MACPHERSONS

ASX Announcement
9 November 2017

MORE STRIKING GOLD INTERCEPTS AT BOORARA 136 metres grading $1.78 \mathrm{~g} / \mathrm{t} \mathrm{Au}$

MacPhersons Resources ("the Company") (ASX:MRP) is pleased to report a further set of Reverse Circulation (RC) drill results from the Boorara Gold Project. Selected highlights from the Southern Stockwork Deposit include:

BORC 202	26-161m	136m	@	$1.78 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BORC 198	31-98m	67m	@	1.99 g/t Au
incl	41-42m	1 m	@	$10.8 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
	109-168m	59m	@	$1.74 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
BORC 306	124-134m	10m	@	$3.28 \mathrm{~g} / \mathrm{t} \mathrm{Au}$
Incl	126-127m	1m	@	$23 \mathrm{~g} / \mathrm{t} \mathrm{Au}$

- The deep diamond drill hole of over 1000 metres at Southern Stockwork Deposit is expected to hit the potentially mineralised dolerite zone at a vertical depth of about 750 metres (850 metres downhole). The hole is now 313 metres downhole.
- We plan to complete RC drilling by end of 2017 and report an upgraded gold resource during the March quarter 2018.

Commenting on these results, Non-Executive Chairman, Mr Ashok Parekh said "these intercepts from surface were previously seen during the diamond drilling phase with spectacular intercepts of 163 metres grading $4.29 \mathrm{~g} / \mathrm{t}$ Au and 158 metres grading 1.6 g/t Au. Note in Hole BORC 198, the two significant intercepts are split by 11 metres of no mineralisation, but in essence combining as one large intercept would contain 137 metres at some $1.74 \mathrm{~g} / \mathrm{t} \mathrm{Au}$. This latest set of results may be indicative of a much larger gold system at depth."

MacPhersons Resources Limited ("the Company") (ASX: MRP) is pleased to announce more excellent RC results to follow up on our recent announcement of 24 October 2017. The drilling is part of the 37,000 metre RC program at the 100% owned Boorara Gold Project 10 kilometres east of Kalgoorlie, Western Australia. Two RC drilling rigs commenced drilling at the Southern Stockwork on Monday the 2nd of October. MacPhersons has now drilled some 12,500 metres.

The Boorara Project contains over 1.5 kilometres of mineralisation striking north-west at 330 degrees. The project is divided into Southern Stockwork (SSW), Crown Jewel (CJ) and Northern Stockwork (NSW) deposits.

The company has since confirmed an extension of the Boorara Southern Stock Work deposit at a vertical depth below 200 metres from the surface and some 500 metres along strike.

Located about one kilometre to the North West of BODH 025 (163m @ $4.29 \mathrm{~g} / \mathrm{t}$ uncut) and BORC 173 (158m @ 1.6 g / t) is the historic Cataract Gold Mine (30,000 oz; 1897-1907) that is hosted within the Boorara dolerite. The deposit has two major stope geometries, one striking 040° dipping to the North West and the other striking 330° and dipping near vertical. The significance of these stope geometries is that structural controls on historically mined high-grade gold veins is the same as the NW dipping quartz vein arrays encountered in the current drilling program.

A recent reinterpretation of the geometry of mineralisation at Boorara is due to structural mapping and interpretation of the Boorara Gold Project. The new Boorara structural geological model has allowed MacPhersons to make a better estimate of the true gold grade and size of the existing Boorara resource based on an interpretation of mineralised NW-dipping quartz vein arrays. From the structural mapping and the quartz veins exposed within the trial pit completed in October 2016, the drill orientation must be 115 degrees.

The drilling strategy is infill RC drilling continuing to test the geological model and scope out the extent of mineralisation associated with the two styles of gold mineralisation:

- Dolerite hosted NW dipping quartz vein arrays with associated weak to strong pervasive hematite alteration, iron carbonate alteration, with $>1 \%$ pyrite and $>1 \%$ arsenopyrite mineralisation, and
- High grade narrow quartz vein gold mineralisation with $>1 \%$ pyrite and $>1 \%$ arsenopyrite.

Gold mineralisation is hosted in a series of stacked quartz vein arrays that dip at $40-45^{\circ}$ to the North West. The true thickness of the arrays is up to 50 metres vertical that are hosted within the quartz dolerite which dips at 73° to the north east. The mineralised dolerite has a true width of up to 40 metres based on a review of all the historic drilling and MRP drilling. Within the mineralised Boorara dolerite high grade localised ore shoots consist of vein arrays up to 20 metres in width. The increased width of the mineralised dolerite indicates that this is potentially a larger mineralised system.

Drill Progress Onsite

These latest gold results relate to 19 RC drill holes ($4,845 \mathrm{~m}$) from the Southern Stockworks of the 1.5 km Boorara discovery zone (Figures 1).

The reported drilling represents the second round of $(20 \mathrm{~m} \times 10 \mathrm{~m})$ RC drilling to infill the spacing at the Southern Stockworks and plan to upgrade the gold resource during the March quarter 2018.

The new results has identified from surface more wide spaced gold mineralisation over the 500 metre strike at the deposit.

This drilling is part of a resource development program that is planned to potentially expand the existing Boorara gold resource.

We expect to drill around 20,000 metres at the Southern Stockworks and then over 15,000 metres at the Northern Stockworks before the end of 2017. We are targeting the mineralised dolerite above a vertical depth of 250 metres.

The MRP drill strategy is to drill holes on two drill azimuths, a 115° azimuth to accurately estimate the gold grade of gold mineralisation at Boorara and a 060° azimuth to determine true width of gold mineralisation. The 060° azimuth will also intersect the Western and Eastern contact mineralisation.

Figure 1: Boorara Gold Project long section with drilling.

One RC drilling rig has now commenced drilling at the Northern Stockwork deposit, it is planned that the second RC drilling rig will shift from Southern Stockwork deposit to undertake infill drilling at Crown Jewel deposit.

Significant results from recent drilling include:

[^0]Table 1: Boorara RC significant composite intervals $>0.7 \mathrm{~g} / \mathrm{t}, 0.3 \mathrm{~g} / \mathrm{t}$ cut off - max 2 m internal dilution at zero grade.

HOLE-ID	Depth From (m)	$\begin{aligned} & \text { Depth } \\ & \text { To } \\ & \text { (m) } \end{aligned}$	INTERVAL	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	Azimuth (${ }^{\circ}$)	Dip (${ }^{\circ}$)	$\begin{aligned} & \mathrm{EOH} \\ & (\mathrm{~m}) \end{aligned}$	Easting (GDA)	Northing (GDA)	mRL
BORC194	7	38	31	1.15	115.22	-58.04	288	370400.70	6590594.50	392.40
BORC194	71	83	16	1.01	115.22	-58.04	288	370400.70	6590594.50	392.40
BORC194	173	186	13	1.61	115.22	-58.04	288	370400.70	6590594.50	392.40
incl	173	174	1	10	115.22	-58.04	288	370400.70	6590594.50	392.40
BORC 195	44	76	32	1.26	115.51	-58.04	252	370379.05	6590604.89	392.69
BORC 196	118	119	1	5.44	114.98	-58.74	317	370363.14	6590612.32	392.91
BORC197	91	102	11	1.52	118.85	-58.26	197	370423.05	6590609.67	392.86
BORC198	31	98	67	1.99	118.06	-59.11	251	370406.59	6590617.72	392.99
incl	41	42	1	10.8	118.06	-59.11	251	370406.59	6590617.72	392.99
BORC198	109	168	59	1.74	118.06	-59.11	251	370406.59	6590617.72	392.99
incl	114	115	1	8.13	118.06	-59.11	251	370406.59	6590617.72	392.99
incl	163	164	1	9.72	118.06	-59.11	251	370406.59	6590617.72	392.99
BORC198	171	179	8	1.21	118.06	-59.11	251	370406.59	6590617.72	392.99
BORC199	57	74	17	0.71	115.83	-58.74	281	370369.91	6590634.20	393.84
BORC199	125	143	18	0.81	115.83	-58.74	281	370369.91	6590634.20	393.84
BORC199	149	160	11	0.74	115.83	-58.74	281	370369.91	6590634.20	393.84
BORC199	196	215	19	0.78	115.83	-58.74	281	370369.91	6590634.20	393.84
BORC200	102	115	13	0.9	117.42	-58.37	299	370350.53	6590643.28	393.84
BORC200	166	174	8	0.94	117.42	-58.37	299	370350.53	6590643.28	393.84
BORC200	201	202	1	4.98	117.42	-58.37	299	370350.53	6590643.28	393.84
BORC 201	63	80	17	0.77	117.08	-58.88	209	370403.35	6590643.67	393.15
incl	79	80	1	5.76	117.08	-58.88	209	370403.35	6590643.67	393.15
BORC 201	88	94	6	1.2	117.08	-58.88	209	370403.35	6590643.67	393.15
BORC 202	0	16	16	1.58	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	12	13	1	6.86	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	14	15	1	4.86	116.2	-58.57	245	370386.92	6590651.18	393.23
BORC 202	26	161	136	1.78	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	35	36	1	6.93	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	52	53	1	4.9	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	85	86	1	7.52	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	96	97	1	8.27	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	109	110	1	4.82	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	110	111	1	4.68	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	116	117	1	5.52	116.2	-58.57	245	370386.92	6590651.18	393.23
incl	149	150	1	4.73	116.2	-58.57	245	370386.92	6590651.18	393.23
BORC 305	NSI				118.09	-58.48	96	370284.57	6590860.85	401.99
BORC 306	124	134	10	3.28	153.4	-57.91	242	370297.35	6590919.93	405.04
incl	126	127	1	23	153.4	-57.91	242	370297.35	6590919.93	405.04

HOLE-ID	Depth From (m)	$\begin{aligned} & \text { Depth } \\ & \text { To } \\ & \text { (m) } \end{aligned}$	INTERVAL	$\begin{gathered} \mathrm{Au} \\ (\mathrm{~g} / \mathrm{t}) \end{gathered}$	Azimuth (${ }^{\circ}$)	Dip (${ }^{\circ}$)	$\begin{aligned} & \mathrm{EOH} \\ & (\mathrm{~m}) \end{aligned}$	Easting (GDA)	Northing (GDA)	mRL
incl	132	133	1	5.79	153.4	-57.91	242	370297.35	6590919.93	405.04
BORC 307	164	195	31	0.84	151	-58.21	250	370286.43	6590937.24	405.59
incl	177	178	1	9.57	151	-58.21	250	370286.43	6590937.24	405.59
BORC 307	209	221	12	0.82	151	-58.21	250	370286.43	6590937.24	405.59
incl	216	217	1	4.21	151	-58.21	250	370286.43	6590937.24	405.59
BORC308	87	100	13	0.9	151.98	-58.05	262	370276.78	6590955.61	405.43
BORC308	122	148	26	0.71	151.98	-58.05	262	370276.78	6590955.61	405.43
BORC308	167	173	6	1.43	151.98	-58.05	262	370276.78	6590955.61	405.43
incl	172	173	1	4.14	151.98	-58.05	262	370276.78	6590955.61	405.43
BORC308	205	216	11	0.9	151.98	-58.05	262	370276.78	6590955.61	405.43
incl	215	216	1	4.1	151.98	-58.05	262	370276.78	6590955.61	405.43
BORC309	87	102	15	0.99	151.53	-58.87	270	370267.23	6590972.46	404.80
BORC309	108	112	4	1.14	151.53	-58.87	270	370267.23	6590972.46	404.80
BORC310	NSI				151.6	-57.53	250	370255.76	6590991.83	403.85
BORC311	283	284	1	1.81	152.28	-58.35	287	370247.00	6591007.48	402.94
BORC312	95	102	7	1.13	152.01	-58.41	263	370236.44	6591025.63	402.06
BORC312	111	113	2	1.2	152.01	-58.41	263	370236.44	6591025.63	402.06
BORC312	117	119	2	1.44	152.01	-58.41	263	370236.44	6591025.63	402.06
BORC312	134	138	4	1.25	152.01	-58.41	263	370236.44	6591025.63	402.06
BORC312	141	159	18	0.75	152.01	-58.41	263	370236.44	6591025.63	402.06
incl	141	142	1	4.93	152.01	-58.41	263	370236.44	6591025.63	402.06
BORC313	211	234	23	0.86	116.87	-58.03	275	370217.21	6591011.27	401.43
BORC313	243	246	3	2.2	116.87	-58.03	275	370217.21	6591011.27	401.43
incl	245	246	1	5.76	116.87	-58.03	275	370217.21	6591011.27	401.43
BORC313	251	257	6	1.3	116.87	-58.03	275	370217.21	6591011.27	401.43
BORC314	111	114	3	1.93	115.38	-57.79	311	370201.38	6591019.23	400.89
BORC314	128	137	9	3.01	115.38	-57.79	311	370201.38	6591019.23	400.89
incl	131	132	1	22.5	115.38	-57.79	311	370201.38	6591019.23	400.89
BORC314	241	245	4	3.02	115.38	-57.79	311	370201.38	6591019.23	400.89
incl	243	244	1	8.7	115.38	-57.79	311	370201.38	6591019.23	400.89
BORC314	249	293	44	1.15	115.38	-57.79	311	370201.38	6591019.23	400.89
incl	253	254	1	5.76	115.38	-57.79	311	370201.38	6591019.23	400.89
incl	266	267	1	10.4	115.38	-57.79	311	370201.38	6591019.23	400.89

[^1]
Deep diamond hole at Southern Stockworks

On $31^{\text {st }}$ August the Company announced that we had received a WA State Government Co-funding of $\mathbf{A} \$ 200,000$ for a single 1,000 metre deep diamond drill hole at Boorara.

The deep diamond hole BODH 053 is currently at 313 metres. Based on the azimuth of 240 degrees or drilling east to west from the softer sediment sequence, we expect to intersect the potentially mineralised dolerite zone at a vertical depth of some 750 metres. The downhole depth at a dip of 60 degrees will intersect the contact around 850 metres and will be extended to around 1000 metres. We intend to wedge two other diamond holes off the main central hole. Based on 50 metres per day and preparation/drilling of the two wedged holes, drilling will be completed in December 2017.

This will be the deepest hole ever at Boorara and some 400 metres vertical below the next deepest hole.

Structural Understanding

A re-logging program has been undertaken on all MRP Boorara diamond drill hole core and RC drill chips at the Southern Stockwork and Crown Jewel areas. Key outcomes have been previously unrecognised lithological and structural complexity with cross faulting resulting in movement of mineralised ore blocks in the order of 10's of metres horizontally and vertically. Previously unrecognised ultramafic and sediment lithologies have been identified adjacent to the Boorara dolerite. The Boorara dolerite can be divided into up to 7 individual units with the quartz granophyric unit being unit 5. It is expected that future diamond drill holes will enable faulting to be better understood. The Boorara faulting is not dissimilar to that seen at the Mt Charlotte gold mine at Kalgoorlie (see Figure 2 and Figure 5 below) note the scale the Reward quartz vein array orebody that has a strike length of approximately 150 metres on the three levels. Although the Mt Charlotte orebody has a short strike length it extends vertically for over 1200 metres depth and again faulting has resulted in the orebodies being moved considerable distances (see Figure 2 and Figure 5). The iron enrichment present within the Boorara quartz dolerite provides an oxidised chemical composition favourable to wall rock reaction with reduced gold fluids, this is a well-known host rock setting for major gold deposits in the Eastern Goldfields such as Mt Charlotte (6 Moz) and Darlot-Centenary (3.2 Moz). Reverse fault controlled quartz veins are interpreted for Boorara which is similar to the sub-horizontal quartz veins that are controlled by reverse faults at the Darlot-Centenary gold deposit (3.2 Moz) (see figure 6).

The Boorara Southern Stockwork gold mineralisation like Mt Charlotte (see Figure 2 and Figure 5) consists of irregular shaped pipe-like quartz vein arrays that are hosted in quartz dolerite that are structurally complex and require close spaced systematic drilling to define (Figure 6)

Structural logging and measurements of quartz veins taken from current diamond holes and previous MRP drilled holes has determined three dominant quartz vein geometries;

1. Striking 020° and dipping 48° west
2. Striking 060° and dipping 40° north west
3. Striking 100° and dipping 43° north

Mt Charlotte History

The Mt Charlotte mine is located close to the original gold discovery at Kalgoorlie by Paddy Hannan in June 1893 and it is most probable that Hannan's original gold originated from the Mt Charlotte orebody (Haycraft 1979). Mining by open methods at Mt Charlotte from 1893 -1916 produced 71,000 ounces of gold and then mining ceased shortly after reaching the pyritic ores.

It was in 1962 after detailed evaluation by Western Mining Corporation Ltd (WMC) and its associated company Gold Mines of Kalgoorlie (Australia) Limited that an ore reserve of $2.97 \mathrm{Mt} @ 4.9 \mathrm{~g} / \mathrm{t}$ and a large scale underground mining operation was considered viable (Haycraft 1979). The work in 1962 involved dewatering the mine and structural mapping that identified the three principle sets of veins within the quartz dolerite host. Based on this work it was determined by WMC that to estimate the true grade of the orebody close spaced drilling was required using a drill azimuth of 156.5° to intersect all 3 principle vein sets. This strategy has proved to be the only method of accurately determining the grade of the Mt Charlotte orebody to this day. Western Mining Corporation Ltd recognised the importance of drilling perpendicular to the NW dipping quartz veins at Mt Charlotte to better estimate gold grade; this same strategy has been adopted by MacPhersons at Boorara.

It took from discovery of gold near Mt Charlotte in 1893 to 1962 - over 69 years for the Mt Charlotte orebody to be recognised and its gold endowment now is 6 million ounces.

Figure 2: Mt Charlotte Cross Section and Long Section (after Clout, Cleghorn \& Eaton 1990) to illustrate the depth extent of the Mt Charlotte mine compared to strike extent.

Figure 3: Plan view of Boorara drill holes with interpreted geology.

Figure 4: Cross section view of BORC 201 \& 202 with interpreted geology.

Mt Charlotte Gold Mine - Plan View

Figure 5: Mt Charlotte 3 level structural plan (Mueller 2015) showing the GMF (Golden Mile Fault) the quartz dolerite host (GMD unit 8), Golden Mile Dolerite (GMD units 4, 7, 8 \& 9), Paringa Basalt (PB) and the Williamstown Dolerite (WD). The quartz vein array orebodies are the Charlotte (COB), Reward (ROB) and Northern (NOB). The Cassidy Shaft is shown along with the Charlotte Shaft (CHS), Reward Shaft (RWS) and the Man and Supply Shaft (MSS). Porphyry dykes and shown as red lines. Faults are shown as black lines including the Charlotte Fault (CF), Reward Fault (RF) and Maritana Fault (MF).

Figure 6: Darlot Centenary orebody 1100 level underground face photo mosaic showing sub-horizontal moderately dipping veins (Kenworthy, Hagemann 2007)

For further information please contact:
Jeff Williams
OR
Andrew Pumphrey
Managing Director
+61 418594324
+61419965976

About MacPhersons

MacPhersons Resources Ltd (MRP) is a Western Australian resource company with a number of advanced gold, silver and zinc projects.

The company's long term objective is the development of its existing assets and unlocking the full potential of its 100\% owned highly prospective Boorara and Nimbus projects.

For more information on MacPhersons Resources Limited and to subscribe for regular updates, please visit our website at: www.mrpresources.com.au or contact our Kalgoorlie office via email on info@mrpresources.com.au or telephonically on 0890681300

Competent Person's Statement

The information is this report that relates to exploration results is based on information compiled by Andrew Pumphrey who is a Member of the Australian Institute of Geoscientists and is a Member of the Australasian Institute of Mining and Metallurgy. Andrew Pumphrey is a full time employee of Macphersons Resources Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pumphrey has given his consent to the inclusion in this report of the matters based on the information in the form and context in which it appears.

JORC Code, 2012 Edition - Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The Boorara Deposit nineteen RC holes (BORC 194-, 202 \& $305-314-4,845 \mathrm{~m}$), azimuth 115° dipping - 58° \& azimuth 060° dipping -58° The RC samples are collected from the drill rig cyclone in a green plastic bag in 1 m intervals and are laid out in rows of either 20 or 40 samples. Four RC samples were sampled as 0.75 m lengths. A $2-4 \mathrm{~kg}$ representative sample is split via the rig mounted cone splitter and placed on top of the green plastic for that metre interval. Diamond drilling completed using one metre sampling lengths, core half cut adjacent to bottom of hole orientation line.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All sampling is undertaken using MacPhersons Resources sampling procedures and QAQC in line with industry best practise which includes certified standards on average every 30 samples. The RC drill rig provides a sample at the end of each metre of drilling. A $2-4 \mathrm{~kg}$ sample is collected from the drill rig via a cone splitter which is representative of that metre. HQ diamond core was half cut to produce a $2-4 \mathrm{~kg}$ sample for analysis.
	Aspects of the determination of mineralisation that are Material to the Public Report.	Historic hole collars have been recovered where possible and surveyed by a licenced surveyor using a DGPS (0.01). Historic holes were down hole surveyed where possible for deviation by north seeking gyroscope method by local contactor ABIMS.
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The RC one metre sample intervals were collected with a $2-4 \mathrm{~kg}$ representative sample despatched to the laboratory for gold analysis. The diamond half core sample intervals were typically a 2-4 kg representative sample despatched to the laboratory for gold analysis. All analysis was by 50 g fire assay with AAS finish with the exception of cases where visible gold has been observed or a fire assay grade has exceeded $100 \mathrm{~g} / \mathrm{t}$ or coarse gold is suspected then a screen fire assay (AuSCR22AA) has been undertaken on those samples and those results reported instead of the fire assay result.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The RC drilling was undertaken using a face sampling percussion hammer using 137 mm drill bits. The diamond drilling was undertaken using HQ3 (triple tube) and HQ3 (standard tube) techniques.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Each metre of RC sample is checked and an estimate of sample recovery is made. For this program, greater than 80% of samples had a recovery of 70% or higher. Sample weights reported by laboratory can also give an indication of recoveries Drill core was measured and compared to drilled intervals, and recorded as a percentage recovery. Recovery in oxidised rock can be reasonable whereas recovery in fresh rock is excellent.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Drillers experience is important. Steady drilling, using modern well maintained drilling equipment, regular cleaning of cyclone and splitter, pausing the drilling at each metre to allow sample to pass through drill string and reducing sample loss. Using a RC rig equipped with auxiliary and booster compressors is critical to maintaining good RC sample recovery. Using professional and competent core drilling contractor minimises issues with sample recoveries through the use of appropriate drilling equipment techniques and drilling fluids suited to the particular ground conditions.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	RC sample recoveries from the mineralised zones are generally high although some of the weathered material is lost in drilling (dust) and some natural voids do exist. High water flows were encountered in all holes from 180 m downhole. No sample was lost from $2-4 \mathrm{~kg}$ split from cyclone that was submitted for analysis, some loss of sample occurred from large green bags and some bias may have occurred to that sample as water was flowing from sample bag - this sample has not been analysed and therefore will not affect results reported in this release. The core sample recovery in the transitional and fresh rock zones is very high and no significant bias is expected. Recoveries in oxidised rock were lower. Although no exhaustive studies have been undertaken, no significant bias is expected, and any potential bias is not considered material at this stage of resource development.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Each RC metre drilled underwent detailed logging through the entire hole with record kept of colour, lithology, degree of oxidation, and type and intensity of alteration veining and sulphide content.
	Liamond core metres underwent detailed logging	
	Diand through the entire hole with record kept of colour,	
lithology, degree of oxidation, and type and intensity of		
alteration, veining and sulphide content. Structural,		
density and geotechnical data is also collected on drill		
core.		

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		between $2-4 \mathrm{~kg}$. The cone splitter is cleaned using an air nozzle after every drill rod -6 m . MacPhersons Resources sampling procedures and QAQC is used to maximise representivity of samples.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	For drill core, the entire core is sampled at one metre intervals to ensure that samples are representative of the entire in-situ rock being tested. The laboratory ensures that the entire sample submitted is crushed and split appropriately to provide a representative subsample. No duplicate samples are taken from the core
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes (0.5 kg to 4 kg) are considered appropriate for the style of mineralisation at Boorara. Half cut HQ diamond core samples over 1 m length (normally at the end of hole) were up to 4 kg .
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The nature, quality and appropriateness of the assaying and laboratory procedures are industry standard for Archaean mesothermal lode gold deposits. The fire assay technique will result in a total assay result. In cases where visible gold has be observed or a fire assay grade has exceeded $100 \mathrm{~g} / \mathrm{t}$ or coarse gold is suspected then a screen fire assay (Au-SCR22AA) has been undertaken on those samples and reported instead of the fire assay result.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None of these tools are used
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified Reference Materials (standards) are purchased from an independent supplier of such materials. Blanks are made up from samples previously collected from other drill programs at Boorara -Nimbus that have analysed as less than detection Au values. A standard sample followed by a blank sample are inserted every $30^{\text {th }}$ sample. A duplicate sample is taken every 25 samples. Evaluation of the Macphersons submitted standards and blanks analysis results indicates that assaying is accurate and without significant drift.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	At least two different company personnel visually verified intersections in the collected drill chips. At least two different company personnel visually verified intersections in the diamond core. A representative

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
assaying		sample of each metre is collected and stored for further verification if needed. Drill core or core photos are used to verify drill intersections in diamond core samples.
	The use of twinned holes.	The spatial location and assaying accuracy of historical drilling was confirmed with RC and DD twinned holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data collected in the form of spread sheets, for drill hole collars, surveys, lithology and sampling. All geological and field data is entered into Microsoft Excel spreadsheets with lookup tables and fixed formatting (and protected from modification) thus only allowing data to be entered using the MacPhersons geological code system and sample protocol. Data is verified and validated by MRP geologists and stored in a Microsoft Access Database Data is emailed to a database administrator for validation and importation into a GEMS database and periodically into a SQL database using Datashed.
	Discuss any adjustment to assay data.	No adjustments are made to the primary assay data imported into the database.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Initial hole collars surveyed by licenced surveyor DGPS (0.01 m). Diamond drill line by surveyed back sight and foresight pegs. Dip was checked with clinometer on drill mast at set up on hole. RC holes are surveyed by down hole surveys at 30 m intervals using single shot "Reflex Camera $+/-0.1^{0}$ by drill contractor. Diamond holes are surveyed by down hole surveys at 30 m intervals using single shot "Reflex Camera $+/-0.1^{0}$ by drill contractor. All holes are surveyed for deviation at end of hole by gyroscope method by local contractor ABIMS Ltd. This is normally inside rods but may be open hole for RC drilling. Final hole collar locations surveyed by licenced surveyor (Minecomp Pty Ltd) DGPS (0.01m).
	Specification of the grid system used.	The grid system used is Geocentric Datum of Australia 1994 (GDA94).
	Quality and adequacy of topographic control.	Historical - Aerial photography used to produce digital surface topographic maps at 1:2500 1m contours. 2011 - Fugro Spatial Solutions Pty Ltd detailed aerial photographic survey. Orth rectification and mosaicking performed using Inpho Digital Photogrammetric

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Systems. Expected accuracy of detail within 0.8 mm at the ortho-image map scale. Topographic control is from an aerial photographic survey completed during 2012 with accuracy within 0.01 m .
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The majority of drilling at Boorara is close spaced down to 10 m line $x 5 \mathrm{~m}$ hole, with the remainder 20 m line x 10 m hole and some more wide spaced at 40 m line x 10 m hole. The holes reported in this release were on 20 m spaced lines that are 10 m apart along the lines.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralized domains to support the current MRE classifications as Measured, Indicated and Inferred according to JORC (2012 Edition) reporting criteria.
	Whether sample compositing has been applied.	No sample compositing has been applied in the field within the mineralised zones.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Diamond drill holes and RC holes were orientated $115 \%-60^{\circ}$ which is considered to be perpendicular to the dominant quartz vein arrays or at $060^{\circ} /-60^{\circ}$ perpendicular to geology contacts. Various other orientations have been tried historically to try and capture the best orientation to drill various different structures and vein orientations. Historically diamond core holes were orientated $060^{\circ} /-60^{\circ}$. BORC 194-202 \& 305,313 \& 314 were orientated $115^{\circ} /-58^{\circ}$ and BORC $306-312$ were orientated $150^{\circ} /-58^{\circ}$. The $115^{\circ} /-58^{\circ}$ orientated holes are close to perpendicular to the dominant quartz vein geometry.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not believed that drilling orientation has introduced a sampling bias as the dominant mineralised quartz vein arrays at SSW area at Boorara are orientated $020^{\circ} / 35^{\circ} \mathrm{NW}, 040^{\circ} / 55^{\circ} \mathrm{NW}, 060^{\circ} / 40^{\circ} \mathrm{NW} \& 100^{\circ} / 43^{\circ} \mathrm{N}$.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by MRP. Field samples are stored overnight in a shed onsite (if not delivered to laboratory) which is equipped with security cameras and caretaker in residence who is an employee of MacPhersons. Field samples are delivered to the assay laboratory in Kalgoorlie by MRP personnel once the hole is completed. Whilst in storage at the laboratory, they are kept in a locked yard. Tracking sheets have been set up online to track the progress of batches of samples through the laboratory.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Sample pulps and coarse rejects are stored at ALS for a period of time and then returned to MRP.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	CSA completed a review in early 2015 of the MRP sampling protocols as part of their Resource estimation work and were satisfied that the adequacy of sample preparation, sample security and analytical procedures support the Mineral Resource classification discussed and are of industry standard.
MRP have maintained those sampling protocols from		
that time.		

JORC Code, 2012 Edition - Section 2 Report

Section 2 Reporting of Exploration Results
(Criteria in this section apply to all succeeding sections.)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Boorara Project is located approximately 17 km east-southeast of Kalgoorlie, 2 km west of Nimbus and 6 km north-northwest of Golden Ridge' The Boorara project is situated within mining leases M26/29, M26/277 and M26/318 accessed from the Kalgoorlie-Bulong Road via an unsealed haul road. The tenements are located within the Hampton Hill Pastoral Station. Normal Western Australian state royalties apply. A third party royalty of $\$ 1 / \mathrm{t}$ is payable to a maximum of $\$ 1$ million on M26/277. A third party royalty based on production milestones is payable on $\mathrm{M} 26 / 29$, M26/318 \& M26/161 as below; - 25,000 ounces gold production - 375 ounce royalty payable - 50,000 ounces gold production - 375 ounce royalty payable - 75,000 ounces gold production - 375 ounce royalty payable - 100,000 ounces gold production - 375 ounce royalty payable Situated within the Boorara Project area are the reserves associated with the Boorara townsite. Proposed open pit operations will not impact on the reserves. The location of waste dumps will be sited so as to avoid mineral resources, exploration targets and to work with other mining infrastructure associated with the Nimbus operations located within 2 km of the proposed Boorara open pits. MRP purchased the Nimbus property on $8^{\text {th }}$ September 2011 from Kalgoorlie Ore Treatment Company Pty Ltd (KOTC). The tenements are held by KOTC, a wholly owned subsidiary of MacPhersons Resources Ltd.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and no known impediments exist.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historic gold production at Boorara produced 30,673 oz's from the treatment of 54,731 tonnes of ore. This production was from underground mining at the Cataract shaft, East Lode shaft and the Crown Jewel shaft. Historic mine plans and sections show two orientations of mine stopes, one at $040^{\circ} / 25^{\circ} \mathrm{NW}$ and another at $315^{\circ} / 65^{\circ} \mathrm{W}$. Dampier Mining Pty Ltd and Texas Gulf Australia Ltd in 1980 drilled 20 RC holes for $1,038 \mathrm{~m}$ and 10 diamond holes for $1,695 \mathrm{~m}$. Western Reefs NL in 1985 undertook soil sampling on a $40 \mathrm{~m} \times 20 \mathrm{~m}$ grid. They also completed 180 RAB holes for $9892 \mathrm{~m}, 268$ RC holes for $20,831 \mathrm{~m}$ and 26 diamond holes for $2,609 \mathrm{~m}$. Geological mapping was undertaken by Western Reefs including costean mapping and sampling. The Cataract shaft was refurbished and geologically mapped and surveyed. The Crown Jewel shaft was mapped and surveyed also. Windsor Resources in 1988 drilled 174 RC holes for 11,274m. Newmont in 1990 drilled 338 RAB holes for $15,446 \mathrm{~m}$, 39 RC holes for $4,319 \mathrm{~m}$ and 4 diamond holes for 718 m . Geological mapping and soil sampling was also undertaken. Mt Monger Gold Project in 1993 drilled 116 RC holes for 6,222m. Fimiston Mining NL in 1995 drilled 110 RC holes for $7,257 \mathrm{~m}$ and 1 diamond hole for 195 m . The data relating to the Boorara gold deposits comprising the Southern Stockwork Zone, Northern Stockwork Zone, Cataract Area, East Lode and Digger Dam was reviewed. The database was updated to incorporate the drilling completed by Fimiston and cross sections and interpretations made. A global polygonal based resource estimate was made which estimated resources of 2.25 million tonnes @ $1.40 \mathrm{~g} / \mathrm{t}$ Au at a cut-off grade of $0.5 \mathrm{~g} / \mathrm{t}$ or 1.42 million tonnes @ 1.72 $\mathrm{g} / \mathrm{t} \mathrm{Au}$ at a cut off of $1.0 \mathrm{~g} / \mathrm{t}$ to be estimated. Block modelling of this polygonal data was then completed which returned a total oxide resource of $1,293,000$ tonnes @ $1.49 \mathrm{~g} / \mathrm{t}$, and a total fresh resource of 1,095,000 tonnes @ 1.86g/t. New Hampton Goldfields Ltd in 2001 undertook a resource estimate at Boorara which resulted in a JORC compliant undiluted mineral resource of

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		$1,506,000 \mathrm{t} @ 1.85 \mathrm{~g} / \mathrm{t}$ Au. Open pit design of the Southern Stockwork, Cataract and the Northern Stockwork resulted in a Probable Reserve of $179,000 \mathrm{t}$ @ $3.0 \mathrm{~g} / \mathrm{t}$ Au. The New Hampton Goldfields Ltd - Jubilee Gold Operations report, "Mineral Resource Estimate Report, Boorara M26/29 M26/318 and M26/161, June 2001 G Job" outlines the methodology and an explanation of the resource calculation. Polymetals (WA) Pty Ltd in 2006 estimated a NON JORC complaint total resource summary of $1,904,800 \mathrm{t} @ 1.38 \mathrm{~g} / \mathrm{t}$ Au using a cutoff grade of $0.5 \mathrm{~g} / \mathrm{t}$ Au . Polymetals (WA) Pty Ltd in 2009 completed 18 RC holes for 1770m. From this program 126 samples with $>1.0 \mathrm{~g} / \mathrm{t}$ Au were screen fire assayed, with another 34 duplicates taking the total samples assayed via screen fire assay to 160 .
Geology	Deposit type, geological setting and style of mineralisation.	The Boorara Au deposit is an Archaean mesothermal Au deposit. The Boorara local geology consists of a sequence of ultramafic, mafic and felsic volcanic and volcaniclastic rocks, with interflow carbonaceous sediments found on the lithological boundaries. Dolerite intrusions are conformable within the sequence. The metamorphic grade of rocks at Boorara is lower greenschist facies. The alteration assemblage associated with better Au grades consists of quartz carbonate and sericite. Pyrite and arsenopyrite are associated with the better Au grades at Boorara. At Boorara gold mineralisation has been described by Verbeek (1987) to occur : - Near dolerite contacts associated with quartz stockwork or vein arrays. Pervasive carbonatesericite alteration is present. - Sulphides occur in the vein selvedge with proximal arsenopyrite and distal pyrite. - Veins are usually less than 20 mm wide whilst the selvedge may be 1 to 4 times the width of the vein. - Associated with quartz veins in shallow (20 to 45 degrees) north-dipping shear zones. - Associated with steep (50 to 70 degrees) eastdipping shear zones on dolerite contacts.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		Mineralisation envelopes at Boorara consist of three dominant orientations: 1. NW trend of sub-vertical mineralisation which is typified by the East Lode workings, and interpreted as sub parallel to lithology contacts 2. NW moderate NE dipping structure at Crown Jewel, sub parallel to lithology contacts 3. NE striking, shallow to moderate NW dipping vein arrays as seen in the Boorara trial pit and at the Cataract workings.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 1. easting and northing of the drill hole collar 2. elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar 3. dip and azimuth of the hole 4. down hole length and interception depth 5. hole length.	Please refer to table 1 in the report for full details.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Other relevant drill hole information can be found in Section 1-"Sampling techniques, "Drilling techniques" and "Drill sample recovery".
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All one metre diamond drill results are reported in Appendix 1 Section 2 of JORC table 1. Holes include up to 2 m of internal dilution - host dolerite was intersected in the 2 m diluted section with significant alteration. A bottom cut off grade of $0.3 \mathrm{~g} / \mathrm{t}$ was used and no top cut grade was applied. The procedure applied to the aggregate intercepts quoted is length weighted average (sum product of interval x corresponding interval assay grade), divided by sum of interval lengths and rounded by one decimal place.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	These drill holes are designed to drill perpendicular to the dominant quartz vein array geometry within the Boorara dolerite at Boorara which gives MRP geologists a good understanding of mineralisation widths encountered. The dominant mineralisation geometries seen at the Boorara gold project are; 1. Shear zone hosted mineralisation on the dolerite east contact which strikes 320° and is steeply dipping to the west. 2. Quartz vein sheeted vein array hosted mineralisation that is orientated $020^{\circ} / 48^{\circ} \mathrm{NW}$, $060^{\circ} / 40^{\circ} \mathrm{NW}$ \& $100^{\circ} / 43^{\circ} \mathrm{N}$. The estimated true width of the granophyric dolerite has been estimated at 20 m and this based on BORC 157 intersection $23 \mathrm{~m} @ 2.02 \mathrm{~g} / \mathrm{t}$. BODH 035 intersected 22 m @ $2.1 \mathrm{~g} / \mathrm{t}$ which has been used to estimate true width. The true width of the ore at the Boorara gold resource is reasonably well known from the earlier deeper resource drilling, but at Boorara does not appear to be consistent in width due to the structural setting of the mineralisation. Greater than 90% of all drill holes would define both boundaries to mineralisation from which a true width can be reasonably determined.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. (NOTE: Any map, section, diagram, or other graphic or photo must be of high enough resolution to clearly be viewed, copied and read without distortion or loss of focus).	Please refer to the body of the report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Please refer to table 1 in the body of the report.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The diamond holes were also utilised for bulk density measurements.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further RC \& Diamond drilling is planned to further test mineralisation associated with this release.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. (NOTE: Any map, section, diagram, or other graphic or photo must be of high enough resolution to clearly be viewed, copied and read without distortion or loss of focus).	Please refer to the body of the report.

[^0]: \checkmark BORC 194: 13 m at $1.61 \mathrm{~g} / \mathrm{t}$ Au from 173 m , including 1 m at $10 \mathrm{~g} / \mathrm{t}$
 \checkmark BORC 195: 32 m at $1.26 \mathrm{~g} / \mathrm{t}$ Au from 44 m
 \checkmark BORC 196: 1 m at $5.44 \mathrm{~g} / \mathrm{t}$ Au from 118 m
 \checkmark BORC 197: 11 m at $1.52 \mathrm{~g} / \mathrm{t}$ Au from 91 m
 \checkmark BORC 198: 67 m at $1.99 \mathrm{~g} / \mathrm{t}$ Au from 31 m , including 1 m at $10.8 \mathrm{~g} / \mathrm{t}$
 \checkmark BORC 198: 59 m at $1.74 \mathrm{~g} / \mathrm{t}$ Au from 109 m
 \checkmark BORC 198: 8 m at $1.21 \mathrm{~g} / \mathrm{t}$ Au from 171 m
 \checkmark BORC 202: 16 m at $1.58 \mathrm{~g} / \mathrm{t}$ Au from surface
 \checkmark BORC 202: 136 m at $1.78 \mathrm{~g} / \mathrm{t}$ Au from 26 m
 \checkmark BORC 306: 10 m at $3.28 \mathrm{~g} / \mathrm{t}$ Au from 124 m , including 1 m at $\mathbf{2 3} \mathrm{g} / \mathrm{t}$
 \checkmark BORC 314: 9 m at $3.01 \mathrm{~g} / \mathrm{t}$ Au from 128 m , including 1 m at $\mathbf{2 2 . 5} \mathrm{g} / \mathrm{t}$

[^1]: *NSI: denotes drill hole with no significant composite intervals.

