

ASX ANNOUNCEMENT

7th SEPTEMBER 2017

DRILLING SUCCESS CONTINUES AT WAGGA TANK AND WIRLONG

- Wagga Tank drilling (as foreshadowed) returns several significant new drill intercepts:
 - o 11m @ 7.15% Zn, 2.31% Pb, 58 g/t Ag from 396m in WTRCDD023
 - o 6m @ 8.52% Zn, 2.97% Pb, 12 g/t Ag from 282m in WTRCDD020
 - o 6m @ 1.50% Cu from 92m in WTRCDD022
- Drillhole WTRCDD021, targeting coincident IP and magnetic geophysical anomalies approximately 1km south of Wagga Tank, intercepts significant zinc-lead-silver mineralisation (assays pending) confirming potential for major increase in scale of known mineral system; follow-up drilling planned
- Wirlong drilling (as foreshadowed) returns strong copper mineralisation:
 - 31m @ 3.19% Cu, 11 g/t Ag from 299m (including 10m @ 8.83% Cu, 28 g/t Ag from 299m) in WLRC052
 - o 24m @ 0.85% Cu, 8 g/t Ag from 179m in WLRC053

Peel Mining (ASX:PEX) ("Peel" or the "Company") is pleased to report further encouraging results from several of the Company's key prospects, located near Cobar in western NSW. Drilling results from Peel's 100%-owned Wagga Tank prospect relate to RC/diamond drilling aimed at extending the known footprint of mineralisation; whilst results from Peel's 60%-owned Wirlong prospect relate to recent drilling and geophysical investigation aimed at defining high-grade Cobar-style copper mineralisation.

Wagga Tank

Drilling currently underway at **Peel's 100%-owned Wagga Tank prospect**, comprising an initial program of ~3,000m of RC/diamond drilling, is primarily aimed at increasing the footprint of this significant base and precious metals deposit.

Drillhole WTRCDD020 completed at Wagga Tank intercepted a significant zone of semi-massive/breccia quartz-sulphide mineralisation, as previously foreshadowed (see ASX announcement dated 19th July 2017 - "New High-Grade Results Advance Mallee Bull Mine Plan"). Final assays confirmed a high-grade interval of **6m @ 8.52% Zn, 2.97% Pb and 12 g/t Ag from 282m** (vs 6m @ 7.37% Zn, 1.81% Pb, 10 g/t Ag from 282m in pXRF). Encouragingly follow-up drillhole WTRCDD023 intersected a zone of semi-massive/breccia quartz-sulphide mineralisation grading **11m @ 7.15% Zn and 2.31% Pb, 58 g/t Ag from 396m,** approximately 80m downdip of the intercept in WTRCDD020. The true width of these intercepts is estimated to be 70-80% of the downhole width. The intercepts in WTRCDD020 and WTRCDD023 represent the northern-most (local grid) zinc-lead-silver -rich intercepts recorded to date at Wagga Tank.

Drillhole WTRCDD021, designed to test coincident chargeable IP geophysical and magnetic anomalies, was collared approximately 1km south of the Wagga Tank deposit. Whilst assay results remain pending, Peel is encouraged by the presence of strong deformation, alteration and mineralisation, particularly a zone of variable Wagga Tank-style zinc-lead-silver breccia/stringer quartz-sulphide mineralisation between ~390m and ~410m downhole. The location of mineralisation downhole corresponds well with the chargeable IP anomaly. Promisingly, the strongest part of the anomaly lies to the south of the drillhole. Follow-up drilling is planned.

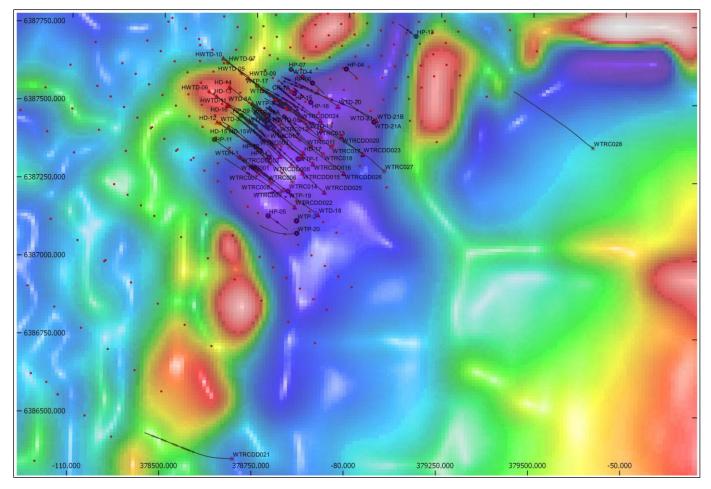


Figure 1 – Wagga Tank Drill Plan vs Magnetics (RTP HWet)

Drillhole WTRC019 was completed as a vertical drillhole, primarily as a replacement water bore for the local landowner, and was sited near historic drillhole and original waterbore WTP-1. WTRC019 returned a significant interval of 11m @ 0.90% Cu, 0.73 g/t Au and 6 g/t Ag from 113m.

Drillhole WTRCDD022 was drilled on the southern end (local grid) of the Wagga Tank deposit and was designed to test for southerly extensions to mineralisation. WTRCDD022 returned a significant interval of **6m @ 1.50% Cu from 92m**. The southern end of Wagga Tank is interpreted to be affected by local cross-faulting with accompanying offsets. Drillhole WTRCDD022 supports this interpretation.

Drilling at Wagga Tank is ongoing at the time of reporting with drillholes WTRCDD024, WTRCDD025, WTRCDD026, WTRC027, WTRC028 recently completed and WTRC029 underway; these drillholes are currently being processed and assays remain pending. A pause in drilling at Wagga Tank is anticipated once approval for proposed drilling at the Mt Allen/Mt Dromedary/Double Peak prospects is received. An announcement will be made prior to commencement of drilling.

Previous Wagga Tank results referred to herein have been extracted from the report entitled "New High-Grade Results Advance Mallee Bull Mine Plan" and published on 19th July 2017 and is available to view on www.peelmining.com.au and www.asx.com.au. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

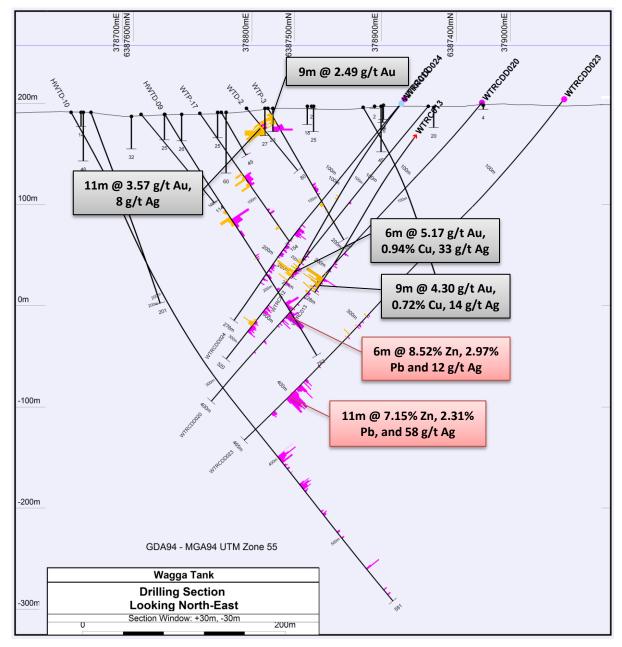


Figure 2 – Wagga Tank Drill Section Looking North-East

Wirlong

Recent drilling at the Company's 60%-owned Wirlong prospect has been primarily aimed at better defining and extending the known footprint of significant copper mineralisation. Wirlong bears the hallmarks of a Cobar-style deposit, with many similarities to Glencore's CSA copper mine.

Full assays for WLRC052 and WLRC053 have now been received with WLRC052 returning 31m @ 3.19% Cu, 11 g/t Ag from 299m (including 10m @ 8.83% Cu, 28 g/t Ag from 299m). This intercept incorporates the previously reported preliminary result of 5m @ 15.75% Cu, 52 g/t Ag from 299m. Drillhole WLRC053 returned an intercept of 24m @ 0.85% Cu, 8 g/t Ag from 179m (vs 23m @ 0.82% Cu from 179m in pXRF).

As previously reported, the mineralised intervals in WLRC026 (27m @ 5.3% Cu, 23 g/t Ag from 286m), WLRC052 and WLRC053 are in an up-dip position of drillholes WLDD001 (9m @ 8.0% Cu, 17 g/t Ag,

0.21 g/t Au from 616m and 38m @ 1.18% Cu, 4 g/t Ag from 450m); WLRCDD015 (4.9m @ 4.3% Cu, 13 g/t Ag from 402.1m and 22m @ 1.0% Cu, 4 g/t Ag from 332m); and WLRCDD043 (17m @ 4.59% Cu, 8 g/t Ag from 738m).

Recent drilling results indicate that the Wirlong copper system is structurally dislocated and possibly constitutes a series of stacked, short-strike length, shoot-like structures. This is a typical feature of Cobar-style mineralisation and deposits. The true width remains unknown at this time, however it is considered likely that mineralisation is sub-vertical in nature, therefore true widths would be approximately 60-80% of downhole widths.

Peel and its joint venture partner JOGMEC remain highly encouraged by results to date, and by the obvious economic potential of the Wirlong copper system. Drilling is paused at the time of reporting in advance of a Farm-in/JV Management Committee meeting, and subsequent approval of the next round of activities.

Previous Wirlong results referred to herein have been extracted from the reports entitled "New High-Grade Results Advance Mallee Bull Mine Plan" and "Exceptional Copper Hits at Wirlong: 27m @ 5.3% Cu, 23 g/t Ag; 5m @ 15.75% Cu, 52 g/t Ag" published on 19th July 2017 and 7th August 2017 respectively, and are available to view on www.peelmining.com.au and www.asx.com.au. For completeness, a full summary of significant Phase 4/4a drill results is included in the accompanying Table 4. The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

For further information, please contact:

Rob Tyson – Peel Mining Managing Director (+61 420 234 020).

Competent Persons Statements

The information in this report that relates to Exploration Results is based on information compiled by Rob Tyson who is a fulltime employee of the company. Mr Tyson is a member of the Australasian Institute of Mining and Metallurgy. Mr Tyson has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Tyson consents to the inclusion in this report of the matters based on information in the form and context in which it appears. Exploration results are based on standard industry practices, including sampling, assay methods, and appropriate quality assurance quality control (QAQC) measures.

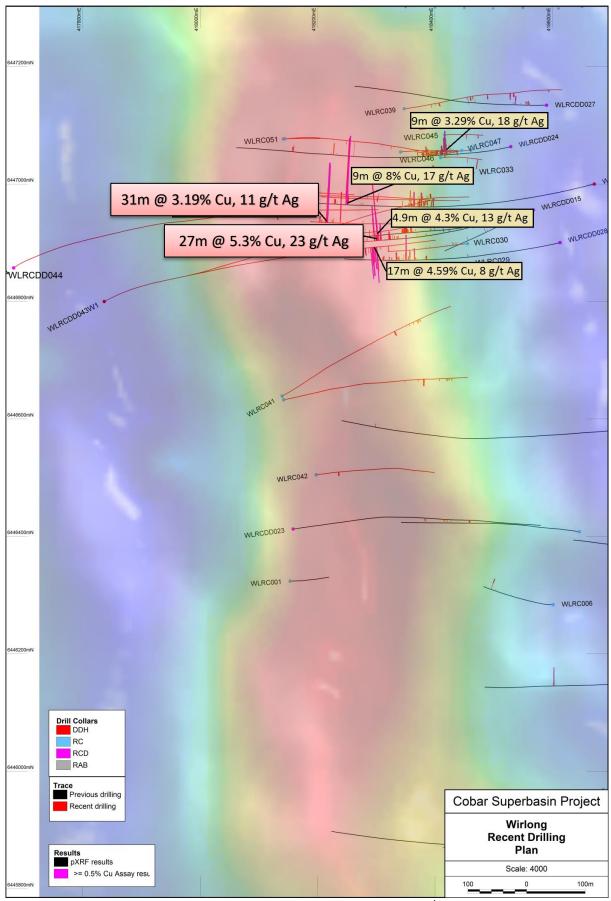


Figure 3 – Wirlong North Drill Plan (Copper Histogram/RTP 2nd Order Magnetics)

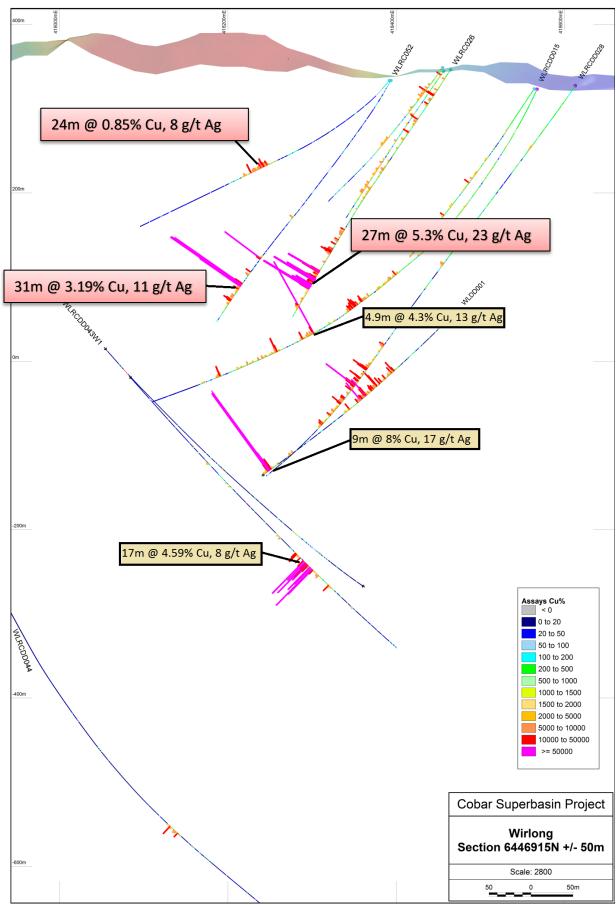


Figure 4 – Wirlong Drill Section 6446915N (Copper Histogram)

Table 1 – Wagga Tank Phase 2 Drill Collars

Hole ID	Northing	Easting	Dip	Azi	Max Depth (m)
WTRC019	6387319	378875	-90	0	132
WTRC027	6387280	379100	-50	312	333
WTRC028	6387360	379665	-50	312	469
WTRC029	6386640	379040	-50	300	Underway
WTRCDD020	6387390	378983	-50	312	399.5
WTRCDD021	6386354	378698	-60	270	456.6
WTRCDD022	6387162	378858	-50	312	369.5
WTRCDD023	6387333	379041	-50	312	465.4
WTRCDD024	6387440	378925	-50	312	276.4
WTRCDD025	6387211	378938	-50	312	500
WTRCDD026	6387272	378990	-50	312	480.4

Table 2 – Wirlong Phase4/4a Drill Collars

Hole ID	Northing	Easting	Dip	Azi	Max Depth (m)
WLRC038	6446975	418106	-51.8	80.9	475
WLRC039	6447128	418348	-48.8	84.6	366
WLRC040	6446633	418142	-50.8	80.4	451
WLRC041	6446639	418140	-51.3	60.1	522
WLRC042	6446505	418198	-50.1	82.1	335.6
WLRCDD043	6446800	417837	-60.9	62.6	891.6
WLRCDD044	6446857	417682	-69.1	55.6	1230.9
WLRC045	6447083	418416	-50.0	85.0	96
WLRC046	6447045	418409	-50.0	85.0	102
WLRC047	6447057	418446	-50.0	255.0	96
WLRCDD043W1	6446800	417837	-60.9	62.6	869.8
WLRC048	6443821	418550	-57.0	270.0	345
WLRC049	6443033	418854	-56.0	234.7	299
WLRC050	6447077	418142	-60.0	85.0	150
WLRC051	6447077	418144	-55.0	85.0	480
WLRC052	6446936	418394	-60.0	261.8	354
WLRC053	6446935	418392	-50.0	260.0	349
WLRC054	6446980	418095	-67.0	75.0	211
WLRC055	6447065	418628	-60.0	265.0	504

Table 3 – Wagga Tank Phase 2 Significant Drill Assays

Hole ID	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WTRC019	97	98	1.2	0.06	6890	37	14
WTRC019	98	99	1.1	0.05	8430	215	26
WTRC019	100	101	2.5	0.43	5700	498	28
WTRC019	104	105	1.6	0.1	7270	101	45
WTRC019	105	106	1.2	0.18	6130	609	19
WTRC019	106	107	0.9	0.14	5010	57	16
WTRC019	113	114	2.3	1.85	15500	88	14
WTRC019	114	115	1.5	1.5	12850	49	17

בוויוודנט								
Hole ID	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
WTRC019	115	116	1.1	0.51	9220	41	12	
WTRC019	116	117	0.9	1	7560	38	15	
WTRC019	118	119	1.6	0.69	7240	45	18	
WTRC019	120	121	5.2	0.73	11250	66	35	
WTRC019	121	122	10.1	1.06	13050	120	21	
WTRC019	122	123	19	0.2	11550	184	23	
WTRC019	123	124	17.9	0.13	5300	396	51	
WTRCDD020	240	241	4.1	0.08	5590	608	2400	
WTRCDD020	244	245	7.2	0.08	5250	418	964	
WTRCDD020	245	246	33.2	0.19	11450	2530	1870	
WTRCDD020	247	248	10.4	0.64	7980	376	720	
WTRCDD020	248	249	7.8	0.99	6590	219	734	
WTRCDD020	250	251	19.6	2.67	6270	1390	1140	
WTRCDD020	254	255	12.5	0.85	8660	2150	3200	
WTRCDD020	255	256	11.4	0.76	9040	3150	3130	
WTRCDD020	256	257	12.2	0.46	9230	2280	1150	
WTRCDD020	270	271	1.2	0.06	137	2110	10250	
WTRCDD020	276	277	14.3	0.9	9130	673	807	
WTRCDD020	277	278	10.8	0.3	6540	384	774	
WTRCDD020	280	281	8.9	0.64	6390	990	5550	
WTRCDD020	281	282	13.8	0.28	11450	1760	9840	
WTRCDD020	282	283	12.7	0.2	455	36000	102500	
WTRCDD020	283	284	9.3	0.17	164	27300	74900	
WTRCDD020	284	285	11.9	0.1	434	35900	95200	
WTRCDD020	285	286	12.4	0.1	327	39800	114500	
WTRCDD020	286	287	17.9	0.07	558	31500	96300	
WTRCDD020	287	288	9.5	0.08	1100	7420	27900	
WTRCDD020	291	292	4.9	0.21	1030	5570	29500	
WTRCDD020	293	294	8.1	0.18	626	13900	41700	
WTRCDD020	296	297	3.4	0.13	56	4590	12250	
WTRCDD022	92	93	-0.2	0.01	14450	5	19	
WTRCDD022	93	94	-0.2	0.03	18250	6	23	
WTRCDD022	94	95	-0.2	0.01	19850	5	293	
WTRCDD022	95	96	-0.2	0.01	14600	4	32	
WTRCDD022	96	97	-0.2	0.01	10800	8	32	
WTRCDD022	97	98	-0.2	0.01	12250	8	19	
WTRCDD022	110	111	3	0.26	10050	93	46	
WTRCDD022	111	112	4.1	0.31	10900	128	226	
WTRCDD022	112	113	1.7	0.1	6660	61	55	
WTRCDD022	127	128	8.2	0.01	6650	2450	1360	
WTRCDD022	128	129	19	0.01	18400	3190	1280	
WTRCDD023	240	241	2.6	0.06	89	5000	18350	
WTRCDD023	241	242	6.9	0.13	36	6720	14050	
WTRCDD023	242	243	26	0.09	34	3370	11350	

Hole ID	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WTRCDD023	243	244	21.1	0.09	72	2500	16000
WTRCDD023	244	245	7	0.05	49	824	10300
WTRCDD023	289	290	17.1	0.22	5760	4190	2070
WTRCDD023	291	292	29.5	0.98	9290	1620	1170
WTRCDD023	293	294	19.1	0.13	6060	551	1135
WTRCDD023	305	306	64.3	0.7	6420	3770	4430
WTRCDD023	320	321	11.8	0.64	5870	499	999
WTRCDD023	378	379	4.6	0.13	325	3950	11350
WTRCDD023	379	380	7.8	0.14	380	8480	33700
WTRCDD023	380	381	7.1	0.14	890	4900	13200
WTRCDD023	382	383	18.9	0.18	2120	18600	31500
WTRCDD023	386	387	14.4	0.4	435	9560	36700
WTRCDD023	387	388	18.9	0.23	561	21900	65400
WTRCDD023	388	389	10.7	0.12	1170	9410	29100
WTRCDD023	389	390	4.9	0.03	138	8350	17850
WTRCDD023	390	391	5.9	0.03	563	8100	18400
WTRCDD023	391	392	6	0.04	371	8210	13550
WTRCDD023	392	393	3.4	-0.01	33	5400	11800
WTRCDD023	394	395	5.8	0.08	756	8600	16800
WTRCDD023	395	396	8.4	0.06	384	9940	23300
WTRCDD023	396	397	31.2	0.16	1530	29200	54000
WTRCDD023	397	398	45.6	0.16	640	25000	109000
WTRCDD023	398	399	79.1	0.55	833	45400	99700
WTRCDD023	399	400	32.2	0.12	235	12250	55000
WTRCDD023	400	401	63.2	0.15	831	24200	99800
WTRCDD023	401	402	41.7	0.14	244	21200	60600
WTRCDD023	402	403	31.5	0.12	224	16500	54100
WTRCDD023	403	404	55.8	0.03	264	17350	64300
WTRCDD023	404	405	76.8	0.01	294	30100	79100
WTRCDD023	405	406	81.9	0.03	304	25100	87200
WTRCDD023	406	407	103	0.02	308	8040	23800
WTRCDD023	423	424	18.9	0.04	86	3850	14750
WTRCDD023	424	425	14	0.04	75	5450	17250
WTRCDD023	425	426	13.3	0.02	55	7320	11700
WTRCDD023	426	427	14	0.02	44	6710	22800
WTRCDD023	427	428	8.3	0.02	40	2930	11350

Table 4 – Wirlong Phase 4/4a Significant Drill Assays

Hole II	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WLRC02	286	287	3	-0.01	6950	222	938
WLRC02	287	288	10.5	-0.01	36500	152	1250
WLRC02	288	289	15.5	-0.01	52200	233	1905
WLRC02	289	290	32	0.03	94000	1335	4940

				LIMITED		1	
Hole ID	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WLRC026	290	291	15.2	-0.01	14400	5170	7300
WLRC026	291	292	9.7	-0.01	14750	1265	5020
WLRC026	292	293	14.6	-0.01	34000	1575	3440
WLRC026	293	294	7.8	-0.01	15950	1010	2060
WLRC026	295	296	3.2	-0.01	5050	704	2400
WLRC026	296	297	15	-0.01	36100	1020	2860
WLRC026	297	298	17.9	-0.01	38800	1240	3960
WLRC026	298	299	90.6	0.03	106000	12150	33100
WLRC026	299	300	78.6	0.02	156000	6970	15500
WLRC026	300	301	21.9	0.01	70600	449	2370
WLRC026	301	302	8	0.02	24200	205	1075
WLRC026	302	303	9.6	0.04	25000	403	1260
WLRC026	303	304	11.7	0.01	18750	1020	1070
WLRC026	304	305	12.9	-0.01	30000	707	1450
WLRC026	305	306	8.5	-0.01	23800	359	1150
WLRC026	306	307	2.6	-0.01	6680	124	503
WLRC026	307	308	2.2	-0.01	6780	64	681
WLRC026	308	309	39.9	0.05	99200	2550	10900
WLRC026	309	310	73.4	0.06	165000	6750	16850
WLRC026	310	311	52.5	0.03	128000	3650	11500
WLRC026	311	312	65.3	-0.01	208000	978	8290
WLRC026	312	313	3.4	-0.01	9380	131	1675
WLRC026	313	314	1.5	-0.01	5230	67	441
WLRC026	317	318	1.4	-0.01	5100	37	243
WLRC026	324	325	2.8	-0.01	6140	161	745
WLRC026	325	326	3.2	-0.01	9700	74	314
WLRC026	326	327	1.9	-0.01	6580	37	227
WLRC026	328	329	4.2	0.01	7640	402	760
WLRC026	333	334	2.9	-0.01	7080	196	570
WLRC026	334	335	8.4	0.07	19500	612	2730
WLRC026	335	336	2.3	0.01	7020	76	1685
WLRC026	336	337	2.8	-0.01	7400	109	8350
WLRC030	252	253	10.9	0.06	15450	294	3320
WLRC030	342	343	3.8	0.04	972	5740	25600
WLRC030	357	358	6.9	0.01	415	7550	19050
WLRC031	163	164	3.8	0.01	5920	54	701
WLRC031	170	171	5.9	0.01	6810	149	151
WLRC031	171	172	5.4	0.01	6910	76	162
WLRC031	173	174	5.9	0.01	7380	131	383
WLRC033	127	128	2.7	0.06	7210	26	1165
WLRC033	138	139	-0.2	-0.01	220	25	11700
WLRC033	140	141	1.2	-0.01	255	1010	11000
WLRC033	142	143	5.2	-0.01	392	6330	11050
WLRC033	155	156	4.9	-0.01	957	2310	13550

	_ , ,			LIMITED		I , , , ,	_ ,
Hole ID	From (m)			Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WLRC038	99	100	0.4	-0.01	57	255	11300
WLRC038	277	278	4.2	0.02	6310	36	226
WLRC038	278	279	11.9	0.05	16150	191	403
WLRC038	355	356	2.6	0.01	7010	15	147
WLRC038	356	357	2.7	0.01	7470	16	197
WLRC038	357	358	2.3	-0.01	5980	16	1020
WLRC038	361	362	5.9	0.01	7550	437	496
WLRC038	362	363	3.6	-0.01	6800	212	373
WLRC038	367	368	5.5	0.02	6100	426	1550
WLRC038	374	375	2	0.01	5000	14	93
WLRC038	375	376	2.9	0.01	7430	29	143
WLRC038	379	380	2.5	0.01	6260	20	137
WLRC038	380	381	4.3	0.02	10600	13	137
WLRC038	381	382	5.1	0.02	12350	40	159
WLRC038	383	384	2.5	0.01	5940	17	113
WLRC038	384	385	3.5	0.01	8520	15	167
WLRC038	386	387	5.4	0.02	9550	202	408
WLRC038	387	388	3.1	0.01	6400	55	245
WLRC038	394	395	2.3	0.01	5800	15	134
WLRC038	395	396	6.9	0.03	18500	57	446
WLRC038	399	400	7.2	0.02	14750	190	411
WLRC038	400	401	5.2	0.02	10850	114	338
WLRC039	65	66	5.5	0.02	10300	146	10250
WLRC039	66	67	3	0.02	4550	168	12300
WLRC039	75	76	3.5	0.01	6470	8	2900
WLRC039	82	83	5.2	0.01	8960	21	709
WLRC039	83	84	4.3	0.01	6500	15	547
WLRC039	84	85	4.7	0.01	11500	12	463
WLRC039	145	146	19.9	0.01	6140	2730	996
WLRC039	148	149	12.3	0.04	24400	319	3540
WLRC039	153	154	2.8	-0.01	5620	18	1270
WLRC039	154	155	6.7	-0.01	13150	73	1230
WLRC039	155	156	4	-0.01	7260	63	1170
WLRC039	159	160	5.3	-0.01	9650	201	761
WLRC039	160	161	3.9	-0.01	5320	266	507
WLRC039	193	194	5.1	0.02	5450	522	343
WLRC039	194	195	7.5	-0.01	15550	209	610
WLRC039	245	246	7.6	0.02	21400	31	99
WLRC039	246	247	2.6	0.01	7140	6	100
WLRC039	247	248	3.8	0.02	10850	4	126
WLRC039	253	254	2.4	0.02	5680	16	241
WLRC039	254	255	4	0.01	13200	3	207
WLRC039	255	256	3.2	0.01	9730	7	279
WLRC039	334	335	5.4	0.05	5970	189	358

	· · · · · · · · · · · · · · · · · · ·		,	LIMITED	T	1	1
Hole ID	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WLRC039	335	336	5.5	0.04	6400	176	406
WLRC039	336	337	3.9	0.08	5180	100	289
WLRC040	306	307	5.8	0.02	6510	500	893
WLRC040	337	338	7.2	0.02	6670	600	1205
WLRC040	340	341	4.8	0.02	5680	323	911
WLRC040	350	351	12.3	0.01	18750	378	804
WLRC040	351	352	16.6	0.01	22800	742	1270
WLRC040	352	353	7.3	-0.01	9810	357	665
WLRC040	353	354	4.4	-0.01	5730	253	413
WLRC040	388	389	3.7	-0.01	6530	22	120
WLRC040	389	390	3.7	-0.01	6560	23	116
WLRC040	404	405	3.3	0.01	6030	21	102
WLRC040	406	407	2.6	-0.01	5460	13	138
WLRC040	407	408	3.9	0.02	8050	29	135
WLRC040	410	411	2	-0.01	6410	5	92
WLRC040	411	412	1.9	-0.01	6470	6	93
WLRC040	416	417	3.5	0.01	7190	9	113
WLRC040	417	418	2.4	-0.01	5120	6	106
WLRC041	371	372	10.5	0.06	11850	2390	7100
WLRC041	372	373	11.6	0.08	13500	1690	7210
WLRC041	373	374	13.9	0.1	16050	1845	6600
WLRC041	374	375	4.4	0.03	5290	481	1780
WLRC041	407	408	2.7	0.01	5080	18	113
WLRC041	414	415	3.7	0.02	5710	181	8940
WLRC041	415	416	3.7	0.01	6270	141	1250
WLRC041	426	427	4.9	0.01	6350	1015	1080
WLRC041	427	428	51.4	0.02	6670	11150	6030
WLRC041	437	438	1.9	-0.01	10650	16	186
WLRC041	438	439	0.9	-0.01	5790	12	123
WLRC041	440	441	0.7	-0.01	5930	14	124
WLRC041	441	442	0.7	-0.01	6500	8	95
WLRC041	444	445	1.4	-0.01	7460	11	120
WLRC041	445	446	1.9	-0.01	8220	35	145
WLRC045	54	55	2.8	-0.01	8780	17	1020
WLRC045	56	57	12.7	0.02	15500	85	943
WLRC045	83	84	3.9	0.01	7910	71	103
WLRC045	84	85	5.3	-0.01	11100	347	367
WLRC046	68	69	5	-0.01	15650	9	168
WLRC046	91	92	8	0.02	33100	3	168
WLRC046	92	93	1.9	0.01	8100	-2	118
WLRC047	60	61	22	0.04	11100	5070	5760
WLRC051	187	188	19	0.56	8250	2480	4010
WLRC051	301	302	2.3	0.03	6050	116	657
WLRC051	332	333	28.8	-0.01	5170	14850	2620

	1		1	LIMITED	1	1	
Hole ID	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WLRC051	409	410	1.8	0.08	5590	56	872
WLRC051	414	415	1.6	0.11	5210	78	325
WLRC051	416	417	2.9	0.01	8850	165	326
WLRC051	419	420	2.8	0.03	11400	77	476
WLRC051	435	436	3.3	0.05	8720	431	951
WLRC052	200	201	17.3	0.05	8570	2180	4360
WLRC052	262	263	31.9	0.07	94400	4070	15000
WLRC052	263	264	7.9	0.03	22900	842	3560
WLRC052	282	283	4.3	0.08	20000	36	14450
WLRC052	286	287	1.6	0.02	6410	54	1550
WLRC052	299	300	1.7	-0.01	7540	14	279
WLRC052	300	301	60.5	0.03	231000	572	8600
WLRC052	301	302	75.6	0.1	235000	4260	10800
WLRC052	302	303	80.5	0.13	223000	5720	19800
WLRC052	303	304	40.6	0.14	111500	2300	10500
WLRC052	304	305	6.7	-0.01	21400	246	1230
WLRC052	305	306	5	-0.01	17500	135	789
WLRC052	306	307	2.4	-0.01	9630	42	391
WLRC052	307	308	5.1	0.01	18850	77	767
WLRC052	308	309	3.3	-0.01	7230	291	4170
WLRC052	312	313	1.6	-0.01	5230	31	572
WLRC052	318	319	6.5	0.01	8850	2810	9960
WLRC052	319	320	10.3	0.01	9350	2340	9960
WLRC052	322	323	6.4	0.03	12350	1550	3610
WLRC052	323	324	9.4	0.02	16250	6050	17200
WLRC052	324	325	5	0.01	12150	492	2380
WLRC053	179	180	9.3	0.02	5590	826	3550
WLRC053	180	181	18.2	0.08	11950	1595	5680
WLRC053	181	182	5.8	0.03	5450	449	5150
WLRC053	182	183	15.4	0.07	9640	1795	7640
WLRC053	183	184	9.7	0.04	6910	561	1670
WLRC053	184	185	11.1	0.13	10550	824	1515
WLRC053	185	186	21.5	0.13	24000	1150	15850
WLRC053	186	187	9.3	0.11	8460	1330	14250
WLRC053	187	188	14.7	0.07	10750	2420	9800
WLRC053	188	189	19.9	0.12	15250	1920	7340
WLRC053	190	191	8.4	0.01	6830	2650	7710
WLRC053	191	192	9.6	0.08	6910	1225	2940
WLRC053	194	195	3.7	0.01	7720	81	402
WLRC053	196	197	6.6	0.05	9090	462	978
WLRC053	197	198	2.5	0.02	5260	126	367
WLRC053	198	199	5.4	0.03	10100	377	560
WLRC053	201	202	8.3	0.09	24100	321	776
WLRC053	209	210	7.1	0.06	6820	295	409

	· · · · · · · · · · · · · · · · · · ·		1	LIMITED		1	
Hole ID	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WLRC055	120	121	7.8	0.11	7920	1785	106
WLRC055	121	122	9.6	0.02	7580	1980	127
WLRC055	122	123	9.9	0.02	6290	1820	91
WLRC055	130	131	3.1	0.01	6810	9	85
WLRC055	132	133	6.6	0.19	15450	371	176
WLRC055	156	157	1.7	-0.01	11900	35	109
WLRC055	157	158	2.6	-0.01	12000	28	124
WLRC055	165	166	0.9	0.01	5970	36	44
WLRC055	293	294	3	-0.01	6100	49	316
WLRC055	296	297	8.2	0.28	15500	333	659
WLRC055	297	298	3.5	0.06	5600	748	550
WLRCDD032	139	140	3.2	-0.01	6630	8	979
WLRCDD032	142	143	4.1	0.01	8130	72	587
WLRCDD032	158	159	5.3	0.01	9340	646	3850
WLRCDD032	258	259	26.7	0.11	33000	266	518
WLRCDD032	261	262	4.4	0.01	5270	88	1150
WLRCDD032	293	294	2.9	0.02	11850	74	614
WLRCDD032	365	366	2.4	0.04	6090	71	509
WLRCDD032	471	472	6.9	0.05	20600	455	840
WLRCDD032	474	475	27	3.24	101500	1430	4640
WLRCDD032	475	476	2.9	0.02	8370	281	414
WLRCDD043	699	700	1.7	0.11	5660	107	79
WLRCDD043	725	726	2.3	0.08	14700	64	311
WLRCDD043	726	727	3	0.09	19250	84	445
WLRCDD043	727	728	6.2	0.09	25600	511	657
WLRCDD043	733	734	2.8	0.01	17250	28	418
WLRCDD043	738	739	4	-0.01	18900	272	905
WLRCDD043	739	740	20.7	-0.01	107500	270	3160
WLRCDD043	741	742	9.5	-0.01	59800	8	1180
WLRCDD043	742	743	3	-0.01	19150	8	476
WLRCDD043	743	744	15.1	0.06	97500	214	1830
WLRCDD043	744	745	6.2	0.01	42800	36	623
WLRCDD043	745	746	8.3	0.02	51300	30	486
WLRCDD043	746	747	3.5	0.01	21100	14	259
WLRCDD043	747	748	1	-0.01	6100	9	158
WLRCDD043	748	749	1.4	-0.01	8470	29	179
WLRCDD043	749	750	11.2	0.01	75000	85	897
WLRCDD043	750	751	9.8	0.01	54900	73	830
WLRCDD043	752	753	18.3	0.07	121500	122	2190
WLRCDD043	753	754	12.6	0.06	82300	225	1430
WLRCDD043	754	755	3.3	-0.01	13300	210	386
WLRCDD043	761	762	0.8	0.01	5570	7	89
WLRCDD043	763	764	1.4	0.01	8850	9	333
WLRCDD043	780	781	30.8	0.05	18700	10050	19050

Hole ID	From (m)	To (m)	Ag (ppm)	Au (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
WLRCDD043	781	782	20	0.03	6030	16950	52300
WLRCDD043	783	784	10	0.01	2630	10350	6140
WLRCDD043	784	785	15.1	0.04	2430	12800	27500
WLRCDD043W1	605	606	1.7	0.03	10550	44	325
WLRCDD043W1	658	659	6.8	0.01	4480	8680	18300
WLRCDD043W1	715	716	2	0.02	9260	60	281
WLRCDD043W1	761	762	1.4	0.01	6720	5	209
WLRCDD044	1004	1005	7	-0.01	5040	911	2170
WLRCDD044	1005	1006	15.8	-0.01	24800	1200	6630
WLRCDD044	1012	1013	8	0.01	7580	477	627
WLRCDD044	1014	1015	3.2	0.01	5390	75	397
WLRCDD044	1017	1018	19.3	-0.01	12750	1520	5410

Table 1 - Section 1: Sampling Techniques and Data for Mallee Bull/Cobar Superbasin/Wagga Tank Projects

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond and reverse circulation (RC) drilling were used to obtain samples for geological logging and assaying. Diamond core was cut and sampled at 1m intervals. RC drill holes were sampled at 1m intervals and split using a cone splitter attached to the cyclone to generate a split of 2-4kg to ensure sample representivity. Multi-element readings were taken of the diamond core and RC drill chips using an Olympus Delta Innov-X portable XRF tool. Portable XRF tools are routinely serviced, calibrated and checked against blanks/standards.
Drilling techniques Drill sample recovery	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drilling to date has been a combination of diamond, reverse circulation and rotary air blast. Reverse circulation drilling utilised a 5 1/2 inch diameter hammer. A blade bit was predominantly used for RAB drilling. NQ and HQ coring was used for diamond drilling. Core recoveries are recorded by the drillers in the field at the time of drilling and checked by a geologist or technician RC and RAB samples are not weighed on a regular basis due to the exploration nature of drilling but no significant sample recovery issues have been encountered in a drilling program to date. Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking and depths are checked against the depths recorded on core blocks. Rod counts are routinely undertaken by drillers. When poor sample recovery is encountered during drilling, the geologist and driller have endeavoured to rectify the problem to ensure maximum sample recovery. Sample recoveries at Wirlong and Mallee Bull to date have generally been high. Sample recoveries at Wagga Tank have been variable with broken ground occurring in places and poorer sample

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been	recoveries encountered. Insufficient data is available at present to determine if a relationship exists between recovery and grade. This will be assessed once a statistically valid amount of data is available to make a determination. • All core and drill chip samples are
	 geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	geologically logged. Core samples are orientated and logged for geotechnical information. Drill chip samples are logged at 1m intervals from surface to the bottom of each individual hole to a level that will support appropriate future Mineral Resource studies. • Logging of diamond core, RC and RAB samples records lithology, mineralogy, mineralisation, structure (DDH only), weathering, colour and other features of the samples. Core is photographed as both wet and dry. • All diamond, RC drill holes in the current program were geologically logged in full except at Wagga Tank where logging is still underway.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core was cut with a core saw and half core taken. The RC drilling rigs were equipped with an in-built cyclone and splitting system, which provided one bulk sample of approximately 20kg and a sub-sample of 2-4kg per metre drilled. All samples were split using the system described above to maximise and maintain consistent representivity. The majority of samples were dry. Bulk samples were placed in green plastic bags, with the sub-samples collected placed in calico sample bags Field duplicates were collected by resplitting the bulk samples from large plastic bags. These duplicates were designed for lab checks. A sample size of 2-4kg was collected and considered appropriate and representative for the grain size and style of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg 	ALS Laboratory Services were used for Au and multi-element analysis work carried on out on 3m to 6m composite samples and 1m split samples. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined at Mallee Bull: O PUL-23 (Sample preparation)

Criteria	JORC Code explanation	Commentary
	standards, blanks, duplicates, external laboratory	code)
	checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Au-AA25 Ore Grade Au 30g FA AA Finish, Au-AA26 Ore Grade Au 50g FA AA Finish ME-ICP41 35 element aqua regia ICP-AES, with an appropriate Ore Grade base
		metal AA finish ME-ICP61 33 element 4 acid digest ICP-AES, with an appropriate Ore Grade base metal AA finish ME-MS61 48 element 4 acid digest ICP-MS and ICP-AES, with an appropriate Ore Grade base metal AA finish Assaying of samples in the field was by portable XRF instrument Olympus Delta Innov-X Analyser. Reading time was 20 seconds per reading with a total 3 readings per sample.
		The QA/QC data includes standards, duplicates and laboratory checks. Duplicates for drill core are collected by the lab every 30 samples after the core sample is pulverised. Duplicates for percussion drilling are collected directly from the drill rig or the metre sample bag using a half round section of pipe. In-house QA/QC tests are conducted by the lab on each batch of samples with standards supplied by the same companies that supply our own.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All geological logging and sampling information is completed in spreadsheets, which are then transferred to a database for validation and compilation at the Peel head office. Electronic copies of all information are backed up periodically. No adjustments of assay data are considered necessary.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	A Garmin hand-held GPS is used to define the location of the samples. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collars are picked up after by DGPS. Down-hole surveys are conducted by the drill contractors using either a Reflex gyroscopic tool with readings every 10m after drill hole completion or a Reflex electronic multishot camera will be used with readings for dip and magnetic azimuth taken every 30m down-hole. QA/QC in the field involves calibration using a test stand. The

Criteria	JORC Code explanation	Commentary
		 instrument is positioned with a stainless steel drill rod so as not to affect the magnetic azimuth. Grid system used is MGA 94 (Zone 55). All down-hole magnetic surveys were converted to MGA94 grid.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data/drill hole spacing is variable and appropriate to the geology and historical drilling. 3m to 6m sample compositing has been applied to RC drilling at Mallee Bull for gold and/or multi-element assay.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Most drillholes are planned to intersect the interpreted mineralised structures/lodes as near to a perpendicular angle as possible (subject to access to the preferred collar position).
Sample security	The measures taken to ensure sample security.	The chain of custody is managed by the project geologist who places calico sample bags in polyweave sacks. Up to 5 calico sample bags are placed in each sack. Each sack is clearly labelled with: Peel Mining Ltd Address of Laboratory Sample range Detailed records are kept of all samples that are dispatched, including details of chain of custody.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Data is validated when loading into the database. No formal external audit has been conducted.

Table 1 - Section 2 - Reporting of Exploration Results for Mallee Bull/Cobar Superbasin/Wagga Tank Projects

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	within Exploration Licence EL7461 "Gilgunnia". The tenement is subject to a 50:50 Joint Venture with CBH Resources Ltd, a wholly owned subsidiary of Toho Zinc Co Ltd.

Criteria	JORC Code explanation	Commentary
Criteria	JONE Code explanation	known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Work at Mallee Bull was completed in the area by several former tenement holders including Triako Resources between 2003 and 2009; it included diamond drilling, IP surveys, geological mapping and reconnaissance geochemical sampling around the historic Four Mile Goldfield area. Prior to Triako Resources, Pasminco Exploration explored the Cobar Basin area for a "Cobar-type" or "Elura-type" zinclead-silver or copper-gold-lead-zinc deposit. Work at Wagga Tank was completed by multiple previous explorers including Newmont, Homestake, Amoco, Cyprus,
Geology	Deposit type, geological setting and style of mineralisation.	 Arimco, Golden Cross, Pasmico and MMG. The Mallee Bull prospect area lies within the Cobar-Mt Hope Siluro-Devonian sedimentary and volcanic units. The northern Cobar region consists of predominantly sedimentary units with tuffaceous member, whilst the southern Mt Hope region consists of predominantly felsic volcanic rocks; the Mallee Bull prospect seems to be located in an area of overlap between these two regions. Mineralization at the Mallee Bull discovery features the Cobar-style attributes of short strike lengths (<200m), narrow widths (5-20m) and vertical continuity, and occurs as a shoot-like structure dipping moderately to the west. Wagga Tank, a volcanic-hosted massive sulphide (VHMS) deposit, is located ~130 km south of Cobar on the western edge of the Cobar Superbasin. The deposit is positioned at the western-most exposure of the Mt. Keenan Volcanics (Mt. Hope Group) where it is conformably overlain by a poorly-outcropping, distal turbidite sequence of carbonaceous slate and siltstone. Mineralisation is hosted in a sequence of rhyodacitic volcanic and associated volcaniclastic rocks comprising polymictic conglomerate, sandstone, slate, crystal-lithic tuff and crystal tuff. This sequence faces northwest, strikes northeast-southwest and dips range from moderate westerly, to vertical, and locally overturned to the east. Mineralisation straddles the contact between the volcaniclastic facies and the siltstone-slate facies where there is a broad zone of intense tectonic brecciation and

	LIMITED	
Criteria	JORC Code explanation	Commentary
		hydrothermal alteration (sericite-chlorite
Duill hala		with local silicification).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding 	 All relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices. No information has been excluded.
	of the report, the Competent Person should clearly	
Data aggregation methods	 explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of 	 No length weighting or top-cuts have been applied. No metal equivalent values are used for reporting exploration results.
Rolationship	 low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	True widths are gararally estimated to be
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	True widths are generally estimated to be about 90-100% of the downhole width unless otherwise indicated.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to Figures in the body of text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All results are reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock 	No other substantive exploration data are available.

Criteria	JORC Code explanation	Commentary
	characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Future work at Mallee Bull and Cobar Superbasin Project will include geophysical surveying and RC/diamond drilling to further define the extent of mineralisation at the prospects. Down hole electromagnetic (DHEM) surveys will be used to identify potential conductive sources that may be related to mineralisation. Drilling at Wagga Tank is continuing and geophysical surveys are also planned.