70% Increase in Zinc Resource, Positive Metallurgical Testwork Results - Updated Independent Mineral Resource estimate completed containing 968,000 tonnes @ 15.9% Zn+Pb for 154,000t of contained metal in Indicated and Inferred categories; - This represents an increase of 70% in total tonnage and 60% in Indicated category; - Scoping Studies are ongoing with the focus increasingly on Tres Amigos and Las Espadas mineralisation, where resource tonnage increased by 148%, for recommencement of mining. Recent metallurgical studies on Tres Amigos indicate high zinc recoveries to saleable concentrate for lower processing capex and opex; - Metallurgical testwork results from the Tres Amigos Sulphide indicate zinc recoveries to concentrate of >90%; - All Resource tonnes immediately accessible from within current mine infrastructure; - Further drilling planned to extend the resource at Las Espadas, Carola South, Level 7 and Tres Amigos as the project continues to grow. Consolidated Zinc Limited (ASX:CZL; "Consolidated Zinc" or "the company") is pleased to announce its upgraded Mineral Resource estimate for its Plomosas zinc-lead-silver project in northern Mexico. The resource estimate, independently completed by RPM Advisory Services Pty Ltd ("RPM") in accordance with the JORC (2012) reporting guidelines, contains 968,000 tonnes @ 15.9% Zn+Pb and 24.0g/t Ag for 154,000t of contained metal in both Indicated and Inferred categories. This represents an overall increase of 70% resource tonnes and an increase of 60% of contained metal. The additional Mineral Resource comes from the extensions both down dip and down plunge of existing mine development at Level 7, the extrapolation of in-mine mineralisation at Las Espadas and Carola South and the extension of mineralisation at Tres Amigos. Table 1 breaks down the resource by area and category. Figure 1. Location of Plomosas mine, Mexico Managing Director Will Dix said the updated estimate and excellent metallurgical results from Tres Amigos provide the final inputs to the Scoping Study into short term production. The study is expected to be completed by the end of September. Las Espadas and Corola South will provide additional target areas for future drilling and rapid resource expansion from areas that are easily accessible within the existing mine infrastructure. ## AUSTRALIAN SECURITIES EXCHANGE ANNOUNCEMENT AND PRESS RELEASE 4 September, 2017 "This resource increase is another step along the path we initially outlined with our objective to identify a viable resource for short term cash flow. Tres Amigos is shaping up really well and the excellent metallurgical results support this. The Carola South and Las Espadas areas are underexplored and we plan to target them for the next resource update in 2018. In the meantime our focus is on completing the Scoping Study and reviewing our options for the recommencement of mining at Plomosas utilising the on site plant and excellent underground infrastructure." Mr Dix said. The greater understanding of geological controls and the geometry of the mineralisation established during the resource definition studies have led to the identification of numerous immediate drill targets. Las Espadas and Carolas South are two such areas of interest (Figure 1) where recent results announced to the market justify further investigation in the next round of resource extension drilling. #### **Mineral Resource Details and Parameters** Results of the independent Mineral Resource estimate by RPM for the Project are tabulated in the Statement of Mineral Resources in Table 1. The Statement of Mineral Resources is reported in line with the requirements of the 2012 JORC Code and is therefore suitable for public reporting. The Mineral Resource is reported above a cut-off grade of 3% Zn which was based on estimated mining and processing costs and recovery factors of similar projects in the region as discussed below. A detailed discussion of the methodology and parameters used in estimating the Mineral Resources is provided in sections below along with an analysis of drilling, sampling and laboratory procedures and QA/QC protocols. #### In summary: - Ordinary Kriging (OK) was used to estimate average block grades using Surpac software and parameters derived from modelled variograms. Parent block sizes were 10m x 5m x 2.5m; - Linear grade estimation was deemed suitable due to the geological control on mineralisation. Maximum extrapolation of wireframes from drilling was 40m along strike and down-dip; - The Mineral Resource estimate has been constrained by the wireframed mineralised envelope, is undiluted by external waste and reported above a Zn cut-off grade of 3%; - The Mineral Resource was classified as Indicated and Inferred Mineral Resource based on data quality, sample spacing, and lode continuity. The Indicated Mineral Resource was defined within areas of close spaced drilling of less than 20m by 20m, and where the continuity and predictability of the lode positions was good. This distance is two thirds of the Zn variogram range of 30m. The Inferred Mineral Resource was assigned to areas where drill hole spacing was greater than 20m by 20m and less than 40m by 40m, where small isolated pods of mineralisation occur outside the main mineralised zones, and to geologically complex zones. Table 1. Plomosas Project September 2017 Mineral Resource Estimate (3% Zn Cut-off) | | | | Indica | ted Mineral | Resource | | | |-------------|---------|------|--------|-------------|----------|--------|---------| | Prospect | Tonnage | Zn | Pb | Ag | Zn | Pb | Ag | | | t | % | % | g/t | t | t | Oz | | Level 7 | 107,000 | 18.5 | 8.6 | 54.8 | 20,000 | 9,000 | 189,000 | | Tres Amigos | 51,000 | 17.6 | 1.8 | 19.5 | 9,000 | 1,000 | 32,000 | | Total | 158,000 | 18.2 | 6.4 | 43.4 | 29,000 | 10,000 | 220,000 | | | Inferred Mineral Resource | | | | | | | |-------------|---------------------------|------|-----|------|--------|--------|---------| | Prospect | Tonnage | Zn | Pb | Ag | Zn | Pb | Ag | | | t | % | % | g/t | t | t | Oz | | Level 7 | 212,000 | 11.0 | 5.1 | 32.8 | 23,000 | 11,000 | 224,000 | | Tres Amigos | 493,000 | 10.6 | 2.2 | 13.3 | 52,000 | 11,000 | 211,000 | | Carola | 28,000 | 13.0 | 5.7 | 64.7 | 4,000 | 1,600 | 58,000 | | Las Espadas | 77,000 | 11.8 | 5.0 | 14.4 | 9,000 | 4,000 | 36,000 | | Total | 810,000 | 10.9 | 3.3 | 20.3 | 88,000 | 27,000 | 528,000 | | | Total Mineral Resource | | | | | | | |-------------|------------------------|------|-----|------|---------|--------|---------| | Prospect | Tonnage | Zn | Pb | Ag | Zn | Pb | Ag | | | t | % | % | g/t | t | t | Oz | | Level 7 | 319,000 | 13.5 | 6.3 | 40.2 | 43,000 | 20,000 | 412,000 | | Tres Amigos | 544,000 | 11.2 | 2.1 | 13.9 | 61,000 | 12,000 | 242,000 | | Carola | 28,000 | 13.0 | 5.7 | 64.7 | 4,000 | 1,600 | 58,000 | | Las Espadas | 77,000 | 11.8 | 5.0 | 14.4 | 9,000 | 4,000 | 36,000 | | Total | 968,000 | 12.1 | 3.8 | 24.0 | 117,000 | 37,000 | 748,000 | #### Note: The Mineral Resource has been compiled under the supervision of Mr. Robert Dennis who is a full-time employee of RPM and a Member of the AIG and AusIMM. Mr. Dennis has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he has undertaken to qualify as a Competent Person as defined in the JORC Code. All Mineral Resources figures reported in the table above represent estimates at September, 2017. Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location, shape and continuity of the occurrence and on the available sampling results. The totals contained in the above table have been rounded to reflect the relative uncertainty of the estimate. Rounding may cause some computational discrepancies. The Mineral Resource has been estimated in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' prepared by the Joint Ore Reserves Committee of The Australasian Institute of Mining and Metallurgy, Australian Geoscientists and Minerals Council of Australia (The JORC Code 2012). Figure 2. Plan view of the Plomosas mine showing location of the underground development and updated resource outlines. Resource definition work areas referred to in the text including Level 7 and Tres Amigos are identified. Figure 3 provides a schematic cross section through the mine and geological sequence. Figure 3. Section view of the Plomosas mine through Cuevitas area showing the Tres Amigos zone, historical drilling and the drilling planned for mineralised horizons. Level 1, 35 Havelock St, West Perth WA Australia 6005 PO Box 692, West Perth WA Australia 6872 T:+61 8 9322 3406 F: +61 8 9320 7501 E: info@conzinc.com.au (ASX: CZL) ACN 118 554 359 Figure 4: Oblique view of Level 7 Deeps Mineral Resource wireframed solids showing drillhole traces looking NW. Figure 5: Plan view of increased Tres Amigos Mineral Resource wireframed solids showing drillhole traces and intercepts Figure 6: Oblique view looking NW of increased Tres Amigos Mineral Resource wireframed solids showing drillhole traces and intercepts. Figure 7: Schematic section through Tres Amigos area showing geological interpretation and mineral targets within the Juarez Limestone unit. Level 1, 35 Havelock St, West Perth WA Australia 6005 PO Box 692, West Perth WA Australia 6872 T:+61 8 9322 3406 F: +61 8 9320 7501 E: info@conzinc.com.au (ASX: CZL) ACN 118 554 359 #### **Metallurgical Testwork Program** Metallurgical testwork completed to date on composite samples from the Tres Amigos sulphide zone has attained positive results (Table 2). Using a conventional zinc sulphide flotation scheme a high grade bulk zinc concentrate with a recovery over 90% has been achievable which may also contain possible credits for lead. Low Bond Ball results of 10.9kWh/t to reach 80% passing 59 micron and low
residence times also suggest a simple, low capex and low opex circuit will be required. Metallurgical studies are now increasing the focus on detailed process design for treatment of Tres Amigos and Las Espadas sulphide mineralisation. | Table 2: Salient metallurgical testwork results on Tres Amigos mineralisation. | | | | | | | |--|-------------------|-------------------|-------------------|-------------------|----------------------|--| | | Feed Sample | | Bulk Concentrate | | | | | Sample ID
(Composites) | Zinc Grade
(%) | Lead Grade
(%) | Zinc Grade
(%) | Lead Grade
(%) | Zinc Recovery
(%) | | | Met 11 | 25.0 | 2.71 | 56.4 | 5.08 | 98.4 | | | Met 12 | 38.1 | 0.18 | 60.8 | 0.19 | 89.5 | | | Main Composite | 12.1 | 1.52 | 55.4 | 4.78 | 96.6 | | | Variability Comp 1 | 5.84 | 0.60 | 57.5 | 4.15 | 96.9 | | | Variability Comp 2 | 31.3 | 4.14 | 47.9 | 6.12 | 98.1 | | | Variability Comp 3 | 16.5 | 1.03 | 62.0 | 2.52 | 94.5 | | | Variability Comp 4 | 5.03 | 0.75 | 43.2 | 5.11 | 95.1 | | | Variability Comp 4 | 11.7 | 2.07 | 53.6 | 6.89 | 92.6 | | #### **Geology and Geological Interpretation** Mineralisation in the Plomosas Deposit is structurally controlled as demonstrated from drilling and mapping, with a plunge component of approximately 20°-30° to the southeast along a shallow dipping plane defined by the Mina Vieja Manto unit. The main factor in targeting the mineralisation in this system are flexures and dilatant zones that host the high grade mineralisation. The structural setting of the Plomosas mineralisation also exhibits boudinaging that tends to create pinch-and-swell structures both down-dip (in the plunge-direction) and along strike. Additional mineralised structures have been defined in the underlying competent Juarez Limestone Unit, occurring in the footwall to the Mina Vieja Marble. These are more discrete dilatant zones, common occurring as sets or thin continous units within the limestone. The geological setting and mineralisation styles in Plomosas is continually being defined as drilling and additional data is collected and the geological model is updated. As evidenced at Las Espadas and Carolas South this information will determine the future exploration procedures and techniques required to develop targets that will result in additional tonnes and grade for future mill plant feed. ### On going drilling and work program With the completion of this resource update, there is sufficient confidence to continue metallurgical and mining studies of the Tres Amigos (including Las Espadas) sulphide mineralisation. The company considers that the Resource Estimate demonstrates sufficient tonnage to support a mining study focused on the recommencement of mining at Plomosas using Tres Amigos material in the initial start up. Tres Amigos is also immediately accessible from the upper mine levels and metallurgical studies indicate very good zinc recoveries are possible to a single zinc concentrate. Metallurgical and mining investigations are ongoing in the Scoping Study to establish the optimal mine schedule and economic viability of this proposed scenario. Further drill testing and investigation will now target Las Espadas and Carolas South to confirm and extend the resource envelope of high grade mineralisation identified recently and announced to the ASX. The focus on Tres Amigos proper prevented additional drilling to confirm the face sampling and mapping at Las Espadas and Carolas South. This constrained the wireframe that could otherwise be used in the latest resource update and will be addressed in the next round of drilling. #### **Detailed Discussion of Resource Estimation Methodology and Parameters** #### Sampling and Sub-Sampling Techniques Sampling of cut channels was conducted by locating a one metre sampling line, using spray paint across mineralisation and ensuring that the line began in hanging wall host, spanned mineralisation and terminated in footwall host. Where mineralisation was thicker than one metre, the line was adjusted accordingly. This was done to minimise the bias of the sample value. Channel sampling was then completed, using the line as a guide, without sampling the line itself. As much representative sample was taken from the length of the line to produce a two to four kilogram sample. For this level of exploration, the sample size and method of sampling was deemed adequate to represent in-situ material. Sampling techniques employed at the Plomosas underground drilling program include saw cut NQ drill core samples. Diamond NQ3 core was sampled on geological intervals/contacts, with the minimum sample size of 0.5m and max 1.2m. Core was cut in half, with one half to be sent for analysis at an accredited laboratory, while the remaining half was stored in appropriately marked core boxes and stowed in a secure core shed. Duplicates were quarter core, sampled from the half sent for analysis. ### **Drilling Techniques** NQ triple tube core (NQ3) is currently being used to drill out the geological sequences and identify zones of mineralisation that may or may not be used in any Mineral Resource estimations, mining studies or metallurgical testwork. #### Sample Analysis Method All drill samples were submitted to ALS Laboratories in Chihuahua City for sample preparation with sample pulps sent to ALS in Toronto, Canada for multi-element analysis using a 30g charge with a ## AUSTRALIAN SECURITIES EXCHANGE ANNOUNCEMENT AND PRESS RELEASE 4 September, 2017 multi-acid digest and ICP-MS or AAS finish (ME-ICP61). Over the limit results were routinely reassayed by ore grade analysis OG62. Over the limit results for the ore grade were re-assayed by titration methods Cu-VOL61, Pb-VOL50 or Zn-VOL50. Analyses include 51 elements and include Ag, Au, Cu, Pb, Zn as the main elements of economic interest. The methods and procedures are appropriate for the type of mineralisation and the techniques are considered to be total. #### **Estimation Parameters** Using parameters derived from modelled variograms, Ordinary Kriging (OK) was used to estimate average block grades in three passes using Surpac software. Linear grade estimation was deemed suitable for the Plomosas Mineral Resource due to the geological control on mineralisation. Maximum extrapolation of wireframes from drilling was 40m along strike and down-dip. This was equal to the drill hole spacing in these regions of the Project. Maximum extrapolation was generally half drill hole spacing. The parent block dimensions used were 10m NS by 5m EW by 2.5m vertical with sub-cells of 2.5m by 1.25m by 0.625m. The model was rotated to align with the strike of the mineralisation on a bearing of 330°. The parent block size dimension was selected on the results obtained from Kriging Neighbourhood Analysis that suggested this was the optimal block size for the dataset. The deposit mineralisation was constrained by wireframe solids constructed using a nominal 2% combined Zn and Pb cut-off grade with a minimum down-hole length of 1m. The wireframes were applied as hard boundaries in the estimate. Statistical analysis was carried out on data from 27 domains. After review of the project statistics, it was determined that high grade cuts for Ag within a single domain was necessary. The cut applied was 300g/t Ag resulted in a single composite being cut. An orientated 'ellipsoid' search was used to select data and adjusted to account for the variations in lode orientations, however all other parameters were taken from the variography derived from domain 1. Up to three passes were used for each domain. The first pass had a range of 20, with a minimum of 8 samples. For the second pass, the range was extended to 40m, with a minimum of 4 samples. For the final pass, the range was extended to 100m, with a minimum of 2 samples. A maximum of 20 samples was used for all three passes. It is assumed that the bulk density will have some variation within the mineralised material types due to the host rock lithology and sulphide minerals present. Therefore a regression equation for Zn and density was used to calculate density in the block model. Validation of the model included detailed comparison of composite grades and block grades by strike panel and elevation. Validation plots showed good correlation between the composite grades and the block model grades. #### Mineral Resource Classification Criteria The Mineral Resource estimate is reported here in compliance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' by the Joint Ore Reserves Committee (JORC). The Mineral Resource was classified as Indicated and Inferred Mineral Resource based on data quality, sample spacing, and lode continuity. The Indicated Mineral Resource was defined within areas of close spaced diamond and RC drilling of less than 20m by 20m, and where the continuity and predictability of the lode positions was good. In addition, the 20m distance is equal to approximately two thirds of the observed major direction variogram range of 30m. The Inferred Mineral Resource was assigned to areas where drill hole spacing was greater than 20m by 20m and less than 40m by 40m, where small isolated pods of mineralisation occur outside the main mineralised zones, and to geologically complex zones. #### Cut-off Grade, Mining and Metallurgy Methods and Parameters Considered to Date The Mineral Resource estimate has been constrained by the wireframed mineralised envelope, is undiluted by external waste and reported above a Zn cut-off grade of 3%. The cut-off grade was calculated based on the following parameters which are based on an independent mining consultant's report, RPM internal cost pricing within Mexico and a preliminary metallurgical study completed: - Zn price of US\$2,800/t, Pb price of US\$2,300/t and Ag price of US\$17/oz - Mining cost of US\$50/t
ore - Processing costs of US\$20/t ore milled, and - Processing recovery of 80% for a Zn and Pb concentrate. A detailed mining schedule and mining option analysis has not been completed however, an underground mining method will be implemented at Plomosas using the available infrastructure if additional mine and processing design and more detailed and accurate cost estimates confirm the viability of extraction. RPM applied the estimated cut-off grade in order to report the Mineral Resources contained within the mineralised envelope that have a reasonable prospect for eventual economic extraction. RPM notes that the calculations do not constitute a scoping study or a detailed mining study which along with additional drilling and testwork, will be required to confirm economic viability. It is further noted that in the development of the Project, capital expenditure will be required and is not included in the mining cost assumed. RPM has utilised the operating costs and recoveries along with the prices noted above in determining the appropriate cut-off grade. Given the above analysis, RPM considers the Mineral Resource demonstrates reasonable prospects for eventual economic extraction however, highlights that additional studies and drilling is required to confirm economic viability. Yours faithfully, Will Dix Managing Director ## AUSTRALIAN SECURITIES EXCHANGE ANNOUNCEMENT AND PRESS RELEASE 4 September, 2017 #### **ABOUT CONSOLIDATED ZINC** Consolidated Zinc Limited (ASX:CZL) is a minerals exploration company listed on the Australian Securities Exchange. The Company's major focus is in Mexico where it recently acquired 51% of the exciting high grade Plomosas Zinc Lead Silver Project through its majority owned subsidiary, Minera Latin American Zinc CV SAPI. Historical mining at Plomosas between 1945 and 1974 extracted over 2 million tonnes of ore grading 22% Zn+Pb and over 80g/t Ag. Only small scale mining continued to the present day and the mineralised zones remain open at depth and along strike. The Company's main focus is to identify and explore new zones of mineralisation within and adjacent to the known mineralisation at Plomosas with a view to identifying new mineral resources that are exploitable. #### **Competent Persons' Statement** The information in this report that relates to exploration results, data collection and geological interpretation is based on information compiled by Steve Boda BSc (Hons), MAIG, MGSA, MSEG and Andrew Richards BSc (Hons), Dip Ed, MAUSIMM, MAIG, MSEG, GAICD. Messrs Boda and Richards are both Members of Australian Institute of Geoscientists (AIG) and Mr Richards is also a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Both Messrs Boda and Richards have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being undertaken to qualify as Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves' (JORC Code). Messrs Boda and Richards consent to the inclusion in the report of the matters based on their information in the form and context in which it appears. The information in this report that relates to Mineral Resources is based on information compiled by Mr Robert Dennis who is a Member of the Australasian Institute of Geoscientists and Australian Institute of Mining and Metallurgy. Mr Dennis is a full time employee of RungePincockMinarco Limited. Mr Dennis has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Dennis consents to the inclusion in this report of the matters based on his information in the form and context in which it appears. ## **JORC Code, 2012 Edition – Table 1 report template** ## **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |------------------------|---|---| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Sampling of cut channels was conducted by locating a one metre sampling line, using spray paint across mineralisation and ensuring that the line began in hanging wall host, spanned mineralisation and terminated in footwall host. Where mineralisation was thicker than one metre, the line was adjusted accordingly. This was done to minimise the bias of the sample value. Channel sampling was then completed, using the line as a guide, without sampling the line itself. As much representative sample was taken from the length of the line to produce a two to four kilogram sample. For this level of exploration, the sample size and method of sampling was deemed adequate to represent in-situ material. Drilling sampling techniques employed at the Plomosas underground drilling program include saw cut NQ drill core samples. Only NQ triple tube core (NQ3) is currently being used to drill out the geological sequences and identify zones of mineralisation that may or may not be used in any Mineral Resource estimations, mining studies or metallurgical testwork. Diamond NQ3 core was sampled on geological intervals/contacts, with the minimum sample size of 0.5m and max 1.2m. Core was cut in half, with one half to be sent for analysis at an accredited laboratory, while the remaining half was stored in appropriately marked core boxes and stowed in a secure core shed. Duplicates were quarter core, sampled from the half sent for analysis. | | Drilling
techniques | Drill type (eg core, reverse circulation,
open-hole hammer, rotary air blast, auger,
Bangka, sonic, etc) and details (eg core
diameter, triple or standard tube, depth of
diamond tails, face-sampling bit or other
type, whether core is oriented and if so, by
what method, etc). | Currently NQ3 triple tube using conventional wireline drilling is being used. Core is being routinely orientated where possible, every 5th run (a run being 1.5 metres in length) using the Reflex ACT II RD core orientation system. | |
Criteria | JORC Code explanation | Commentary | |---|--|--| | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Diamond core was reconstructed into continuous runs where possible, in an angle iron cradle for orientation mark ups. Depths were checked against drillers blocks and rod counts were routinely carried out by the drillers. The use of triple tube improved core recovery. Measurements for core recoveries were logged and recorded on hard copy sheets, which were then loaded into excel sheets and sent for data entry. These measurements, in combination with core photography show the overall recoveries vary between 50-95%. Due to the nature of the geology and the presence of large open-spaced breccias present in the vicinity of the mineralisation, the recovery of the mineralised core has been in some cases <60%. The use of triple tube in these areas will not improve recovery. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | CZL system of logging core records lithology, mineralogy, mineralisation, alteration, structure, weathering, colour and other primary features of the rock samples. Logging is both qualitative and quantitative depending on the field being logged. All drill holes are logged in full to end of hole. Diamond core is routinely photographed digitally | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | CLZ diamond core is NQ3 size, sampled on geological intervals (0.3 m to 1.2 m), sawn in half or quartered if duplicate samples are required. Samples to be submitted to ALS Chemex for preparation. The sample preparation follows industry best practice where all drill samples are crushed and split to 1kg then dried, pulverized and (>85%) sieved through 75 microns to produce a 30g charge for 4-acid digest with an ICP-MS or AAS finish. A split will be made from the coarse crushed material for future reference material. Field duplicates are routinely taken for core samples. CZL procedures include a minimum of one duplicate per approximately 20 samples. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | All drill samples were submitted to ALS Laboratories for multi-element analysis using a 30g charge with a multi-acid digest and ICP-MS or AAS finish (ME-ICP61). Over the limit results will be routinely reassayed by ore grade analysis OG62. Over the limit results for the ore grade will be reassayed by titration methods Cu-VOL61, Pb-VOL50 or Zn-VOL50. Analytes include 51 elements and include Ag, Au, Cu, Pb, Zn as the main elements of interest. QAQC protocols for all drill sampling involved the use of Certified Reference Material (CRM) as assay standards. The insertion of CRM standards is visible estimation with a minimum of two per batch. Geostats standards were selected on their grade range and mineralogical properties. Blanks are inserted at the bottom of relevant mineralised zones using the fine certified blank and immediately later the coarse blank, to identify any potential cross contamination. All drill assays were required to conform to the procedural QAQC guidelines as well as routine laboratory QAQC guidelines. | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Significant drilling intersections are noted in this report and are verified by qualified personnel from geological logging. No twinned holes are being drilled as part of this program. CZL logging and sampling data was captured and imported using excel sheets and data entered into Micromine. All CZL drillhole and sampling data is stored in a Micromine based system. Manual backups are routinely carried out. | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Underground drill holes were located by Micromine using accurately surveyed drives
and stopes. Once drill holes were located, mine survey crew resurveyed the cuddy and the hole locations. A final collar survey will be finalised when the holes are completed. Down-hole surveys were taken at a nominal 30m interval and a final survey was taken at end of hole using a Reflex EZ-TRAC digital camera. Grid system used is WGS84 Zone 13 | | Data
spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Hole spacing is currently limited by the confinements of the underground drives. Azimuths of holes are planned so significant intersections have adequate spacing between them to allow sufficient geological and grade continuity as appropriate for inclusion in any Minerals Resource estimations. Where underground access drives allows, drill cuddies have been established at 80 metre intervals to allow for adequate drill spacing. No sample compositing has been applied | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Drill orientations was designed to intersect any geological or geophysical contacts as high an angle as possible to reflect true widths as possible. Sampling has been designed to cross structures as near to perpendicular as possible, minimising any potential in creating a bais sampling orientation. | | Criteria | JORC Code explanation | Commentary | |--------------------|---|---| | Sample
security | The measures taken to ensure sample
security. | Samples were bagged in pre-numbered plastic bags into each bag a numbered tag was placed and then bulk bagged in batches not to exceed 25kg, into larger polyweave bags, which were then also numbered with the respective samples of each bag it contained. The bags were tied off with cable ties and stored at the core facility until company personnel delivered the samples to the laboratories preparation facility in Chihuahua. | | Audits or reviews | The results of any audits or reviews of
sampling techniques and data. | No audits have been completed to date, but both
in-house and laboratory QAQC data will be
monitored in a batch by batch basis. All protocols
have been internally reviewed. | ## **Section 2 Reporting of Exploration Results** (Criteria in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Sampling was conducted over three adjoining tenements, La Verdad (T-218242), El Olvido (T-225527) and Ripley (T-218272). Consolidated Zinc Ltd currently owns 51% | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | No relevant information is available. | | Geology | Deposit type, geological setting and style of mineralisation. | Plomosas is located in a historic zinc-lead-silver mining district, with mineralisation hosted by a Palaeozoic sequence of shales, argillaceous limestones, reefal limestones, 'conglomeratic' limestones and sandstones. This approximately 1600 metres-thick carbonate-rich sequence forms part of the Ouachita "Geosyncline", which was inverted in a thrust deformation phase during the Upper Palaeozoic Appalachian Orogeny. Characteristics of the deposit lead to the classification as an IRT III type mineralisation (Intrusive Related type III deposit) but may have some distal style affinities. The control on mineralisation is both lithological and structural, but local structural bending of the manto is very important as it is strongly folded in a relatively regular pattern, oriented north/north-west to west/north-west striking. The segment of the fossiliferous horizon with the best potential is north/north-west striking with a south-east plunge. The N/NW orientation of sections of the stratigraphy (due to folding) is considered important in localising mineralisation. The mineralogy is simple, consisting of iron-poor sphalerite, galena, silver, pyrite, chalcopyrite, barite, and calcite. The ore | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | | bodies are hosted by shale and marble on the footwall and hanging wall respectively. Intense marblisation is restricted to a few meters from the hanging wall contact. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Appropriate information has been included in
the report. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation
should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | No data aggregate methods were applied to
the results. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | No drilling was completed to enable any
relationship between mineralisation width and
intercept lengths | | Diagrams | Appropriate maps and sections (with scales)
and tabulations of intercepts should be
included for any significant discovery being
reported These should include, but not be
limited to a plan view of drill hole collar
locations and appropriate sectional views. | Appropriate diagrams are attached in the report | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and
high grades and/or widths should be
practiced to avoid misleading reporting of
Exploration Results. | All sample results are reported | | Other
substantive
exploration
data | Other exploration data, if meaningful and
material, should be reported including (but
not limited to): geological observations;
geophysical survey results; geochemical
survey results; bulk samples – size and
method of treatment; metallurgical test | No other relevant data has been reported | | Criteria | JORC Code explanation | Commentary | |--------------|---|--| | | results; bulk density, groundwater,
geotechnical and rock characteristics;
potential deleterious or contaminating
substances. | | | Further work | The nature and scale of planned further
work (eg tests for lateral extensions or depth
extensions or large-scale step-out drilling). | Appropriate information has been included in
the report. | | | Diagrams clearly highlighting the areas of
possible extensions, including the main
geological interpretations and future drilling
areas, provided this information is not
commercially sensitive. | | ## **Section 3 Estimation and Reporting of Mineral Resources** (Criteria in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |------------------------------|--|--| | Database
integrity | Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. | Geological and field data is collected using customised logging software on tablet computers. The data is validated by company geologists before the data is sent to Expedio data management consultants. The validated data is stored in Expedio's standardised SQL Server Database Schema. The data is exported by Expedio and sent to RPM in Access format prior to Mineral Resource estimation in Surpac. RPM performed initial data audits in Surpac. RPM checked collar coordinates, hole depths, hole dips, assay data overlaps and duplicate records. Minor errors were found, documented and amended. | | Site visits | Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. | A site visit was conducted by Shaun Searle of RPM, a representative of the Competent Person for Mineral Resources, during November 2016. The site visit included inspection of the geology, drill core, underground development/stoping and the topographic conditions present at the site as well as infrastructure. During the site visit, Mr Searle had open discussions with CZL's personnel on technical aspects relating to the relevant issues and in particular the geological data. | | Geological
interpretation | Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. | The confidence in the geological interpretation is considered to be good and is based on visual confirmation in underground development/ stoping, outcrop and drilling. Geochemistry and geological logging has been used to assist identification of lithology and mineralisation. The deposit consists of northeast dipping units. Infill drilling has supported and refined the model and the current interpretation is considered robust. Outcrops of mineralisation and host rocks confirm the geometry of the mineralisation. Infill drilling has confirmed geological and grade continuity. | | Dimensions | The extent and variability of the Mineral
Resource expressed as length (along strike
or otherwise), plan width, and depth below
surface to the upper and lower limits of the
Mineral Resource. | The Tres Amigos Mineral Resource area extends over a southeast-northwest strike length of 320m (from 3,216,570mN – 3,216,740mN), has a maximum width of 190m (476,080mE – 476,250mE) and includes the 200m vertical | | Criteria | JORC Code explanation | Commentary | |-------------------------------------|---
--| | | | interval from 1,090mRL to 890mRL. The Level 7 Mineral Resource area extends over a south-southeast – north-northwest strike length of 400m (from 3,216,930mN – 3,217,300mN), has a maximum width of 110m (476,230mE – 476,340mE) and includes the 90m vertical interval from 950mRL to 860mRL. | | Estimation and modelling techniques | The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. | Using parameters derived from modelled variograms, Ordinary Kriging (OK) was used to estimate average block grades in three passes using Surpac software. Linear grade estimation was deemed suitable for the Plomosas Mineral Resource due to the geological control on mineralisation. Maximum extrapolation of wireframes from drilling was 40m along strike and down-dip. This was equal to the drill hole spacing in these regions of the Project. Maximum extrapolation was generally half drill hole spacing. Reconciliation could not be conducted due to the absence of mining production records. It is assumed that Ag can be recovered with Zn and Pb. It is assumed that there are no deleterious elements when considering the proposed processing methodology for the Plomosas mineralisation. The parent block dimensions used were 10m NS by 5m EW by 2.5m vertical with sub-cells of 2.5m by 1.25m by 0.625m. The model was rotated to align with the strike of the mineralisation on a bearing of 330°. The parent block size dimension was selected on the results obtained from Kriging Neighbourhood Analysis that suggested this was the optimal block size for the dataset. An orientated 'ellipsoid' search was used to select data and adjusted to account for the variations in lode orientations, however all other parameters were taken from the variography derived from domain 1. Up to three passes were used for each domain. The first pass had a range of 20, with a minimum of 8 samples. For the second pass, the range was extended to 40m, with a minimum of 2 samples. For the final pass, the range was extended to 100m, with a minimum of 2 samples. For the second pass, the range was extended to 40m, with a minimum of 4 samples. For the second pass, the range was constrained by wireframe solids constructed using a nominal 2% combined Zn and Pb cut-off grade with a minimum down-hole length of 1m. The wireframes were applied as hard boundaries in the estimate. Statistical analysis was carried ou | | Criteria | JORC Code explanation | Commentary | |--|--|--| | Majakura | | comparison of composite grades and block grades by strike panel and elevation. Validation plots showed good correlation between the composite grades and the block model grades. | | Moisture | Whether the tonnages are estimated on a
dry basis or with natural moisture, and the
method of determination of the moisture
content. | Tonnages and grades were estimated on a dry in
situ basis. | | Cut-off
parameters | The basis of the adopted cut-off grade(s) or
quality parameters applied. | The Mineral Resource has been reported at a
3% Zn cut-off. The cut-off was selected based on
an RPM cut-off calculator assuming an
underground mining method, a US\$2,600/t Zn
price, US\$2,300 Pb price, US\$17/oz Ag price, a
80% metallurgical recovery for Zn and Pb and
high level costs derived from a high level
technical report supplied by an independent
mining consultant to CZL. | | Mining factors
or
assumptions | Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. | RPM has assumed that the deposit could potentially be mined using underground mining techniques. No assumptions have been made for mining dilution or mining widths, however mineralisation contacts are generally sharp and mining dilution is likely to be minimal if handheld mining methods are used. It is assumed that mining dilution and ore loss will be incorporated into any Ore Reserve estimated from a future Mineral Resource with higher levels of confidence. | | Metallurgical
factors or
assumptions | The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. | Metallurgical testing has been initiated to confirm
reasonable processing options for the Plomosas
Project. | | Environmental
factors or
assumptions | Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the
potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. | No assumptions have been made regarding
environmental factors. CZL will work to mitigate
environmental impacts as a result of any future
mining or mineral processing. | | Bulk density | Whether assumed or determined. If
assumed, the basis for the assumptions. If
determined, the method used, whether wet
or dry, the frequency of the measurements, | Various bulk densities have been assigned in the
block model based on lithology and
mineralisation. These densities were determined
after averaging the density measurements | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. | obtained from diamond core. Bulk density was measured using the water immersion technique. Moisture is accounted for in the measuring process. A total of 3,862 bulk density measurements were obtained from core drilled at the Project. A total of 164 measurements were taken from mineralisation intervals. It is assumed that the bulk density will have some variation within the mineralised material types due to the host rock lithology and sulphide minerals present. Therefore a regression equation for Zn and density was used to calculate density in the block model. In addition, cavities are common in the limestone/marble host rock at Level 7. As a result, RPM estimated that approximately 5% of the mineralised material is cavernous (obtained from core logging), therefore deducted this factor from the measured densities when assigning bulk densities in the block model for the Level 7 prospect. | | Classification | The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. | The Mineral Resource estimate is reported here in compliance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' by the Joint Ore Reserves Committee (JORC). The Mineral Resource was classified as Indicated and Inferred Mineral Resource based on data quality, sample spacing, and lode continuity. The Indicated Mineral Resource was defined within areas of close spaced diamond and RC drilling of less than 20m by 20m, and where the continuity and predictability of the lode positions was good. In addition, the 20m distance is equal to approximately two thirds of the observed major direction variogram range of 30m. The Inferred Mineral Resource was assigned to areas where drill hole spacing was greater than 20m by 20m and less than 40m by 40m, where small isolated pods of mineralisation occur outside the main mineralised zones, and to geologically complex zones. The input data is comprehensive in its coverage of the mineralisation and does not favour or misrepresent in-situ mineralisation. The definition of mineralised zones is based on high level geological understanding producing a robust model of mineralised domains. Validation of the block model shows good correlation of the input data to the estimated grades. The Mineral Resource estimate appropriately reflects the view of the Competent Person. | | Audits or reviews | The results of any audits or reviews of
Mineral Resource estimates. | Internal audits have been completed by RPM
which verified the technical inputs, methodology,
parameters and results of the estimate. | | Discussion of relative accuracy/ confidence | Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an | The lode geometry and continuity has been adequately interpreted to reflect the applied level of Measured, Indicated and Inferred Mineral Resource. The data quality is good and the drill holes have detailed logs produced by qualified geologists. A recognised laboratory has been used for all analyses. The Mineral Resource statement relates to global estimates of tonnes and grade. | ## AUSTRALIAN SECURITIES EXCHANGE ANNOUNCEMENT AND PRESS RELEASE | Criteria | JORC Code explanation | Commentary | |----------|--|---| | | approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. | Reconciliation could not be conducted as no
detailed historical mining production records
were available. |