

AVZ Minerals
Limited

18 September 2017

AVZ Minerals drills 250m @ 1.48% Li₂O in the Carriere de L'Est Pegmatite, Manono Sector

Highlights

- Assays received for final hole of initial seven-hole drill program at Manono Lithium Project in the Democratic Republic of Congo (DRC).
- The Carriere de L'Est Pegmatite, with a length of about 5,500m, is the largest pegmatite in the Manono Lithium Project.
- Assay results from drill-hole MO17DD007 confirmed the mineralisation distribution and tenor evident from the spodumene present in the drill-core; from 1.9m 252.83m, an intercept of 250.93m* @ 1.48% Li2O and 913ppm Sn.
- The thickness of intersected pegmatite and the geometric relationship between the location of MO17DD007 and mapped pegmatite boundaries suggests the thickness of the pegmatite may be 280m.
- Carriere de L'Este Pegmatite is located some 5km north east of the Roche Dure Pegmatite (MO17DD001 235m @ 1.66% Li2O and MO17DD002 203m @ 1.57% Li2O).
- AVZ is the first company to have completed a drill hole (MO17DD007) to test the Carriere de L'Est Pegmatite.
- Extensive diamond and RC drill program scheduled to commence in Q4 2017.

AVZ's Executive Chairman, Mr. Eckhof commented: "This result is a significant milestone for the Company. It represents the first drill hole ever completed into the Carriere de L'Est pegmatite, Manono Sector of the Manono Lithium Project. It is also the largest pegmatite within the Manono Kitotolo system and presents a significant target for the Company in defining resources. To our

^{*} Down-hole length. Additional drilling is required to confirm the true-thickness of the pegmatites.

knowledge, this is the longest pegmatite intercept ever reported and 250.93m @ 1.48% Li₂O would have to be one of the finest. This sector has the potential to add materially to the current exploration target as well as the economics of the overall project for both lithium and tin."

"This completes a set of outstanding results for the initial drill program, also confirming the historical data. We have drill tested three of the Kitotolo sector pegmatites and the Carriere de L'Est pegmatite in the Manono Sector, with the drill holes confirming the presence of large lithium, tin and tantalum mineralised pegmatite bodies over significant strike lengths. The program has confirmed our understanding of the immense size of the Manono Lithium project. We look forward to commencing the next phase of work which will be focussed on resource definition, extension drilling and initial mineralogical test-work."

Discussion of Drilling Results

AVZ recently completed its initial drilling campaign comprising seven diamond drill-holes, MO17DD001 – MO17DD007 (Figure 1 and Table 1), with results for MO17DD001-MO17DD006 having been released prior to this announcement.

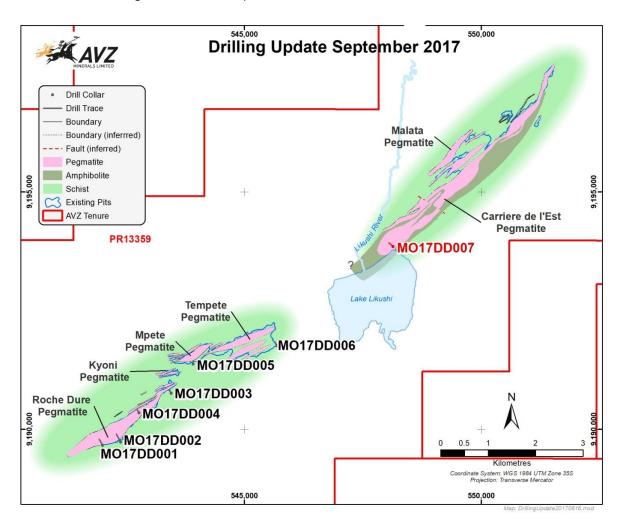


Figure 1: Location of drill-holes completed to-date.

Table 1: Drill Hole Summary

	Drilling						Dip	Azimuth (Magnetic)	
Drill-hole ID	method	Easting (mE)	Northing (mN)	Elevation (m)	Grid	Zone	[degrees]	[degrees]	EOH (m)
M017DD001	DDH	542008.177	9189658.140	650.98	WGS-84	35 S	-60	330	311.5
M017DD002	DDH	542390.564	9189730.535	657.37	WGS-84	35 S	-50	320	300.7
M017DD003	DDH	543454.193	9190761.814	637.16	WGS-84	35 S	-60	330	234
M017DD004	DDH	542775.408	9190346.324	641.20	WGS-84	35 S	-70	330	163.68
M017DD005	DDH	543920.503	9191374.361	632.36	WGS-84	35 S	-70	330	138.5
M017DD006	DDH	545685.016	9191761.375	616.58	WGS-84	35 S	-70	330	250.25
M017DD007	DDH	548136.249	9193854.814	609.31	WGS-84	35 S	-70	310	351

Drill-holes MO17DD001 – MO17DD006 were completed in the Kitotolo Sector of the project, with only MO17DD007 completed in the Manono Sector.

MO17DD007 is located near the southwest end of the Carriere de L'Est Pegmatite (Figure 2).

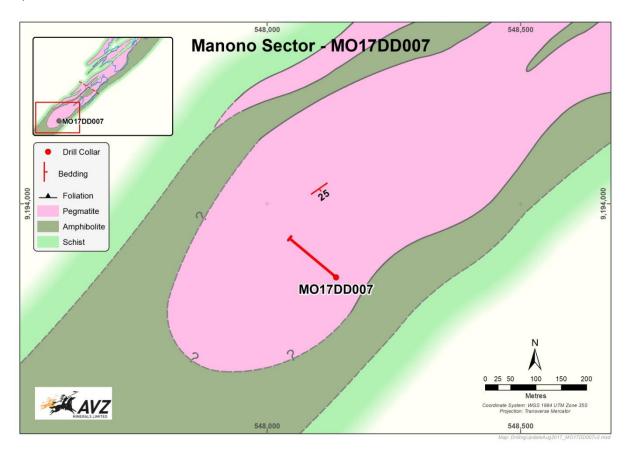


Figure 2: Location of MO17DD007

MO17DD007 entered pegmatite at 1.7m down-hole, with sampling commencing at 1.9m from which depth the pegmatite is unweathered.

This drill-hole has achieved the thickest intersection of lithium mineralisation of any drill-hole completed in AVZ's Manono Lithium Project, i.e. from 1.9m − 252.83m, **250.93m @ 1.48% Li₂O & 913ppm Sn** (see Table 2).

Furthermore, within the plane intersected by MO17DD007, the thickness of the Carriere de L'Est Pegmatite is about 280m (Figure 3).

Figure 3: Cross-section of drill-hole MO17DD007

Table 2: MO17DD007 summary

From(m)	To(m)	Interval (m)	Mineralisation	Comments
0	1.7	1.7	nil	soil
4.7	1.0	0.3		unsampled fragmented upper surface
1.7	1.9	0.2	nii	of the Carriere de L'Est Pegmatite
1.9	252.83	250.02	1.9m-252.83m; 250.93m @ 1.48% Li2O & 913ppm Sn	the entire sampled part of the
1.9	232.03	250.95	1.911-252.65111, 250.95111 @ 1.46 % L120 & 915pp111311	Carriere de L'Est Pegmatite
				upper part of the pegmatite; contains
		includes	1.9m-120.73m; 118.83m @ 1.38% Li2O & 994ppm Sn	several host-rock inclusions
				middle part of the pegmatite; no host-
		and	134.30m-232.15m; 97.85m @ 1.75% Li2O & 901ppm Sn	rock inclusions
				lower part of the pegmatite; no host-
		and	236.0m-252.83m; 16.83m @ 1.83% Li2O & 1270ppm Sn	rock inclusions
265.18	268.07		265.18m-268.07m; 2.89m @ 0.25% Li2O & 703ppm Sn	small weakly mineralised pegmatite
284.37	285.61		284.37m-285.61m; 1.24m @ 0.04% Li2O & 252ppm Sn	small weakly mineralised pegmatite
290.21	296.39		290.21m-296.39m; 6.18m @ 0.61% Li2O & 1116ppm Sn	small pegmatite
310.73	324.88		310.73m-324.88m; 14.15m @ 0.08%Li2O & 218ppm Sn	weakly mineralised pegmatite
324.88	351; EOH		nil	host-rock

For further information on assay results for MO17DD007 please refer to Appendix 1.

The Carriere de L'Est Pegmatite

The Carriere de L'Est Pegmatite is exposed as a rocky pavement near drill-hole MO17DD007 (Figure 3).

Figure 3: Drill-hole MO17DD007 in-progress. The rocky pavement, partly covered with dry grasses, is visible behind the white vehicle.

Inspection of the pegmatite pavement and other outcrops led to the recognition of alternating layers of aplite and "granitic"-textured rock (Figure 4) which were also evident in the drill-core (Figure 5) attained by MO17DD007. Apart from the narrow border and wall zones, the Carriere de L'Est Pegmatite has four main visually distinct zones (Table 3):

Table 3: Zonation of the Carriere de L'Est Pegmatite

Pegmatite unit	Proportion of unit within the pegmatite	mean grade Li ₂ O (%)	mean grade Sn (ppm)
UNIT 1 . Discrete Aplite layers, 1m or more in thickness	4.50%	0.6	1079
UNIT 2. Alternating aplite and "granite - textured" layers; layers usually 10cm-30cm thick	19.50%	1.21	706
UNIT 3. Large crystal unit, massive or layered with bands of large crystals alternating with bands of very large crystals	22%	2.05	1042
UNIT 4 . Medium-grained to coarse-grained relatively homogenous rock	54%	1.66	998

Figure 4: Layered zones in outcrop of the Carriere de L'Est Pegmatite.

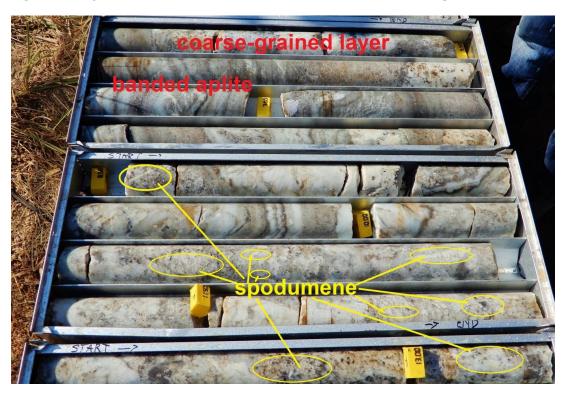


Figure 5: Drill-core attained from MO17DD007, showing layering.

The distribution of the zones listed in Table 3 is displayed within the accompanying Graphic Log of MO17DD007 (Figure 6).

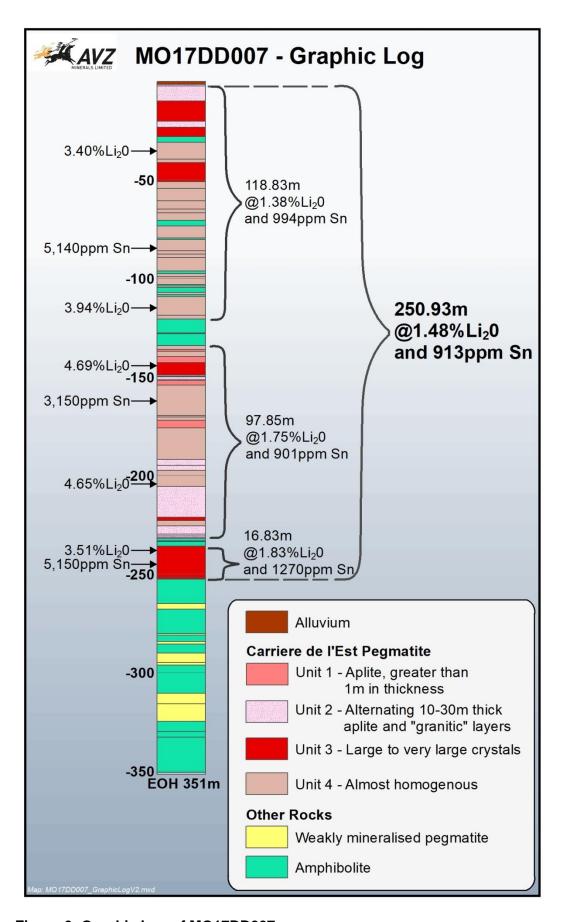


Figure 6: Graphic Log of MO17DD007

Inspection of Table 3 in conjunction with Figure 6 reveals that most of the pegmatite is comprised of units 3 and 4 containing mean concentrations of 2.05% Li_2O and 1.66% Li_2O respectively. The lithium mineral within these units, and within the "granitic-textured" layers of unit 2, is spodumene and the grades of intersections of these units correlate with spodumene abundance.

Unit 1 is comprised of aplite, within which spodumene was not observed. However, lithium micas are not a significant component of the aplite layers, suggesting the low-grade lithium mineralisation present in the aplite may be fine-grained, visually indistinct spodumene. The aplite bands within unit 2 appear to be the same as the aplite of unit 1.

Although the aplite component of the pegmatite contains less lithium than the other components of the pegmatite, it is a significant source of tin and still of economic significance.

Conclusion

The Carriere de L'Est Pegmatite has the potential to be the largest lithium-rich pegmatite in the world with the Roche Dure Pegmatite coming in a close second.

The Carrier de l'Est pegmatite is exposed for almost 1000m towards the north-east from MO17DD007 with a total potential strike length of some 5,500m. Further additional potential strike is currently being investigated to the south-west of MO17DD007. The intersection achieved by MO17DD007 suggests and highlights the potential of the pegmatites within the relatively untested Manono Sector of AVZ's Manono Lithium Project.

For further information, visit www.avzminerals.com.au or contact:

Mr Klaus Eckhof

Executive Chairman

AVZ Minerals Ltd

T: +33 680 866 300

E: klauseckhof@monaco.mc

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr. Peter Spitalny, a Competent Person whom is a Member of the Australasian Institute of Mining and Metallurgy. Mr. Spitalny is a full-time employee of Hanree Holdings Pty Ltd. Mr Spitalny has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Spitalny consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix One – Assay results for drill-hole MO17DD007

						Li %	Li₂O* %	Sn ppm	Ta ppm	Nb ppm
From	_ , ,	interval	Sample		Sample			_		_
(m)	To (m)	(m)	ID N/A	Sample Type	composition	0.01	0.01	5	0.5	5
0 1.7	1.7 1.9		N/A	not sampled not sampled						
1.7	3	2.1	29461	half-core	Pegmatite	0.781	1.681	851	38.8	60
3	4	1	29462	half-core	Pegmatite	0.568	1.223	201	56.1	78
4	5	1	29463	half-core	Pegmatite	0.499	1.074	800	44.9	73
5	6	1	29464	half-core	Pegmatite	0.381	0.820	236	52.7	64
6	7	1	29465	half-core	Pegmatite	0.884	1.903	485	47.5	54
7	8	1	29466	half-core	Pegmatite	0.294	0.633	299	62.7	81
8	9	1	29467	half-core	Pegmatite	0.694	1.494	255	43.9	62
9	10	1	29468	half-core	Pegmatite	0.137	0.295	324	61.5	62
			29469	BLANK	BLANK	0.014	0.030	<5	0.5	<5
10	11	1	29470	half-core	Pegmatite	0.588	1.266	612	41	69
11	12	1	29471	half-core	Pegmatite	0.639	1.376	475	32.8	50
12	13	1	29472	half-core	Pegmatite	0.801	1.725	822	47.7	83
13 14	14 15	1	29473 29474	half-core	Pegmatite	1.175	2.530	271	45.7 33.9	139
15	15 16	1 1	29474 29475	half-core half-core	Pegmatite	0.785 0.755	1.690 1.626	497 657	33.9	71 81
16	17	1	29475	half-core	Pegmatite Pegmatite	0.733	1.074	631	35.8	48
17	18	1	29477	half-core	Pegmatite	0.719	1.548	677	95.7	112
18	19	1	29478	half-core	Pegmatite	0.855	1.841	418	17.9	38
19	20	1	29479	half-core	Pegmatite	0.908	1.955	2060	62.6	79
20	21	1	29480	half-core	Pegmatite	0.814	1.753	2200	86.7	70
21	22	1	29481	half-core	Pegmatite	0.971	2.091	628	106	70
			29482	Standard	GTA - 6	0.813	1.750	123	212	58
22	23	1	29483	half-core	Pegmatite	0.166	0.357	980	201	100
23	24	1	29484	half-core	Pegmatite	0.79	1.701	1220	60.7	78
24	25	1	29485	half-core	Pegmatite	1.045	2.250	710	37	76
25	26	1	29486	half-core	Pegmatite	0.709	1.526	1020	44.8	74
26	27	1	29487	half-core	Pegmatite	0.762	1.641	1690	55.8	56
27	28.17	1.17	29488	half-core	Pegmatite	0.72	1.550	2650	84.1	98
28.17	29	0.83	29489	half-core	amphibolite	0.393	0.846	114	29.4	16
29 30	30 30.83	1 0.83	29490 29491	half-core half-core	amphibolite amphibolite	0.296 0.275	0.637 0.592	104 110	4.1 2	7 7
30	30.63	0.03	23431	cse-crush	ampinibonite	0.273	0.552	110	2	,
30.83	32	1.17	29492	quarter-core	Pegmatite	0.652	1.404	842	44.3	52
				cse-crush	DUPLICATE					
30.83	32	1.17	29493	quarter-core	of 29492	0.584	1.257	508	58.3	56
32	33	1	29494	half-core	Pegmatite	1.58	3.402	1415	82.3	96
33	34	1	29495	half-core	Pegmatite	1.355	2.917	1490	70.3	104
34	35	1	29496	half-core	Pegmatite	1.345	2.896	349	43.7	101
35	36	1	29497	half-core	Pegmatite	0.845	1.819	212	37.6	80
36	37	1	29498	half-core	Pegmatite	0.734	1.580	131	62.6	114
37	38	1	29499	half-core	Pegmatite	0.436	0.939	126	44.1	99
38	39	1	29500	half-core	Pegmatite	0.455	0.980	652	45	102
39 40	40 41	1 1	29501 29502	half-core half-core	Pegmatite Pegmatite	1.065 0.044	2.293 0.095	955 1630	44.5 56.5	87 81
40	41	1	29502	BLANK	BLANK	0.005	0.033	1030	0.9	<5
41	42	1	29503	half-core	Pegmatite	0.519	1.117	2210	49.4	91
42	43	1	29505	half-core	Pegmatite	0.896	1.929	195	34.9	98
43	44	1	29506	half-core	Pegmatite	0.768	1.654	140	34.7	86
44	45	1	29507	half-core	Pegmatite	1.2	2.584	429	46.1	82
45	46	1	29508	half-core	Pegmatite	1.34	2.885	1425	77.9	121
46	47	1	29509	half-core	Pegmatite	1.23	2.648	970	67.1	96
47	47.3	0.3	29510	half-core	Pegmatite	1.19	2.562	368	36.8	113
			29511	Standard	GTA - 4	0.985	2.121	138	55.8	64
47.3	48	0.7	29512	half-core	Pegmatite	1.165	2.508	297	40	103
48	49	1	29513	half-core	Pegmatite	1.19	2.562	2390	65.7	78
49 50	50	1	29514	half-core	Pegmatite	1.12	2.411	1540	53.1	66 70
50 51	51 52	1	29515	half-core	Pegmatite	1.27	2.734	546 574	41.2	79 85
51	52	1	29516	half-core	Pegmatite	0.371	0.799	574	63.2	85

						Li o/	Li₂O*	Sn	Та	Nb
From		interval	Sample		Sample	%	%	ppm	ppm	ppm
(m)	To (m)	(m)	ID	Sample Type	composition	0.01	0.01	5	0.5	5
54	55	1	29519	half-core	Pegmatite	0.493	1.061	1420	41.7	48
55	56	1	29520	half-core	Pegmatite	1.295	2.788	949	59.3	87
56	57	1	29521	half-core	Pegmatite	0.38	0.818	1510	50.4	78
57	58	1	29522	half-core	Pegmatite	1.19	2.562	1195	55.4	78
58	59	1	29523	half-core	Pegmatite	1.11	2.390	1160	57.6	94
30	33	-	25525	cse-crush	i chinatic	1.11	2.330	1100	37.0	٠,
59	60	1	29524	quarter-core	Pegmatite	1.4	3.014	1330	46.5	80
33	00	-	23324	cse-crush	DUPLICATE	1	3.014	1330	40.5	00
59	60	1	29525	quarter-core	of 29524	1.09	2.347	252	33.3	61
60	61	1	29526	half-core	Pegmatite	0.234	0.504	498	15.6	22
61	62	1	29527	half-core	Pegmatite	0.234	0.297	1480	46.2	76
62	63	1	29528	half-core	Pegmatite	0.138	0.161	156	20.6	30
63	64	1	29529	half-core	Pegmatite	0.073	0.478	817	51.2	52
64	65	1	29530	half-core	Pegmatite	0.222	0.478	1700	67.2	84
04	03	1	29531	BLANK	BLANK	0.003	0.006	13	0.8	<5
65	66	1								
65 66	66 67	1	29532 29533	half-core	Pegmatite	1.04	2.239	514 2090	57.2	87 78
67	67 68	1	29533 29534	half-core	Pegmatite	0.232	0.499	3980	77.9	78 57
		1		half-core	Pegmatite	0.06	0.129	725	41	
68	69 70	1	29535	half-core	Pegmatite	0.497	1.070	539	40.7	56
69 70	70 70.95	1 0.95	29536 29537	half-core half-core	Pegmatite	0.052	0.112	1575	64.2	69 98
					Pegmatite	0.062	0.133	1355	210	
70.95	72.25	1.3	29538	half-core	amphibolite	0.15	0.323	89	18.7	8
72.25	73.55	1.3	29539	half-core	amphibolite	0.163	0.351	110	0.9	<5
73.55	74.3	0.75	29540	half-core	Pegmatite	0.133	0.286	507	8.7	12
74.3	75	0.7	29541	half-core	Pegmatite	0.796	1.714	221	44.4	82
75	76	1	29542	half-core	Pegmatite	0.829	1.785	556	30.6	61
76	77	1	29543	half-core	Pegmatite	0.423	0.911	2290	46	67
77	78	1	29544	half-core	Pegmatite	0.186	0.400	370	33.2	56
78	79	1	29545	half-core	Pegmatite	0.073	0.157	581	132.5	54
			29546	Standard	GTA - 5	0.892	1.920	63	145.5	95
79	79.6	0.4	29547	half-core	Pegmatite	0.118	0.254	616	25.1	24
79.6	80.35	0.75	29548	half-core	amphibolite	0.189	0.407	147	3.9	9
80.35	81	0.65	29549	half-core	Pegmatite	1.295	2.788	1385	83.9	95
81	82	1	29550	half-core	Pegmatite	0.939	2.022	654	37.7	67
82	83	1	29551	half-core	Pegmatite	0.834	1.796	1125	62.7	85
83	84	1	29552	half-core	Pegmatite	0.62	1.335	5140	78.8	77
84	85	1	29553	half-core	Pegmatite	0.98	2.110	1255	41.2	61
				cse-crush						
85	86	1	29554	quarter-core	Pegmatite	1.215	2.616	1440	42	70
				cse-crush	DUPLICATE					
85	86	1	29555	quarter-core	of 29554	1.07	2.304	834	45.6	96
86	87	1	29556	half-core	Pegmatite	0.48	1.033	772	38.7	69
87	88	1	29557	half-core	Pegmatite	0.477	1.027	1845	50.4	58
88	89	1	29558	half-core	Pegmatite	1.13	2.433	741	57.6	73
89	90	1	29559	half-core	Pegmatite	0.603	1.298	250	26.7	52
			29560	Standard	GTA - 4	LNR	LNR	LNR	LNR	LNR
90	91	1	29561	half-core	Pegmatite	0.677	1.458	1830	37.5	68
91	92	1	29562	half-core	Pegmatite	0.527	1.135	1020	45.8	67
92	93	1	29563	half-core	Pegmatite	0.673	1.449	3000	58.1	86
93	94	1	29564	half-core	Pegmatite	0.947	2.039	1130	83.9	115
94	95	1	29565	half-core	Pegmatite	0.841	1.811	2920	111	113
95	96.35	1.35	29566	half-core	Pegmatite	0.827	1.781	1800	158	99
96.35	97.69	1.34	29567	half-core	amphibolite	0.319	0.687	111	1.4	7
97.69	99	1.31	29568	half-core	Pegmatite	0.093	0.200	684	15	17
99	100	1	29569	half-core	Pegmatite	0.051	0.110	779	49.2	95
100	101	1	29570	half-core	Pegmatite	0.36	0.775	3230	67.7	100
101	102	1	29571	half-core	Pegmatite	0.259	0.558	1650	84.8	112
101	103.12	1.12	29572	half-core	Pegmatite	0.292	0.629	58	10.4	112
102	103.12	0.78	29572	half-core	amphibolite	0.292	0.029	3260	86.2	102
103.12	103.9	0.78	29573 29574	half-core	Pegmatite	0.113	1.100	334	655	196
	104.0	0.9	23374	nan-core	reginatite					
104.8	106.03	1.23	29575	half-core	amphibolite	0.131	0.282	18	5.2	23

						Li	Li₂O*	Sn	Та	Nb
_						%	%	ppm	ppm	ppm
From	To (m)	interval	Sample	Commis Tuna	Sample	0.01	0.01	-	0.5	-
(m) 108.36	To (m)	(m)	ID 29579	Sample Type	composition	0.01 0.272	0.01 0.586	5	0.5 3.1	5 9
108.36	109.3 110	0.94 0.7	29579 29580	half-core half-core	amphibolite Pegmatite	1.52	3.273	89 544	81.5	9 86
110	111	0.7	29580	half-core	Pegmatite	1.205	2.594	779	53.1	86
110	111	_	23301	cse-crush	reginatite	1.205	2.554	773	33.1	80
111	112	1	29582	quarter-core	Pegmatite	1.83	3.940	445	71.2	111
		-	25502	cse-crush	DUPLICATE	2.00	0.5.0	5	,	
111	112	1	29583	quarter-core	29581	0.522	1.124	1750	64.8	67
112	113	1	29584	half-core	Pegmatite	0.145	0.312	1250	73	127
113	114	1	29585	half-core	Pegmatite	1.36	2.928	447	40.6	82
114	115	1	29586	half-core	Pegmatite	0.587	1.264	771	41.1	67
115	116	1	29587	half-core	Pegmatite	1.245	2.680	3470	78.6	102
116	117	1	29588	half-core	Pegmatite	0.753	1.621	933	43.1	76
117	118	1	29589	half-core	Pegmatite	0.203	0.437	1230	38.9	71
118	119	1	29590	half-core	Pegmatite	0.914	1.968	749	44.9	88
119	120	1	29591	half-core	Pegmatite	0.041	0.088	658	33.9	51
120	120.73	0.73	29592	half-core	Pegmatite	0.039	0.084	1150	333	65
120.73 122.73	122.73 127.7	1 0.97	29593	half-core	amphibolite	0.168	0.362	70	20.7	9
122.73	127.7	0.38	29594	not sampled half-core	Pegmatite Pegmatite	0.042	0.090	1270	45.8	52
128.08	132.3	4.22	23334	not sampled	Pegmatite	0.042	0.030	1270	45.6	32
132.3	134.3	2	29595	half-core	amphibolite	0.171	0.368	27	1.2	6
132.3	151.5	-	29596	BLANK	BLANK	0.005	0.011	228	59.9	60
134.3	135	0.7	29597	half-core	Pegmatite	1.16	2.497	355	149.5	122
135	136	1	29598	half-core	Pegmatite	1.595	3.434	477	85.2	67
136	137	1	29599	half-core	Pegmatite	0.043	0.093	189	100.5	93
137	138	1	29600	half-core	Pegmatite	0.469	1.010	1490	67.8	62
138	139	1	29601	half-core	Pegmatite	1.735	3.735	629	56.2	51
139	140	1	29602	half-core	Pegmatite	1.035	2.228	656	109.5	64
140	141	1	29603	half-core	Pegmatite	0.143	0.308	1150	189	120
141	142	1	29604	half-core	Pegmatite	0.031	0.067	331	141.5	127
142	143	1	29605	half-core	Pegmatite	0.487	1.049	1160	59.9	56
143	144	1	29606	half-core	Pegmatite	0.777	1.673	635	75.4	70
144	145	1	29607	half-core	Pegmatite	1.945	4.188	1300	56.6	54
4.45	1.16		29608	Standard	GTA - 6	0.789	1.699	146	241	66
145	146	1	29609	half-core	Pegmatite	1.44	3.100	1450	87.1	81
146 147	147 148	1 1	29610 29611	half-core half-core	Pegmatite Pegmatite	1.86 2.18	4.005 4.694	815 213	44.2 78.8	52 92
148	149	1	29612	half-core	Pegmatite	0.46	0.990	839	80.7	67
149	150	1	29613	half-core	Pegmatite	0.561	1.208	1480	94.2	112
150	151	1	29614	half-core	Pegmatite	0.056	0.121	1210	201	138
				cse-crush	-6					
151	152	1	29615	quarter-core	Pegmatite	0.692	1.490	639	89.3	83
				cse-crush	DUPLICATE					
151	152	1	29616	quarter-core	of 29615	0.926	1.994	1140	48.1	43
152	153	1	29617	half-core	Pegmatite	0.114	0.245	1000	50.2	62
153	154	1	29618	half-core	Pegmatite	0.136	0.293	1440	69.2	89
154	155	1	29619	half-core	Pegmatite	0.774	1.666	926	68.9	88
155	156	1	29620	half-core	Pegmatite	0.462	0.995	1480	115	135
156	157	1	29621	half-core	Pegmatite	1.215	2.616	254	38.6	63
157	158	1	29622	half-core	Pegmatite	1.825	3.929	971	69	107
158	159	1	29623	half-core	Pegmatite	0.526	1.132	3150	91.2	82
159	160	1	29624 29625	Standard half-core	GTA - 5 Pegmatite	0.829 1.205	1.785 2.594	71 1230	134.5 57.5	94 83
160	161	1 1	29625 29626	half-core	Pegmatite	0.673	2.594 1.449	1200	57.5 57.8	83 64
161	161	1	29626	half-core	Pegmatite	0.873	1.880	2130	88.3	88
162	163	1	29628	half-core	Pegmatite	0.361	0.777	1470	48.7	62
163	164	1	29629	half-core	Pegmatite	1.08	2.325	773	40.4	73
164	165	1	29630	half-core	Pegmatite	0.555	1.195	173	16.2	29
165	166	1	29631	half-core	Pegmatite	1.11	2.390	220	18.3	48
166	167	1	29632	half-core	Pegmatite	0.242	0.521	356	20.4	41
167	168	1	29633	half-core	Pegmatite	0.69	1.486	281	28	55
			29634	BLANK	BLANK	0.004	0.009	8	0.7	<5

						Li	Li ₂ O*	Sn	Та	Nb	
From		interval	Sample		Sample	%	%	ppm	ppm	ppm	
(m)	To (m)	(m)	ID	Sample Type	composition	0.01	0.01	5	0.5	5	
170	171	1	29637	half-core	Pegmatite	1.195	2.573	735	89.2	105	
171	172	1	29638	half-core	Pegmatite	1.12	2.411	1410	66.5	74	
172	173	1	29639	half-core	Pegmatite	0.857	1.845	549	87.5	69	
173	174	1	29640	half-core	Pegmatite	0.151	0.325	1710	82.6	66	
174	175	1	29641	half-core	Pegmatite	0.583	1.255	1590	118	73	
175	176	1	29642	half-core	Pegmatite	0.326	0.702	1670	130.5	71	
176	177	1	29643	half-core	Pegmatite	1.09	2.347	3020	106	62	
177	178	1	29644	half-core	Pegmatite	0.578	1.244	688	144.5	65	
178	179	1	29645	half-core	Pegmatite	0.179	0.385	727	197.5	117	
179	180	1	29646	half-core	Pegmatite	0.092	0.198	303	346	171	
180	181	1	29647	half-core	Pegmatite	1.71	3.682	328	31.2	62	
181	182	1	29648	half-core	Pegmatite	0.899	1.936	881	47.9	73	
182	183	1	29649	half-core	Pegmatite	0.665	1.432	942	29.7	47	
183	184	1	29650	half-core	Pegmatite	1.605	3.456	907	37.8	48	
				cse-crush							
184	185	1	29651	quarter-core	Pegmatite	1.745	3.757	771	59.4	85	
				cse-crush	DUPLICATE						
184	185	1	29652	quarter-core	of 29651	1.665	3.585	618	71	81	
185	186	1	29653	half-core	Pegmatite	0.506	1.089	747	40.4	44	
186	187	1	29654	half-core	Pegmatite	1.54	3.316	1760	56	103	
187	188	1	29655	half-core	Pegmatite	1.65	3.552	345	58.4	107	
188	189	1	29656	half-core	Pegmatite	0.288	0.620	176	34.4	77	
189	190	1	29657	half-core	Pegmatite	0.509	1.096	245	25.7	54	
190	191	1	29658	half-core	Pegmatite	0.966	2.080	312	41.2	74	
191	192	1	29659	half-core	Pegmatite	1.565	3.369	860	47.8	86	
192	193	1	29660	half-core	Pegmatite	0.745	1.604	2160	71.6	99	
193	194	1	29661	half-core	Pegmatite	0.911	1.961	1135	67.4	94	
194	195	1	29662	half-core	Pegmatite	0.309	0.665	1485	48.6	65	
			29663	BLANK	BLANK	0.014	0.030	11	1.1	<5	
195	196	1	29664	half-core	Pegmatite	0.171	0.368	1045	54.4	64	
196	197	1	29665	half-core	Pegmatite	1.185	2.551	900	120	105	
197	198	1	29666	half-core	Pegmatite	1.36	2.928	640	97.2	102	
198	199	1	29667	half-core	Pegmatite	1.325	2.853	1680	68.2	96	
199	200	1	29668	half-core	Pegmatite	1.68	3.617	1985	57.5	98	
200	201	1	29669	half-core	Pegmatite	2.16	4.650	738	42.6	83	
201	202	1	29670	half-core	Pegmatite	1.32	2.842	247	42.3	83	
			29671	Standard	GTA - 5	0.873	1.880	57	138	95	
202	203	1	29672	half-core	Pegmatite	1.17	2.519	742	40.2	71	
203	204	1	29673	half-core	Pegmatite	0.958	2.063	1560	34	63	
204	205	1	29674	half-core	Pegmatite	1.435	3.090	220	40.3	81	
205	206	1	29675	half-core	Pegmatite	1.065	2.293	215	49.9	87	
206	207	1	29676	half-core	Pegmatite	0.127	0.273	72	19.7	44	
207	208	1	29677	half-core	Pegmatite	0.506	1.089	713	21.5	36	
208	209	1	29678	half-core	Pegmatite	0.223	0.480	638	43.4	62	
209	210	1	29679	half-core	Pegmatite	0.341	0.734	615	34.7	72	
210	211	1	29680	half-core	Pegmatite	0.346	0.745	2090	52	79	
				cse-crush	-						
211	212	1	29681	quarter-core	Pegmatite	0.285	0.614	1015	53.7	61	
				cse-crush	DUPLICATE						
211	212	1	29682	quarter-core	of 29681	0.222	0.478	770	34	53	
212	213	1	29683	half-core	Pegmatite	0.406	0.874	1835	51.6	79	
213	214	1	29684	half-core	Pegmatite	0.125	0.269	1570	35.2	52	
214	215	1	29685	half-core	Pegmatite	0.171	0.368	1050	66.5	71	
215	216	1	29686	half-core	Pegmatite	0.409	0.881	543	110.5	78	
216	217	1	29687	half-core	Pegmatite	0.802	1.727	951	148	66	
217	218	1	29688	half-core	Pegmatite	0.417	0.898	904	146	79	
218	219	1	29689	half-core	Pegmatite	0.555	1.195	526	169	78	
219	220	1	29690	half-core	Pegmatite	0.641	1.380	412	99	61	
220	221	1	29691	half-core	Pegmatite	0.207	0.446	297	148.5	92	
		-	29692	Standard	GTA - 4	0.963	2.073	136	52.5	68	
221	222	1	29693	half-core	Pegmatite	1.01	2.175	379	174.5	79	
		1	29694	half-core	Pegmatite	0.911	1.961	279	38.2	103	
222	223		23034	Hall-Cole	regilialite	0.911	1.901	2/9	30.2	103	

						Li %	Li₂O*	Sn	Та	Nb	
From		interval	Sample		Sample	%	%	ppm	ppm	ppm	
(m)	To (m)	(m)	ID	Sample Type	composition	0.01	0.01	5	0.5	5	
225	226	1	29697	half-core	Pegmatite	0.997	2.147	238	112	64	
226 227	227 228	1 1	29698 29699	half-core half-core	Pegmatite Pegmatite	0.593 1.7	1.277 3.660	581 640	88.2 42.3	50 37	
228	229	1	29700	half-core	Pegmatite	1.64	3.531	325	31.6	15	
229	230	1	29701	half-core	Pegmatite	0.428	0.921	539	511	137	
230	231	1	29702	half-core	Pegmatite	0.042	0.090	329	868	290	
231	232.15	1	29703	half-core	Pegmatite	1.32	2.842	358	139	76	
232.15 233.36	233.36 233.69	1 1	29704 29705	half-core half-core	amphibolite Pegmatite	0.253 0.735	0.545 1.582	65 351	2.6 347	6 124	
233.30	233.03	_	29706	BLANK	BLANK	0.004	0.009	6	2.3	<5	
233.69	236	1	29707	half-core	amphibolite	0.051	0.110	33	98.1	54	
236	237	1	29708	half-core	Pegmatite	0.259	0.558	820	238	117	
237	238	1	29709	half-core	Pegmatite	1.43	3.079	448	64.6	83	
238	239	1	29710	half-core	Pegmatite	0.845	1.819	669	44.7	66	
239	240 241	1 1	29711 29712	half-core half-core	Pegmatite	1.235	2.659	919	47.9 55.9	72 88	
240 241	241	1	29712	half-core	Pegmatite Pegmatite	1.54 1.08	3.316 2.325	1510 1080	40.3	72	
242	243	1	29714	half-core	Pegmatite	0.357	0.769	1290	36.8	41	
				cse-crush	-6						
243	244	1	29715	quarter-core	Pegmatite	0.221	0.476	505	34.2	39	
				cse-crush	DUPLICATE						
243	244	1	29716	quarter-core	of 29715	0.393	0.846	509	32.9	49	
244	245	1	29717	half-core	Pegmatite	0.723	1.557	951	122.5	62	
245 246	246 247	1 1	29718 29719	half-core half-core	Pegmatite Pegmatite	1.63 1.23	3.509 2.648	3740 1220	79.2 75.3	108 97	
247	247	1	29720	half-core	Pegmatite	0.659	1.419	366	20.5	52	
248	249	1	29721	half-core	Pegmatite	0.144	0.310	5150	75.5	100	
249	250	1	29722	half-core	Pegmatite	0.516	1.111	341	44.4	62	
250	251	1	29723	half-core	Pegmatite	1	2.153	800	29.2	51	
251	252	1	29724	half-core	Pegmatite	1.36	2.928	779	53.5	66	
252	252.83	0.83	29725	half-core	Pegmatite	0.061	0.131	945	81.3	51	
252.83	254.83	1	29726	half-core	amphibolite	0.185	0.398	33	3	7	
254.83 263.18	263.18 265.18	8.35 2	29727	not sampled half-core	amphibolite	0.192	0.413	62	1.8	7	
265.18	266	0.82	29728	half-core	Pegmatite	0.132	0.605	230	57.5	57	
266	267	1	29729	half-core	Pegmatite	0.033	0.071	625	39	61	
			29730	BLANK	BLANK	0.003	0.006	7	0.9	<5	
267	268.07	1.07	29731	half-core	Pegmatite	0.085	0.183	1210	67.1	77	
268.07	270.07	1	29732	half-core	amphibolite	0.228	0.491	52	1.1	7	
270.07	284.37	14.3	20722	not sampled	Dagwastita	0.021	0.045	252	44.4	C1	
284.37 285.61	285.61 286.61	1.24 1	29733 29734	half-core half-core	Pegmatite amphibolite	0.021 0.129	0.045 0.278	252 43	44.4 1.5	61 6	
286.61	288.21	1.6	23734	not sampled	ampinisonic	0.123	0.270	43	1.5	U	
288.21	290.21	2	29735	half-core	amphibolite	0.09	0.194	37	1.2	6	
290.21	291	0.79	29736	half-core	Pegmatite	0.073	0.157	367	89.1	64	
291	292	1	29737	half-core	Pegmatite	0.711	1.531	526	56.2	110	
292	293	1	29738	half-core	Pegmatite	0.411	0.885	217	29.8	61	
293	294	1	29739	half-core Standard	Pegmatite GTA - 6	0.04	0.086	3140	60.2	76	
294	295	1	29740 29741	half-core	Pegmatite	0.798 0.428	1.718 0.921	130 789	227 91	65 75	
295	296.39	1.39	29742	half-core	Pegmatite	0.033	0.071	1250	210	90	
296.39	298.39	2	29743	half-core	amphibolite	0.128	0.276	20	3.3	6	
298.39	308.73	10.34		not sampled	•						
308.73	310.73	2	29744	half-core	amphibolite	0.115	0.248	7	1	6	
310.73	312	1.27	29745	half-core	Pegmatite	0.023	0.050	600	55.9	90	
312	313	1	29746	half-core	Pegmatite	0.075	0.161	178	17.6	73	
313	314	1	29747	half-core	Pegmatite	0.038	0.082	838	62.3	116	
314	315	1	29748	cse-crush quarter-core	Pegmatite	0.04	0.086	184	39.4	76	
51,	313	-	257 10	cse-crush	DUPLICATE	0.01	3.300	-0.	55.1	, ,	
314	315	1	29749	quarter-core	of 29748	0.048	0.103	110	61.9	87	
315	316	1	29750	half-core	Pegmatite	0.035	0.075	123	30.6	80	

						Li	Li ₂ O*	Sn	Та	Nb
						%	%	ppm	ppm	ppm
From		interval	Sample		Sample					
(m)	To (m)	(m)	ID	Sample Type	composition	0.01	0.01	5	0.5	5
318	319	1	29753	half-core	Pegmatite	0.072	0.155	132	31.9	153
319	320	1	29754	half-core	Pegmatite	0.014	0.030	44	37.6	55
320	321	1	29755	half-core	Pegmatite	0.033	0.071	109	81.2	102
321	322	1	29756	half-core	Pegmatite	0.024	0.052	47	58.8	69
322	323	1	29757	half-core	Pegmatite	0.026	0.056	65	37.2	56
323	324	1	29758	half-core	Pegmatite	0.034	0.073	65	20	70
324	324.88	0.88	29759	half-core	Pegmatite	0.014	0.030	375	76.8	93
324.88	326.88	2	29760	half-core	amphibolite	0.114	0.245	8	13.8	<5
326.88	351	24.12		not sampled						

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Diamond drilling, producing drill-core has been utilised to sample the pegmatite below ground surface. This method is recognised as providing the highest quality information and samples of the unexposed geology.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Based on available data, there is nothing to indicate that drilling and sampling practices were not to normal industry standards at the time within the Manono licence PR13359.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Diamond drilling has been used to obtain core samples which have then been cut longitudinally. Sections to be submitted for assay have been determined according to geological boundaries and, away from the contact zones, samples have been taken at 1-m intervals. The submitted half-core samples typically have a mass of 3kg – 4kg.

Drilling techniques	Drill type (e.g. core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The drilling discussed in the report preceding this table was completed using diamond core rigs with PQ and HQ sized drill rods. All holes are angled between -50° and -70° and collared from surface into weathered bedrock. All hole collars will be surveyed after completion. All holes are down-hole surveyed using a digital multi-shot camera at about 30m intervals. The core obtained to-date by drilling has not been oriented.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Current diamond core drilling is averaging greater than 90% recovery as calculated from RQD logs.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	AVZ has ensured minimum adequate supervision of drilling has been completed by an experienced geologist to correct drilling protocols are followed and sample recovery is maximized.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	For the vast majority of the drilling completed, recovery was near 100% and there is no sample bias due to preferential loss or gain of fine or coarse material.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill-core is logged by a qualified geologists using paper logs with the data entered into an excel spreadsheet for uploading into the micromine software system. A complete copy of the data is held by an independent consultant. The parameters recorded in the logging are adequate to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography	All core is logged and logging is by qualitative (Lithology) and quantitative (RQD) methods. All core is also photographed.
	The total length and percentage of the relevant intersections logged.	The entirety of all drill-holes are logged for geological, mineralogical and geotechnical data.
Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	Core is cut longitudinally and half-core is submitted for assay.
preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	The current program is diamond core drilling
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation incorporates standard industry best-practice and is appropriate. The half-core samples are sent to ALS Lubumbashi where they are crushed and then pulverized to produce a pulp. A 120gm subsample is split and then exported to Australia for analytical determination.
	Quality control procedures adopted for all subsampling stages to maximise representivity of samples.	No subsampling is undertaken for current programs
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling	Duplicate sampling has been undertaken for the current program. After half-core samples have been crushed, a split is taken as a field duplicate and then placed into a pre-numbered bag. The Duplicate is then pulverized and a pulp split from the pulverized mass. An AVZ geologist supervises the preparation and bagging of the duplicate.

Whether sample sizes are appropriate to the grain size of the material being sampled.	The sampling methods are appropriate for the material being sampled for the purposes of the sampling and inaccord with standard industry best-practice.
---	---

Over19 (The material and the	Discount delliholo ()
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the Assaying and laboratory procedures used and whether the technique is considered partial or total.	Diamond drill-hole (core) samples were crushed and pulverized by ALS Lubumbashi to produce pulps. These pulps were exported to Australia and analyzed by ALS Laboratories in Perth, Western Australia using a Sodium Peroxide Fusion followed by digestion using a dilute acid thence determination by AES or MS (methods by ME-ICP89 combined with method ME-MS91), with determination of a suite of 24 elements. Peroxide fusion results in the complete digestion of the
		sample into a molten flux. As fusion digestions are more aggressive than acid digestion methods, they are suitable for many refractory, difficult-to-dissolve minerals such as chromite, ilmenite, spinel, cassiterite and minerals of the tantalum-tungsten solid solution series. They also provide a more-complete digestion of some silicate mineral species and are considered to provide the most reliable determinations of lithium mineralization.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	These geophysical instruments are not used in assessing the mineralization within AVZ's Manono Lithium Project.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	AVZ has incorporated standard QA/QC procedures to monitor the precision, accuracy and general reliability of all assay results from assays of drilling samples. As part of AVZ's sampling protocol, CRM's (standards), blank and duplicates are inserted into the sampling stream. In addition, the laboratory (ALS Perth) incorporates its own internal QA/QC procedures to monitor its assay results prior to release of results to AVZ. AVZ will also utilize a "sister laboratory" (external laboratory check) to complete checks upon assay results received from ALS Perth. To-date, the results are considered precise, accurate and unbiased.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No verification exploration work has so far been undertaken.
	The use of twinned holes.	No twin holes were drilled or have been drilled.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	The data from previous exploration are currently stored in hardcopy and digital format on site. A hard drive copy of this is located at the administration office in country and all data is uploaded to the GIS consultants database in Perth, WA.
	Discuss any adjustment to assay data.	No assay data have been adjusted to date.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine	All data points and drill collars have been set out utilizing hand held GPS units, having an accuracy of \pm 3m in open ground.
	workings and other locations used in Mineral Resource estimation.	All data points will be surveyed using a DGPS system at regular intervals and at the end of the program.
	Specification of the grid system used.	WGS_84 Zone 35S UTM metric grid
	Quality and adequacy of topographic	No survey has been undertaken. Hand held GPS coordinates have been utilized to locate sampling to date

	control.	
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The drilling described in the report preceding this table incorporated drill-holes approximately 400m apart.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drilling described in the report preceding this table was planned as a "proof-of-concept" and not to define a Mineral Resource.
	Whether sample compositing has been applied.	The reported assay results are mostly of 1-metre intervals.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drill-hole orientation is designed to intersect the pegmatites such that drilling-intersections are at, or nearly at, 90° to the dip and strike of the pegmatite.
	If the relationship between the drilling orientation and the orientation of key mineralised structures are considered to have introduced a sampling bias, this should be assessed and reported if material.	There is no apparent bias in any sampling to date.
Sample security	The measures taken to ensure sample security.	Chain of custody is maintained by AVZ personnel on-site to ALS Lubumbashi. At ALS Lubumbashi, the prepped samples (pulps) are sealed into a box and delivered DHL to ALS Perth, Western Australia.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No sampling techniques or data have been independently audited.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Manono licence has been recently awarded as a Research Permit PR 13359 issued on the 28th December 2016 and valid for 5 years. All indigenous title is cleared and there are no other known historical or environmentally sensitive areas.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	See above, no other known impediments.

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration of relevance was undertaken by: Within PR13359 Geomines carried out a program of drilling, at the RD Pit only, between 1949 and 1951, targeted on the fresh pegmatite in the Kitotolo section at the western end of the Manono intrusion. The drilling consisted of 42 vertical holes drilled to a general depth of around 50 to 60m and reaching the -80m level. Drilling was carried out on 12 sections at irregular intervals ranging from 50m to 300m, and over a strike length of some 1,100m. Drill spacing on the sections varied from 50 to 100m.
		The licence area has been previously mined for tin and tantalum including "coltan" through a series of open pits over a total length of approximately 10km excavated by Zairetain sprl. More than 60Mt of material was mined from three major pits and several subsidiary pits. Ore was crushed and then upgraded through gravity separation to produce a concentrate of a reported 72%Sn. There are no reliable records available of tantalum or lithium recovery as tin was the primary mineral being recovered. Zairetain Parastatal Mineral company – limited exploration work within the Manono extension licences, Historical drilling of 42 diamond core drill holes and excavation and processing of approximately 90Mm3 of mineralized material for extraction of tin and tantalum at the nearby Manono mine.

Geology	Deposit type, geological setting and style of mineralisation.	The Project lays within the mid-Proterozoic Kibaran Belt - an intracratonic domain, stretching for over 1,000 km through Katanga and into southwest Uganda. The belt strikes predominantly SW-NE and is truncated by the N-S to NNW-SSE trending Western Rift system.
		The rocks of the Kibaran Belt are comprised of a sedimentary and volcanic sequence that has been folded, metamorphosed and intruded by at least three separate phases of granite. The latest granite phase (900 to 950 My ago) is assigned to the Katangan cycle and is associated with widespread vein and pegmatite mineralization containing tin, tungsten, tantalum, niobium, lithium and beryllium. Deposits of this type occur as clusters and are widespread throughout the Kibaran terrain. In the DRC, the Katanga Tin Belt stretches over 500 km from near Kolwezi in the southwest to Kalemie in the northeast comprising numerous occurrences and deposits of which the Manono deposit is the largest.
		The geology of the Manono area is poorly documented and no reliable maps of local geology were observed. Recent mapping by AVZ has augmented the overview provided by Bassot and Morio (1989) and has led to the following description.
		The Manono Project pegmatites are hosted by a series of mica schists and by amphibolite in some locations. These host rocks have a steeply dipping penetrative foliation that appears to be parallel to bedding. There are numerous bodies of pegmatite, the largest of which have subhorizontal to moderate dips, with dip direction being towards the southeast. The pegmatites post-date metamorphism, with all primary igneous textures intact. They cross-cut the host-rocks but despite their large size, the contact deformation and metasomatism of the host rocks by the intrusion of the pegmatites seems minor. The absence of significant deformation of the schistosity of the host rocks implies that the pegmatites intruded brittle rocks.
		The pegmatites constitute a pegmatite swarm in which the largest pegmatites have an apparent en-echalon arrangement in a linear zone more than 12km long. The pegmatites are exposed in two areas; Manono in the northeast, and Kitotolo in the southwest. These areas are separated by a 2.5 km section of alluvium-filled floodplain which contains Lake Lukushi. At least one large pegmatite extends beneath the floodplain.
		The pegmatites are members of the LCT-Rare Element group of pegmatites and within the pegmatite swarm there are LCT Albite-spodumene pegmatites and LCT Complex (spodumene sub-type) pegmatites.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	This information is included as Appendix 1 of the report preceding this table.
	easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	

	dip and azimuth of the holedown hole length and interception depthhole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	This information has not been excluded.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Cut-off grades have not been incorporated in calculations of grades of mineralized intervals.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	In the case where mineralization is present, it is reasonably homogenous. The mineralized intervals stated in the report preceding this table are not biased by inclusion of intervals of extremely enriched mineralization.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Metal equivalent values are not stated.
Relationship between mineralization widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported	Given the widely spaced reconnaissance nature of the current drilling, the geometry of the mineralization reported is not known for all pegmatite bodies intersected and truethickness is not known. For those bodies of pegmatite for which geometry is reasonably well constrained, the truethickness is stated.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	As above.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The required sections and plans are included in the report preceding this table.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The drilling results from AVZ's drilling state complete intersections with higher-grade intervals included incontext of the entire mineralized intersection.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey	This information will be supplied as the project advances and said data is generated.

	results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	RC and Diamond drill testing of the identified priority targets will be on-going.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The diagrams in the attached release show the intersected pegmatite and potential extensions.