HANNANS

25 October 2017

ASX & MEDIA ANNOUNCEMENT

Forrestania Lithium Project

- O Drilling appears to have intersected a fertile peraluminous granite which is important when exploring for pegmatites hosting lithium
- An updated interpretation of the 'margin' of the granite intrusion is being prepared which will aid future exploration targeting
- Interpretation of results from 2nd phase of exploration (RAB drilling) is ongoing, together with planning and seeking approval for a 3rd phase of exploration (RC drilling)

Hannans Ltd (ASX:HNR) is pleased to update shareholders on the progress of exploration at its 100% owned Forrestania Lithium Project, located approximately 100kms south of Southern Cross, Western Australia (refer Figures 1 and 2 on Page 2).

The background to today's announcement is that Hannans recently responded to a price and volume query from the ASX¹ following a substantial increase in the volume traded and price of Hannans shares. Hannans would not normally request a halt in the trading of its shares to provide time to interpret early stage exploration results. The Company would normally summarise these results in a general project update or Quarterly Report. On this occasion however, the Board considered it prudent to request a halt to ensure the market was trading on a fully informed basis.

As previously advised Hannans has focused its exploration approximately 4km west of the interpreted margin of the granite intrusion located on the eastern side of Hannans tenement E77/2219 (refer Figure 3 on Page 3)². Accurately mapping the margin of the granite intrusion is important because it is this distance (i.e. 4km) from the margin that appears to be the distance necessary to allow for cooling of the pegmatites sourced from the granite, and for differential crystallization of exotic minerals including spodumene (an important lithium mineral).⁴ The geochemical data received from the 2nd phase of drilling suggests that the margin of the granite intrusion may be located further west than originally interpreted, and therefore Hannans is combining all data sets to complete a new 'margin' interpretation to aid future exploration targeting.

It is important to note that several pegmatites, close to (but beneath) the surface and at depth, have been mapped by explorers in tenements that abut Hannans' tenure (refer Figure 3 on Page 3)⁵. An example is the pegmatite in the Van Uden open pit (previously mined for gold) which is reported as being an attractive target (for lithium) with a pegmatite greater than 20 metres in width.⁶ Much of the area within the Hannans tenure is covered by windblown sands and thick scrub so identifying outcropping rocks (including granites and pegmatites) is challenging. So far Hannans has only completed shallow drilling (max. depth 68m) on previously cleared grid lines⁷ and is planning further reconnaissance drilling and deeper drilling, subject to completion of the 'margin' interpretation, the generation of robust targets and the receipt of all government approvals.

¹ Refer ASX release dated 16 October 2017

HANNANS LTD ASX:HNR ABN:52 099 862 129

Level II, London HouseT:+61 (8) 9324 3388216 St Georges TceE:info@hannansreward.comPerth WA 6000W:www.hannansreward.comPostal address: PO Box 1227Twitter:@hannansrewardWest Perth WA 6872Facebook: Hannans

² Hannans initial interpretation of the location of the margin of the granite intrusion on the eastern side of E77/2219 was based solely on airborne geophysics.

⁴ Refer to presentations released to ASX by Pioneer Resources Ltd (ASX:PIO) as well as research published by Ĉerný ⁵ Refer ASX releases by Zenith Minerals Ltd (ASX:ZNC) dated 11 August 2016 and 19 June 2017 as well as ASX release by Kidman Resources Ltd (ASX:KDR) dated 5 July 2016 and 5 December 2016. Note that the Earl Grey lithium deposit starts at close to surface and then plunges to a depth of more than 300 metres.

⁶ Refer page 5 of ASX release made by Kidman Resources Ltd (ASX:KDR) on 5 July 2016

⁷ This reduces the environmental disturbance during reconnaissance exploration drill programs

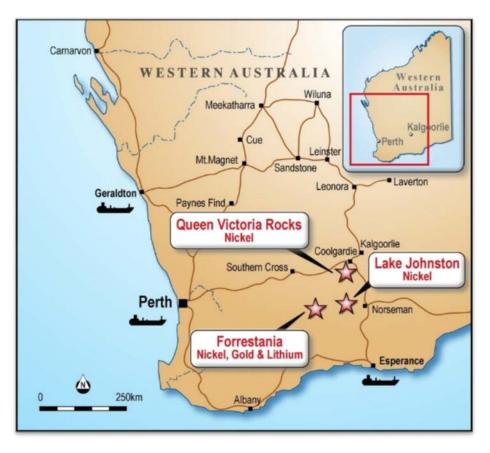


Figure 1: Location Map showing Hannans' Forrestania Project and Queen Victoria Rocks Project and Lake Johnston Joint Venture Project (Hannans free-carried)

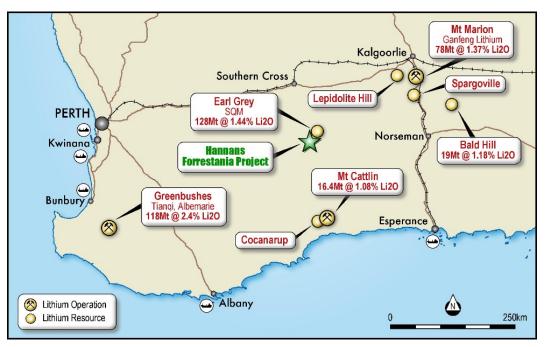


Figure 2: Location Map showing Hannans Forrestania Project relative to the only three producing lithium mines in Western Australia and several advanced lithium development projects

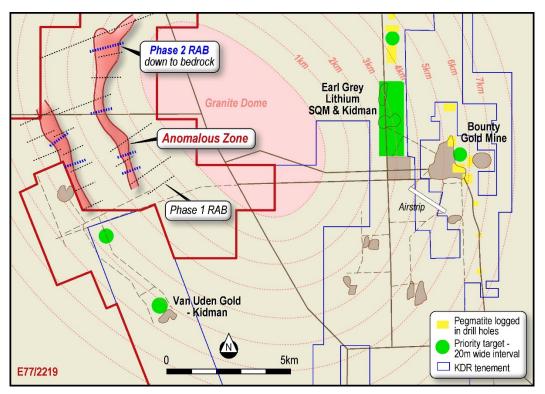


Figure 3: Interpreted location of granite intrusion and approximate location only of 1st and 2nd phase of RAB drilling by Hannans. Hannans owns 100% of tenement E77/2219. References to pegmatites logged in drilling is based on information reported by Kidman Resources Ltd.

Figure 4: Phase 2 drilling at Forrestania Lithium Project (Photo courtesy of Bryan Smith)

On Thursday evening¹² Hannans received assay results from its 2nd phase of exploration RAB drilling. The drill holes were located one to six kilometres west of the interpreted margin of the granite intrusion thought to be the source of the pegmatites hosting the high-grade lithium mineralisation at Earl Grey¹³. Six traverses of drilling were completed with the holes spaced at 50 and 100 metre intervals (refer Figure 4 on Page 3). The holes were drilled to recognisable material and drilling depths averaged 50 metres. Much of the material in the holes appeared to be oxidized granite only (i.e. not pegmatitic rocks) as evidenced by the quartz, kaolinitic clays and occasional mica. If the partially oxidized bottom of hole samples is representative of the underlying granite, then the granite is interpreted to be peraluminous and can therefore be considered fertile¹⁵. The presence of a fertile source rock is very important when exploring for pegmatites hosting lithium.

In summary therefore Hannans' next steps include gaining an understanding of the relationship between the lithium anomalism intersected in the 1st RAB drill program and the granite intersected in the 2nd RAB drill program, updating the geological model, generating the next round of drill targets and obtaining government approvals to complete a 3rd phase of drilling.

For further information, please contact:

Damian Hicks Executive Director +61 419 930 087 (M) damianh@hannansreward.com (E)

About Hannans Ltd (Est. 2002)

Hannans Ltd (ASX:HNR) is an Australia resources company with a focus on nickel, lithium, cobalt and gold in Western Australia. Hannans' major shareholder is leading Australian specialty minerals company Neometals Ltd. Since listing on the ASX in 2003 Hannans has signed agreements with Vale Inco, Rio Tinto, Anglo American, Boliden, Scandinavian Resources, Warwick Resources, Cullen Resources, Azure Minerals, Neometals, Tasman Metals, Grängesberg Iron, Lovisagruvan and Montezuma Mining Company. Shareholders at various times since listing have included Rio Tinto, Anglo American, OM Holdings, Craton Capital and BlackRock. For more information, please visit <u>www.hannansreward.com</u>.

Competent Person

The information in this document that relates to exploration results at Forrestania is based on information compiled by Dr Bryan Smith, a Competent Person who is a Member of the Australian Institute of Geoscientists. Dr Smith is a consultant to Hannans Ltd and its subsidiary companies. Dr Smith has sufficient experience, which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which has been undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code). Dr Smith consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

¹² 19 October 2017

¹³ Owned by Kidman Resources Ltd (ASX:KDR) and SQM (NYSE:SQM) the world's largest lithium producer with revenue in the 12 months to 31 March 2017 of USD2.1 billion. It is also possible that the source of the lithium at Earl Grey is from a different granite intrusion to the one contained within Hannans tenement E77/2219

¹⁵ The peraluminous character is determined from the molecular ratio of $Al_2O_3/CaO + K_2O + MgO$ where the value is peraluminous if greater than 1.0.

Table 1							
	Section 1 Sampling Techniques and	d Data					
Criteria	JORC Code Explanation	Commentary					
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure samples representative and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Industry standard sampling of 57 RAB holes. Samples were split to form either 2 or 4 meters composites, generally only of the geologically recognizable material at end of hole.					
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	57 vertical RAB holes were drilled at spacing of 50 and 100 metres along six lines to follow up anomalies from a previous phase of air-core drilling. The sampling lines were located on the old nickel exploration lines established by AMAX Mining in 1974. The lines are at variable spacing oriented generally in an ENE/WSW direction and never closer than 800 metres spacing. The holes were drilled vertically to geologically recognizable material. This was always partially oxidized and the depth of drilling necessary averaged 50					

		metres. A total of 2,759 metres of RAB was drilled
Drill sample recovery.	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	A qualitative logging code was used to record recovery. Recovery of samples is considered to be good and no bias was indicated.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	Drill samples were geologically logged with reference being made to chip samples that had been sieved from each metre. The documentation of the mineralogy was appropriate for any future metallurgical studies.
Sub-sampling and analytical techniques and sample preparation.	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	The samples from the bottom two metres of each hole as well as the two metres immediately above were composited separately, crushed, pulverized and sub- sampled for analysis. The sub-samples were digested using a mixture of four acids and analyzed by optic emission spectrometry. The analytical procedures are appropriate to the metallurgical process that will be used. The analyses that were carried out are: Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sn, Sr, Te, Ti, Tl, V, W and Zn. Standard quality control procedures were applied which included duplicate analyses.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or	The type and quality of the analysis and laboratory procedures are appropriate

laboratory	total.	to the metallurgical process		
tests.	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	being considered. Acceptable levels of accuracy were established by the quality control procedures.		
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.			
Verification of sampling and assaying.	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data was recorded in the field on paper logs and transferred to individual .xls files prior to merging with project database. No twin holes were drilled and no verification of significant intersections by independent laboratories has been		
	Discuss any adjustment to assay data.	undertaken.		
Location of data points.	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	The surveys were carried out using a hand-held GPS and the accuracy and quality of the surveys were acceptable for early stage exploration.		
Data spacing and distribution.	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The holes were spaced at 50 and 100 metres along six traverse lines spaced at about 800 metres. The drill hole spacing was sufficient to establish continuity of the major geological units between the drill lines.		
Orientation of data in relation to geological structure.	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The traverse lines were oriented at right angles to the geological structures being tested and considered unbiased and appropriate for the early stage of exploration.		

Sample Security	The measures taken to ensure sample security.	Samples are were stored onsite and transported to the laboratory by a Hannans consultant.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of sampling techniques and data have been conducted to date.

Section 2 Reporting of Exploration results.								
Mineral tenement and land tenure status.	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The exploration was carried out on Hannans' 100% owned E77/2219. There are no material issues with the tenement. A 3 rd party has an 80% interest in gold rights only.						
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No other lithium exploration has taken place on this project.						
Geology	Deposit type, geological setting and style of mineralisation.	Exploration is targeting pegmatite-hosted lithium mineralisation.						
Drill hole information.	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	The list of holes is set out below. All the holes were drilled vertically to geologically recognizable material.						
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually material and should be stated.	Table 1 below includes all relevant assay data, i.e. no cut-offs or aggregation has been used.						
	Where aggregate intercepts incorporate short							

	lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation and intercepts lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Down hole lengths have been reported. True widths unknown.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figure 3 shows location of drill traverses. Cross section views not appropriate at this early stage of exploration.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of all results is provided in Table 1 below.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful & material exploration data has been reported.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling) Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is discussed in the body of this announcement.

Hai	nnans - 2r	nd Phase of	f RAB Drilling			AI	Ca	K	Li	Mg
	DRILL S	Sample Re	ECORD SHE			ppm	ppm	ppm	ppm	ppm
	-	ida 👘				50	50	20	1	20
HOLE ID	EAST		SAMPLE No	-	<u>TO</u>	4A/OE	4A/OE	4A/OE 23496	4A/OE	4A/OE
MHAC271	749252	6444709	148365 148366	83 85	85 87	99756 85135	4263 3202	23496	27 27	14701 13836
MHAC272	749170	6444655	148367	56	58	75957	139	15985	46	10533
	1 10 11 0	0111000	148368	58	60	84494	115	18610	43	11172
MHAC273	749125	6444628	148369	56	58	78380	70	10245	40	7071
			148370	58	60	82693	111	14270	46	10204
MHAC274	749085	6444605	148371	56	58	71247	7069	15037	38	10778
			148372	58	60	67906	4260	13163	45	9722
MHAC275	749042	6444576	148373	54	56	73582	620	25181	12	3297
			148374 148375	56 58	58 60	67707 103426	1508 4043	18928 18941	56 46	8598 9310
MHAC276	748991	6444549	148376	56	58	82724	1243	23463	31	10409
WILL NOLLO	710001	0111010	148377	58	60	87903	2119	22010	35	9813
MHAC276	748991	6444549	148378	0	4	98182	X	530	14	478
			148379	4	8	86963	Х	687	21	587
			148380	8	12	96497	Х	599	22	496
			148381	12	16	85920	Х	512	17	752
			148382	16	20	84310	53	3579	21	2451
			148383	20	24	99368	X	16101	34	7962
	ļ		148384 148385	24 28	28 32	80702 82510	54 115	10664 18472	30 36	5496 7313
			148386	32	36	90867	200	21469	42	9723
			148387	36	40	94406	542	17599	39	9458
			148388	40	44	108804	1009	28162	62	11190
			148389	44	48	82223	910	17135	36	7584
			148390	48	52	65174	695	9395	24	7139
			148391	52	56	83808	1864	20409	45	11141
MHAC277	748995	6444547	148392	0	4	95493	X	537	11	306
			148393 148394	4	8 12	90588 82084	X X	557 530	16 15	292 512
			148395	0 12	12	80330	63	1538	15	777
			148396	16	20	83777	115	6571	21	3869
			148397	20	24	74189	68	9528	23	5474
			148398	24	28	79397	56	13869	32	6862
			148399	28	32	90768	123	24580	38	11731
			148400	32	36	59998	85	12462	13	5672
			148401	36	40	104602	580	33532	38	8673
			148402	40 44	44	85781 71945	679 702	19345	36 29	8321
			148403 148404	44	48 52	67966	792 1682	11437 17267	62	8642 7467
			148405	52	56	85022	2139	19570	54	11082
			148406	56	60	80979	3578	14656	30	9422
MHAC278	748955	6444527	148407	56	58	104315	4100	21890	49	13898
			148408	58	60	103359	3694	21850	49	13773
MHAC279	748948	6446395	148409	56	58	66872	202	1918	21	817
MHAC280	748863	6446240	148410	58 56	60 58	61972 66902	218	3025	20	1265
	140003	6446340	148411 148412	56 58	58 60	66902 68477	5044 7276	16806 21927	29 13	7900 1914
MHAC281	748771	6446275	148412	56	58	83454	9765	15274	36	16914
		0.10270	148414	58	60	78908	8616	18948	44	13285
MHAC282	748694	6446232	148415	40	42	71738	3632	44317	15	1141
			148416	42	44	68048	3448	42880	15	1109
MHAC283	748615	6446171	148417	54	56	65536	3107	43050	9	818
	74055	0440445	148418	56	58	66987	2882	41901	9	1028
MHAC284	748521	6446118	148419	56	58	82605	100	1751	19	894 5820
MHAC285	7/9726	6451008	148420 148421	58 64	60 66	59015 72113	580 13377	7648 13964	15 19	5830 13059
	748736	0401008	148421	64 66	68	61750	13377	8297	19	13059 8937
MHAC286	748652	6450977	148422	26	27	85478	165	9032	28	466
		0.00011	148424	63	64	59998	832	8414	18	6048
			148425	67	68	68777	8363	8608	15	4272
			148426	71	73	119064	16205	19778	38	13103
			148427	73	75	84496	11836	21241	40	17007
MHAC287	748553	6450938	148428	69	71	69876	4303	45440	13	840
			148429	71	73	67353	3351	44804	7	654

Har	nnans - 2r	nd Phase of	FRAB Drilling			Al	Ca	K	Li	Mg
	DRILL S	SAMPLE RE	CORD SHE			ppm	ppm	ppm	ppm	ppm
	-	iDA				50	50	20	1	20
HOLE ID	EAST	NORTH	SAMPLE No		<u>TO</u>	4A/OE	4A/OE	4A/OE 32027	4A/OE	4A/OE
MHAC288	748462	6450906	148430 148431	62 64	64 66	72507 71185	9403 15640	32027	18 23	5364 5994
MHAC289	748356	6450855	148432	20	22	86008	248	52468	16	359
1011 17 (0200	740000	0400000	148433	28	30	76278	7779	31133	21	5829
			148434	30	32	73123	8186	29195	19	5288
MHAC290	748279	6450821	148435	32	34	69725	11361	29881	18	5684
			148436	34	36	73259	15673	29920	27	6245
MHAC291	748177	6450803	148437	23	24	74835	4342	36578	14	4866
			148438	24	25	75778	4056	40333	14	4451
			148439	26	27	69321	2844	30589	6	866
			148440	36	37	79300	7575	35305	17	4277
			148441	43 44	44	74918	12207	27182	25	8017
			148442 148443	44	45 46	72826 81463	6183 11290	28405 35589	17 19	4175 5579
			148444	46	40	74611	11290	29480	21	6732
MHAC292	748083	6450777	148445	47	49	72702	20939	24937	31	8188
	110000	0100111	148446	49	51	80827	9513	30559	24	5300
MHAC293	747992	6450737	148447	43	45	74018	12820	24537	23	6586
			148448	45	47	75318	9150	40909	10	2689
MHAC294	747894	6450700	148449	48	50	75020	16103	23717	32	8975
			148450	50	52	75260	18475	24419	26	8275
MHAC295	747797	6450665	148451	45	46	56693	2903	19229	21	3085
			148452	46	48	76941	6826	18375	42	10992
	747704	0450000	148453	48	50	71750	14368	25994	34	8536
MHAC296	747704	6450632	148454 148455	35 41	36 43	79095 75871	560 8417	26038 27806	9 18	453 6742
			148455	41	43	76916	9307	23363	31	8558
MHAC297	747589	6450604	148457	37	39	69664	1612	41364	6	697
1011 17 10 201	111000	0100001	148458	39	41	83136	2369	59113	10	687
MHAC298	748004	6448184	148459	53	55	65463	3203	42878	12	637
			148460	55	57	62430	3935	40365	21	830
MHAC299	747957	6448184	148461	38	40	70932	202	42061	9	372
			148462	40	42	69827	250	41569	9	485
MHAC300	747906	6448149	148463	39	41	71258	1000	45691	12	1109
	747000	0440405	148464	41	43	71649	1728	42239	12	1624
MHAC301	747863	6448135	148465	39	41	66985	4277	44161	21	938
MHAC302	747817	6448117	148466 148467	41 29	43 31	66165 74457	3808 14922	45270 28892	22 19	1042 7055
IVII IAC302	141011	0440117	148468	31	33	73540	16211	28385	21	6939
MHAC303	747768	6448099	148469	30	32	85635	3300	43457	19	3796
			148470	32	34	78615	18315	27141	23	7830
MHAC304	747714	6448079	148471	33	35	89725	2370	48637	22	3119
			148472	35	37	77178	10347	34131	26	5301
MHAC305	747674	6448067	148473	29	31	72828	13230	29399	22	7956
			148474	31	33	72433	13630	29187	23	7373
MHAC306	747631	6448046	148475	16	18	95098	168	14654	18	279
			148476	34	36	71774	10388	29791	30	5815 6027
MHAC307	747579	6448028	148477 148478	36 50	38 52	73247 76902	13064 11178	32740 37063	36 21	6027 5835
IVII IAC3U/	141319	0440020	148478	50 52	52 54	76902	11178	23901	21	7382
	L		148480	52	56	73625	10654	32405	29	5503
MHAC308	747535	6448015	148481	40	42	73050	2280	47147	9	963
			148482	50	52	73903	11791	27631	41	8186
			148483	52	54	73397	16827	26699	56	8865
MHAC309	745893	6446769	148484	45	46	30837	1030	5118	7	4771
			148485	55	57	62707	1982	17858	14	6724
	745055	0440555	148486	57	59	72867	2863	7205	7	5570
MHAC310	745850	6446752	148487	35	37	78360	50802	2224	8	29015
			148488	37 33	39	82335	54804	2663	8	31284
	745000	6446700		.5.5	35	79446	58025	3619	15	44039
MHAC311	745800	6446733	148489		27	80157	65609	2121		15125
			148490	35	37 16	80157 88025	65608 23240	3181 1098	11	45125 19367
MHAC311 MHAC312	745800 745754	6446733 6446720	148490 148491	35 14	16	88025	23240	1098	11 12	19367
			148490	35					11	

Har	nnans - 2r	nd Phase o	f RAB Drilling			Al	Са	K	Li	Mg
			ECORD SHE	ppm	ppm	ppm	ppm	ppm		
		DA				50	50	20	1	20
HOLE ID	EAST	NORTH	SAMPLE No	FROM	TO	4A/OE	4A/OE	4A/OE	4A/OE	4A/OE
MHAC314	745660	6446683	148495	9	11	84728	27318	2790	15	17913
			148496	11	13	82851	35290	7238	17	24927
MHAC315	745608	6446666	148497	10	12	77272	47551	2488	10	27495
			148498	12	14	79103	51164	2719	9	35621
MHAC316	745571	6446650	148499	11	13	76226	48358	2675	8	23209
			148500	13	15	78339	52479	3664	7	31168
MHAC317	745517	6446631	148501	14	16	77613	28563	5167	14	23398
			148502	16	18	75174	40496	7702	11	25993
MHAC318	745475	6446612	148503	11	13	72794	15013	2014	6	7520
			148504	13	15	79431	26355	2004	6	12710
MHAC319	745927	6446576	148505	36	38	109659	1280	18623	23	3680
			148506	38	40	80802	2875	27196	19	1680
MHAC320	745972	6446594	148507	30	32	62437	245	599	26	394
			148508	32	34	71841	347	1663	26	478
			148509	34	35	62926	322	11100	11	4155
			148510	48	50	83851	153	1187	29	407
			148511	50	52	31419	356	5286	7	3320
MHAC321	746019	6446610	148512	64	66	60716	1295	9404	18	5833
			148513	66	68	46734	4457	12247	24	8023
MHAC322	746072	6446629	148514	36	38	67108	794	21794	26	2268
			148515	38	40	65386	1175	40952	12	1756
			148516	40	42	59565	1364	39246	8	694
			148517	42	44	63596	2309	27130	15	983
MHAC323	746112	6446641	148518	56	58	73813	4938	18099	31	11142
			148519	58	60	66286	11451	15250	24	12101
MHAC324	746155	6446663	148520	29	30	87164	101	4246	12	603
			148521	54	56	76277	6572	17115	33	10007
			148522	56	58	76915	5653	17186	32	8168
MHAC325	746216	6446678	148523	56	58	93593	4355	16496	46	13489
			148524	58	60	86389	8150	22703	63	17697
MHAC326	746242	6446689	148525	62	64	112625	3079	19399	63	19423
			148526	64	66	107510	2631	24782	58	19268
MHAC327	746302	6446714	148527	46	48	128493	1490	3949	17	3384
			148528	48	50	59734	842	2058	7	2789