ANNOUNCEMENT

17 October 2017

ASX/MEDIA RELEASE ASX: **CSD** Share Price: **\$0.025** (suspended trading) ABN: 57 126 634 606

CONSOLIDATED

ASX ANNOUNCEMENT / MEDIA RELEASE

EINASLEIGH PROJECT: Updated 2012 JORC Resources for Kaiser Bill Deposit

Consolidated Tin Mines Ltd (ACN 126 634 606) (ASX Code: CSD) (**Company**) is pleased to announce an updated 2012 JORC Resource for its Kaiser Bill Deposit at their Einasleigh Project.

Highlights

- Kaiser Bill JORC 2012 Code compliant Mineral Resource of **15.5Mt** @ **0.93% Cu** (compared to the previously reported Mineral Resource of 15Mt @ 0.84%)
- Resources now include 11 additional drill holes drilled in 2010 by Copper Strike not included in the previous Resource (March 2010)
- Resources now include 10 additional drill holes drilled in 2015 under the CSD-Wanguo agreement
- Drilling currently underway at Kaiser Bill to test for resource extension not included in this review

Background

The Kaiser Bill Prospect is situated within the Einasleigh Project on Exploration Permit for Minerals (EPM) 13072 held by Consolidated Tin Mines Limited (CSD) (Figure 1). The tenement area has historically received periodic exploration with a number of prospective targets yet to be adequately tested with bedrock drilling. Copper Strike Limited (CSE) previously undertook resource definition drilling and resource estimates of the Kaiser Bill Deposit which was included in the Einasleigh Feasibility Study completed in 2008. As part of its focused exploration strategy CSD is growing Resources at Einasleigh and progressing the discovery of new standalone projects.

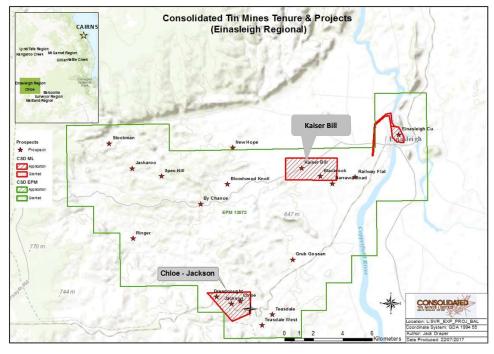


Figure 1: Kaiser Bill Resource location on EPM13072.

CONSOLIDATED TIN MINES LIMITED

Page 1 of 30

Cairns Corporate Headquarters: 395 Lake Street, Cairns QLD 4870 Phone: +61 (7) 4032 3319 Email: <u>info@csdtin.com.au</u> Web: www.csdtin.com.au

Resource Update

The 2017 Resource declaration totals **15.5Mt** @ **0.93% Cu for 144Kt of Copper.** Resources are quoted above a 0.5% Cu cut-off and above the 150mRL to limit the inventory reported to align with the future prospects of economic open pit extraction.

The resource represents a JORC 2012 Code compliant update from the previously reported Resources which were reported under JORC 2004. The update includes additional drilling undertaken in 2010 and 2015 which had not previously been incorporated into a resource estimate. Resource details of the deposit and its classification are outlined in **Table 1**.

Mineral Resource Estimate for the Kaiser Bill Deposit - August 2017						
Open Pit	Resource	es - Fresh &	Transitio	nal Mineralis	sation On	ly
Resource Category Cu % Tonnes Cu Grade (%)		Cu Metal (t)	Ag Grade (g/t)	Ag Metal (kOz)		
Indicated	0.5%	13.3	0.93	123,000	7	3,000
Inferred	0.5%	2.2	0.92	21,000	7	500
Total	0.5%	15.5	0.93	144,000	7	3,400

Table 1: Kaiser Bill Resource reported at a cut-off of 0.5% Cu for the portion of the deposit that could be mined via open-pit techniques

Note: The preceding statements of Mineral Resources confirms to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). All tonnages reported are dry metric tonnes. Minor discrepancies may occur due to rounding to appropriate significant figures.

Data validation was completed by CSD geologists and involved the complete reload of original data files into an industry standard database (DataShed[™]) which has robust validation and constraints incorporated into it. Industry experts at Mining Plus Pty Ltd (MP) were commissioned to build the mineralisation wireframes under the guidance of CSD geologists. MP then undertook the grade estimate and Resource tabulation. The 2017 model honours the geological controls on mineralisation and forms a robust platform to grow the deposits in the future.

Geology

The base metal deposits in the Einasleigh district which includes the Kaiser Bill deposit occur within the Proterozoic Georgetown Inlier. In an Australian context, several workers have drawn parallels between the Mt Isa, Broken Hill and Georgetown Inliers, in terms of sequences and mineralisation styles envisaging the "Diamantina Orogen". In this theory, these Inliers were part of one geological terrane during sedimentation, orogenesis and at least some periods of mineralisation.

The Kaiser Bill deposit is hosted within a sequence of quartz-feldspar-biotite metasedimentary gneiss overlain by a massive felsic leucogneiss with the copper mineralisation occurring as chalcopyrite within quartz-pyritepyrrhotite-magnetite disseminations, stringers and breccia-fill. The contact between the two gneissic units is undulating and dips between 30° to 60° to the SSE and is interpreted to define the northern limb of a gently WSW plunging synform.

Mineralisation occurs within a broad silica-chlorite alteration zone comprising disseminated sulphides and magnetite. Numerous intrusive lithologies have been recognised within the deposit, including a foliation parallel sequence of amphibolite dykes and sills, later irregularly oriented pegmatites and intermediate to mafic dykes. The last two sets of intrusive lithologies cross-cut and stope out the copper mineralisation.

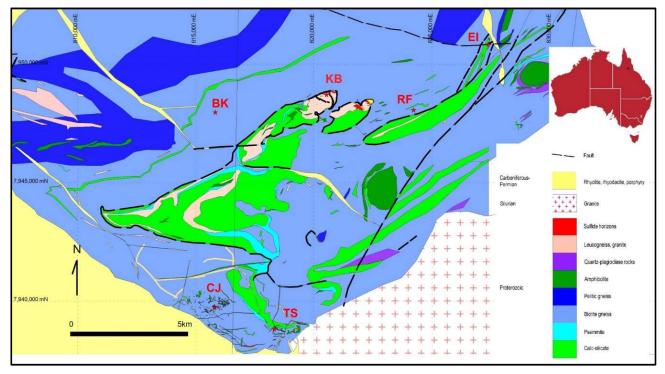


Figure 2: Kaiser Bill (KB) Resource location on local geology.

Drilling

157 drill holes for a total of 23,497.5m of drilling has been undertaken using Reverse Circulation (RC) and diamond (DD) methods. Often a combination of RC pre-collars with diamond drill tails (RCDD) has been used. The campaigns of methods of drilling considered for the resource estimation are summarised in **Table 2**

Drill	Company	Hole Type	No of Holes	Meters	Drilled	No. Assay	Year Drilled
Campaign	company	поте туре	No of holes	RC	DD	Samples	rear Drilled
	TEC	DDH	2	5	678.0	112	2003
Stage 1	CSE	RCDD	8	318.6	1,499.0	618	2005
	COE	RC	8	697.0	-	450	2005
Stage 2	CSE	RCDD	3	214.2	573.0	165	2005-2006
Stage Z	CSE	RC	25	2,754.0	-	1,175	2003-2000
	-1-2-2	DDH	4	-	439.2	200	the state of the
Stage 3	CSE	RCDD	2	98.0	62.0	98	2006
		RC	39	2,723.5	-	2,028	
Stage 4	CSE	RCDD	4	421.0	511.9	231	2007
Stage 4		RC	8	942.0	-	326	2007
Stage 5	CSE	RCDD	16	1,549.5	2,406.5	1,122	2008
Stage 5	COE	RC	6	993.3	-	225	2008
Stage 6	CSE	RCDD	1	97.0	129.4	129	2009
Stage 6	COL	RC	10	1,175.0	-	535	2009
2022 10 2020 10 10		DDH	8	-	1,401.3	242	
Stage 7	CSE	RCDD	2	357.0	333.8	104	2010
		RC	1	135.3	-	10	
Stage 8	WG	DDH	10		2,988.0	358	2015
	Total		157	12,475.4	11,022.1	8,128	and the second sec

 Table 2: Kaiser Bill drilling campaigns (TEC = Teck Cominco, CSE = Copper Strike, WG = Wanguo)

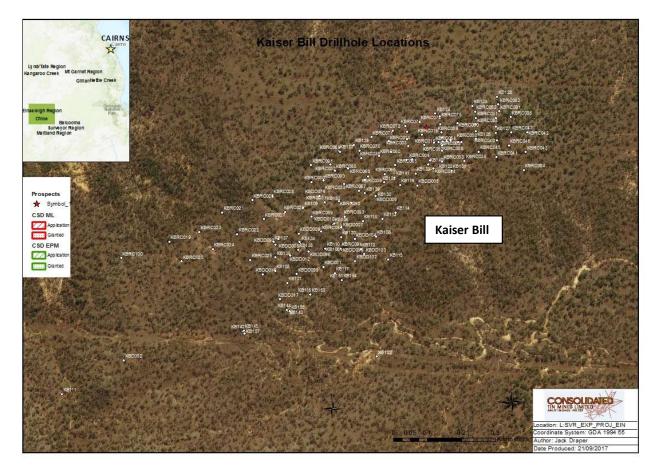


Figure 3: Kaiser Bill drill hole collar locations.

Drilling and Sampling Techniques

The bulk of the drilling and sampling for the drill holes contained within the resource estimate has been undertaken in 8 different stages of drilling. The majority (84%) of the drilling has been undertaken by CSE. Drilling and sampling methods during this period were well documented. During the Stage 1 and 2 drilling programs, RC samples were sub-sampled using a PVC spear. For Stages 3-6 RC sampling was undertaken predominantly at the rig using a riffle splitter (single or multi-tier) providing a 2-3kg sample. RC samples were taken on 1m intervals and were recorded as having good recovery which was supported by the recorded sample weights from Stage 2 onwards.

Diamond samples for routine analysis were taken predominantly from half NQ core and submitted for assay. Due to the competent nature of the rock, core recovery is described as excellent. Where data has been recorded recoveries are >95%. No significant core loss has been recorded in the mineralised intervals.

Only intervals visually containing mineralisation were selected for analysis.

Assaying

A total of 8,128 routine samples were sent for analysis over the course of the 8 Stages of drilling. Analyses during the CSE period (94%) was completed by ALS Laboratories with routine assays completed using an ICP technique (ME-ICP41) and over-range assays completed using a mixed acid digest for ore grade samples with an ICPAES finish (OG46). Samples collected during the Wanguo (4%) period were sent to SGS Laboratories and were also completed using an ICP method (ICP41Q) with over-range assays being analysed using AAS43Q. During both programs quality control samples such as field duplicates, standards and blanks have been routinely inserted into the routine sample stream. Both ALS and SGS insert their own set of internal quality

control as per industry standard. All standards and blanks returned within acceptable limits, and field duplicates showed good correlation.

Original assay files have been imported into the database without manipulation.

Mineralisation Domains

The length weighted raw assays for the Kaiser Bill Deposit have been analysed to identify distinct grade populations within the key elements which can be used during the interpretation and modelling process. For Kaiser Bill, inflection points within the Cu dataset were identified at 0.3% and 0.5% Cu, with these grades used as the basis for the interpretation and modelling process.

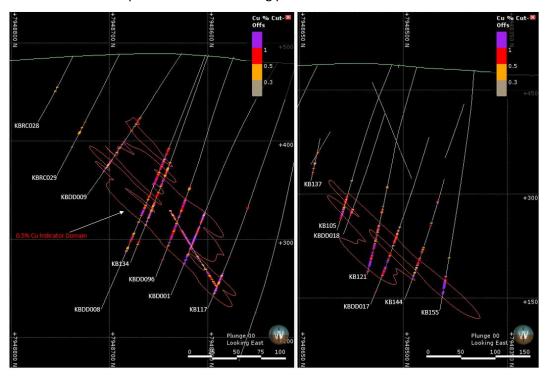


Figure 4: Kaiser Bill drill hole type sections showing mineralisation 0.5% Cu wireframe and drill holes

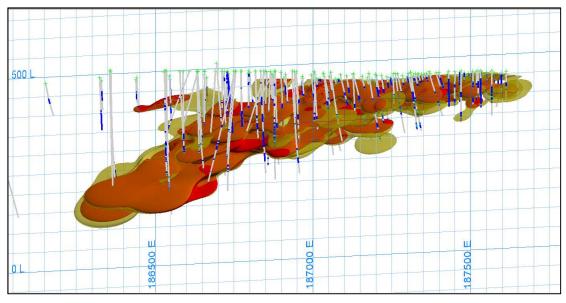


Figure 5: Oblique view looking NW showing the Kaiser Bill copper mineralised domains 0.3% Cu (yellow) and 0.5% Cu (red)

Estimation

Drilling data available as at 13th July 2017 was considered for Resource estimation. Statistical and geostatistical analysis was carried out by Mining Plus on the drill database validated by CSD. Only RC and diamond drilling was used in the estimation. Variography was completed on 1 m downhole composites to model the spatial continuity of the grades within mineralised domains.

Estimation of all elements (Cu, Ag, Au and S) was completed using ordinary kriging (OK) into 25m (X) by 10m (Y) by 10m (Z) parent blocks with a sub-block size of 2.5 m (X), 1.0 m (Y) and 1.0 m (Z) used to adequately represent the mineralised volume. The sub-blocks have been estimated at the parent block scale. These block dimensions were selected following Kriging Neighbourhood Analysis (KNA) and are considered appropriate for the drill hole spacing.

Composites within the individual mineralised domains have been analysed to ensure that the grade distribution is indicative of a single population with no requirement for additional sub-domaining and to identify any extreme values which could have an undue influence on the estimation of grade within the domain. For domains that have a CV greater than either 1.2 for copper, iron and sulphur or 1.8 for silver and gold, log histograms, log-probability and mean-variance plots have been used to identify if the high CV is due to the influence of extreme values and if so, determine the impact of applying a grade cap (top-cut) to that population. The top-cuts applied within the copper mineralised domains have resulted in only a minor reduction in the mean grade. A top-cut has been applied to the un-mineralised samples to negate the influence of un-modelled higher grade samples.

The copper mineralisation domains have been used to constrain the estimation of copper, silver, gold, lead and zinc with iron and sulphur estimated inside the iron mineralisation domains. Estimation was undertaken in three to four passes with the mineralisation wireframes utilised as hard-boundaries during the estimation. Estimated grade into the waste blocks was undertaken within two interpolation passes, using very tight search ellipses. While shared sample populations were required to achieve variography for all elements, the estimation has been completed using separate oxidation sample populations.

A total of 2,588 bulk density measurements were used for analysis. Bulk density measurements have all been collected using the water immersion method, with the measurement calculated by weighing the dry sample and then immersing the entire sample in water to determine the weight in water. The formula "Bulk Density = (weight in water) / (weight in air) – (weight in water) has then been calculated.

Since the mineralisation at Kaiser Bill is sulphide rich, the quantity and composition of the sulphide mineralogy present will have an impact on the bulk density. Analysis of the bulk density and assay data to determine the correlation between the main sulphide bearing minerals and the bulk density has been undertaken. This analysis has determined that the correlation between iron grade and bulk density is over 75% which has been deemed suitable enough to use within the block model to apply a regression formula to populate the block model with bulk density values.

The resources have been validated visually in section and level plan along with a statistical comparison of the block model grades against the de-clustered composite grades to ensure that the block model is a realistic representation of the input grades. The de-clustering has been deemed necessary in order for comparison with an OK estimation (which de-clusters during the estimation). No issues material to the reported Mineral Resource have been identified in the validation process.

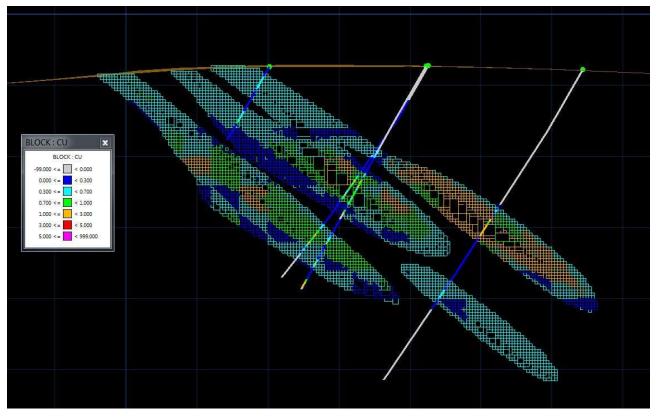


Figure 6: Kaiser Bill block model X-Section 187220mE looking east showing grade distribution and drill holes

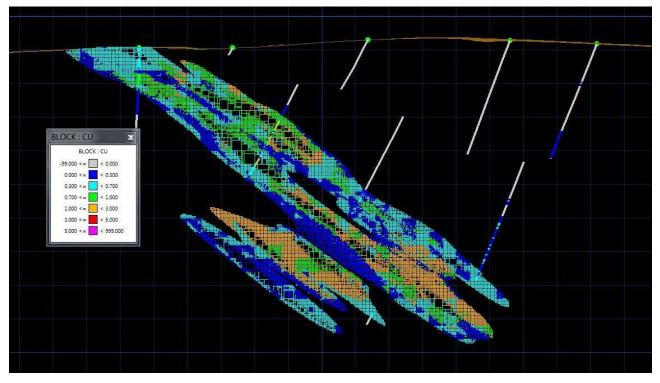


Figure 7: Kaiser Bill block model X-Section 186900mE looking east showing grade distribution and drill holes

Classification

The Mineral Resource was classified in accordance with JORC 2012, based on the confidence in geological continuity, drill hole spacing and geostatistical measures. The Resource classification was proposed by Mining Plus and reviewed by the CSD Competent Person.

The resource classification has been applied to the MRE based on the drill data spacing, grade and geological continuity and data integrity.

Indicated Resources are classified where portions of the models are defined by drilling spaced on a 50m by 50m pattern and where the confidence in the estimation is considered high.

Portions of the model with a drill density greater than 50m by 50m and estimating within or above the range of the variography and where the confidence in the estimation is lower have been defined as Inferred Mineral Resources.

Areas of the deposit that do not meet these criteria remain Unclassified. No Measured Resources have currently been defined.

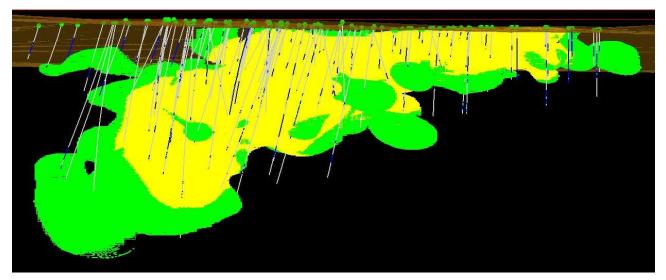


Figure 8: Kaiser Bill looking north-west showing drill holes and Indicated (yellow) and Inferred (green) blocks within the block model.

Mining Method and cut-off grades

CSD believes the use of 0.5% Cu as reporting cut-offs is appropriate for deposits which could potentially be extracted through selective open pit mining. Above the 150mRL has been deemed to be potentially accessible by open cut mining methods. This RL has been used to apply the relative cut-offs for Cu.

Comparison with the previous Resource estimate

JORC Resources of **15 million tonnes @ 0.84% Cu** were previous published by Kagara Limited in the ASX Release 25th October 2011 (JORC Code 2004 Edition). These Resources were originally extracted from Copper Strike Limited Target Statement released to the ASX on 12 November 2010 and have been reported at a 0.4% Cu cut-off.

The following tabulation represents key changes in the methods or parameters employed in the creation of the updated Resource model. The increases in tonnes and grade are primarily attributed to additional drilling which has extended the resource as well as tighter constraints on the >0.5% Cu grade population by the development of a separate domain for estimation.

AREA	2008 Resource	2017 Resource
Drilling	Only RC and diamond drilling used	Only RC and diamond drilling used
		21 New holes incorporated ino the MRE
Geological Domaining	Mineralisation domaining undertaken on drill	Mineralisation domains have been generated at 0.3% and 0.5% Cu
	sections and using a 0.3% Cu cut-off to define	cut-offs using an indicator approach guided by structural trends
	selected intervals	
Composite/Top-cuts	1m composites	1m composites
	Cu cut to 8%, Ag cut to 100g/t	In the 0.3% domain: Cu cut to 2%, Ag cut to 45g/t
		In the 0.5% domain: Cu cut to 7%, Ag cut to 90g/t
Estimation Method	Multiple Indicator Kriging (MIK)	Ordinary Kriging
Specific Gravity (Fresh)	Use of relationship between DBD and Fe:	Use of relationship between DBD and Fe:
	Dry Bulk Density = 2.57 + 0.0344 * Fe	Dry Bulk Density = 2.59 + 0.03 * Fe
Constraint applied to reflect	0.4% Cu Cut-off grade for a selective open pit mining	0.5% Cu Cut-off grade limited to 150RL to reflect material that could
possible mining method	scenario.	eventually be economically extracted via open pit mining techniques
	Oxide material included	Oxide material excluded

Table 3: Kaiser Bill 2017 and 2008 Resource comparison

Competent Persons Statement

The information in this announcement and Appendix that relate to data and geological modelling included in Mineral Resource estimates is based on information reviewed by Mr Jason McNamara who is a Fellow of The Australasian Institute of Mining and Metallurgy. Mr McNamara is a full time employee of Consolidated Tin Mines and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves". Mr McNamara consents to the inclusion in the documents of the matters based on this information in the form and context in which it appears.

The information in this announcement and Appendix that relates to grade estimation and Mineral Resource estimates is based on information reviewed by Mr Jason McNamara, who is a Fellow of The Australasian Institute of Mining and Metallurgy. Mr McNamara is a full time employee of Consolidated Tin Mines and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves". Mr McNamara consents to the inclusion in the documents of the matters based on this information in the form and context in which it appears. This release may include aspirational targets. These targets are based on management's expectations and beliefs concerning future events as of the time of the release of this document. Targets are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Consolidated Tine Mines that could cause actual results to differ materially from such statements. Consolidated Tine Mines makes no undertaking to subsequently update or revise the forward-looking statements made in this release to reflect events or circumstances after the date of this release.

APPENDIX 1 JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 to generate the updated Mineral Resource Estimates (MRE) for the Kaiser Bill Deposit Data for the Kaiser Bill Deposit has been collected over 8 exploration campaigns by different companies. The majority of the data used for the MRE however has been collected by Copper Strike as outlined in the release in Table 2
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	

		 analysed at SGS Townsville (6%). The samples sent to ALS followed standard ALS crushing and pulverization procedures followed by a 4 acid digest to effect as near to total solubility of the sample as possible ALS, SGS laboratories, CSE and SPM inserted QC samples into the routine sample stream to monitor sample quality as per industry best practice The majority of the sampling, surveying, geological logging, sample preparation and analysis undertaken during the CSE exploration period was carried out under the guidance of a detailed Exploration Standards and Procedures Manual (2008) which follows industry standard practices for data collection and validation. The procedures
		used prior to this exploration are unknown but account for <3% of the data and are therefore not considered material to this report. Exploration undertaken post CSE followed closely the established CSE procedures.
Drilling techniques	open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of	 RC drilling utilized 6m rods whilst DD drilling uses 3m drill rods. Diamond drilling has employed predominantly 47.6mm diameter NQ2 'standard tube' core drilling methods. RC drilling has been completed using a 5.25 or 5.5 inch diameter face sampling hammer bit. Diamond drill core was orientated at regular intervals to facilitate structural logging. Core lengths and orientations are checked by trained company personnel (geologist or field technicians)
Drill sample recovery	 and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Bulk RC sampled intervals were weighed from Stage 2 to Stage 5 to provide an indication of recovery. Of the >4,200 weights taken >80% fall within the expected ranges for a 1m interval. 2 methods of determining core recovery have been undertaken during the various drilling programs at Kaiser Bill. The first method which was undertaken up to October 2007 compares the drilled interval (drill run) against the length of the core returned. The second method which was undertaken after October 2007 compares a one meter interval against the core returned. The second process is thought to provide greater precision in identifying zones of poor recovery. Of the 4,082 recovery measurements stored in the database 98% represent >95% recovery. No analysis of the relationship between recovery and grade has yet been undertaken. The use of high quality methods such as RC and diamond drilling as well as the measuring and monitoring of recovery has been employed to maximise recovery.
Logging	geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 All drill holes have been logged in full and record standard qualitative data such as lithology, alteration, mineralisation, weathering and oxidation. Diamond core was quantitatively logged for geotechnical parameters such as recovery and RQD. Structural data such as faults, fractures and veins are also recorded. All RC precollar intervals were wet-sieved and stored in chip trays All logging was transferred into excel spreadsheet templates at the time of drilling. As part of this resource update these spreadsheets have been imported into a Datashed Database system where validation on logging has been performed

	 The total length and percentage of the relevant intersections logged. 	 All diamond core and chip trays (from RC drilling) were photographed in a wet and dry state.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Both RC and diamond core samples have been utilised in the Kaiser Bill Resource RC sampling was predominantly undertaken using a multi-tiered riffle splitter attached to the base of the drill rig cyclone and providing a ¹/₈th spilt ranging from 3-5kg. Diamond holes were sampled taking a representative ½ core split of the NQ2 diamond drill core or 1/4 core split of the HQ2 diamond drill core. Drill core was cut longitudinally in half using diamond saws just to the side of a centre reference line. Sampling is nominally on 1m intervals but is varied to account for lithological and mineralization contacts with minimum lengths of 0.5m and maximum lengths of 1.4m allowable. Metallurgical samples were taken from ½ HQ2 core on selected intervals. Field duplicate samples were only applied to the RC sampling and were selected by the geologist, from anywhere within a sampled mineralised interval. These samples, totaling 125, were collected by resplitting the original bulk sample bag. The performance of the 125 RC duplicate samples has been check for the elements estimated within the resource and are within acceptable limits (<+/-3.5%) relative to the mineralization and duplicate method. Sample sizes are considered to be appropriate for the mineralization present at Kaiser Bill.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The bulk of the samples (94%) were submitted to ALS Chemex in Townsville followed standard ALS crushing (CRU21) and pulverization (PUL23) procedures then underwent digestion via a 4 acid digest (ME-ICP61s) to effect as near to total solubility of the sample as possible. All samples were assayed for: Au Fire assay AA25; 39 elements; Ag Al As Ba Be Bi Ca Cd Co Cr Cu Fe K La Mg Mn Mo Na Ni P Pb Rb S Sb Sr Ti V W Zn; For > 1% Cu, Pb, Zn and >100ppm Ag, re-assay using OG46 was undertaken. The remaining samples (6%) were submitted to SGS Laboratories in Townsville and followed standard SGS crushing and pulverization procedures. These samples also underwent digestion via a 4 acid digest to effect as near to total solubility of the sample as possible. Over range elements are re-assayed using an ore grade analytical method Sampling techniques, other than drill hole samples already discussed, have not been utilised as part of the resource update Field QAQC procedures included the insertion of field duplicates (only RC samples), commercial pulp blanks and standards. Insertion rates of QC samples was at a rate of 1 every 15 samples. Performance of standards for monitoring the accuracy, precision and reproducibility of the assay results received from ALS and SGS have been reviewed. The standards

			 generally performed well with results falling within prescribed three standard deviation limits. The performance of the pulp blanks have been within acceptable limits with no significant evidence of cross contamination identified
			• Both ALS and SGS laboratories undertake industry standard QC checks to monitor performance.
<i>Verification of sampling and assaying</i>	•	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Samples are selected by experienced geologists based on the presence of visible mineralization. Significant intersections which are bounded by barren material confirm the visual selection. To date no twin holes have been drilled at the Kaiser Bill deposits however 4 large diameter holes have been drilled within 10m of RC holes and returned similar results Historical logging data was recorded on paper and then entered into an excel spreadsheet or entered directly into excel. As part of the current resource update all original excel logging spreadsheets and original laboratory assay files have been sourced and imported into the CSD Datashed database. Assay values designated less than detection are assigned a value 0.5 x LTD limit value. Where the assay value is returned as insufficient or no sample then the assay value is set to absent.
Location of data points	•	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 The drill hole collar locations were surveyed by Ausnorth Consultants based in Cairns using a differential Real Time Kenetic (RTK) GPS to an accuracy of 0.01m. Drill holes are drilled predominantly to the north north-west with dips ranging from 60-90 degrees. Azimuths were initially set up using a compass and the inclination was set up using a clinometer on the drill rig mast. All drill hole collars have been surveyed in MGA GDA 94 Zone 55 In 2007 a detailed aerial mapping project was undertaken to develop accurate topographical control over the Kaiser Bill resource areas. High resolution aerial digital images were taken at 1:11000 scale and cross referenced to ground control points to enable the modelling of surface points to within 250mm of their true elevation. All planned collar locations are marked in the field using a handheld GPS with an accuracy of +/-2m and RL's are allocated to the drill hole collars by using the detailed DTMs. On completion of drilling holes have been picked up using DGPS. 12 holes from the 2015 drilling program remain to be surveyed Downhole surveys have been undertaken predominantly with a single shot Eastman camera
Data spacing and distribution	•	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve	 The drill hole spacing in the deposit ranges from 50 m by 50 m in the better drilled parts of the deposit to 100 m by 100m in the along strike and down dip extensions of the deposit in the areas covered by the MRE The data density is sufficient to demonstrate grade continuity to support a Mineral Resource estimate (MRE) under the 2012 JORC code Intersections reported in this report are interval weighted average composites of smaller

	٠	estimation procedure(s) and classifications applied. Whether sample compositing has been applied.		sample intervals as is standard practice.
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	The nature and controls on mineralization at the Kaiser Bill deposit is considered to be well understood in the area of the MRE. Holes are predominantly drilled towards the north north-east at an average dip of 70 degrees to optimally intersect the moderate south-east dipping mineralised zones. Based on the current understanding sampling is considered to be unbiased with respect to drill hole orientation versus strike and dip of mineralisation.
Sample security	•	The measures taken to ensure sample security.	٠	Chain of custody processes for the historical drilling is unknown
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	•	No audits or reviews of Kaiser Bill are known

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The MRE has been undertaken on drilling carried out on ML30217 held by CSD Tin Pty Ltd and falls within EPM13072. CSD has purchased all SPM tenures under an Asset Sale Agreement however the transfer of the tenures is yet to take effect, therefore they are still officially registered as being held by Snow Peak Mining. The Mining lease is subject to an Indigenous Land Use Agreement and the tenement land is subject to the Ewamian People #3 determination area. The tenements are in good standing and no known impediments exist.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The district has an extensive exploration history and the following summary is focused on that work directly related to the Kaiser Bill area. In 1975 Otter Exploration acquired the tenement covering the area to explore for base metals. A joint venture with CRAE saw this company explore the area between 1976 and 1982. CRA commenced a literature review and rock chip sampling of known lead-zinc

Criteria	JORC Code explanation	Commentary
		 gossans in the southern part of the tenement, particularly at Mt Misery, Dreadnought and Teasdale East. As a result of detailed geological mapping, CRAE concluded that the mineralisation in this area occurred in a complexly folded banded epidote-chlorite-garnet-magnetite quartzite at the one stratigraphic level and may be of syngenetic origin (Onley, 1978, 1979). With further reconnaissance, CRAE identified similar horizons and gossans elsewhere in the Einasleigh area and decided its main interest was lead-zinc-silver mineralisation of the Mt Misery type, rather than the copper-rich Kaiser Bill, Teasdale and Teasdale East mineralisation. Mining leases were pegged over the Mt Misery-Dreadnought and Teasdale areas. Detailed mapping, soil geochemistry and diamond drilling were conducted at Mt Misery, Dreadnought and Teasdale West. Mapping and ground magnetics were conducted at Teasdale. This downgraded the area for large deposits, but suggested potential for deposits of up to 10 million tonnes. A resource of 3.65 million tonnes of 2.45% Pb and 5.54% Zn was inferred for Mt Misery (Spencer, 1982). Much of the focus for exploration was on the Einasleigh mine or in the surrounding area. In 2003 Work completed on the tenements by Teck Cominco Australia focused on various prospects including Kaiser Bill, Einasleigh Copper Mine and Teasdale Cu-Au-Ag prospects and the Railway (formally Mount Misery, now Chloe - Jackson) and Bloodwood Knoll Pb-Zn-Ag prospects (Walters et al., 2004). Ground magnetic and EM surveys (either moving or fixed-loop) were undertaken at Kaiser Bill, Einasleigh Copper Mine and Bloodwood Knoll. This work was supplemented by detailed structural mapping and soil geochemistry at all prospects except the Einasleigh Copper Mine. Between 2005 and June 2008 Copper Strike (CSE) undertook extensive drilling on the Kaiser Bill Deposit. This data formed the basis for a MRE and contributed to the Einasleigh Copper Project Feasibility Study in June 2009. In No
Geology	 Deposit type, geological setting and style of mineralisation. 	 The base metal deposits in the Einasleigh district occur within the Proterozoic Georgetown Inlier. In an Australian context, several workers have drawn parallels between the Mt Isa, Broken Hill and Georgetown Inliers, in terms of sequences and mineralisation styles envisaging the "Diamantina Orogen". In this theory, these Inliers were part of one geological terrane during sedimentation, orogenesis and at least some periods of mineralisation. Copper mineralisation at Kaiser Bill occurs as chalcopyrite associated with quartz-pyrite-

Criteria	JORC Code explanation	Commentary
		 pyrrhotite-magnetite within zones of disseminations, stringers and breccias hosted within a sequence of quartz-feldspar-biotite gneiss (metasediments) which is overlain by a massive felsic leucogneiss (granitic gneiss). The mineralised zones outcrop as massive irregularly shaped gossans extending westwards for some 500m to 186900E, over widths of between 50 and 70m. The gossanous zone continues further to the west-south-west as scattered, discontinuous and narrow bodies over widths of between 20 and 30m. Numerous medium to coarse grained amphibolite units, of 1 to 15 m in thickness, occur throughout the sequence. They are sub-parallel to foliation, commonly display chilled margins and probably represent mafic sills and dykes intruded into the sequence during diagenesis or early stages of metamorphism. The entire sequence is intruded by irregular pegmatite dykes and sills. Several intermediate to mafic dykes, presumed to be related to the Permo-Carboniferous thermal event and loosely termed dolerite in the logging, intrude the sequence and cut the mineralisation. Mineralisation is has been grouped into the following categories: Massive to semi-massive sulphides (>25%): commonly brecciated with clasts of white (vein?) quartz and altered country rock infill by magnetite pyroxene (altering to amphibole and chlorite), pyrrhotite, chalcopyrite (pyrite) with trace molybdenite; these zones range from 20 cm up to several metres in width and contain the higher copper grades (5 to 14% Cu) with a high proportion of Fe (>15%) as pyrrhotite or magnetite; however many samples contain low chalcopyrite with grades reporting <1% Cu. These sulphide rich lenses display sharp contacts which are generally sub-parallel to foliation. Stringer and disseminated sulphides (5 to 25%): altered gneiss with moderate development of disseminated magnetite and stringer and disseminated pyrrhotite, chalcopyrite, pyrite; these form wider zones over several to tens of metres and contain low to moderate
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	 Refer to diagrams, tables and appendices within the release

Criteria	JORC Code explanation	Commentary
	 down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Grades are reported as down-hole length weighted averages with no top cut applied on the reporting of grades Only those intervals deemed to be significant and are presented in this report. Significant intersections are determined by combining sample intervals greater than 2m in width and greater than or equal to a cut-off of 0.3% Cu, which does not include more than 2m of below cut-off grades. Statistically 0.3% Cu presents as separate population for the mineralized zone and is considered important in defining mineralization. No metal equivalent calculations have been reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The results are reported as downhole lengths only Drill holes are drilled perpendicular to the general north-east strike of mineralization. Mineralisation at Kaiser Bill is interpreted to be a broad alteration zone with zones of higher grades (>0.5% Cu) within. The mineralisation dips moderately (40-50 degrees) to the souteast. True widths have not been calculated for the intercepts however the volume and grade are reflected in the MRE
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view	Refer to diagrams, tables and appendices within the release

Criteria	JORC Code explanation	Commentary
	of drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 This release contains all results greater than 0.3% Cu as detailed above. It is considered impractical and not material to report intervals below 0.3% Cu
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Historical geophysical survey data has been undertaken over the deposit areas and have formed the basis for their initial discovery. The historical data is currently being reviewed to assist current exploration plans Initial historical testwork undertaken during the CSE Feasibility November 2008 and indicated that the waste rock has low acid forming potential RQD and structural logging has been undertaken to assist with future geotechnical criteria
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The consistency, grade, and potential for extension to the intersections at Kaiser Bill to date warrants further drilling to extend the mineralisation down dip at depth targeting a higher grade zone. This drilling is currently underway.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its 	 Original drill hole data including collars, surveys, lithologies, samples and laboratory assay files have been sourced and imported into CSD's Datashed database. Assay data is imported directly from original lab files into Datashed with no prior manipulation of

Criteria	JORC Code explanation	Commentary
	initial collection and its use for Mineral Resource estimation purposes. • Data validation procedures used.	 results Datashed has robust validation and constraints incorporated into it to ensure validated data is readily available for fit for purpose use. The database is managed by a database administrator employed by Consolidated Tin. The construction and estimation of the Kaiser Bill resource models have been undertaken by Mining Plus. A complete drilling database has been supplied by Consolidated Tin Mines to Mining Plus in the form of Microsoft Access files extracted from a Datashed Database. Mining Plus has undertaken a high level review of all files for syntax, duplicate values, from and to depth errors and EOH collar depths. Once loaded into 3D software, Mining Plus has completed a review of all survey data by visually validating all drill hole traces for consistency.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Consolidated Tin Competent Person has completed numerous site visits to the Kaiser Bill deposit in 2017. While on site the CP has reviewed historical drill core and hole locations. Historical data management protocols, density determination methods and diamond drilling and sampling procedures have also been reviewed.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The geological information is built out of 157 drill holes within the Kaiser Bill deposit The base of weathering (including partial oxidation) has been modelled using the drill logs with these points used to create an oxidation bounding surface for the deposit – a portion of the mineralisation exists inside the oxidized rocks. The data used in the geological model is a combination of diamond core and RC drilling, along with mapped surface exposures of the host lithologies and structures. The Kaiser Bill deposit is hosted within a sequence of quartz-feldspar biotite metasedimetary gneiss overlain by a massive felsic leucogneiss with the copper mineralisation occurring as chalcopyrite within quartz-pyrite, pyrrhotite-magnetite disseminations, stringers and breccia-fill. The contact between the two gneissic units is undulating and dips between 30° to 60° to the SSE and is interpreted to define the northern limb of a gently WSW plunging synform. Mineralisation occurs within a broad silica-chlorite alteration zone comprising disseminated sulphides and magnetite. Numerous intrusive lithologies have been recognised within the deposit, including a foliation parallel sequence of amphibolite dykes and sills, later irregularly oriented pegmatites and intermediate to mafic dykes. The last two sets of intrusive lithologies cross-cut and stope out the copper

Criteria	JORC Code explanation	Commentary
		 mineralisation. For the Kaiser Bill Deposit, copper represents the primary element for the modelling and estimation process. Element correlation analysis has confirmed that the correlation of silver and gold with copper is adequate to enable estimation inside these primary mineralisation domains. Iron and sulphur display a close correlation with each other enabling the iron mineralisation to be modelled separately with both these elements estimated inside these iron domains. Lead and zinc have been analysed and estimated inside the copper domains, although the grades of these elements are well below economic levels. The modelling of the copper mineralisation has been undertaken using an Indicator approach in Leapfrog Geo v4.0, whereby samples above a designated indicator cut-off grade have been flagged with an interpolation run using these flags along a structural trend consistent with the geological controls on the mineralisation. Analysis of the length weighted grade distribution from all samples within the deposit indicate that separate grade populations exist at 0.3% and 0.5% copper and 8.5% and 15% iron, with these values used to interpolate nested grade shell meshes, effectively linking continuous zones along strike and down dip with these meshes combined to form mineralised solids. The grade shells for both copper and iron have been reviewed by Consolidated Tin to ensure that they are consistent with their geological understanding of the deposit.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Kaiser Bill Deposit mineralisation strikes to the NNE-SSW and extends approximately 900 m in this direction, with a vertical extent in excess of 350 m. The across strike extents of the mineralisation across a broad alteration zone from footwall to hangingwall is approximately 120 m. The individual mineralisation lenses generally range in thickness from 5 m to up to 30 m true thickness. Mineralisation dips moderately to the SE and plunges shallowly to the southwest.
Estimation and modelling techniques	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.	 Resource with this method considered appropriate given the nature of mineralisation and mineralisation configuration. The three dimensional mineralisation wireframes have been imported into Vulcan with

Criteria	JORC Code explanation	Commentary
	 The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Analysis of the raw samples within the Cu and Fe mineralisation domains indicates that the majority of sample lengths are at or below 1 m, with this length chosen for compositing. The compositing has been undertaken using a 0.1 m residual in Vulcan. The majority of the samples within the Kaiser Bill Deposit Cu and Fe mineralised domains are at the selected composite length. Geostatistical and continuity analysis have been undertaken utilising Snowden's Supervisor™ V8.7 software. Composites within the individual mineralised domains have been analysed to ensure that the grade distribution is indicative of a single population with no requirement for additional sub-domaining and to identify any extreme values which could have an undue influence on the estimation of grade within the domain. For domains that have a coefficient of variation (CV) greater than 1.2 for copper, iron and Sulphur and 1.8 for gold and silver, log histograms, log-probability and mean-variance plots have been used to identify if the high CV is due to the influence of extreme values and if so, determine the impact of applying a grade cap (top-cut) to that population. Top-cuts have been applied for Cu, Au, Ag and S with assessment also taking into consideration the oxidation state. In the 0.3% Cu domain, Cu has had a top-cut of 2% applied with Ag being top-cut to 90g/t The top-cuts applied within the copper mineralised domains have resulted in only a minor reduction in the mean grade. Grade continuity analysis within Cu domains that define the mineralisation has been undertaken in Snowden Supervisor %7. software for Cu, Ag and Au. Similarly, the Fe domains have been used to undertake continuity analysis for Fe and S. Kriging Neighbourhood Analysis (KNA) has been undertaken on the Cu and Fe mineralisation domains to determine the most appropriate interpolation parameters to apply during the block modelling process. The KNA indicated a parent block size of 25 m (X) by 10 m (Y) by 10 m

Criteria	JORC Code explanation	Commentary
		 mineralisation domains. Estimation of Cu, Ag, Au, Fe and S utilized three interpolation passes with each pass using and increased search ellipse size with a decrease in the minimum number of samples required for a block to populate with grade used on subsequent passes: The 1st pass utilized a search ellipse set at half the range of the variogram for each element with the orientation defined by the variography. A minimum of 6 and a maximum of 24 composites have been used during the interpolation with a maximum of two composites for each drill hole. The 2nd pass used a search ellipse set at the range of the variogram search ellipse with the orientation defined by the variogram search ellipse with the orientation defined by the variogram search ellipse with the orientation defined by the variogram ranges with the orientation consistent with the first two passes. A minimum of 2 and a maximum of 24 composites for each drill-hole. The 3rd pass used a search ellipse twice the size of the variogram ranges with the orientation consistent with the first two passes. A minimum of 2 and a maximum of 24 composites have been used during the interpolation. A fourth interpolation pass has been employed for some of the iron domains using a search ellipse four times the size of the variogram ranges with the orientation consistent with the first three passes. A minimum of 24 cand a maximum of 24 composites have been used during the interpolation. Grade has been estimated into the un-mineralised blocks using two interpolation passes and tight search ellipses. Length weighting has been applied during the estimation of all elements in all domains. The resource has been validated visually in section and level plan along with a statistical comparison of the block model grades against the declustered composite grades to ensure that the block model grades against the declustered composite grades to ensure that the block model grades against the d
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 Tonnages are estimated on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) o quality parameters applied. 	 Due to the shallowness of the mineralisation, a cut-off grade suitable for open pit mining has been used for reporting of the Mineral Resource Estimate. The mineralisation above the 150mRL has been deemed to be potentially accessible by open cut mining methods and has been reported at a 0.5% Cu cut-off grade.

Criteria	JORC Code explanation	Commentary
		 The grades of Cu and Ag have been reported for those blocks satisfying the Cu depth and cut-off grade requirements, with no copper equivalence used. Only the transitional and fresh mineralised material has been included in the Mineral Resource Inventory, as there is uncertainty as to the processing recoveries of the oxidised portion of the mineralisation. The Kaiser Bill Mineral Resource has been reported by cut-off grade and Mineral Resource Category.
<i>Mining factors or assumptions</i>	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 The mineralisation above the 150 mRL has been deemed to be potentially accessible by open cut mining methods. No other mining assumptions have been used in the estimation of the Mineral Resource.
<i>Metallurgical factors or assumptions</i>	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 The Mineral Resource Estimate has been reported for the fresh mineralisation only, as there is no defined processing route for the oxidized material. The mineralogy of the Kaiser Bill ore shows that copper is carried predominantly as chalcopyrite, which is associated mainly with pyrite, and with variable pyrrhotite. There is a substantial association of magnetite with the copper mineralisation. Preliminary metallurgical testwork undertaken during the CSE Feasibility shows Kaiser Bill ore at a range of primary grind sizes provides high recovery to low grade rougher concentrates. The work indicates a satisfactory concentrate grade can be achieved from fresh material.

Criteria	JORC Code explanation	Commentary
Environmen-tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 No environmental factors or assumptions have been incorporated into the reporting of the Mineral Resource Estimate for Kaiser Bill.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 A total of 2,588 bulk density measurements were supplied by Consolidated Tin for analysis by MP. The 2008 Mineral Resource Report completed by Golder and Associates, states that the bulk density measurements have all been collected using the water immersion method, with the measurement calculated by weighing the dry sample and then immersing the entire sample in water to determine the weight in water. The formula "Bulk Density = (weight in water) / (weight in air) – (weight in water) has then been calculated. No mention has been made of whether the samples were wax coated or plastic wrapped prior to completing the measurements. A factor has not been applied to account for void spaces or moisture differences. The relative abundance and composition of the sulphide mineralisation throughout the un-oxidised part the deposit will impact on the bulk density of that material. Analysis has been undertaken to determine a correlation between the bulk density and Fe grade. This produced a correlation of over 76%. This has been deemed acceptable for deriving a regression between the two. Validation of the de-clustered input bulk density measurements and the block model bulk density values has been undertaken with the block model bulk densities within 4.0% of the input bulk density values within the mineralisation domains. Bulk density data are considered appropriate for use in Mineral Resource and Ore

Criteria	JORC Code explanation	Commentary								
		Reserve estimation.								
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the da Whether the result appropriately reflects a Competent Person's view of the deposit. 	 Code as prepared by the Joint Ore Reserve Committee of the AusIMM, AIG and MCA and updated in December 2012). All classifications and terminologies have been adhered to. All directions and recommendations have been followed, in keeping with the spirit of the code. The resource classification has been applied to the MRE based on the drilling data spacing, grade and geological continuity, and data integrity. The resource has been classified on the following basis; 								
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 No other independent audits or reviews have been undertaken on the Mineral Resource estimate. 								
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in Mineral Resource estimate using an approach or procedure deemed appropria 	required to increase the local scale confidence in the Mineral Resource Estimate.								

Criteria	JORC Code explanation	Commentary
	 by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Appendix 2 Kaiser Bill drill hole collar details

Hole ID	Stage	Hole Type	Easting	Northing RL	Hole Depth	Grid ID	Survey Method	Hole ID	Stage	Hole Type	Easting Northing	RL H	lole Depth	Grid ID	Survey Method	Hole ID	Stage	Hole Type	Easting Northing RL	Hole Depth	Grid ID	Survey Method
KBD001	1	DDH	186817.630	7948528.430 480.000	267.00	MGA94_55	GPS	KBRC045	3	RC	187274.327 7948866.462	481.020	90.00	MGA94_55	DGPS	KBDD102	5	RCDDH	186911.115 7948545.343 479.585	283.30	MGA94_55	DGPS
KBD002	1	DDH	186231.813	7948254.337 493.506	411.00	MGA94_55	DGPS	KBRC046	3	RC	187362.726 7948884.131	479.652	94.00	MGA94_55	DGPS	KBDD103	5	RCDDH	186937.890 7948566.828 479.381	301.00	MGA94_55	DGPS
KBRC001	1	RC		7948924.430 475.799	55.00	MGA94_55	DGPS	KBRC047	3	RC	187369.341 7948923.346		58.00	MGA94_55	DGPS	KBDD104		RCDDH	186910.503 7948609.938 482.170	255.30	MGA94_55	DGPS
KBRC002	1	RC	187063.112	7948903.104 475.867	60.00	MGA94_55	DGPS	KBRC048	3	RCDDH	187323.603 7948940.388		80.00	MGA94_55	DGPS	KB105	5	RCDDH	186676.099 7948516.642 485.628	253.80	MGA94_55	DGPS
KBRC003	1	RC		7948881.945 476.357	93.00	MGA94_55	DGPS	KBRC049	3	RCDDH	187323.571 7948965.635		80.00	MGA94_55	DGPS	KB106	5	RC	186822.323 7948581.137 484.754	172.00	MGA94_55	DGPS
KBRC004	1	RC			123.00	MGA94_55	DGPS	KBRC050	3	RC	187265.989 7948926.210		76.00	MGA94_55	DGPS	KB107	5	RC	186586.787 7948332.952 480.174	384.30	MGA94_55	DGPS
KBDD005	1	RCDDH	187093.426	7948766.977 477.761	186.40	MGA94_55	DGPS	KBRC051	3	RC	187265.852 7948964.781		58.00	MGA94_55	DGPS	KB108	5	RCDDH	186972.102 7948616.801 478.943	238.80	MGA94_55	DGPS
KBDD006	1	RCDDH	186971.048	7948735.735 480.986	228.20	MGA94_55	DGPS	KBRC052	3	RC	187262.872 7948983.662		40.00	MGA94_55	DGPS	KB109	5	RC	186757.533 7948701.715 486.760	168.00	MGA94_55	DGPS
KBDD007	1	RCDDH	186870.623	7948643.310 485.457	276.00	MGA94_55	DGPS	KBRC053	3	RC	187166.937 7948837.002		110.00	MGA94_55	DGPS	KB110	5	RCDDH	186823.479 7948581.894 484.826	246.30	MGA94_55	DGPS
KBDD008	1	RCDDH	186748.302	7948601.670 488.010	289.00	MGA94_55	DGPS	KBRC054	3	RC	187165.031 7948922.096		64.00	MGA94_55	DGPS	KB111	5	RC	186049.585 7948155.196 478.555	154.00	MGA94_55	DGPS
KBDD009 KBDD010	1	RCDDH RCDDH	186745.599 186849.924	7948626.138 489.182 7948655.991 486.370	187.00 189.00	MGA94_55 MGA94_55	DGPS DGPS	KBRC055 KBRC056	3	RC RC	187165.633 7948908.492 187167.097 7948896.112		70.00	MGA94_55 MGA94_55	DGPS DGPS	KB112 KB113	5	RC RCDDH	186927.844 7948580.739 480.475 186990.758 7948668.792 481.046	70.00 205.00	MGA94_55 MGA94_55	DGPS DGPS
KBDD010	1	RCDDH	186685.834	7948655.991 486.370	177.00	MGA94_55	DGPS	KBRC056 KBRC057	3	RC	187165.349 7948884.988		90.00	MGA94_55	DGPS	KB113 KB114	5	RCDDH	180990.738 7948688.072 481.046	193.00	MGA94_55	DGPS
KBDD011 KBDD012	1	RCDDH	186720.483	7948562.190 486.890	285.00	MGA94_55	DGPS	KBRC057	3	RC		480.330	100.00	MGA94_55	DGPS	KB114 KB115	5	RCDDH	187008.543 7948549.666 475.614	285.50	MGA94_55	DGPS
KBRC013	1	RC	187017.034	7948866.196 475.680	99.00	MGA94_55	DGPS	KBRC059	3	RC	187160.343 7948945.598		40.00	MGA94_55	DGPS	KB115 KB116	5	RCDDH	186779.613 7948447.893 478.444	297.70	MGA94_55	DGPS
KBRC013	1	RC	187009.352	7948896.963 473.918	99.00	MGA94_55	DGPS	KBRC060	3	RC	187210.856 7948949.501		58.00	MGA94_55	DGPS	KB110 KB117	5	RCDDH	186851.427 7948509.630 479.569	281.70	MGA94_55	DGPS
KBRC015	1	RC	187113.742	7948885.609 478.294	99.00	MGA94 55	DGPS	KBRC061	3	RC	187191.542 7948899.543		75.00	MGA94 55	DGPS	KB118	5	RCDDH	186933.521 7948662.693 482.877	225.30	MGA94 55	DGPS
KBRC016	1	RC	187108.026	7948915.680 478.248	69.00	MGA94 55	DGPS	KBRC062	3	RC	187179.251 7948897.952		75.00	MGA94 55	DGPS	KB119	5	RCDDH	187043.176 7948768.487 478.861	189.40	MGA94 55	DGPS
KBDD017	2	RCDDH	186689.713	7948433.373 481.178	366.00	MGA94 55	DGPS	KBRC063	3	RC	187156.378 7948893.936		70.00	MGA94 55	DGPS	KB120	5	RCDDH	186869.459 7948615.564 484.849	216.00	MGA94 55	DGPS
KBDD018	2	RCDDH		7948505.742 486.260	261.20	MGA94 55	DGPS	KBRC064	3	RC	187142.848 7948893.264		75.00	MGA94 55	DGPS	KB121	5	RCDDH	186711.600 7948480.822 481.885	333.40	MGA94 55	DGPS
KBRC019	2	RC			85.00	MGA94_55	DGPS	KBRC065	3	RC	187028.408 7948826.400		100.00	MGA94_55	DGPS	KB122	5	RCDDH	187193.800 7948811.600 478.771	150.50	MGA94_55	DGPS
KBRC020	2	RC	186402.011	7948543.855 482.523	150.00	MGA94_55	DGPS	KBRC066	3	RC	186998.243 7948800.020		106.00	MGA94_55	DGPS	KB123	5	RC	186863.100 7948867.400 478.527	45.00	MGA94_55	DGPS
KBRC021	2	RC	186520.750	7948687.305 482.210	79.00	MGA94 55	DGPS	KBRC067	3	RC	186922.022 7948751.380	480.583	120.00	MGA94 55	DGPS	KB124	6	RC	187145.784 7948977.771 478.332	50.00	MGA94 55	DGPS
KBRC022	2	RC	186565.081	7948623.753 485.239	133.00	MGA94_55	DGPS	KBRC068	3	RC	186891.221 7948816.442	476.731	75.00	MGA94_55	DGPS	KB125	6	RC	187255.361 7949000.119 479.656	75.00	MGA94_55	DGPS
KBRC023	2	RC	186453.975	7948630.546 479.826	67.00	MGA94_55	DGPS	KBRC069	3	RC	186867.643 7948866.218	478.410	40.00	MGA94_55	DGPS	KB126	6	RC	187265.900 7948905.000 482.496	90.00	MGA94_55	DGPS
KBRC024	2	RC	186493.273	7948579.996 481.890	107.00	MGA94_55	DGPS	KBRC070	3	RC	186924.195 7948868.833	476.364	52.00	MGA94_55	DGPS	KB127	6	RC	187323.300 7948921.000 482.185	85.00	MGA94_55	DGPS
KBRC025	2	RC	186603.334	7948548.715 487.944	176.00	MGA94_55	DGPS	KBRC071	3	RC	186959.298 7948909.170		40.00	MGA94_55	DGPS	KB128	6	RC	187327.800 7949027.000 476.959	85.00	MGA94_55	DGPS
KBRC026	2	RC	186609.742	7948724.109 484.835	73.00	MGA94_55	DGPS	KBRC072	3	RC	187021.472 7948928.309	473.408	40.00	MGA94_55	DGPS	KB129	6	RC	186906.951 7948885.890 476.946	85.00	MGA94_55	DGPS
KBRC027	2	RC	186642.906	7948668.379 488.303	133.00	MGA94_55	DGPS	KBRC073	3	RC	187058.936 7948941.892		32.00	MGA94_55	DGPS	KB130	6	RC	186972.575 7948736.243 480.990	215.00	MGA94_55	DGPS
KBRC028	2	RC	186668.380	7948736.933 486.285	79.00	MGA94_55	DGPS	KBRC074	3	RC	187101.168 7948953.223		28.00	MGA94_55	DGPS	KB131	6	RC	187193.958 7948810.705 478.757	160.00	MGA94_55	DGPS
KBRC029	2	RC	186705.882	7948689.556 488.612	145.00	MGA94_55	DGPS	KBRC075	3	RC	187159.982 7948969.968		28.00	MGA94_55	DGPS	KB132	6	RC	186996.830 7948775.842 479.147	160.00	MGA94_55	DGPS
KBRC030	2	RC	186782.817	7948776.849 483.083	85.00	MGA94_55	DGPS	KBDD076	3	DDH	187213.730 7948894.320		90.00	MGA94_55	DGPS	KB133	6	RC	187088.219 7948802.366 478.232	170.00	MGA94_55	DGPS
KBRC031	2	RC	186821.035	7948718.334 483.311	156.00	MGA94_55	DGPS	KBDD077	3	DDH	187062.528 7948842.386		106.40	MGA94_55	DGPS	KB134	6	RCDDH	186749.263 7948599.020 487.738	226.40	MGA94_55	DGPS
KBRC032	2	RC	186838.439	7948828.803 479.858	73.00	MGA94_55	DGPS	KBDD078	3	DDH	186939.711 7948784.096		114.00	MGA94_55	DGPS	KB135	7	DDH	186743.439 7948578.778 486.969	180.20	MGA94_55	DGPS
KBRC033	2	RC	186878.626	7948772.042 478.887	121.00	MGA94_55	DGPS	KBDD079	3	DDH	186806.634 7948736.101		128.80	MGA94_55	DGPS	KB136	7	DDH	186846.503 7948653.676 486.535	174.10	MGA94_55	DGPS
KBRC034	2	RC	186900.480	7948715.710 482.695	157.00	MGA94_55	DGPS	KBRC080	3	RC	186980.614 7948854.009		70.00	MGA94_55	DGPS	KB137	7	DDH	186671.083 7948601.465 489.889	192.30	MGA94_55	DGPS
KBRC035	2	RC	186928.643	7948847.128 475.350	79.00	MGA94_55	DGPS	KBRC081	3	RC	187333.389 7948984.526		58.00	MGA94_55	DGPS	KB138 KB139	7	DDH	186677.329 7948555.858 487.463	180.30	MGA94_55	DGPS
KBRC036 KBRC037	2	RC RC	186949.544 187130.774	7948793.138 477.875 7948841.320 479.235	115.00 115.00	MGA94_55 MGA94_55	DGPS DGPS	KBRC082 KBRC083	3 3	RC RC	187331.033 7949004.470 187265.971 7948946.076		46.00	MGA94_55 MGA94_55	DGPS DGPS	KB139 KB140	7	DDH DDH	186939.017 7948744.129 480.750 187125.690 7948828.922 478.951	131.60 87.30	MGA94_55 MGA94_55	DGPS DGPS
KBRC037	2	RC	187231.823	7948841.320 479.233	130.00	MGA94_55	DGPS	KBRC083	3	RC	187406.279 7948946.076		59.50	MGA94_55	DGPS	KB140 KB141	7	DDH	187026.399 7948790.230 478.573	105.00	MGA94_55	DGPS
KBRC038	2	RC	187222.950	7948839.139 480.520	91.00	MGA94_55	DGPS	KBRC084 KBRC085	3	RC	187406.279 7948812.801 186850.998 7948810.392		76.00	MGA94_55	DGPS	KB141 KB142	7	RCDDH	186581.874 7948340.012 480.615	348.00	MGA94_55	DGPS
KBRC039	2	RC	187222.950	7948893.531 481.890	85.00	MGA94_55	DGPS	KBRC085	3	RC	180850.998 7948810.392		50.00	MGA94_55	DGPS	KB142 KB143	7	RC	186714.151 7948397.901 478.669	135.30	MGA94_55	DGPS
KBRC040	2	RC	187325.247	7948850.188 479.056	132.00	MGA94_55	DGPS	KBRC087	3	RC	188210.105 7948976.548		76.00	MGA94_55	DGPS	KB143	7	DDH	186710.940 7948401.860 478.999	350.50	MGA94_55	DGPS
KBRC041	2	RC	187415.982	7948922.993 478.487	73.00	MGA94_55	DGPS	KBRC088	3	RC	188954.980 7948163.140		76.00	MGA94_55	DGPS	KB145	7	RCDDH	186583.821 7948341.749 480.819	342.80	MGA94_55	DGPS
KBRC043	2	RC	187411.689	7948865.309 477.044	115.00	MGA94 55	DGPS	KBRC089	3	RC	186782.068 7948675.454		150.00	MGA94 55	DGPS	KB146	8	DDH	188024.000 7948434.000 481.000	528.00	MGA94 55	GPS
KBRC044	2	RCDDH		7948817.184 478.613	160.00	MGA94 55	DGPS	KBRC090	4	RC	186817.705 7948782.048		95.00	MGA94 55	DGPS	KB147	8	DDH	188026.000 7948514.000 481.000	281.90	MGA94 55	GPS
	-					2.12.00		KBRC091	4	RC	186781.299 7948826.656		46.00	MGA94 55	DGPS	KB148	8	DDH	188322.000 7948586.000 472.000	180.20	MGA94 55	GPS
								KBDD092	4	RCDDH	186676.742 7948593.719		215.50	MGA94 55	DGPS	KB149	8	DDH	188374.000 7948279.000 470.000	201.20	MGA94 55	GPS
								KBRC093	4	RC	186880.399 7948676.498		154.00	MGA94 55	DGPS	KB150	8	DDH	186824.000 7948716.000 483.000	288.10	MGA94 55	GPS
								KBRC094	4	RC	186868.357 7948581.543		123.00	MGA94 55	DGPS	KB151	8	DDH	186870.000 7948490.000 478.000	333.10	MGA94 55	GPS
								KBRC095	4	RC	186862.872 7948720.743		140.00	MGA94_55	DGPS	KB152	8	DDH	186975.000 7948265.000 480.000	150.00	MGA94_55	GPS
								KBDD096	4	RCDDH	186775.080 7948573.225		241.50	MGA94_55	DGPS	KB153	8	DDH	186780.000 7948448.000 478.400	333.90	MGA94_55	GPS
								KBRC097	4	RC	186810.663 7948631.384	488.101	190.00	MGA94_55	DGPS	KB154	8	DDH	186872.000 7948490.000 477.000	321.60	MGA94_55	GPS
								KBDD098	4	RCDDH	186870.437 7948577.874	482.990	229.30	MGA94_55	DGPS	KB155	8	DDH	186719.000 7948398.000 478.600	370.00	MGA94_55	GPS
								KBDD099	4	RCDDH	186739.765 7948506.850		246.60	MGA94_55	DGPS							
								KBRC100	4	RC	186224.000 7948554.000		94.00	MGA94_55	GPS							
								KBRC101	4	RC	188381.000 7948532.000	472.000	100.00	MGA94_55	GPS							

CONSOLIDATED TIN MINES LIMITED

Appendix 3 Kaiser Bill Collar Surveys

Hole_ID	Depth	Dip M	GA94_55 Azimuth	Hole_ID	Depth	Dip 1	MGA94_55 Azimuth	Hole_ID	Depth	Dip MGA94_55 Azimuti	Hole_ID	Depth	Dip MGA94_55	5 Azimuth	Hole_ID	Depth	Dip MGA94_55 Azimuth	Hole_ID	Depth	Dip	MGA94_55 Azimuth	Hole_ID	Depth Dip MGA94_55 Azin	th Hole_ID	Depth	Dip MGA94	1_55 Azimuth
KB128	57	-74	184.5	KB106	0	-65	326.5	KB112	0	-90	KB118	0	-60	326.5	KB127	C	-90 0	KB143	0	-72	327	KB149	0 -60	2.5 KB155	0	-85	326.5
KB128	81	-70	183	KB106	30	-64	325.5	KB112	1	-90 7.	KB118	30	-60	324.5	KB127	27	-88 195.5	KB143	74	-68.6	331.5	KB149	36 -59.4	2.9 KB155	30	-85.2	330.2
KB129	0	-90	0	KB106	60	-65.5	326.5	KB113	0	-60 330.		60	-61	325.5	KB127	51	-88 195.5		114	-68		KB149	60 -58.8	3.3 KB155	60	-82.6	331.8
KB129	27		5.5	KB106	90	-68	328.5	KB113	30	-60 330.		87	-58	326.5	KB128	C	-75 180	KB143	134	-67.1	332.6	KB149	90 -57.7	3.6 KB155	90	-80.9	331.8
KB129	45		10.5	KB106	120	-69	329.5		60	-60 330.		123	-58	326.5	KB128	27			0	-75		KB149	120 -56.9	4.1 KB155	120	-81	329.3
KB130	0	-70	346.5	KB106	150	- 70	330.5		90	-60 330.		150	-56	328.5	KB135	70		KB144	134	-72.5		KB149		4.9 KB155	150	-80.6	330.9
KB130	30	-72	345.5	KB106	168	-71	331.5	KB113	120	-60 330.		180	-56	330.5	KB135	90			161	-72.1		KB150		9.5 KB155	180	-80.4	333.6
KB130	60		346.5	KB107	0	- 70	325.5		150	-60 330.		220	-53.5	332.5	KB135	120		KB144	188	-71.2	328.2			8.8 KB155	210	-80.4	334.3
KB130	90		348.5	KB107	30	- 70	326.5		180	-60 330.		0	-60	348	KB135	150			224	-70.1		KB150		9.3 KB155	240	-80.2	340.4
KB130	120		350.5	KB107	60	-71	328.5	KB114	0	-60 338.		30	-60.7	353.3	KB135	180		KB144	254	-69.8	330.8			8.5 KB155	272	-80	341.1
KB130	150		350.5	KB107	90	-72.5	329.5		38	-63 340.		60	-63.5	351.7	KB136	0			299	-68.4				2.2 KB155	300	-79.6	343.4
KB130	180	-75	350.5	KB107	120	- 74	329.5		68	-64.7 342. -64.2 34	KB119	90	-63.8	357.4	KB136	60		KB144	332	-67.8	335.8	KB150		7.9 KB155	330	-79.6	345.7
KB130	215		350.5 346.5	KB107	150	- 75	328.5		98			150	-61.9	1.6	KB136	90		KB144	346	-67.5		KB150		08 KB155	350	-79	350
KB131 KB131	27		346.5 345.5	KB107 KB107	180 210	- 76	327.5 332.9		128	-64.3 346. -63.1 348.	KB119 KB120	180	-61.4	1.69 319.5	KB136 KB136	120		KB145 KB145	0	-65 -65.1	325.5	KB150 KB150		09 KBD001	0	-55	333 333
KB131	57		345.5	KB107	210	- 79.2	332.9	KB114 KB114	158	-62.4 349.	KB120	30	-63.5	319.5	KB136 KB136	150		KB145 KB145	30	-65.1	325.5				50	-55	333.5
KB131 KB131	87		347.5	KB107 KB107	240	- 78.9	334.3 335.7		190	-62.4 349. -64 326.		30	-63	321.5	KB136 KB137	1/4		KB145 KB145	50	-64.4		KB151 KB151		1.5 KBD001 1.5 KBD001	100	-59	333.5
KB131 KB131	117		348	KB107	300	- 78.4	335.7		40	-64.9 326.		90	-63.6	322.1	KB137 KB137	30		KB145 KB145	100	-63.7	326.5	KB151 KB151		0.9 KBD001	100	-66.5	334
KB132	0	-60	346.5	KB107	330	-78.7	338.6		70	-65.6 330.		120	-65.1	326.9	KB137	60		KB145	130	-62.9		KB151		3.4 KBD001	225	-65	332.5
KB132	33		348.5	KB107	360	-77.8	338.5		100	-64.7 332.		120	-64.6	326.9	KB137	90			130	-59.5	327.5			4.2 KBD001	223	-64.5	334.5
KB132	63		354.5	KB108	0	-60	326.5		130	-63.8 332.		170	-63.8	326.5	KB137	120		KB145	160	-57.9	327.5			5.3 KBD002	0	-60	360
KB132	93			KB108	36	-60	327.5		160	-63.7 333.		210	-63.1	328.7	KB137	150		KB145	190	-55.6		KB151		6.3 KBD002	2	-60	360
KB132	123		352	KB108	66	-60.5	328.5		200	-62.2 332.		215	-63.2	328.7	KB137	180		KB145	231	-55.4				85 KBD002	50	-63	358.5
KB132	153		350.5	KB108	96	-62	328.5	KB115	230	-62 335.		0	-70	326.5	KB137	192		KB145	251	-55.4				3.7 KBD002	100	-65.5	356.5
KB133	0	-70	346.5	KB108	126	-61.5	329.5		260	-61.3 336.		30	-71.2	325.9	KB138	C	-65 200.5	KB145	280	-55.7	330.5	KB151		3.2 KBD002	207	-66	357.5
KB133	33	-70	346.5	KB108	160	-61.6	329.5	KB115	280	-60.1 333.	KB121	60	-71.6	326	KB138	30	-65.9 201.1	KB145	310	-55.8	329.5	KB151	303 -67.9 2	4.6 KBD002	300	-64	358.5
KB133	63	-68	350.5	KB108	190	-61.1	328.5	KB116	0	-65 329.	KB121	90	-71.2	325.4	KB138	60	-65.8 201.4	KB145	340	-56.6	329.1	KB151	309 -67.8 2	5.2 KBDD005	0	-70	346.5
KB133	93	-66	352.5	KB108	230	-59.6	334.8	KB116	30	-64.5 326.	KB121	120	-77.2	326.2	KB138	90	-66.6 202.1	KB146	0	-90	0	KB151	333 -69.5 2	5.6 KBDD005	2	-70	346.5
KB133	123	-65	353.5	KB109	0	-60	326.5	KB116	60	-61.5 326.	KB121	150	-76.8	328.4	KB138	120	-67.1 200.6	KB146	18	-88.6	341.5	KB152	0 -85	1.5 KBDD005	48	-66	346
KB133	153	-64	355.5	KB109	40	-58.5	327.5		90	-62 327.		180	-76.6	328.5	KB138	150		KB146	48	-88.3	342	KB152		6.3 KBDD005	78	-65.5	346.5
KB133	164		352.5	KB109	70	-59	328.5		120	-62 327.		210	-76	328.7	KB138	180		KB146	78	-88.3	338.9	KB152		2.7 KBDD005	108	-65.5	347.5
KB134	0		350	KB109	100	- 60	331.5		150	-59 327.		240	-75.2	328.8	KB139	C		KB146	108	-88.5		KB152		6.9 KBDD005	138	-65.5	349
KB134	33		342.5	KB109	130	- 60	334.5		180	-60 326.		270	-74.7	330.6	KB139	30		KB146	138	-87.9	336.7			5.7 KBDD005	168	-65	351
KB134	63	-70	350.5	KB109	160	-58	334.5		210	-58.5 328.		300	-74.1	339.5	KB139	60		KB146	168	-87.8	336.1	KB153		1.5 KBDD005	186	-65	349
KB134	93		349.5	KB110	0	-62	323.5		240	-60 328.		333.4	-73.6	340.4	KB139	90		KB146	198	-87.6	336.8			3.4 KBDD006	0	-60	346.5
KB134 KB134	130 160		348.5 348.5	KB110 KB110	35	-60 -61	323.5 327.5		270	-57.5 32 -58 327.		30	-73 -75	346.5 346.5	KB139 KB140	130		KB146 KB146	228	-87.6	337.8 337.4			2.5 KBDD006 5.6 KBDD006	38.7 68	-57 -57	344 344
KB134	160		348.5	KB110	95	-61	327.5		291	-58 327.		30	-75	346.5	KB140 KB140	30		KB146	258	-87.4		KB153 KB153		6.2 KBDD006	99	-57	344
KB134 KB134	226		346.5 356.1	KB110 KB110	95	-61	327.5		20	-67.5 314. -65.5 313.		90	-76.5	350.8	KB140 KB140	30			288	-87	335.7			4.7 KBDD006	99	-57	344
KB134 KB135	226	-65		KB110 KB110	125	-65.1	327.5		50	-64 314.		120	-76.9	353	KB140 KB140	87			318	-80.8		KB153 KB153		5.1 KBDD006	129	-50.5	344.5
KB135	30			KB110	135	-63.9	329.1		90	-64 314.		120	-76.3	355.5	KB140 KB141	°/		KB146	378	-86.6		KB153		9.4 KBDD006	139	-56.5	340
KB105	0	-65	326.5	KB110	215	-63.4	330.5		120	-63 313.		150	-90	0.00	KB141	30		KB146	408	-85.9	349.1			9.4 KBDD000	219	-56.5	347.5
KB105	30		330.5	KB110	245	-63.1	328.4		120	-64.5 314.		21	-88.8	311	KB141 KB142				408	-84.7	345.1	KB153		8.7 KBDD000	0	-62	320.5
KB105	60	-67		KB110	0	-60	326.5		180	-63 315.		40	-87.9	315.2	KB142	30		KB146	468	-84		KB153		41 KBDD007	2	-62	320.5
KB105	90	-69	332.5	KB111	30	- 59.5	326.5	KB117	210	-62 316.	KB124	0	-90	0	KB142	60		KB146	498	-84	3.1	KB153		3.3 KBDD007	48	-57	320.5
KB105	120		332.5	KB111	60	-61	327.5		240	-60 316.		30	-88	355	KB142	90			528	-82.7	0.1	KB154		8.7 KBDD007	78	-57	320
KB105	150			KB111	90	-62	328.5		280	-59 316.		50	-88	158	KB142	120		KB147	0	-90	0	KB154		0.7 KBDD007	108	-57	320
KB105	170		337.3	KB111	120	-63	330.5				KB125	0	-75	180	KB142	150			218	-88	347.6	KB154		8.5 KBDD007	138	-57	320
KB105	190	-72.2	337.3	KB111	150	-65	331.5				KB125	33	-77	183	KB142	180	-53.1 328.9	KB148	30	-60.2	77	KB154	123 -71	7.3 KBDD007	168	-57	322
KB105	220	-72.5	336.5								KB125	69	-76	185.5	KB142	210	-52.3 329.6	KB148	60	-59.5	76.3	KB154	153 -71 3	7.6 KBDD007	198	-57	324.5
KB105	250	-71.3	338.1								KB126	0	-90	0	KB142	240	-51.3 330.3	KB148	90	-55.4	78.1	KB154	180 -69.7 3	3.1 KBDD007	228	-56.75	324.5
											KB126	27	-89	278	KB142	270	-50.5 330.7	KB148	120	-57.2	78.4	KB154		2.2 KBDD007	258	-56.6	325.5
											KB126	57	-89	289.5	KB142	300		KB148	150	-56	78.8			9.2 KBDD007	273	-56.5	326.5
											KB126	86	-88	315.5	KB142	330						KB154	270 -66.4 3	1.9			
															KB142	348	-49 329.6										

Norm 100 <th>Hole ID</th> <th>Depth</th> <th>Dip</th> <th>MGA94 55 Azimuth</th> <th>Hole ID</th> <th>Depth</th> <th>Dip</th> <th>MGA94 55 Azimuth</th> <th>Hole ID</th> <th>Depth I</th> <th>Dip MGA94 55 Azimuth</th> <th>Hole ID</th> <th>Depth</th> <th>Dip I</th> <th>MGA94 55 Azimuth</th> <th>Hole ID</th> <th>Depth</th> <th>Dir</th> <th>p MGA94 55 Azimuth</th> <th>Hole ID</th> <th>Depth</th> <th>Dip I</th> <th>MGA94 55 Azimuth</th> <th>Hole ID D</th> <th>epth</th> <th>Dip M</th> <th>1GA94 55 Azimuth</th> <th>Hole ID</th> <th>Depth Di</th> <th>) MG/</th> <th>A94 55 Azimuth</th>	Hole ID	Depth	Dip	MGA94 55 Azimuth	Hole ID	Depth	Dip	MGA94 55 Azimuth	Hole ID	Depth I	Dip MGA94 55 Azimuth	Hole ID	Depth	Dip I	MGA94 55 Azimuth	Hole ID	Depth	Dir	p MGA94 55 Azimuth	Hole ID	Depth	Dip I	MGA94 55 Azimuth	Hole ID D	epth	Dip M	1GA94 55 Azimuth	Hole ID	Depth Di) MG/	A94 55 Azimuth
bit bit bit bit bit <td>KBDD008</td> <td>0</td> <td>-64</td> <td>322.5</td> <td>KBDD018</td> <td>0</td> <td>-70</td> <td>321.5</td> <td>KBDD099</td> <td>0</td> <td>-68 327.5</td> <td>KBRC014</td> <td>0</td> <td>-70</td> <td>346.5</td> <td>KBRC031</td> <td></td> <td>0</td> <td>-60 328.5</td> <td>KBRC047</td> <td>0</td> <td>-90</td> <td>0</td> <td>KBRC063</td> <td>0</td> <td>-60</td> <td>346.5</td> <td>KBRC086</td> <td>0</td> <td>-90</td> <td>0</td>	KBDD008	0	-64	322.5	KBDD018	0	-70	321.5	KBDD099	0	-68 327.5	KBRC014	0	-70	346.5	KBRC031		0	-60 328.5	KBRC047	0	-90	0	KBRC063	0	-60	346.5	KBRC086	0	-90	0
No. No. No. No. No.	KBDD008	2	-64		KBDD018	2	-70		KBDD099	29		KBRC014	33	-68.75				2	-60 328.5	KBRC047	2	-90	0	KBRC063	2	-60		KBRC086	2	-90	0
	KBDD008	60	-64	324	KBDD018	37	-70	324	KBDD099	59	-68.5 332.5	KBRC014	63	-67.25	346.5	KBRC031	5	51 -5	54.5 328.5	KBRC047	55	-88	0	KBRC063	37	-60	345	KBRC086	41	-90	0
Image Image <th< td=""><td>KBDD008</td><td>90</td><td>-64</td><td>325</td><td>KBDD018</td><td>57.2</td><td>-70</td><td>326.5</td><td>KBDD099</td><td>89</td><td>-71 335.5</td><td>KBRC015</td><td>0</td><td>-70</td><td>346.5</td><td>KBRC031</td><td>10</td><td>00</td><td>-50 328.5</td><td>KBRC048</td><td>0</td><td>-90</td><td>0</td><td>KBRC063</td><td>67</td><td>-60</td><td>346</td><td>KBRC087</td><td>0</td><td>-90</td><td>0</td></th<>	KBDD008	90	-64	325	KBDD018	57.2	-70	326.5	KBDD099	89	-71 335.5	KBRC015	0	-70	346.5	KBRC031	10	00	-50 328.5	KBRC048	0	-90	0	KBRC063	67	-60	346	KBRC087	0	-90	0
Des Des Des Des Des Des Des Des Des Des			-64							119			33				15				1	-90	0		0	-60			41		0
Image Image <th< td=""><td></td><td>150</td><td>-64</td><td></td><td></td><td></td><td>-69.8</td><td></td><td></td><td>125</td><td></td><td></td><td>63</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>76</td><td>-86.7</td><td>171.2</td><td>KBRC064</td><td>2</td><td>-60</td><td></td><td></td><td>71</td><td>-90</td><td>0</td></th<>		150	-64				-69.8			125			63								76	-86.7	171.2	KBRC064	2	-60			71	-90	0
Desc J J J J			-64							200			99					2			0	-90	0		67	-60			0	-90	0
1 1													0				7	2			1		0			-60			2		0
best N2 d N3 d N3 d N3 N3 N3 N3 N3 N3 <td></td> <td>-</td> <td>-64</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>76</td> <td></td> <td>190</td> <td></td> <td>2</td> <td>-60</td> <td></td> <td></td> <td>71</td> <td></td> <td>0</td>		-	-64							0			33					0			76		190		2	-60			71		0
Name S S S S										30											,0		150		40	00			/1		222.5
Sinter Sinter Sinter Sinter <td></td> <td>2/0</td> <td></td> <td></td> <td></td> <td>237.2</td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td>03</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td>		2/0				237.2				3			03								2		0						2		
Discol C S S S S <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>27</td> <td></td> <td>155</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>52</td> <td></td> <td></td>		2				2							1								27		155						52		
N S		42				45				50			1				12	0			37	05	133		2	-00					
Sector Sector<		-12											0					0			/2		101		2	-60					
bit bit <td></td> <td>12</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td>-61</td> <td></td> <td></td> <td></td> <td></td> <td></td>		12											1								0		0			-61					
bit bit <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>0</td> <td></td> <td></td> <td>55</td> <td></td> <td></td> <td>143 -</td> <td></td> <td></td>						0							U								2		0			55			143 -		
Develope						2							1								55		0		0	00			0		
b b< b b b													0				15	54 -4			0		0		2	00			1		
b b< b b< b<		186				106				280			1					0			2		0			-60					
Decom 0.7 0.8 0.00 1 0.6 0.00 0.6 0.00 0.6 0.00 0.00 0.6 0.00 0.00 0.00 0.00 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>37</td> <td>50</td> <td>0</td> <td></td> <td></td> <td>-58</td> <td></td> <td></td> <td>55</td> <td></td> <td></td>		0				0				0								2			37	50	0			-58			55		
Depole Tr def Tr Tr		2								30			130				4				0		346		0	-60			89 -		
114 -0 115 -0 115 -0 -0 -0 -0<						114							0				7	-9			2		346		2	-60			0		
black des des </td <td></td> <td>77.8</td> <td>-49</td> <td>JLI</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>100</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td>60</td> <td>-60</td> <td>349</td> <td></td> <td>72</td> <td>-61</td> <td>335</td> <td>KBRC091</td> <td>1</td> <td>-55</td> <td>332.5</td>		77.8	-49	JLI		0				100			1					0			60	-60	349		72	-61	335	KBRC091	1	-55	332.5
bit bit <td>KBDD010</td> <td>116.8</td> <td>-49</td> <td></td> <td>KBDD079</td> <td>2</td> <td>-70</td> <td></td> <td>KBDD103</td> <td>140</td> <td></td> <td>KBRC023</td> <td>31</td> <td>-57</td> <td></td> <td>KBRC036</td> <td></td> <td>2</td> <td>-60 342.5</td> <td></td> <td>109</td> <td>-59</td> <td>350</td> <td>KBRC069</td> <td>0</td> <td>-90</td> <td>0</td> <td>KBRC091</td> <td>35</td> <td>-59</td> <td>336</td>	KBDD010	116.8	-49		KBDD079	2	-70		KBDD103	140		KBRC023	31	-57		KBRC036		2	-60 342.5		109	-59	350	KBRC069	0	-90	0	KBRC091	35	-59	336
b b< b b< b<	KBDD010	146.8	-49.5		KBDD079	63	-70		KBDD103	170	-63.3 324.9	KBRC023	61	-55	328.5	KBRC036	3	37	-57 342.5	KBRC054	0	-60		KBRC069	1	-90	0	KBRC093	0	-60	327.5
besc besc <th< td=""><td>KBDD010</td><td>176</td><td>-49.5</td><td>320.5</td><td>KBDD079</td><td>120</td><td>-70</td><td>331.5</td><td>KBDD103</td><td>200</td><td>-62.8 326.9</td><td>KBRC024</td><td>0</td><td>-60</td><td>328.5</td><td>KBRC036</td><td>7</td><td>79</td><td>-57 342.5</td><td>KBRC054</td><td>2</td><td>-60</td><td>346.5</td><td>KBRC070</td><td>0</td><td>-90</td><td>0</td><td>KBRC093</td><td>29</td><td>-58</td><td>328.5</td></th<>	KBDD010	176	-49.5	320.5	KBDD079	120	-70	331.5	KBDD103	200	-62.8 326.9	KBRC024	0	-60	328.5	KBRC036	7	79	-57 342.5	KBRC054	2	-60	346.5	KBRC070	0	-90	0	KBRC093	29	-58	328.5
victor victor<	KBDD011	0	-60	324.5	KBDD092	0	-70	327.5	KBDD103	240	-62.3 324.2	KBRC024	2	-60	328.5	KBRC037		0	-60 345.5	KBRC054	61	-62	345	KBRC070	1	-90	0	KBRC093	59 -	61.5	328.5
bit bit< b	KBDD011	45	-61.5	324.5	KBDD092	29	-72	323.5	KBDD103	270	-62.2 326.1	KBRC024	51	-55	329.5	KBRC037		2	-60 345.5	KBRC055	0	-60	346.5	KBRC071	0	-90	0	KBRC093	89	-64	326
b 0	KBDD011	75	-61.5	325.5	KBDD092	59	-73	324.5	KBDD103	300	-60.9 325.5	KBRC024	97	-48	329.5	KBRC037	6	50 -5	56.5 345.5	KBRC055	2	-60	346.5	KBRC072	0	-90	0	KBRC093	149	-65	331.5
below 1 7 3.33 800.00 4.7 3.30 800.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 4.7 4.7 4	KBDD011	105	-61	328.5	KBDD092	89	-75	325.5	KBDD104	0	-65 326.5	KBRC025	0	-60	328.5	KBRC037	10)9	-57 345.5	KBRC055	67	-64	345	KBRC072	1	-90	0	KBRC094	0	-60	327.5
below 1 7 3.33 800.00 4.7 3.30 800.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 3.30 880.00 4.7 4.7 4.7 4	KBDD012	0	-70	324.5	KBDD092	107	-77	327.5	KBDD104	30	-66.1 327.5	KBRC025	2	-60	328.5	KBRC038		0	-60 353.5	KBRC056	0	-60	346.5	KBRC073	0	-90	0	KBRC094	29 -	62.5	329.5
BUDOUZ S O D2 D2 D2 D3 D2 D2 D3 D2 D3 D2 D3 D2 D3 D2 D3 D2 D2 D3 D3 D3 D3 D3		2	-70		KBDD092	120	-75			60		KBRC025	51	-55		KBRC038		2		KBRC056	2	-60		KBRC073	1	-90	0	KBRC094	59	-64	328.5
BDD002 105 -70 3345 BDD004 105 645 3321 BBC005 10 640 3335 BBC075 10 640 640 645 84007 10 640 645 84007 10 640 645 84007 10 640 645 84007 10 640 645 84007 10 640 645 940 940 940 940 <	KBDD012	45	-70.25	322	KBDD092	150	-74	331.5	KBDD104	90	-66.1 328.1	KBRC025	103	-55	328.5	KBRC038	4	18	-57 353.5	KBRC056	43	-61	346	KBRC074	0	-90	0	KBRC094	113	-68	328.5
bp:002 105 -77 3346 \$\$\$\$\$0000 105 -73 3346 \$\$\$\$0000 10 663 3326 \$	KBDD012	75	-70	323	KBDD092	180	-73	330.5	KBDD104	120	-65.8 330.1	KBRC025	169	-55	328.5	KBRC038	12	-59	55.75 353.5	KBRC056	85	-61	345	KBRC074	1	-90	0	KBRC095	0	-55	332.5
bbook bbook <th< td=""><td></td><td>105</td><td>-70</td><td>324.5</td><td>KBDD092</td><td>210</td><td>-73</td><td></td><td></td><td>150</td><td></td><td></td><td>0</td><td>-60</td><td></td><td>KBRC039</td><td></td><td>0</td><td></td><td></td><td>0</td><td>-60</td><td>346.5</td><td>KBRC075</td><td>0</td><td>-90</td><td>0</td><td>KBRC095</td><td>29</td><td>-56</td><td>331.5</td></th<>		105	-70	324.5	KBDD092	210	-73			150			0	-60		KBRC039		0			0	-60	346.5	KBRC075	0	-90	0	KBRC095	29	-56	331.5
below below <th< td=""><td></td><td>135</td><td>-69.75</td><td></td><td></td><td>0</td><td>-65</td><td></td><td></td><td>180</td><td></td><td></td><td>2</td><td>-60</td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>2</td><td>-60</td><td></td><td></td><td>1</td><td>-90</td><td>0</td><td>KBRC095</td><td>59</td><td>-58</td><td>329</td></th<>		135	-69.75			0	-65			180			2	-60				2			2	-60			1	-90	0	KBRC095	59	-58	329
kbook kbook <th< td=""><td></td><td>165</td><td></td><td></td><td></td><td>29</td><td></td><td></td><td></td><td></td><td></td><td></td><td>73</td><td></td><td></td><td></td><td>4</td><td>10</td><td></td><td></td><td>43</td><td>-60</td><td></td><td></td><td>0</td><td>-60</td><td>346 5</td><td></td><td>95</td><td>58.5</td><td></td></th<>		165				29							73				4	10			43	-60			0	-60	346 5		95	58.5	
Instruct													,5								85		342		2	-60					
kebool 225 68.5 332.5 kebool 120 69 336.5 kebcol 10 70 326.5 48.7 58.7 <t< td=""><td></td><td></td><td>-68 75</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td>0</td><td>-60</td><td>346 5</td><td></td><td>64</td><td>-57.5</td><td></td><td></td><td>0</td><td></td><td></td></t<>			-68 75										2					0			0	-60	346 5		64	-57.5			0		
kB00001 285 -68 336 kB00005 19 -08 336 kB0011 0 -99 0 kBB0058 49 -58 330 kBR0051 2 -90 0 222.5 kB00017 0 325.5 kB0006 120 -67 338.5 kBR002 2 -04 327.5 kBR014 0 -90 0 kBR058 49 -58 330 kBR021 56 -62 322.5 kBR017 330.5 kBR027 330.5 kBR027 330.5 kBR028 0 -60 346.5 kBR027 330.5 kBR027 330.5 kBR028 3										0			52				1	1			2	-60					545.5		29 -		
kBD007 0 -70 3255 kB0006 180 -68 3365 kBRC02 2 70 460 227 kBRC01 1 -90 0 kBRC08 97 -60 336 56 -27.5 kBRC07 89 -63 222.5 kBD007 06 -70 3255 kBBC08 -67 338.5 kBRC03 0 -70 347.5 kBRC03 0 -70 345.5 kBRC03 0 -70 347.5 kBRC03 0 -70										ő											49				0	50	0				322.5
KBD001 30 -70 3255 KBD006 210 -67 3385 KBC002 57 -662 3465 KBC022 -0 -90 -00 KBC059 20 -60 3465 KBC027 -10 345 KBC027 -70 3355 KBC020 -60 3355 KBC027 -70 3465 KBC028 -9 -55.5 327.5 KBRC02 -60 3465 KBRC028 -0 -60 3455 KBRC028 -10 -60 345.5 KBRC037 -70 346 KBRC037 -70 -36 CBRC037 -60 345.5 KBRC03 -60 345.5 KBRC037 -60 345.5 KBRC037 -60 345.5 KBRC03 -0 -0 -0 345.5 KBRC03 -0										2								-			97				~	50	217 5				
kB0007 60 -70.7 325.5 kB0006 240 -67 338.5 kBR003 0 -70 55.5 327.5 kBR002 1 -90 0 kBR005 2 -60 346.5 kBR002 1 -60 346.5 kBR003 -60 327.5 kBR003 -60 20.0 kBR005 20.0 kBR005 <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>57</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>545</td> <td></td> <td></td> <td></td> <td>217.5</td> <td></td> <td></td> <td></td> <td></td>		0								57			2				-	-					545				217.5				
kB0007 99 -70 336 kB0038 0 -60 3275 kB0037 0 -60 260 -60 346 kB0037 0 -60 -60 3357 kBR038 0 -60 3275 kB0037 -60 3357 kBR038 -60 -60		50								3/			70					1			2				1	-90	0				
kB0007 120 -70 327 kB0008 3 -64 26.55 kB6.023 93 -66 346.5 kB6.023 2 -60 27.5 kB0.003 10 -90 00 kB0.050 0 -90 33.5 kB0.050 -90 -90 33.5 kB0.053 -90 -90 33.5 kB0.053 -90 -90 33.5 kB0.050 -90										2			/9					-			40				1	-90	220.5				
KBD0007 150 69.5 327.5 KBD008 60 -64 327.5 KBD008 60 -64 327.5 KBD007 320.5 KBD008 90 -65 328.5 KBD007 320.5 KBD008 90 -65 328.5 KBD007 320.5 KBD008 90 -65 328.5 KBD008 90 -65 328.5 KBD007 320.5 KBD007 210 -68 327.5 KBD007 327.6 327.6 327.6 327.6 327.6 327.6 327.6 327.6 327.6 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td>•</td><td>50 0</td><td></td><td>40</td><td>00</td><td>545</td><td></td><td></td><td>0/</td><td>220.5</td><td></td><td>1/3 -</td><td></td><td></td></th<>						0				2			0					•	50 0		40	00	545			0/	220.5		1/3 -		
KBD0007 180 -69 3205 KB0008 90 65 3255 KB0003 CB 90 68 90 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>93</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>0</td> <td>-90</td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td>										93			2								0				0	-90	0		0		
KBD001 210 68 3275 KBD008 120 64.5 330.5 KBRC04 40 69 346.5 KBRC04 115 69 351.5 KBRC04 0 60 346.5 KBRC04 0 60 56 346.5 KBRC04 10 60 56 346.5 KBRC04 2 66 366.5 KBRC04 2 66 36.5 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>2</td><td>-90</td><td>0</td><td></td><td>1</td><td></td><td></td></th<>																	-	-			2				2	-90	0		1		
KRD001 240 -68 3325 KB0008 150 -63.5 3325 KBRC04 123 -63 3326 KBRC04 123 -63 3326 KBRC04 123 -63 3326 KBRC04 123 -63 3346 KBRC04 123 -63 3346 KBRC04 123 -63 3346 KBRC04 57 3356 KBRC04 2 -61 3466 KBRC04 57 3356 KBRC04 336 3356 KBRC04 336 3356 KBRC04 3366 KBRC04 346 KBRC04 2 -61 3466 KBRC04 57 3356 KBRC04 346 58 346 KBRC04 2 -61 3466 KBRC04 56 346 KBRC04 36 346 KBRC04 2 -60 3466 KBRC04 2 -60 34			05							2							5				55		540			50	0				
KBD007 270 67.2 326.5 KBD008 18 63 28.5 KBC013 0 70 346.5 KBC030 2 65.0 22.0 69 0 KBC051 63 63 63 63 63 63 63 63 63 63 63 64 57 63 60 70 63 74.4										40			141								U				0		0				
KBD0017 300 67.9 331.5 KBD008 210 6.3 328.5 KBRC013 33 6.9 346.5 KBRC03 4.9 5.7 328.5 KBRC045 2 -60 346 KBRC085 2 -60 346.5 KBRC013 4.9 -57 328.5 KBRC045 2 -60 346.5 KBRC085 2 -80 336.5 KBRC013 4.9 -57 328.5 KBRC045 2 -90 0 KBRC061 72 -60 346.5 KBRC085 2 -80 -30 -60 -346.5 KBRC013 -30 -59 -327.6 KBRC045 -90 0 KBRC052 0 -60 -346.5 KBRC013 -30 -59 -327.6 KBRC045 -90 0 KBRC052 -00 -60 -346.5 KBRC013 -30 -59 -327.6 -327.6 KBRC045 -90 0 KBRC052 -00 -346.5 KBRC055 -21 -30.5 KBRC101 -30 -59 -327.6 -327.6 KBRC045 -90 0 KBRC056 21 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>123</td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td>15</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>0</td> <td></td> <td>90 -</td> <td></td> <td></td>										123			0				15				2				-		0		90 -		
KBD0017 329.5 -66 336 KBC013 63 69 346.5 KBR003 82 -5.5 328.5 KBR045 88 -60 160 -60 346.5 KBR055 2 -80 -30 -36 -30 -39 -327.5 - <										0			2								43		540		-	50	0		0	00	
Image: Strate					KBDD098	210	-63	328.5		33											72				0				1		
Image: State	KBDD017	329.5	-66	336						63		KBRC030	82	-55.5	328.5		8				0				~						
									KBRC013	99	-70 346.5	<u> </u>						0			2									50	
KBRC046 91 -88 0 KBRC062 72 -60 347																		2			37			KBRC085	71	-81.5	321.5	KBRC101	90	-58	327.6
									1							KBRC046	9	91	-88 0	KBRC062	72	-60	347								

Appendix 3 Kaiser Bill Significant Intersections

Hole_ID	From	To	Width	Cu %	Zn%		g ppm	Hole_ID	From	To	Width	Cu %		Pb %	Ag ppm	Hole_ID	From	To	Width	Cu %	Zn%		lg ppm
KB145 KB147	312.00 242.00	318.00 244.00	6.00 2.00	0.50	0.25	0.00	8 88	KBRC001 KBRC001	7.00	11.00 34.00	4.00	0.44	0.01	0.00	1	KBRC057 KBRC057	19.00 26.00	20.00 38.00	1.00 12.00	0.30	0.18	0.01	4
KB147 KB150	101.00	117.00	16.00	0.64	0.07	0.01	00	KBRC001 KBRC002	21.00	34.00	13.00	0.51	0.01	0.01	5	KBRC057 KBRC057	44.00	51.00	7.00	0.95	0.02	0.01	24
KB150	123.00	138.00	15.00	0.84	0.07	0.01	5	KBRC002	42.00	48.00	6.00	1.06	0.02	0.02	10	KBRC057	56.00	59.00	3.00	1.12	1.48	0.03	27
KB150	142.00	152.00	10.00	1.14	0.06	0.00	7	KBRC003	29.00	38.00	9.00	0.66	0.01	0.01	20	KBRC057	69.00	73.00	4.00	1.25	0.51	0.02	55
KB150	157.00	170.00	13.00	0.82	0.04	0.01	3	KBRC003	41.00	47.00	6.00	0.51	0.01	0.00	2	KBRC058	37.00	48.00	11.00	0.72	0.02	0.00	1
KB150	173.00	189.00	16.00	0.60	0.03	0.01	2	KBRC003	51.00	58.00	7.00	0.33	0.02	0.01	4	KBRC058	52.00	57.00	5.00	0.77	0.02	0.01	3
KB150	201.00	220.00	19.00	1.49	0.04	0.00	7	KBRC003	61.00	77.00	16.00	0.48	1.24	0.92	20	KBRC058	62.00	67.00	5.00	0.68	0.03	0.01	4
KB150	233.00	240.00	7.00	0.81	0.04	0.01	2	KBRC004	48.00	54.00	6.00	0.96	0.01	0.00	2	KBRC058	77.00	86.00	9.00	0.58	0.69	0.00	18
KB150	250.00	272.00	22.00	0.74	0.07	0.00	3	KBRC004	57.00	65.00	8.00	1.02	0.02	0.00	2	KBRC059	1.00	27.00	26.00	0.52	0.07	0.02	13
KB151	236.00	237.00	1.00	0.47	0.05	0.00	2	KBRC004	68.00	83.00	15.00	0.40	0.01	0.01	1	KBRC060	4.00	9.00	5.00	0.41	0.04	0.01	1
KB151	300.00	311.00	11.00	1.46	0.09	0.01	8	KBRC004	86.00	89.00	3.00	0.22	0.24	0.02	8	KBRC060	18.00	23.00	5.00	0.53	0.09	0.03	16
KB153 KB155	259.00 300.00	304.00 302.00	45.00 2.00	1.29	0.03	0.00	2	KBRC004 KBRC013	118.00 26.00	120.00 31.00	2.00	1.63 0.53	0.37	0.17	38	KBRC060 KBRC061	33.00 15.00	40.00 18.00	7.00	0.79	0.06	0.01	10
KB155	305.00	319.00	14.00	1.59	0.04	0.00	4	KBRC013	34.00	49.00	15.00	0.55	0.01	0.00	2	KBRC061	25.00	44.00	19.00	0.55	0.07	0.01	6
KB155	323.00	327.00	4.00	3.30	0.08	0.01	14	KBRC013	56.00	61.00	5.00	1.44	0.06	0.02	24	KBRC061	47.00	51.00	4.00	0.92	0.02	0.00	4
KBD001	174.00	186.00	12.00	0.91	0.07	0.00	6	KBRC014	3.00	7.00	4.00	0.46	0.01	0.00	1	KBRC061	62.00	70.00	8.00	1.41	1.48	0.01	56
KBD001	190.00	216.00	26.00	1.08	0.04	0.00	9	KBRC014	19.00	30.00	11.00	0.67	0.01	0.01	2	KBRC062	15.00	17.00	2.00	0.40	0.09	0.00	5
KBD001	220.00	232.00	12.00	0.77	0.06	0.00	9	KBRC014	34.00	38.00	4.00	0.59	0.01	0.01	4	KBRC062	23.00	37.00	14.00	0.57	0.04	0.01	2
KBD002	279.00	281.00	2.00	1.29	0.04	0.00	13	KBRC015	27.00	48.00	21.00	0.49	0.01	0.01	1	KBRC062	41.00	47.00	6.00	0.51	0.14	0.01	10
KBD002	288.00	290.00	2.00	1.15	0.02	0.00	4	KBRC015	61.00	63.00	2.00	0.48	0.53	0.01	8	KBRC062	63.00	69.00	6.00	0.86	0.38	0.01	32
KBD002 KBDD005	301.00 71.00	303.00 82.00	2.00	0.79	0.02	0.00	5	KBRC016 KBRC016	22.00 43.00	35.00 45.00	13.00 2.00	0.75	0.10	0.01	8	KBRC063 KBRC063	17.00 37.00	34.00 55.00	17.00 18.00	0.78	0.02	0.01	2
KBDD005	155.00	159.00	4.00	0.62	0.01	0.00	2	KBRC018	45.00	45.00	2.00	0.51	0.03	0.01	0	KBRC063	58.00	63.00	5.00	0.70	0.05	0.01	10
KBDD005	170.00	177.00	7.00	0.64	0.18	0.14	20	KBRC022	37.00	39.00	2.00	1.73	1.73	0.03	48	KBRC064	17.00	20.00	3.00	0.32	0.02	0.00	2
KBDD006	94.00	97.00	3.00	0.67	0.03	0.00	2	KBRC024	91.00	93.00	2.00	1.54	0.03	0.00	25	KBRC064	24.00	28.00	4.00	0.92	0.01	0.01	2
KBDD006	107.00	115.00	8.00	0.66	0.03	0.00	3	KBRC025	155.00	159.00	4.00	0.51	0.01	0.00	2	KBRC064	32.00	34.00	2.00	0.43	0.01	0.01	1
KBDD006	135.00	144.00	9.00	0.61	0.02	0.00	4	KBRC026	28.00	32.00	4.00	0.33	0.04	0.04	7	KBRC064	38.00	53.00	15.00	0.61	0.03	0.01	3
KBDD006	163.00	166.00	3.00	4.32	0.02	0.00	18	KBRC027	77.00	80.00	3.00	0.47	0.08	0.02	10	KBRC064	57.00	62.00	5.00	1.03	0.23	0.04	21
KBDD006	178.00	186.00	8.00	0.26	0.02	0.01	3	KBRC029	92.00	95.00	3.00	0.41	0.08	0.00	8	KBRC065	35.00	59.00	24.00	0.69	0.07	0.01	4
KBDD007	116.00	122.00	6.00	0.74	0.02	0.00	3	KBRC030	43.00	49.00	6.00	0.58	0.02	0.01	4	KBRC065	68.00	71.00	3.00	0.52	0.04	0.01	4
KBDD007 KBDD007	128.00 155.00	135.00 158.00	7.00	0.50	0.02	0.01	2	KBRC031 KBRC031	78.00 95.00	88.00 106.00	10.00 11.00	1.20	0.01	0.00	5	KBRC065 KBRC065	82.00 92.00	84.00 94.00	2.00	0.39	0.02	0.00	4
KBDD007	162.00	158.00	3.00	0.44	0.20	0.05	6 7	KBRC031 KBRC031	95.00	106.00	4.00	0.38	0.02	0.01	4	KBRC065	50.00	94.00 61.00	2.00	0.68	0.02	0.01	2
KBDD007	102.00	114.00	8.00	0.85	0.02	0.01	6	KBRC032	31.00	35.00	4.00	0.75	0.85	0.01	25	KBRC066	65.00	81.00	16.00	0.74	0.02	0.01	2
KBDD008	117.00	130.00	13.00	0.74	0.21	0.01	2	KBRC032 KBRC032	40.00	47.00	7.00	0.48	0.02	0.01	8	KBRC066	85.00	92.00	7.00	0.66	0.02	0.01	10
KBDD008	133.00	148.00	15.00	1.08	0.03	0.01	4	KBRC033	55.00	57.00	2.00	0.53	0.01	0.00	1	KBRC066	97.00	99.00	2.00	1.86	0.11	0.01	70
KBDD008	158.00	165.00	7.00	0.52	0.06	0.00	5	KBRC033	61.00	80.00	19.00	0.72	0.01	0.01	2	KBRC067	66.00	89.00	23.00	0.92	0.37	0.01	7
KBDD008	170.00	183.00	13.00	2.60	0.31	0.01	42	KBRC033	84.00	87.00	3.00	0.78	0.03	0.01	5	KBRC067	95.00	114.00	19.00	0.69	0.02	0.00	4
KBDD008	202.00	212.00	10.00	0.68	0.02	0.01	4	KBRC034	89.00	105.00	16.00	0.78	0.02	0.00	3	KBRC068	26.00	31.00	5.00	0.97	0.21	0.02	16
KBDD008	218.00	224.00	6.00	0.49	0.05	0.00	7	KBRC034	111.00	114.00	3.00	1.08	0.01	0.00	3	KBRC068	34.00	44.00	10.00	0.77	0.63	0.14	28
KBDD009	83.00	96.00	13.00	0.34	0.05	0.01	5	KBRC034	120.00	125.00	5.00	0.48	0.02	0.00	4	KBRC068	48.00	52.00	4.00	0.78	0.06	0.01	6
KBDD009	100.00 118.00	102.00 125.00	2.00	0.56	0.81	0.21	28 18	KBRC034 KBRC035	128.00 11.00	133.00 15.00	5.00 4.00	0.50	0.32	0.02	6	KBRC068 KBRC069	55.00 8.00	58.00 16.00	3.00	0.91	0.02	0.00	3
KBDD009 KBDD009	128.00	125.00	28.00	1.16	0.19	0.07	21	KBRC035	21.00	23.00	2.00	1.02	0.01	0.00	2	KBRC070	27.00	29.00	2.00	1.81	0.03	0.01	7
KBDD003	128.00	113.00	7.00	0.94	0.03	0.00	13	KBRC035	26.00	23.00	2.00	0.70	0.01	0.00	2	KBRC070	34.00	47.00	13.00	1.19	0.01	0.01	6
KBDD010	116.00	159.00	43.00	0.97	0.02	0.01	4	KBRC035	31.00	48.00	17.00	0.89	0.01	0.00	3	KBRC071	0.00	3.00	3.00	0.34	0.01	0.01	0
KBDD011	138.00	147.00	9.00	0.91	0.07	0.02	11	KBRC035	52.00	54.00	2.00	0.59	0.01	0.00	4	KBRC071	6.00	14.00	8.00	0.30	0.01	0.01	3
KBDD012	139.00	165.00	26.00	1.05	0.03	0.00	5	KBRC036	44.00	52.00	8.00	0.92	0.01	0.00	3	KBRC071	23.00	31.00	8.00	0.81	0.01	0.01	4
KBDD012	169.00	213.00	44.00	0.87	0.02	0.00	5	KBRC036	58.00	61.00	3.00	0.94	0.02	0.01	3	KBRC072	3.00	7.00	4.00	0.49	0.01	0.01	1
KBDD012	219.00	225.00	6.00	0.80	0.07	0.00	5	KBRC036	68.00	86.00	18.00	0.78	0.14	0.01	9	KBRC072	18.00	33.00	15.00	0.57	0.06	0.02	8
KBDD012	236.00	240.00	4.00	0.37	0.08	0.00	7	KBRC037	55.00	82.00	27.00	0.68	0.02	0.01	2	KBRC073	3.00	17.00	14.00	0.32	0.01	0.01	2
KBDD012	244.00 249.00	251.00 270.00	7.00 21.00	0.54	0.10	0.00	5	KBRC037	91.00	98.00 69.00	7.00 7.00	0.91	0.07	0.01	15	KBRC073 KBRC074	22.00	27.00 5.00	5.00 5.00	0.96	0.01	0.01	5
KBDD017 KBDD017	249.00	270.00	5.00	0.47	0.03	0.00	2	KBRC038 KBRC038	62.00 92.00	95.00	3.00	0.47	0.05	0.01	4	KBRC074 KBRC074	8.00	16.00	8.00	0.55	0.02	0.01	1
KBDD017 KBDD017	293.00	300.00	7.00	0.99	0.02	0.01	5	KBRC039	46.00	56.00	10.00	0.76	0.02	0.00	4	KBRC075	0.00	4.00	4.00	0.85	0.02	0.00	- 2
KBDD017	306.00	321.00	15.00	0.98	0.04	0.00	7	KBRC039	67.00	79.00	12.00	0.78	0.33	0.01	28	KBRC075	8.00	17.00	9.00	0.68	0.18	0.02	14
KBDD018	221.00	233.00	12.00	0.57	0.02	0.01	4	KBRC040	42.00	56.00	14.00	0.83	0.02	0.00	3	KBRC080	12.00	48.00	36.00	0.52	0.05	0.01	4
KBDD076	36.00	37.00	1.00	0.35	0.08	0.01	15	KBRC040	79.00	81.00	2.00	0.48	0.01	0.00	8	KBRC081	0.00	10.00	10.00	0.44	0.02	0.00	3
KBDD076	43.00	59.00	16.00	0.68	0.23	0.01	17	KBRC041	117.00	120.00	3.00	0.40	0.01	0.00	3	KBRC081	31.00	52.00	21.00	1.11	0.02	0.01	6
KBDD076	68.90	72.00	3.10	0.74	0.04	0.02	8	KBRC042	38.00	44.00	6.00	0.89	0.01	0.02	13	KBRC082	0.00	10.00	10.00	0.51	0.01	0.00	3
KBDD076	78.00	81.10	3.10	0.91	0.13	0.01	43	KBRC043	37.00	40.00	3.00	0.85	0.01	0.00	10	KBRC083	11.00	18.00	7.00	0.40	0.02	0.00	1
KBDD076	86.00	89.00	3.00	1.66	0.15	0.01	74	KBRC043 KBRC043	65.00 75.00	68.00 77.00	3.00	0.90	0.02	0.00	9	KBRC083	22.00 36.00	27.00 44.00	5.00 8.00	1.10	0.02	0.01	3
KBDD077 KBDD077	37.00 45.00	38.00 54.00	9.00	0.52	0.17	0.03	3	KBRC043 KBRC044	69.00	72.00	3.00	0.70	0.03	0.00	21	KBRC083 KBRC083	47.00	44.00 55.00	8.00	0.37	0.02	0.00	2
KBDD077	59.00	77.00	18.00	0.32	0.02	0.01	2	KBRC044 KBRC044	94.00	98.00	4.00	0.27	0.01	0.00	1	KBRC083	62.00	64.00	2.00	1.28	0.01	0.00	4
KBDD077	87.00	90.00	3.00		0.29	0.02	82	KBRC046	85.00	87.00	2.00	0.60	0.02	0.00	15	KBRC085	17.00	19.00	2.00	0.49	0.03	0.02	8
KBDD078	49.00	61.00	12.00	1.24	0.02	0.00	3	KBRC047	19.00	22.00	3.00	0.63	0.01	0.00	2	KBRC085	53.00	66.00	13.00	0.94	0.01	0.01	2
KBDD078	66.00	70.00	4.00		0.01	0.00	2	KBRC047	49.00	57.00	8.00	0.57	0.02	0.00	6	KBRC085	69.00	75.00	6.00	0.85	0.02	0.01	3
KBDD078	73.00	86.00	13.00		0.03	0.00	2	KBRC048	11.00	16.00	5.00	0.46	0.01	0.00	1	KBRC089	118.00	137.00	19.00	0.57	0.03	0.01	7
KBDD078	91.00	96.00	5.00	0.85	0.08	0.01	17	KBRC048	20.00	23.00	3.00	0.36	0.01	0.00	1	KBRC090	52.00	58.00	6.00	0.91	0.27	0.02	18
KBDD079 KBDD079	66.00 83.00	75.00 90.00	9.00	0.69	0.02	0.01	6	KBRC048 KBRC048	40.00 45.00	42.00	2.00	0.99	0.02	0.00	3	KBRC091 KBRC093	13.00 104.00	18.00 117.00	5.00 13.00	0.45	0.02	0.00	3
KBDD079 KBDD079	93.00	90.00	7.00		0.02	0.01	4	KBRC048 KBRC049	45.00	52.00 5.00	7.00	0.50	0.02	0.00	4	KBRC093 KBRC094	104.00	117.00	13.00	0.87	0.03	0.01	3
KBDD079	109.00	103.00	2.00	0.65	0.03	0.01	9	KBRC049 KBRC049	17.00	20.00	3.00	0.48	0.01	0.01	2	KBRC094 KBRC095	86.00	121.00	24.00	0.36	0.04	0.01	4
KBDD092	163.00	169.00	6.00	0.49	0.02	0.01	2	KBRC049	24.00	44.00	20.00	0.95	0.02	0.00	3	KBRC097	104.00	109.00	5.00	1.29	0.03	0.00	17
KBDD092	172.00	189.50	17.50		0.06	0.00	5	KBRC050	33.00	47.00	14.00	0.77	0.02	0.00	2	KBRC097	125.00	128.00	3.00	0.55	0.01	0.00	1
KBDD096	142.00	146.00	4.00		0.03	0.01	4	KBRC050	52.00	57.00	5.00	0.38	0.07	0.00	12	KBRC097	134.00	146.00	12.00	1.30	0.04	0.01	6
KBDD096	155.00	176.30	21.30	0.94	0.04	0.01	3	KBRC050	60.00	63.00	3.00	0.62	0.18	0.00	26	KBRC097	150.00	182.00	32.00	0.80	0.05	0.01	4
KBDD096	180.30	200.00	19.70	0.92	0.02	0.01	3	KBRC050	68.00	70.00	2.00	0.91	0.05	0.00	25								
KBDD096	221.10	222.30	1.20	0.99	0.09	0.00	14 14	KBRC051	27.00	58.00	31.00	1.11	0.01	0.00	4								
KBDD098 KBDD099	168.70 31.00	215.10 32.00	46.40	1.71 0.54	0.06	0.01	14	KBRC052 KBRC052	0.00	5.00 23.00	5.00 5.00	0.38	0.01	0.00	1								
KBDD099 KBDD099	31.00	32.00	2.00		0.08	0.00	3	KBRC052 KBRC053	58.00	72.00	14.00	1.14	0.02	0.00	2								
KBDD099	196.00	213.00	17.00		0.02	0.00	2	KBRC053	76.00	82.00	6.00	0.76	0.01	0.01	2								
KBDD099	216.00	235.00	19.00		0.03	0.00	8	KBRC053	96.00	99.00	3.00	1.00	0.02	0.01	14								
KBDD103	147.00	152.00	5.00	0.48	0.03	0.00	9	KBRC054	9.00	17.00	8.00	0.60	0.24	0.02	12								
KBDD103	165.00	169.00	4.00		0.03	0.00	3	KBRC054	22.00	24.00	2.00	0.63	0.25	0.01	6								
KBDD103	177.00	181.00	4.00		0.07	0.02	6	KBRC054	27.00	44.00	17.00	1.00	0.13	0.01	28								
KBDD103 KBDD103	191.00 214.00	196.00 235.70	5.00 21.70		0.04	0.00	6 17	KBRC055 KBRC055	9.00 31.00	24.00 53.00	15.00 22.00	0.72	0.37	0.05	16 9								
KBDD103 KBDD104	140.00	235.70	21.70	0.59	0.09	0.07	1/	KBRC055 KBRC056	15.00	37.00	22.00	0.78	0.11	0.01	29								
KBDD104	155.00	164.00	9.00	0.51	0.04	0.01	3	KBRC056	40.00	45.00	5.00	0.84	0.20	0.01	8								
KBDD104	170.00	209.00	39.00		0.03	0.01	5	KBRC056	61.00	66.00	5.00	0.38	0.44	0.00	18								
KBDD104	212.00	218.00	6.00	0.64	0.02	0.01	3																