cases more explanation may<br>be required, such as where there is coarse<br>gold that has inherent sampling problems.<br>Unusual commodities or mineralisation types<br>(eg submarine nodules) may warrant<br>disclosure of detailed information.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drilling<br>techniques   | • Drill type (eg core, reverse circulation, open-hole<br>hammer, rotary air blast, auger, Bangka, sonic,<br>etc) and details (eg core diameter, triple or<br>standard tube, depth of diamond tails, face-<br>sampling bit or other type, whether core is oriented<br>and if so, by what method, etc).                                                                                      | <ul> <li>Blackham data reported herein is RC 5.5" diameter holes with a face-sampling bit. Diamond drilling is oriented NQ or HQ core</li> <li>Historical drilling data contained in this report includes RC, RAB, AC and DD core samples. RC sampling utilized face-sampling hammer of 4.5" to 5.5" diameter, RAB sampling utilized open-hole blade or hammer sampling, and DD sampling utilized NQ2 half core samples. It is unknown if core was orientated, though it is not material to this report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul> | <ul> <li>For Blackham RC drilling, chip sample recovery is visually estimated by volume for each 1m bulk sample bag, and recorded digitally in the sample database. For DD drilling, recovery is measured by the drillers and Blackham geotechnicians and recorded into the digital database. Recoveries were typically 100% except for the non-mineralised upper 3 or 4m. For historical drilling, recovery data for drill holes contained in this report has not been located or assessed, owing to incomplete data records. Database compilation is ongoing.</li> <li>For RC drilling, sample recovery is maximized by pulling back the drill hammer and blowing the entire sample through the rod string at the end of each metre. Where composite samples are taken, the sample spear is inserted diagonally through the sample bag from top to bottom to ensure a full cross-section of the sample is collected. To minimize contamination and ensure an even split, the cone splitter is cleaned with compressed air at the end of each rod, and the cyclone is cleaned every 50m and at the end of hole, and more often when wet samples are encountered. Historical practices are not known, though it is assumed similar industry-standard procedures were adopted by each operator. For historical drilling with dry samples it is unknown what methods were used to ensure sample recovery, though it is assumed that industry-standard protocols were used to maximize the representative nature of the samples, including dust-suppression and rod pull-back after each drilled interval. For wet samples, it is noted these were collected in polyweave bags to allow excess water to escape; this is standard practice though can lead to biased loss of sample material into the suspended fine sample fraction. For DD drilling, sample recovery is maximised by the use of short drill runs (typically 1.5m) and triple tube splits for HQ3 drilling.</li> <li>For Blackham drilling, no such relationship was evaluated as sample recoveries were generally excellent.</li> </ul> |

| Logging                                                 | <ul> <li>Whether core and chip samples have been<br/>geologically and geotechnically logged to a level of<br/>detail to support appropriate Mineral Resource<br/>estimation, mining studies and metallurgical<br/>studies.</li> <li>Whether logging is qualitative or quantitative in<br/>nature. Core (or costean, channel, etc)<br/>photography.</li> <li>The total length and percentage of the relevant<br/>intersections logged.</li> </ul>                                                                                                                                                                                                                                                                | <ul> <li>Drill samples have been logged for geology, alteration, mineralisation, weathering, geotechnical properties and other features to a level of detail considered appropriate for geological and resource modelling.</li> <li>Logging of geology and colour for example are interpretative and qualitative, whereas logging of mineral percentages is quantitative.</li> <li>All holes were logged in full.</li> <li>Core photography was taken for BLK diamond drilling.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>For core samples, Blackham uses half core cut with an automatic core saw. Samples have a minimum sample width of 0.3m and maximum of 1.2m to match geological boundaries, though typically 1m intervals were selected. A cut line is routinely drawn at an angle 10 degrees to the right of the orientation line. Where no orientation line can be drawn, where possible samples are cut down the axis of planar features such as veins, such that the two halves of core are mirror images.</li> <li>For historical drilling sampling techniques and preparation are not known. Historical core in storage is generally half core, with some quarter core remaining; it is assumed that half core was routinely analysed, with quarter core perhaps having been used for check assays or other studies. Holes have been selectively sampled (visibly barren zones not sampled, though some quartz vein intervals have been left un-sampled), with a minimum sample width of 0.3m and maximum of 1.2m, though typically 1m intervals were selected.</li> <li>RC sampling with cone splitting with 1m samples collected, or 4m spear composites compiled from individual 1m samples. RC sampling with riffle or cone splitting and spear compositing is considered standard industry practice.</li> <li>For historical samples the method of splitting the RC samples is not known. However, there is no evidence of bias in the results.</li> <li>Blackham drilling, 1m RC samples were split using a cone splitter. Most samples were dry; the moisture content data was logged and digitally captured. Where it proved impossible to maintain dry samples, at most three consecutive wet samples were obtained before drilling was abandoned, as per procedure.</li> <li>Boyd &lt;2mm crushing and splitting is considered to be standard industry practice; each sample particle has an equal chance of entering the split chute. At the laboratory, &gt;3kg samples are split so they can fit into a LMS pulveriser bowl. At the laboratory, &gt;3kg samples are split 50:50 using a riffle splitter so they can fit into</li></ul> |

|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>one duplicate sample per hole. Analysis of results indicated good correlation between primary and duplicate samples. RC duplicates are taken using the secondary sample chute on the cone splitter. DD duplicates were taken at the lab via rotary splitting after the Boyd crusher stage. It is not clear how the historical field duplicates were taken for RC drilling.</li> <li>Riffle splitting and half-core splitting are industry-standard techniques and considered to be appropriate. Where holes have drilled through historical 'stope' intervals, these samples don't represent the pre-mined grade in localized areas.</li> <li>For historical drilling, field duplicates, blank samples and certified reference standards were collected and inserted from at least the early 2000's. Investigation revealed sufficient quality control performance. No field duplicate data has been located or evaluated in earlier drilling. Field duplicates were collected every 20m down hole for Blackham holes; analysis of results indicated good correlation between primary and duplicate samples.</li> <li>Sample sizes are considered appropriate for these rock types and style of mineralisation, and are in line with standard industry practice.</li> </ul>                                                                                                                                                                                                               |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data and<br>laboratory<br>tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>Fire assay is a total digestion method. The lower detection limits of 0.01ppm is considered fit for purpose. For Blackham drilling, ALS completed the analyses using industry best-practice protocols. ALS is globally-recognized and highly-regarded in the industry. Historical assaying was undertaken at Amdel, SGS, and KalAssay laboratories, and by the on-site Agincourt laboratory. The predominant assay method was by Fire Assay with AAS finish. The lower detection limit of 0.01ppm Au used is considered fit for purpose.</li> <li>No geophysical tools were required as the assays directly measure gold mineralisation. For Blackham drilling, down-hole survey tools were checked for calibration at the start of the drilling program and every two weeks.</li> <li>Comprehensive programs of QAQC have been adopted since the 1980's. For Blackham drilling certified reference material, blanks and duplicates were submitted at approximately 1:20. Check samples are routinely submitted to an umpire lab at 1:20 ratio. Analysis of results confirms the accuracy and precision of the assay data. It is understood that previous explorers great Central Mines, Normandy and Agincourt employed QAQC sampling, though digital capture of the data is ongoing, and historical QAQC data have not been assessed. Results show good correlation between original and repeat analyses with very few samples plotting outside acceptable ranges (+/- 20%).</li> </ul> |
| Verification of<br>sampling and<br>assaying         | • The verification of significant intersections by<br>either independent or alternative company<br>personnel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Blackham's significant intercepts have been verified by several company personnel, including the database manager and exploration manager.</li> <li>There were no twinned holes drilled in this program. Drilling has been designed at different orientations, to help correctly model the mineralisation orientation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                                                                     | <ul> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                           | <ul> <li>Data is stored in Datashed SQL database. Internal Datashed validations and validations upon importing into Micromine were completed, as were checks on data location, logging and assay data completeness and downhole survey information. QAQC and data validation protocols are contained within Blackham's manual "Blackham Exploration Manual 2017v2". Historical procedures are not documented.</li> <li>The only adjustment of assay data is the conversion of lab non-numeric code to numeric for estimation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location of<br>data points                                          | <ul> <li>Accuracy and quality of surveys used to locate drill<br/>holes (collar and down-hole surveys), trenches,<br/>mine workings and other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                          | <ul> <li>All historical holes appear to have been accurately surveyed to centimetre accuracy. Blackham's drill collars are routinely surveyed using a DGPS with centimetre accuracy, though coordinates reported herein are a mixture of DGPS and GPS (the latter surveyed to metre-scale accuracy).</li> <li>Grid systems used in this report are Wil10 local mine grid and GDA 94 Zone 51 S.</li> <li>An accurate topographical model covering the mine site has been obtained, drill collar surveys are closely aligned with this. Away from the mine infrastructure, drill hole collar surveys provide adequate topographical control.</li> </ul>                                                                                                                                                                                                                                    |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                                         | <ul> <li>Blackham's exploration holes are generally drilled 25m apart on east-west sections, on sections spaced 25m apart north-south.</li> <li>Using Blackham's drilling and historical drilling, a spacing of approximately 25m (on section) by 25m (along strike) is considered adequate to establish grade and geological continuity. Areas of broader drill spacing have also been modelled but with lower confidence.</li> <li>The mineralisation lodes show sufficient continuity of both geology and grade between holes to support the estimation of resources which comply with the 2012 JORC guidelines</li> <li>Samples have been composited only where mineralisation was not anticipated. Where composite samples returned significant gold values, the 1m samples were submitted for analysis and these results were prioritized over the 4m composite values.</li> </ul> |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves<br/>unbiased sampling of possible structures and the<br/>extent to which this is known, considering the<br/>deposit type.</li> <li>If the relationship between the drilling orientation<br/>and the orientation of key mineralised structures is<br/>considered to have introduced a sampling bias,<br/>this should be assessed and reported if material.</li> </ul> | <ul> <li>Drill holes were generally orientated perpendicular to targets to intersect predominantly steeply-dipping north-south or northwest-southeast striking mineralisation. Holes drilled at the "Central Lodes" are oriented towards the north east (perpendicular to lodes), south west (down the dip of lodes) and towards the west.</li> <li>The perpendicular orientation of the drillholes to the structures minimises the potential for sample bias.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                |

| Sample<br>security   | • | The measures taken to ensure sample security.                         | • It is not known what measures were taken historically. For Blackham drilling, drill samples are collected by McMahon Burnett and stored in a gated locked yard (after hours) until transported by truck to the laboratory in Perth. In Perth the samples are likewise held in a secure compound. |
|----------------------|---|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Audits or<br>reviews | • | The results of any audits or reviews of sampling techniques and data. | • No external audit has been completed for this program. For Blackham drilling, data has been validated in Datashed and upon import into Micromine. QAQC data has been evaluated and found to be satisfactory.                                                                                     |

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

| Criteria                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral tenement and land tenure status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.</li> </ul> | <ul> <li>The drilling is located wholly within M53/6, M53/200, M53/44, M53/40, M53/30, M53/468, M53/96, M53/32. The tenements are owned 100% by Matilda Operations Pty Ltd, a wholly owned subsidiary of Blackham Resources Ltd.</li> <li>The tenements are in good standing and no impediments exist.</li> <li>Franco Nevada have royalty rights over the Wiluna Mine mining leases of 3.6% of net gold revenue.</li> </ul>                                                                                                                                                                                                                                                                                                                     |
| Exploration done by<br>other parties    | • Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Modern exploration has been conducted on the tenement intermittently since the mid-1980's by various parties as tenure changed hands many times. This work has included mapping and rock chip sampling, geophysical surveys and extensive RAB, RC and core drilling for exploration, resource definition and grade control purposes. This exploration is considered to have been successful as it led to the eventual economic exploitation of several open pits during the late 1980's / early 1990's. Underground resources were mined historically in the 1930's to 1950's. The deposits remain 'open' in various locations and opportunities remain to find extensions to the known potentially economic mineralisation.</li> </ul> |
| Geology                                 | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                    | • The gold deposits are categorized as orogenic gold deposits, with similarities to most other gold deposits in the Yilgarn region. The deposits are hosted within the Wiluna Domain of the Wiluna greenstone belt.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Drill hole Information                  | • A summary of all information material to the<br>understanding of the exploration results<br>including a tabulation of the following<br>information for all Material drill holes:                                                                                                                                                                                                                                                                 | • This data is provided in the body of the text, specifically the table in Appendix 1. All drillholes have been reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                                                                        | <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul>                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data aggregation<br>methods                                            | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>In the significant intercepts in Appendix 1, drill hole intercepts are reported as length-weighted averages, above a 1m @ 0.6g/t cut-off, or &gt; 1.2 gram x metre cut off (to include narrow higher-grade zones) using a maximum 2m contiguous internal dilution. For the body of the report and in Figures, wider zones of internal dilution are included for clearer presentation. AC intercepts are based on 4m composites.</li> <li>High-grade internal zones are reported at a 5g/t envelope, e.g. MADD0018 contains 14.45m @ 6.74g/t from 162.55m including 4.4m @ 15.6g/t from 162.55m.</li> <li>No metal equivalent grades are reported because only Au is of economic interest.</li> </ul>                                                                                                                                                                                                                      |
| Relationship between<br>mineralisation widths<br>and intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                             | • Lode geometries at Wiluna are generally steeply east or steeply west dipping. Generally the lodes strike north-northeast. Historical drilling was oriented vertically or at -60° west, the latter being close to optimal for the predominant steeply-east dipping orientation. Drill holes reported herein have been drilled as closed to perpendicular to mineralisation as possible. In some cases due to the difficulty in positioning the rig close to remnant mineralisation around open pits this is not possible. See significant intercepts in Appendix 1 for estimates of mineralisation true widths. Central Lodes are understood to strike northwest-southeast and dip southwest; only holes drilled towards the northeast have intersected roughly true widths of mineralisation, whereas holes drilled southwest have intersected mineralisation at a high angle and true widths are roughly ¼ of intercept widths. |

| Diagrams                              | • Appropriate maps and sections (with scales)<br>and tabulations of intercepts should be included<br>for any significant discovery being reported<br>These should include, but not be limited to a<br>plan view of drill hole collar locations and<br>appropriate sectional views.                                                                                                                                                        | • | See body of this report.                                                                                                                                                      |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced reporting                    | • Where comprehensive reporting of all<br>Exploration Results is not practicable,<br>representative reporting of both low and high<br>grades and/or widths should be practiced to<br>avoid misleading reporting of Exploration<br>Results.                                                                                                                                                                                                | • | Full reporting of the historical drill hole database of over 80,000 holes is not feasible.                                                                                    |
| Other substantive<br>exploration data | <ul> <li>Other exploration data, if meaningful and<br/>material, should be reported including (but not<br/>limited to): geological observations;<br/>geophysical survey results; geochemical survey<br/>results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk<br/>density, groundwater, geotechnical and rock<br/>characteristics; potential deleterious or<br/>contaminating substances.</li> </ul> | • | Other exploration tests are not the subject of this report.                                                                                                                   |
| Further work                          | <ul> <li>The nature and scale of planned further work<br/>(eg tests for lateral extensions or depth<br/>extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of<br/>possible extensions, including the main<br/>geological interpretations and future drilling<br/>areas, provided this information is not<br/>commercially sensitive.</li> </ul>                                               | • | Follow-up resource definition drilling is likely, as mineralisation is interpreted to remain open in various directions.<br>Diagrams are provided in the body of this report. |