

ASX ANNOUNCEMENT

Strong drill results further highlight continuity of mineralisation at Bombora

Numerous wide, high-grade results provide more evidence that Bombora is a large greenfields gold discovery with extensive open pit and underground mining potential

Highlights

- More thick, high-grade gold results from 40m x 20m drilling further highlight the strong continuity of the mineralisation at the 2.2km-long Bombora discovery in the Lake Roe Gold Project in WA
- × All but four of the 57 drill holes hit significant gold mineralisation
- × Significant results include:
 - 45m @ 2.29g/t Au from 6m including 9m @ 3.22g/t Au
 - 16.5m @ 4.50g/t Au from 65m including 4.43m @ 14.04g/t Au
 - 12m @ 4.54g/t Au from 52m including 6m @ 7.15g/t Au; and
 - 31m @ 1.41g/t Au from 222m including 12m @ 2.84g/t Au
- Emerging plunge controls apparent in long-section further upgrade the potential at depth in several areas
- Resource drilling continues with two RC drill rigs and two diamond drill rigs in preparation for a maiden JORC Resource in the March 2018 quarter

Photo 1: Multiple drill rigs in action at the Lake Roe Gold Project

12 Walker Avenue West Perth WA 6005 PO Box 244 West Perth WA 6872

Telephone: +61 8 9226 3666 Facsimile: +61 8 9226 3668 Email: breaker@breakerresources.com.au Website: www.breakerresources.com.au

ASX Code: BRB

ACN: 145 011 178

Breaker Resources NL (ASX: BRB) is pleased to announce further strong drilling results from its Bombora gold discovery situated in the 100 per cent-owned Lake Roe Project, 100km east of Kalgoorlie, WA.

The latest results provide more evidence of the strong continuity of the mineralisation and support Breaker's view that the project has extensive open pit and underground mining potential.

The results represent the eighth round of assay data from reverse circulation (**RC**) and diamond resource infill drilling which commenced in February 2017 and will form part of the maiden Resource estimate scheduled for release in the March 2018 quarter.

The new results relate to 46 RC drill holes (7,500m) and eleven diamond drill holes (2,603m) located in the northern and southern parts of the 2.2km Bombora discovery zone. New drill holes are shown selectively in long-section, plan and cross-section on Figures 1 to 3 respectively.

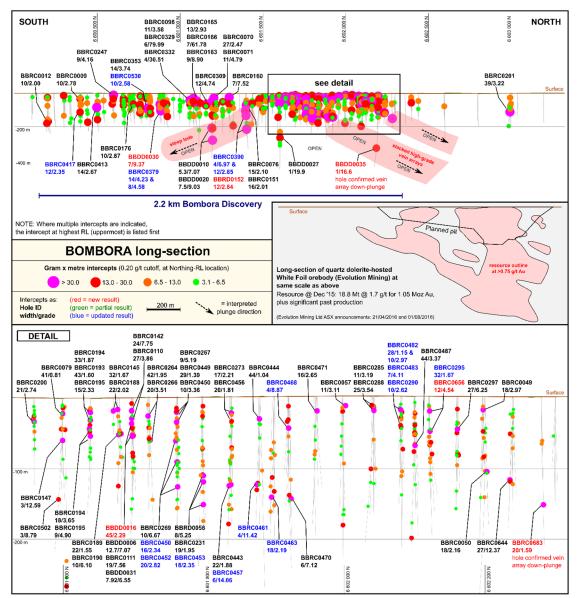


Figure 1: (Top) Gram x metre long section of the 2.2km Bombora discovery and immediate extensions showing location of significant down-hole intercepts in relation to Northing and depth (no adjustment for true width); (Inset) Long section view of White Foil Resource at the same scale as above long section

Breaker Executive Chairman Tom Sanders said the latest results were outstanding for several reasons.

"The widths and the grades are some of the best we have seen at Bombora," Mr Sanders said.

"But the intersections are also highly impressive because they continue to highlight the strong continuity of the mineralisation, which in turns supports our view of the immense potential for both open cut and underground mining.

"This all augurs extremely well for the maiden resource estimate, which is set for release in the coming quarter."

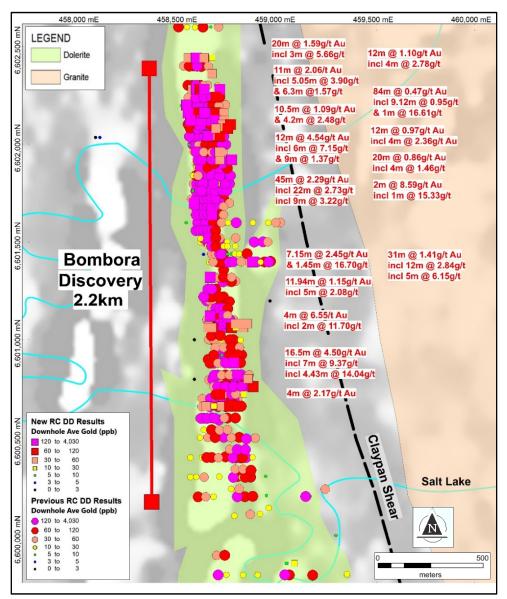


Figure 2: Bombora discovery RC and diamond drill (DD) hole plan with selected intersections; Drill holes colour-coded by average downhole gold over aeromagnetic image with interpreted geology

RC & Diamond Drill Program

The new results relate to RC drill holes BBRC0532-0549, BBRC0551, BBRC0652-0666, BBRC0672-0674 and BBRC0677-0684, and diamond drill holes BBDD0013, BBDD0016, BBDD0030, BBDD0033-0038, BBRD0152 and BBRD0667-0668. Details of the RC and diamond drilling are provided in Appendix 1 and Annexure 1.

The RC drilling is progressively closing the drill hole spacing to 40m x 20m. The main purpose of the diamond drilling is structural orientation and validation but some holes are extended to provide a preliminary indication of the depth potential in advance of planned resource estimation.

Many of the RC results are based on preliminary (4m) composite samples. The down-hole intersections reported do not represent true width as the geometry of the mineralised structures is still being assessed in several areas. Similarly, drilling in some areas does not adequately "see" mineralisation that is angled sub-parallel to the drill direction.

Results

More significant drill intersections are summarised in Table 1 below. A full listing of assay results above a nominal 0.2g/t Au lower cut-off grade is provided in Appendix 1.

Interval @ g/t gold	From	Includes Interval @ g/t gold	From
7.15m @ 2.45	40.35m	1.65m @ 9.19	40.35m
1.45m @ 16.7	54.55m	0.85m @ 25.15	54.55m
45m @ 2.29	6m	22m @ 2.73	15m
-	-	9m @ 3.22	28m
-	-	1.4m @ 9.3	34.6m
-	-	5m @ 3.79	40m
16.5m @ 4.50	65m	7m @ 9.37	70m
-		4.43m @ 14.04	70.8m
4m @ 6.55	66m	2m @ 11.7	67m
84m @ 0.47	43m	9.12m @ 0.85	115.9
1m @ 16.61	380m	1m @ 16.61	380m
11m @ 2.06	54m	5.05m @ 3.9	56.44m
-		2.49m @ 5.36	59m
6.3m @ 1.57	89m	2m @ 3.16	91m
12m @ 4.54	52m	6m @ 7.15	56m
9m @ 1.37	87m	8m@1.42	88m
20m @ 1.59	166m	3m @ 5.66	174m
31m@1.41	222m	12m @ 2.84	241m
-		5m @ 6.15	241m
2m @ 8.59	160m	1.1m @ 15.33	160.9m
1m@5.14	170m	1m@ 5.14	170m
	gold 7.15m @ 2.45 1.45m @ 16.7 45m @ 2.29 - - - 16.5m @ 4.50 - 4m @ 6.55 84m @ 0.47 1m @ 16.61 11m @ 2.06 - 6.3m @ 1.57 12m @ 4.54 9m @ 1.37 20m @ 1.59 31m @ 1.41 - 2m @ 8.59	gold From 7.15m@2.45 40.35m 1.45m@16.7 54.55m 45m@2.29 6m - - - - - - - - - - 16.5m@4.50 65m - - 16.5m@4.50 66m 84m@0.47 43m 1m@16.61 380m 11m@2.06 54m - - 6.3m@1.57 89m 12m@4.54 52m 9m@1.37 87m 20m@1.59 166m 31m@1.41 222m - - 2m@8.59 160m	goldFromInterval @ g/t gold7.15m @ 2.4540.35m1.65m @ 9.191.45m @ 16.754.55m0.85m @ 25.1545m @ 2.296m22m @ 2.739m @ 3.221.4m @ 9.35m @ 3.7916.5m @ 4.5065m7m @ 9.374.43m @ 14.044m @ 6.5566m2m @ 11.784m @ 0.4743m9.12m @ 0.851m @ 16.61380m1m @ 16.6111m @ 2.0654m5.05m @ 3.9-2.49m @ 5.366.3m @ 1.5789m2m @ 3.1612m @ 4.5452m6m @ 7.159m @ 1.3787m8m @ 1.4220m @ 1.59166m3m @ 5.6631m @ 1.41222m12m @ 2.84-5m @ 6.155m @ 6.152m @ 8.59160m1.1m @ 15.33

Table 1: Selected RC and Diamond Drill Results

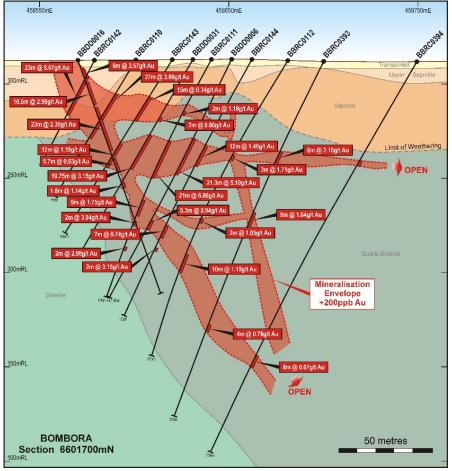


Figure 3: Bombora Cross Section 6601700N

Analysis

All but four of the 57 drill holes intersected significant gold mineralisation.

The "lake" RC and diamond drilling focused on the 6600680N to 6601060N area reducing the (sectional) drill hole spacing from 40m to 20m. This drilling returned a best intersection of 16.5m @ 4.50g/t gold (including 7m @ 9.37g/t gold) from 65m in BBDD0030. Drilling in this area resolved the mineralised structures into several stacked, subvertical, NNW-trending fault zones that have significant strike and depth potential.

The "land" RC and diamond drilling focused mainly on the 6601920N to 6602360N area. This drilling consisted of infill drilling with some deeper RC and diamond holes aimed at validating the mineralisation orientation and scoping the gold mineralisation at depth.

BBDD0016, a validation diamond drill hole, drilled down-dip on 6601600N confirmed continuity of steep east-dipping mineralisation in this area (Figure 3).

BBDD0035, a reconnaissance diamond drill hole on 6602200N was drilled 506m down-dip within the granophyric quartz dolerite host rock. The drill hole encountered multiple zones of predominantly west-dipping gold mineralisation, explaining multiple zones of high-grade gold mineralisation intersected by earlier RC drilling that were previously interpreted to be steeply east-

dipping. The drill hole also intersected 1m @ 16.61g/t gold at a down-hole depth of 380m prior to entering the less gold-prospective (low iron) part of the dolerite.

The drill results reinforce the emerging, coherent plunge control(s) apparent in long-section on Figure 1 particularly in the 6601200N to 6601400N area, where deeper drilling indicates strong plunge control that significantly upgrades the depth potential.

The progressive increase in drill density continues to define and validate the mineralisation orientations in various parts of the Bombora discovery. This upgrades the continuity of gold mineralisation, significantly de-risking potential mining in the process. The improved understanding also lays the foundation for finding more gold at depth and along strike.

The increasing density of drill data indicates that gold is controlled by steep, layer-parallel and subvertical mineralised faults with intervening, commonly high-grade, flat and/or west-dipping "linking" faults. All mineralised faults are generally stacked with gold mineralisation prevalent where these structures intersect the favourable iron-rich (commonly granophyric) part of the fractionated dolerite, particularly where the mineralised faults intersect.

Next Steps

Resource drilling continues with two RC rigs and two diamond rigs which are conducting drilling on a 40m x 20m pattern in preparation for a maiden JORC Resource in the March 2018 quarter.

RC drilling is currently in progress to infill large gaps in the drill coverage in the 500m zone between 6600100N and 6600600N in the southern part of the Bombora discovery. Initial drilling in this area is closing the drill hole spacing to 100m x 20m prior to more detailed infill drilling.

Current and imminent drilling is also addressing a significant (500m) gap in drill coverage between 6601100N and 6601600N.

Ongoing validation-style diamond drilling is planned to continue refining and validating the geological model with deeper diamond drilling to carry on scoping the underground mining potential. Selective RC drilling outside the Bombora discovery is also planned to continue assessing the many reconnaissance drill intersections that are floating in space due to the wide-spaced nature of the drilling. The Company also plans to start opening up the ~500km² of Breaker tenure situated outside the known Bombora gold system.

Once a maiden JORC Resource is released, the Company plans to continue drilling with a view to expanding the Resource at depth and along strike to assess the big picture potential enabling the formulation of a development strategy for a long-term, high-margin open pit and underground mine (subject to successful feasibility studies).

A second round of metallurgical results is expected in approximately three weeks.

Background

The Bombora discovery forms part of an 8km-long greenfields gold system identified at the 100%owned Lake Roe Project, 100km east of Kalgoorlie, WA.

The Bombora discovery is hidden below thin transported cover (typically 5-10m). Gold typically occurs as sulphide-rich lode and stockwork mineralisation in the upper, iron-rich part of a fractionated dolerite. The sulphide lodes have three dominant orientations and represent sulphide-impregnated fault zones (fluid pathways) with up to 10% pyrrhotite and pyrite accompanied by silica, albite, biotite and carbonate alteration and (tensional) quartz-pyrite veinlets that can form stockwork-style mineralisation commonly associated with the sulphide lodes.

Tom Sanders Executive Chairman Breaker Resources NL

23 November 2017

For further information on Breaker Resources NL please visit the Company's website at <u>www.breakerresources.com.au</u>, or contact:

Investors/Shareholders Tom Sanders Tel: +61 8 9226 3666 Email: breaker@breakerresources.com.au <u>Media</u> Paul Armstrong/Nicholas Read Read Corporate Tel: +61 8 9388 1474

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Targets and Exploration Results is based on and fairly represents information and supporting documentation compiled by Tom Sanders and Alastair Barker, Competent Persons, who are Members of the Australasian Institute of Mining and Metallurgy. Mr Sanders and Mr Barker are executives of Breaker Resources NL and their services have been engaged by Breaker on an 80% of full time basis; they are also shareholders in the Company. Mr Sanders and Mr Barker have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Sanders and Mr Barker consent to the inclusion in the report of the matters based on their information in the form and context in which it appears.

APPENDIX 1

Hole No.	Depth	North	East	RL	Dip	Azim	From	То	Length	Au_ppm	Sample
BBDD0013	133	6601638	458661	312	-61	269	30	31	1	0.93	Half Core
							35	36	1	1.95	Half Core
							40.35	47.5	7.15	2.45	Half Core
			includir	ng			40.35	42	1.65	9.19	Half Core
							54.55	56	1.45	16.70	Half Core
							65	66	1	0.24	Half Core
							67	68	1	0.30	Half Core
							76	77	1	0.72	Half Core
							95	96	1	3.49	Half Core
							102	103	1	0.76	Half Core
BBDD0016	132	6601697	458569	313	-71	89	6	51	45	2.29	Half Core
			includir				15	37	22	2.73	Half Core
			includir				28	37	9	3.22	Half Core
			includir	ng			34.6	36	1.4	9.30	Half Core
			and		-	1	40	45	5	3.79	Half Core
							56.3	62	5.7	0.94	Half Core
			includir	ng			58.7	59.7	1	2.78	Half Core
			and		1	1	61	62	1	1.09	Half Core
							63	64	1.05	0.25	Half Core
			in a bualin				70.36	72.2	1.85	1.14	Half Core
			includir	ng			71	72.2	1.2	1.48	Half Core
							81	84	3	0.33	Half Core
							87	88	1	0.74	Half Core
							91 93	92 94	1	0.28	Half Core
DDDD0030	1/0	(/00000	450770	312	()	2/0	53.43			0.68	Half Core
BBDD0030	168	6600880	458770 includir		-62	269	53.43	56 56	2.57 1.34	1.01 1.70	Half Core Half Core
			Includi	ig			65	81.5	1.54	4.50	Half Core
			includir				70	77	7	9.37	Half Core
			includir				70.8	75.23	4.43	14.04	Half Core
BBDD0033	364	6601120	458650	312	-60	90	6.6	8.7	2.1	1.30	Half Core
BBDD0033	504	0001120	includir		-00	70	7.61	8.7	1.09	2.25	Half Core
			incloai	9			23	24.18	1.18	0.23	Half Core
							34	39	5	0.60	Half Core
			includir	ומ			37	38	1	1.83	Half Core
				.9			66	70	4	6.55	Half Core
			includir	na			67	69	2	11.70	Half Core
				<u> </u>			79	84	5	1.12	Half Core
			includir	ng			82	84	2	2.16	Half Core
			includir	-			83	84	1	3.24	Half Core
							102	103	1	0.41	Half Core
							141	142	1	6.62	Half Core
							152	164	12	0.52	Half Core
			includir	ng	•	•	152	154	2	1.45	Half Core
			and				161	162	1	1.59	Half Core
							249	254	5	1.14	Half Core
			includir	ng			250	252	2	2.41	Half Core
							357	358	1	0.30	Half Core
BBDD0034	97	6602100	458601	315	-61	271	8	12	4	1.08	Half Core
			includir	ng			8	9	1	2.37	Half Core
			and				11	12	1	1.15	Half Core
							15	17	2	0.48	Half Core
							70	80.5	10.5	1.09	Half Core
			includir				75.8	80	4.2	2.48	Half Core
			includir	ng			77	79	2	3.90	Half Core

Hole No.	Depth	North	East	RL	Dip	Azim	From	То	Length	Au_ppm	Sample
BBDD0035	506	6602200	458530	314	-55	90	28	29.3	1.3	1.60	Half Core
							33	34	1	0.28	Half Core
							36	37.2	1.2	0.68	Half Core
							43	127	84	0.47	Half Core
			includir				49	62.2	13.2	0.88	Half Core
			includir	ng			58	59.6	1.6	2.39	Half Core
			and				73	74.11	1.1	3.40	Half Core
			and				90	101	11	0.76	Half Core
			includir	ng			95	96	1	2.18	Half Core
			and				98	101	3	1.46	Half Core
		I	and			1	115.9	125	9.1	0.95	Half Core
							141	167	26	0.28	Half Core
			includir	ng			159	162	3	1.16	Half Core
			and			r	163	164	1	1.04	Half Core
							183	184	1	0.46	Half Core
							196	197	1	0.40	Half Core
							224	225	1	0.47	Half Core
							251.83	253.04	1.21	1.98	Half Core
							256.07	258	1.93	0.37	Half Core
							262.25	265.31	3.06	0.53	Half Core
							326	327	1	0.25	Half Core
							328	331	3	0.42	Half Core
							337	339	2	0.69	Half Core
							342	343	1	0.29	Half Core
							354	355	1	0.66	Half Core
							370	371	1	0.49	Half Core
							380	381	1	16.61	Half Core
							390	391	1	2.50	Half Core
							445 454	446	1	0.33	Half Core
								455 492	1 / 7	2.04	Half Core
							490.33 501.38	492 504	1.67 2.62	0.86 0.37	Half Core Half Core
88550027	303	6601320	458650	312	-59	88	501.56			0.57	Half Core
BBDD0036	303	6601320	430630	312	-37	00		61.3	4.3		
			includir				67.61 71	72 72	4.4	0.77	Half Core Half Core
			Includi	ig		1	100	101	1	8.68	Half Core
							125	128.5	3.5	0.60	Half Core
							162.8	128.5	1.7	1.35	Half Core
			includir	na			162.8	163.8	1.7	2.08	Half Core
			II ICIOCII	ig			166.2	170.7	4.5	0.22	Half Core
						<u> </u>	186	170.7	4.5	0.22	Half Core
			includir	าต		I	188	189	1	1.11	Half Core
			inciduli	9			197	198	1	0.27	Half Core
							202	214.5	12.5	0.27	Half Core
							218.06	230	11.94	1.15	Half Core
			includir	na		1	210.00	230	5	2.08	Half Core
			includir				224	229	1	4.69	Half Core
				3			233.94	235	1.06	0.42	Half Core
							278	279	1.00	1.28	Half Core
BBDD0037	154	6602043	458640	315	-59	271	16	21	5	1.12	Half Core
			includir		5.		18	20	2	2.08	Half Core
				Ŭ.			34	35	1	0.22	Half Core
							118.33	120	1.67	4.80	Half Core
			includir	ng		I	118.33	119.5	1.17	6.74	Half Core

Hole No.	Depth	North	East	RL	Dip	Azim	From	То	Length	Au_ppm	Sample
BBDD0038	139	6602159	458538	314	-61	88	54	65	11	2.06	Half Core
			includir	ng			56.44	61.49	5.05	3.90	Half Core
			includir	ng			60	61	1	3.55	Half Core
			and				63	64	1	1.27	Half Core
							67.97	71.33	3.35	0.92	Half Core
							89	95.3	6.3	1.57	Half Core
			includir	ng			91	93	2	3.16	Half Core
			and		-	r	91	92	1	4.87	Half Core
							98	101.29	3.29	0.51	Half Core
BBRC0532	180	6600760	458870	312	-61	269	120	124	4	2.17	Split
			includir	<u> </u>			122	123	1	6.14	Split
BBRC0533	96	6600660	458630	312	-60	267	16	20	4	0.21	Composite
							24	28	4	0.22	Composite
	1.4.4	(100/10	450 (70	010	(1	0.40	82	84	2	0.41	Split
BBRC0534	144	6600660	458670	312	-61	269	8	12	4	0.20	Composite
BBRC0535	168	6600660	458710	312	-60	271	82 129	84 132	2	1.63	Split
			includir				129	132	3	1.18 2.68	Split Split
PPPC0524	192	(/00//0	458750	ig 312	-61	269	44	46	2	2.60	Split
BBRC0536	172	6600660	436750 includir		-01	207	44	46	1	3.39	Split
			II ICIOCII	ig		1	45 56	63	7	0.48	Composite/Split
			includir	na			62	63	1	1.34	Split
			incloai	'9		1	149	153	4	1.04	Split
			includir	חמ			151	153	2	1.04	Split
BBRC0537	222	6600660	458790	312	-62	271	76	84	8	0.45	Composite
							104	112	8	0.28	Composite
							136	140	4	1.06	Composite
							196	198	2	0.45	Split
BBRC0538	72	6600720	458700	312	-61	269	4	12	8	0.50	Composite
							36	40	4	0.27	Composite
BBRC0539	180	6600720	458822	312	-61	270					
BBRC0540	156	6599860	459080	312	-60	88	56	60	4	0.36	Composite
BBRC0541	186	6599860	459040	312	-59	90					
BBRC0542	90	6601060	458640	312	-61	269	24	28	4	0.24	Composite
BBRC0543	108	6601060	458660	312	-61	268	20	24	4	0.28	Composite
BBRC0544	180	6601060	458760	312	-60	269	92	104	12	0.36	Composite
							124	128	4	0.51	Composite
							164	168	4	1.02	Composite
BBRC0545	198	6601060	458780	312	-60	272					
BBRC0546	228	6601060	458820	312	-60	269	144	148	4	1.15	Composite
BBRC0547	192	6601080	458780	312	-60	271	152	160	8	0.21	Composite
BBRC0548	204	6601080	458800	312	-60	271	64	68	4	0.23	Composite
			includir				154 155	157 157	3	1.82 2.54	Split Split
REPCOSAG	240	6601080	458840	ig 312	-58	271	155	164		1.12	Split Split
BBRC0549	∠40	0001000	438840 includir		-00	2/1	158	164	6	2.66	Split
			and	'9			158	160	1	4.30	Split
			unu				168	172	4	0.55	Composite
BBRC0551	102	6600800	458845	312	-60	271	12	16	4	0.33	Composite
BBRC0652	186	6602160	458680	314	-60	269	96	104	8	0.27	Composite
55		0002100		.		,	108	116	8	0.38	Composite
							152	156	4	0.88	Composite
							180	184	4	1.18	Composite
BBRC0653	186	6602160	458720	314	-60	269	140	144	4	0.23	Composite
BBRC0654	42	6602120	458550	315	-60	269	28	29	1	0.35	Split
							36	40	4	1.31	Composite

Hole No.	Depth	North	East	RL	Dip	Azim	From	То	Length	Au_ppm	Sample
BBRC0655	144	6602120	458610	314	-60	270	8	20	12	0.30	Composite
				-			60	61	1	0.45	Split
							64	68	4	1.92	Split
			includir	ng			65	68	3	2.42	Split
			and	-			65	66	1	3.41	Split
							72	76	4	0.45	Composite
BBRC0656	160	6602120	458630	314	-60	269	52	64	12	4.54	Composite
			includir	ng			56	62	6	7.15	Split
			includir	ng			63	64	1	3.53	Split
							72	80	8	1.12	Composite
			includir	ng			72	76	4	1.84	Composite
							87	104	17	0.92	Composite/Split
			includir				88	96	8	1.42	Composite/Split
BBRC0657	174	6602120	458660	314	-60	272	64	68	4	0.23	Composite
							72	84	12	0.97	Composite
			includir	ng			72	76	4	2.36	Composite
							104	108	4	3.03	Split
			includir	ng			105	106	1	6.23	Split
							116	120	4	0.35	Composite
							124	128	4	0.38	Composite
							132	136	4	0.56	Composite
BBRC0658	192	6602120	458680	314	-60	273	52	56	4	1.04	Composite
							72	80	8	1.68	Composite
							128	132	4	0.57	Composite
BBRC0659	222	6602120	458720	314	-60	271	132	140	8	0.45	Composite
						071	212	216	4	0.23	Composite
BBRC0660	222	6602100	458715	315	-61	271	124	128	4	0.24	Composite
							140	144	4	0.48	Composite
							184	188	4	0.26	Composite
DDD CO (/ 1	100	((001 (0	450 (00	01.4	(0	071	192	196	4	0.24	Composite
BBRC0661	138	6602160	458620	314	-60	271	12	16	4	0.32	Composite
							40 56	44	4	0.83	Composite
								64 91	8	0.32	Composite
			includir				89 89	91	1	3.25	Split Split
			Includir	ig			94	100	6	0.75	spiii Composite/Split
			includir				94	95	0	1.68	
			Includi	ig			104	120	16	0.44	Split Composite/Split
			includir				104	111	10	1.98	Split
			Includi	ig			136	138	2	0.30	Composite
BBRC0662	246	6602100	458755	314	-61	270	108	116	8	0.46	Composite
BBRC0002	240	0002100	400700	514	-01	270	204	208	4	0.40	Composite
							204	240	20	0.86	Composite
			includir	na			220	240	4	1.46	Composite
			and	3			232	236	4	1.32	Composite
BBRC0663	84	6602440	458540	314	-59	274	59	60	1	0.56	Split
BBRC0664	120	6602440	458580	314	-59	271	16	20	4	0.00	Composite
	0				5.		52	60	8	1.60	Composite
		í	includir	ng	·		56	60	4	2.78	Composite
				Ĭ			92	96	4	0.26	Composite
							100	104	4	0.22	Composite
BBRC0665	156	6602440	458620	315	-61	271	16	20	4	0.26	Composite
							104	116	12	0.29	Composite
BBRC0666	192	6602440	458660	315	-61	270					
BBRC0672	203	6601920	458700	315	-60	270	93	95	2	0.93	Split
			includir				93	94	1	1.26	Split
BBRC0673	210	6601960	458697	315	-60	267	16	24	8	0.38	Composite
	-			-			134	136	2	0.37	Split
							140	144	4	0.39	Composite
							152	153	1	0.25	Split

Hole No.	Depth	North	East	RL	Dip	Azim	From	То	Length	Au_ppm	Sample
BBRC0674	192	6602040	458700	315	-60	268	72	76	4	0.75	Composite
							132	136	4	0.22	Composite
							140	144	4	1.52	Composite
BBRC0677	180	6602080	458680	314	-60	268	48	52	4	0.37	Composite
BBRC0678	246	6602080	458740	315	-59	269	127	136	9	0.80	Composite/Split
			includir	ng			127	130	3	1.92	Split
							148	152	4	0.21	Composite
							156	168	12	0.51	Composite
BBRC0679	90	6602280	458560	314	-59	270	30	31	1	0.34	Split
BBRC0680	108	6602280	458580	314	-61	271	73	80	7	1.34	Split
			includir	ng			73	77	4	1.84	Split
			includir	ng			74	75	1	3.42	Split
							79	80	1	1.32	Split
BBRC0681	131	6602280	458600	313	-59	270	48	52	4	0.32	Composite
							64	68	4	0.22	Composite
							92	96	4	0.27	Composite
BBRC0682	88	6602280	458620	313	-58	271	36	44	8	0.25	Composite
							52	56	4	0.26	Composite
							69	76	7	1.08	Split
			includir	na			69	73	4	1.72	Split
BBRC0683	240	6602280	458700	314	-60	272	140	144	4	0.25	Composite
DDRCCCCCC	210	0002200	1007 00	011	00	272	166	186	20	1.59	Split
			includir	na			174	177	3	5.66	Split
			includir				175	177	2	7.67	Split
			and	9			1/0	184	3	2.70	Split
			includir	na			182	184	2	3.55	Split
BBRC0684	210	6602360	458660	314	-60	271	102	112	8	0.24	Composite
DBRC0004	210	0002000	-00000	514	00	2/1	152	156	4	0.38	Composite
BBRD0152	303	6601398	458867	313	-62	268	180.75	183.4	2.65	0.51	Half Core
DDRD0132	000	0001070	-100007	010	02	200	222	253	31	1.41	Half Core
			includir	na			241	253	12	2.84	Half Core
			includir	-			241	246	5	6.15	Half Core
			incloai	9			256	257	1	0.59	Half Core
							261	262	1	0.39	Half Core
							264	265	1	1.19	Half Core
BBRD0667	193	6602240	458680	314	-60	269	121	123	2	0.59	Half Core
BBRD0007	175	0002240	-50000	514	00	207	121	130	4	0.40	Half Core
							120	140	1	0.40	Half Core
							142	140	7	0.99	Half Core
			includir	na	1	I	142	147	1	1.39	Half Core
	1		and	'9			142	145	1	3.31	Half Core
			and				144	143	1	1.72	Half Core
			unu				14/	140	1	0.21	Half Core
						-	154	161	1	0.21	Half Core
BBRD0668	280	6601920	458760	315	-60	270	138	139	1	0.98	Half Core
DDKDU000	200	0001720	400/00	515	-00	2/0	138	162		0.46 8.59	
			includir		I	I			2		Half Core
			inciudif	ıy			160.9	162	1.1	15.33	Half Core
							170	171		5.14	Half Core
			includir				218 221	222 222	4	0.55	Half Core Half Core

Appendix 1 Notes

- Mineralised widths shown are downhole distances. The estimated true width is unclear in many cases due to the early stage nature of the drilling. Several mineralisation geometries have been confirmed by diamond drilling.
- One metre results are pending for all composite samples. Composite samples are pending for some drill holes as tabled.
- Grades reported above a nominal lower cut-off grade of 0.2g/t Au applied in grade calculation as a conservative measure which enhances geological continuity. No top assay cut has been used.
- Further details are provided in Annexure 1.

ANNEXURE 1: JORC Code (2012 Edition) Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 46 reverse circulation (RC) holes and eleven diamond drill holes were completed by Breaker Resources NL. Holes were drilled to variable depth dependent upon observation from the supervising geologist. RC samples were collected from a trailer or rig mounted cyclone by a green plastic bag in 1m intervals and the dry sample riffle split to produce a 3kg representative sample which was placed on the ground with the remaining bulk sample in rows of 20. Any damp or wet samples were kept in the green plastic bag, placed in the rows of samples and a representative spear or scoop sample taken. Diamond core is drilled HQ3, HQ2 or NQ2 dependent upon ground conditions. Core is cut in half by a diamond saw on site and half core is submitted for analysis except duplicate samples which are submitted as quarter core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Sampling was undertaken using Breaker Resources' (BRB) sampling protocols and QAQC procedures in line with industry best practice, including standard and duplicate samples.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was	RC samples were composited at 4m to produce a bulk 3kg sample. Half core samples were taken with a diamond saw generally on 1m intervals or on geological boundaries where appropriate (minimum 0.4m to maximum of 1.2m).
	pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg. submarine nodules) may warrant disclosure of detailed information.	The 3kg composite samples were sent to MinAnalytical in Perth. Samples were sorted, dried, crushed to 10mm, pulverised to -75µm and split to produce a 25g charge for fire assay analysis for gold.
Drilling techniques	Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC drilling was undertaken using a face- sampling percussion hammer with 5½" bits. Diamond core is HQ3, HQ2 or NQ2. Core is orientated using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by BRB field staff at Lake Roe.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling recoveries were visually estimated as a semi-qualitative range and recorded on the drill log along with moisture content.
		Diamond drillers measure core recoveries for every drill run completed using either three or six metre core barrels. The core recovered is physically measured by tape measure and the length recovered is recorded for every "run". Core recovery is calculated as a percentage recovery.
		Core recovery is confirmed by BRB staff during core orientation activities on site and recorded into the database.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC holes were collared with a well-fitting stuff box to ensure material to the outside return was minimised. Drilling was undertaken using auxiliary compressors and boosters to keep the hole dry and lift the sample to the sampling equipment. Drill cyclone and splitter were cleaned regularly between rod-changes if required and after each hole to minimise down hole or cross-hole contamination
		Various diamond drilling additives (including muds and foams) have been used to condition the drill holes to maximise recoveries and sample quality.
		Diamond drilling by nature collects relatively uncontaminated core samples. These are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse	There is no observable relationship between recovery and grade, or preferential bias in the RC drilling at this stage.
	material.	There is no significant loss of material reported in the mineralised parts of the diamond core to date.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill holes were logged for lithology, alteration, mineralisation, structure, weathering, wetness and obvious contamination by a geologist. Data is then captured in a database appropriate for mineral resource estimation.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	RC and diamond core logging is both qualitative and quantitative in nature and captures downhole depth, colour, lithology, texture, mineralogy, mineralisation, alteration and other features of the samples.

Criteria	JORC Code explanation	Commentary
		All cores are photographed in the core tray, with individual photographs taken of each tray both dry and wet.
	The total length and percentage of the relevant intersections logged.	All drill holes were logged in full.
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Core samples were cut in half using a conventional diamond core saw. Half core samples were collected for assay except duplicate samples which are quarter cut. An entire half core sample is retained and stored in core trays.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split 87.5%-12.5% by a stand-alone multi-tiered riffle splitter. The majority of the samples were recorded as dry and minimal wet samples were encountered. Sample duplicates were obtained by re-splitting the remaining bulk sample contained in a plastic bag in the field using the multi-tier riffle splitter.
		RC composite samples were collected via spear sampling of the riffle split bulk sample contained in green plastic bags.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The samples were sent to an accredited laboratory for sample preparation and analysis. All samples were sorted, dried pulverised to -75um to produce a homogenous representative 25g sub- sample for analysis. A grind quality target of 85% passing -75µm has been established.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	RC samples were collected at 1m intervals and composited into 4m samples using a spear to sample individual metre bagged samples.
		Diamond core sample intervals are based on geological intervals typically less than a nominal 1m.
		Quality control procedures involved the use of Certified Reference Materials (CRM) along with sample duplicates (submitted as quarter core). Selected samples are also re-analysed to confirm anomalous results.vf
		MinAnalytical's QAQC included insertion of certified standards, blanks, check replicates and fineness checks to ensure grind size of 85% passing -75µm as part of their own internal procedures.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half	Sample duplicates for RC and diamond drilling (quarter core) are taken at least three times in every 100 samples. All samples submitted were selected to
	sampling.	weigh less than 3kg to ensure total

Criteria	JORC Code explanation	Commentary			
		preparation at the pulverisation stage.			
		Duplicate sample results are reviewed regularly for both internal and external reporting purposes.			
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly give an accurate indication of mineralisation given the qualitative nature of the technique and the style of gold mineralisation sought.			
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique used a 25g fire assay and is appropriate to detect gold mineralisation. The use of fire assay is considered a total assay.			
16212	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any reported element concentrations.			
	Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established.	BRB inserted CRMs and duplicates into the sample sequence, which were used at the frequency of three CRMs and three duplicates per 100 samples. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing -75µm was being attained. Laboratory QAQC involved the use of internal lab standards using CRMs, blanks, splits and replicates.			
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Alternative BRB personnel have verified the significant results outlined in this report. It is considered that the Company is using industry standard techniques for sampling and using independent laboratories with the inclusion of Company standards on a routine basis.			
	The use of twinned holes.	None undertaken in this program.			
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary geological and sampling data were recorded digitally and on hard copy respectively, and are subsequently transferred to a digital database where it is validated by experienced database personnel assisted by the geological staff. Assay results are merged with the primary data using established database protocols run in house by BRB.			
	Discuss any adjustment to assay data.	No adjustments or calibrations were undertaken other than to average any repeated analysis for each individual sample.			

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole collars are initially located by handheld GPS and then picked up by an accredited surveyor . GPS elevation values are corrected where necessary using a digital elevation model from a LIDAR survey. Expected accuracy is +/- 4m for easting, northing and RL (GPS) and +/- 0.1m or less for surveyed and LIDAR elevation point data. All RC and diamond holes are gyro surveyed for rig alignment and downhole at the completion of the hole.
	Specification of the grid system used.	The grid system is GDA94 MGA, Zone 51.
	Quality and adequacy of topographic control.	As detailed above.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drill holes are on a nominal spacing of 40m x 20m with wider patterns in areas of reconnaissance drilling. Diamond drill holes are drilled selectively, mainly to clarify structure or to assess the
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	depth potential. The infill drilling is being conducted provide enough data to support estimation of Mineral Resource.
	Whether sample compositing has been applied.	Four metre composite samples were taken for all RC holes via spearing. One metre samples were riffle split when dry or by a representative spear or scoop sample when wet/damp.
		No sample compositing has been applied to diamond drill core.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Angled RC drilling and diamond drilling has so far confirmed three mineralisation orientations. The extent, geometry and plunge of the various structural "domains" and how they interact is still being resolved. Further detailed drilling is needed to confidently quantify the degree of sample bias arising from drill orientation (positive or negative).
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Sample bias arising from orientation is discussed above.
Sample security	The measures taken to ensure sample security.	RC and diamond drill samples submitted were systematically numbered and recorded, bagged in labelled polyweave sacks and dispatched in batches to the laboratory's Kalgoorlie facility by BRB personnel. The laboratory confirms receipt of all samples on the

Criteria	JORC Code explanation	Commentary
		submission form on arrival.
		All assay pulps are retained and stored in a Company facility for future reference if required.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No formal audits/reviews have been conducted on sampling technique or data to date. However a scanning of sample quality (recovery, wetness and contamination) as recorded by the geologist on the drill rig against assay results occurs with no obvious issues identified to date.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The RC and diamond drill holes are located on tenement E28/2515, which is held 100% by BRB. There are no material interests or issues associated with the tenement.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical holders of the Project area include Poseidon Gold, WMC, Mt Kersey Mining and Great Gold Mines.
		Vertical rotary air blast and aircore drilling undertaken in the period 1991 to 1998 identified a zone of strong gold anomalism that extends over a potential distance of 4km under thin (5-10m) cover (maximum grade of 4m at 0.71g/t Au).
		Although the prospectivity of the trend was recognised by previous explorers, rigorous anomaly definition and appropriate follow-up of encouraging results did not occur, apparently due to "non-geological" factors, including inconvenient tenement boundaries at the time of exploration and changes in company priorities and market conditions.
Geology	Deposit type, geological setting and style of mineralisation.	BRB is targeting Archean orogenic gold mineralisation near major faults.
		Gold is associated with subsidiary faults of the Claypan Shear Zone and occurs preferentially in the Fe-rich part of a fractionated dolerite in an area of

Criteria	JORC Code explanation	Commentary
		shallow (5m to 20m) transported cover. The dolerite is folded into a domal geometry between two major shear zones ("domain" boundaries) that converge and bend in the vicinity of the project.
		The main exploration target is high-grade lode, stockwork, disseminated and quartz vein gold mineralisation hosted by different phases of the fractionated dolerite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar; elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar; dip and azimuth of the hole; down hole length and interception depth; 	Refer to Appendix 1 for significant results from the RC and diamond drilling. Drill hole locations are described in the body of the text, in Appendix 1 and on related Figures.
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually Material and should be stated.	A nominal 0.2g/t Au lower cut-off is used for grade calculations. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All reported RC and diamond drill assay results have been length weighted (arithmetic length weighting).
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None undertaken.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	All drill hole intercepts are measured in downhole metres (criteria for detailed estimate of true width not yet at hand unless otherwise stated). At this stage the main primary mineralised structural orientation(s) are still being ascertained and are inconclusive.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down	

Criteria	JORC Code explanation	Commentary
	hole length, true width not known').	The orientation of the drilling may introduce some sampling bias (positive or negative).
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Tables in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A nominal 0.2g/t Au lower cut-off is used for grade calculations. No top-cuts have been applied.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data.
Further work	The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work is planned as stated in this announcement.