

ASX/Media Announcement 28 November 2017

High grade gold zone intersected at Kouri

Results include 12m at 8.3 g/t gold, incl. 1m at 78.9 g/t gold

- High grade zone of gold mineralisation identified in adjacent drill sections which remain open at depth and along strike.
- High grade intercepts include:
 - o 12m at 8.3 g/t gold from 92m, including 1m at 78.9 g/t gold in BARC154; and
 - Three closely spaced parallel intercepts of 2m at 7.0 g/t gold from 97m; 4.2m at 18.8 g/t gold from 104.8m including 0.6m at 138.4 g/t gold; and 0.8m at 7.9 g/t gold from 122.2m in BADH004.
- Infill and extensional resource drilling has been completed over approximately 1km of the Guitorga Lodes which extend for a total strike length of over 3km.
- Drilling to date has successfully extended mineralisation by a further 200m to the northeast mineralisation remains open in both directions along strike.
- Drilling has also extended the depth extent of known mineralisation from 70m to 120m below surface mineralisation remains open at depth.
- RC drilling program at Kouri ongoing with 6,800m of the planned 15,000m RC program completed.

Golden Rim Resources Ltd (ASX: GMR) (**Golden Rim** or **Company**) is pleased to advise that the major resource definition drilling program at its 100% owned Kouri Gold Project (**Kouri**), in Burkina Faso, is progressing well. The Company has received its first batch of assay results for both its recently completed diamond drilling program and for its ongoing reverse circulation (**RC**) drilling program.

The assay results received from drilling to date cover approximately 500m of the 1km strike drilled. The results have extended the depth of mineralisation to 120m below surface and have extended the strike extent by a further 200m to the northeast of the Exploration Target.

The strike extent of mineralisation to the northeast remains open for a further 180m to the boundary of Kouri in an area currently being exploited by artisanal miners beneath a prominent laterite capped hill where no drilling has been conducted to date.

A high grade zone of gold mineralisation has been discovered approximately 70m below surface on the Guitorga Lodes (within the Banouassi Prospect (**Banouassi**) at Kouri) on adjacent drill sections located 100m apart. The new high grade intercepts include:

- 12m at 8.3 g/t gold from 92m, including 1m at 78.9 g/t gold in BARC154 on Section 11,250mN (Figure 1); and
- Three closely spaced parallel intercepts of 2m at 7.0 g/t gold from 97m; 4.2m at 18.8 g/t gold from 104.8m, including 0.6m at 138.4 g/t gold; and 0.8m at 7.9 g/t gold from 122.2m in BADH004 on Section 11,350mN (Figure 2).

Significantly, the zone of high grade mineralisation remains open at depth and along strike.

Golden Rim Resources Ltd I ABN 39 006 710 774 I Level 2, 609 Canterbury Road, Surrey HillsVIC3127, Australia I PO Box 124, Surrey Hills VIC 3127, Australia www.goldenrim.com.au I info@goldenrim.com.au I T + 61 3 9836 4146

Golden Rim's Managing Director, Craig Mackay, said "The Company is now about halfway through its originally proposed resource definition drilling program at Kouri and has received about 30% of the assays.

"We are very pleased with the results received to date, which have extended Kouri's known mineralisation both along strike and at depth. The discovery of a zone of high grade mineralisation is particularly encouraging, and will be followed up with further infill drilling and drilling at depth to test the extent of this high grade zone.

"The results demonstrate the continuity of the gold mineralisation within the multiple parallel lodes of gold mineralisation that are expected to comprise the bulk of the maiden Mineral Resource estimate for Kouri. Significantly, the drilling has successfully doubled the known depth extent of the gold mineralisation and this mineralisation remains open."

Mr Mackay also commented on the implications of the assay results and the recent agreement the Company has with Ausdrill Limited (**Ausdrill**).

"The agreement with Ausdrill has provided Golden Rim with an opportunity to expand the current resource delineation program with further diamond and RC drilling to test additional zones of gold mineralisation prior to the preparation of a maiden Mineral Resource at Kouri. In particular, additional programs are likely to focus on delineating further zones of high grade mineralisation. The expanded drilling program and results received so far put the Company is good stead for the delivery of the Mineral Resource scheduled for the first quarter of 2018" said Mr Mackay.

Additional Highlights from Infill Exploration Program

Further significant new gold intercepts from the ongoing infill and extensional drilling include:

- 16m at 2.1 g/t gold from 20m, including 1m at 9.7 g/t gold; and 1m at 16.8 g/t gold from 31m (BARC139);
- 7.3m at 3.0 g/t gold from 55.7m, including 0.9m at 17.4 g/t gold (BADH006);
- 18m at 1.1 g/t gold from 70m, including 1m at 5.9 g/t gold from 79m (BARC132);
- 12m at 1.1g/t gold from 76m; and 10m at 1.5 g/t gold from 103m, including 2m at 5.5 g/t gold (BARC160);
- 8m at 2.2 g/t gold from 67m, including 1m at 8.1 g/t gold; and 1m at 6.7 g/t gold from 73m (BARC147);
- 3m at 7.8 g/t gold from 60m, including 1m at 20.8 g/t gold (BARC140);
- 4m at 4.9 g/t gold from 136m, including 1m at 12.9 g/t gold (BARC136);
- 6m at 3.5 g/t gold from 25m, including 1m at 17.9 g/t gold; and 2m at 6.6 g/t gold from 59m, including 1m at 12.1 g/t gold (BARC150);
- 5m at 3.8 g/t gold from 15m, including 1m at 11.9 g/t gold (BARC155); and
- 1m at 27.9 g/t gold from 5m (BADH005).

While drilling to date has provided both depth and strike extensions to the mineralisation, considerable further upside potential remains at the Guitorga Lodes. So far, the infill and resource drilling has been completed over a strike length of approximately 1km in the northeast portion of the Guitorga Lodes. The Guitorga Lodes extend for over 3km and the ongoing RC drilling program is designed to test all of this strike length.

Status of Current Exploration Program

The completed diamond drilling program consisted of 12 holes for a total of 1,530m. Assay results have been received for 10 diamond holes (BADH003 – BADH012). The RC drilling program consists of ~120 holes for 15,000m. To date, 56 RC holes for a total of 6,800m have been completed. Assay results have been received for 32 RC holes (BARC131 – BARC162). The drill hole location details and significant gold intercepts for the diamond and RC drilling are depicted in Figures 3 and 4 and Tables 1, 2 and 3.

The drill core for Kouri has provided useful geological, structural and specific gravity information.

The new structural orientation data suggests the mineralisation comprising the Guitorga Lodes generally strikes northeast and dips ~70 degrees to the southwest, whereas mineralisation was previously interpreted to dip near-vertically. As a result, the true width of many of the mineralised zones is likely to be greater than the width used in the Exploration Target.

Further, the gold mineralisation observed in the drill core is generally hosted within intervals of highly sheared andesite and is associated with quartz + carbonate + pyrite ± pyrrhotite and/or hematite veining. The association of a magnetic mineral, such as pyrrhotite, with some of the gold mineralisation at Kouri has important implications for Golden Rim's ongoing exploration on the project. The Company has detailed ground magnetic data and airborne magnetic data which may be very useful for locating further gold mineralisation.

-ENDS-

Contact Information

Hayley Butcher Golden Rim Resources Ltd General Manager, Corporate & Company Secretary +61 0409 880 009

Tony Dawe
Citadel Magnus
tdawe@citadelmagnus.com
+61 405 989 743

Competent Persons Statement

The information in this report that relates to exploration results is based on information compiled by Mr Craig Mackay, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr Mackay is a full-time employee of Golden Rim Resources Ltd. Mr Mackay has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Mackay consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report relating to previous exploration results and Exploration Targets are extracted from the announcements Initial Exploration Target Defined for Korongou dated 16 July 2015; Guitorga Delivers Significant Drilling Results 21m at 5.6 g/t gold including 8m at 11.8 g/t gold from 13m dated 11 May 2015; New High Grade Gold Intercepts Move Kouri Closer to Maiden Resource dated 6 July 2017; Korongou Project Delivers Significant RC Drilling Results dated 18 June 2013; Korongou Delivers Significant Drilling Results dated 7 July 2014, and has been reported in accordance with the 2012 edition of the JORC Code. These announcements are available on the Company's website (www.goldenrim.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in these announcements.

Forward Looking Statements

Certain statements in this document are or maybe "forward-looking statements" and represent Golden Rim's intentions, projections, expectations or beliefs concerning among other things, future exploration activities. The projections, estimates and beliefs contained in such forward looking statements necessarily involve known and unknown risks, uncertainties and other factors, many of which are beyond the control of Golden Rim, and which may cause Golden Rim's actual performance in future periods to differ materially from any express or implied estimates or projections. Nothing in this document is a promise or representation as to the future. Statements or assumptions in this document as to future matters may prove to be incorrect and differences may be material. Golden Rim does not make any representation or warranty as to the accuracy of such statements or assumptions.

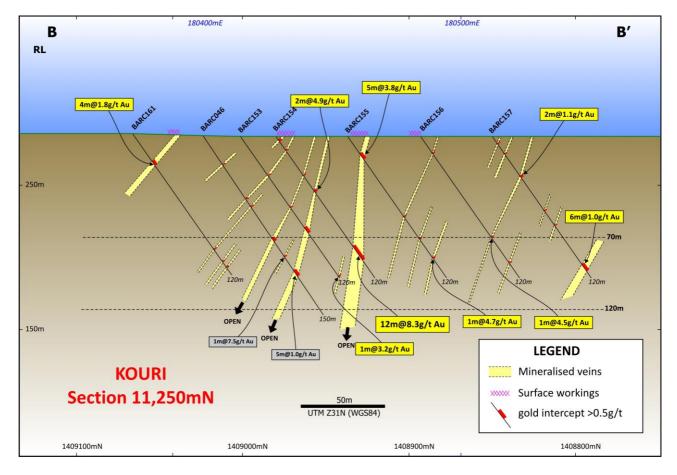


Figure 1. Drill section 11,250mN at Banouassi. Significant new gold intercepts depicted in yellow boxes.

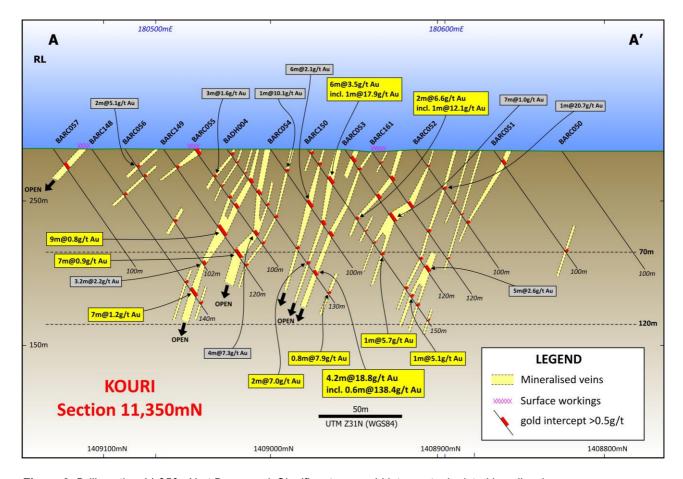
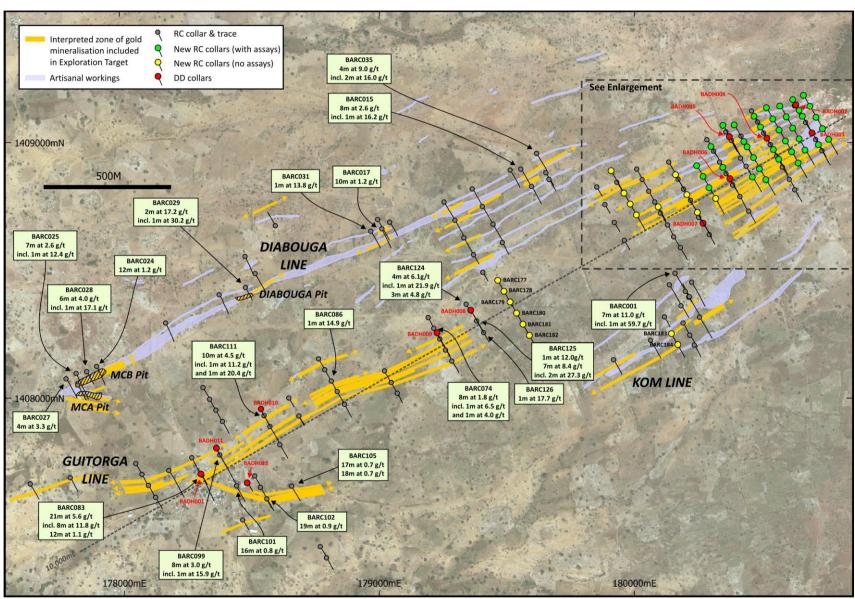



Figure 2. Drill section 11,350mN at Banouassi. Significant new gold intercepts depicted in yellow boxes.

Figure 3. Diamond and RC drill collars with >10 m x g/t gold intercepts and the interpreted zones of gold mineralisation over a satellite image at Banouassi. The drill collars and gold intercepts in the NE corner of Banouassi are depicted in greater detail in Figure 4

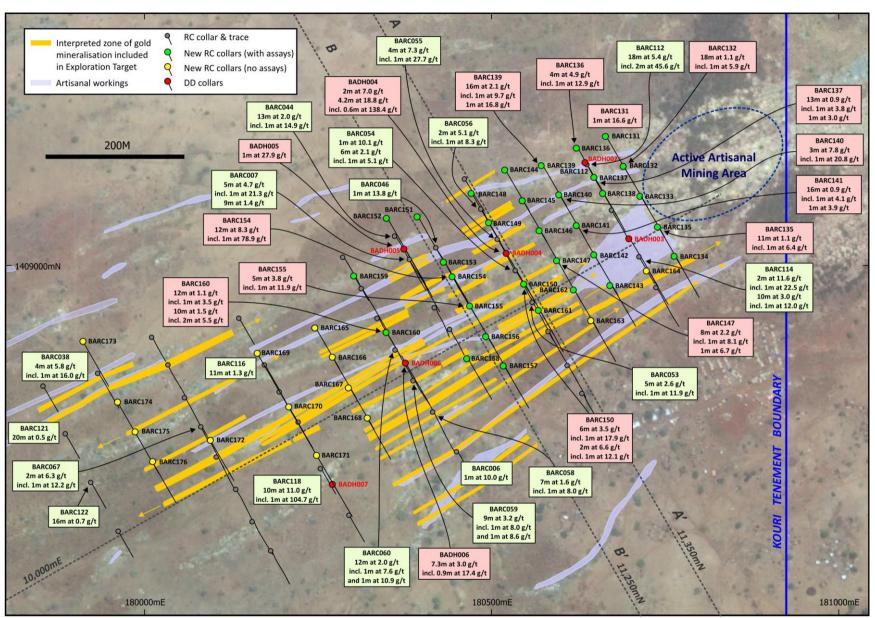


Figure 4. Diamond and RC drill collars for the NE portion of Banouassi with >10 m x g/t gold intercepts and the interpreted zones of gold mineralisation over a satellite image.

Photograph 1. Gold bearing quartz-carbonate-pyrite-pyrrhotite-hematite veining in drill core

Table 1. Diamond and RC drill hole collar details

Hole ID	Easting (m)	Northing (m)	RL (m)	Dip (o)	Azimuth (o)	EOH (m)
BADH001	178,301	1,407,704	269	-55	150	80
BADH002	180,629	1,409,152	290	-55	150	30
BADH003	180,696	1,409,036	289	-55	150	140
BADH004	180,518	1,409,022	286	-55	150	130
BADH005	180,373	1,409,021	284	-55	150	140.6
BADH006	180,375	1,408,861	283	-55	150	120
BADH007	180,274	1,408,682	281	-55	150	110.4
BADH008	180,359	1,408,342	275	-55	150	160.5
BADH009	179,225	1,408,253	274	-55	150	130
BADH010	178,538	1,407,957	275	-55	150	140
BADH011	178,360	1,407,800	269	-55	150	150
BADH012	178,480	1,407,667	269	-55	150	180.5
BARC131	180,664	1,409,185	290	-55	150	120
BARC132	180,689	1,409,142	290	-55	150	120
BARC133	180,713	1,409,099	290	-55	150	120
BARC134	180,763	1,409,013	290	-55	150	120
BARC135	180,738	1,409,056	290	-55	150	120
BARC136	180,622	1,409,168	290	-55	150	170
BARC137	180,647	1,409,125	290	-55	150	110
BARC138	180,660	1,409,103	290	-55	150	110
BARC139	180,572	1,409,144	290	-55	150	120
BARC140	180,597	1,409,101	290	-55	150	120
BARC141	180,622	1,409,058	290	-55	150	120
BARC142	180,647	1,409,015	290	-55	150	120
BARC143	180,672	1,408,971	290	-55	150	120
BARC144	180,519	1,409,137	286	-55	150	120
BARC145	180,543	1,409,093	286	-55	150	120
BARC146	180,568	1,409,050	286	-55	150	120
BARC147	180,593	1,409,007	286	-55	150	120
BARC148	180,471	1,409,103	286	-55	150	140
BARC149	180,496	1,409,060	286	-55	150	120
BARC150	180,546	1,408,974	286	-55	150	150
BARC151	180,568	1,408,935	286	-55	150	120
BARC152	180,393	1,409,070	284	-55	150	190
BARC153	180,430	1,409,005	284	-55	150	120
BARC154	180,443	1,408,984	284	-55	150	120
BARC155	180,468	1,408,941	284	-55	150	120
BARC156	180,493	1,408,897	284	-55	150	120
BARC157	180,518	1,408,854	284	-55	150	120
BARC158	180,349	1,409,067	284	-55	150	120
BARC159	180,464	1,408,866	284	-55	150	28
BARC160	180,301	1,408,988	284	-55	150	140
BARC161	180,348	1,408,905	284	-55	150	120
BARC162	180,245	1,408,911	284	-55	150	120

Notes:

- BARC prefix denotes reverse circulation (RC) drilling
- BADH prefix denotes diamond drilling
- Coordinate projection is UTM, WGS 84 zone 31 North

Table 2. Significant intercepts from the diamond drilling at Kouri

Hole ID	From (m)	To (m)	Significant Intersections
D.A.D.U.0.0.0			(>0.5 g/t gold)
BADH003	0	1	1m at 1g/t Au
BADH003	7	10	3m at 0.9g/t Au
BADH003	22	26	4m at 1.5g/t; incl. 1m at 4.4g/t from 25m
BADH003	31	32	1m at 0.6g/t Au
BADH003	38.5	45	6.5m at 0.5g/t Au
BADH003	49.7	50.4	0.7m at 0.5g/t Au
BADH003	64	64.6	0.6m at 2.5g/t Au
BADH003	94	95	1m at 0.7g/t Au
BADH004	0	1	1m at 2.5g/t Au
BADH004	5	7	2m at 2.1g/t Au
BADH004	12	13	1m at 3.8g/t Au
BADH004	21.6	22	0.4m at 0.6g/t Au
BADH004	26	29.8	3.8m at 1.0g/t Au; incl. 1m at 3.1g/t from 28.8m
BADH004	35.7	41	5.3m at 0.6g/t Au
BADH004	48	49	1m at 0.7g/t Au
BADH004	58	60	2m at 1.3g/t Au
BADH004	67	68	1m at 0.5g/t Au
BADH004	71	71.7	0.7m at 0.5g/t Au
BADH004	76	77	1m at 0.5g/t Au
BADH004	84	86	2m at 1.2g/t Au
BADH004	97	99	2m at 7.0g/t Au
BADH004	104.8	109	4.2m at 18.8g/t Au; incl. 0.6m at 138.4g/t from 108m
BADH004	122.2	123	0.8m at 7.9g/t Au
BADH005	5	6	1m at 27.9g/t Au
BADH005	24	25	1m at 0.5g/t Au
BADH005	99	99.9	0.9m at 0.7g/t Au
BADH005	118.8	119.8	1m at 0.5g/t Au
BADH005	121.8	122.8	1m at 0.6g/t Au
BADH005	126.4	128.2	1.8m at 1.3g/t Au
BADH005	131.6	132.3	0.7m at 0.7g/t Au
BADH006	0	3	3m at 0.7g/t Au
BADH006	29.7	30.7	1m at 0.6g/t Au
BADH006	34.7	35.7	1m at 1.4g/t Au
BADH006	55.7	63	7.3m at 3.0g/t Au; incl. 0.9m at 17.4g/t from 62.1m
BADH006	66	66.6	0.6m at 3.4g/t Au
BADH007	1	2	1m at 0.5g/t Au
BADH007	55.9	57.2	1.3m at 1.2g/t Au
BADH007	90.2	91.2	1m at 0.5g/t Au
BADH008	12	13	1m at 0.7g/t Au
BADH008	40	41	1m at 1.0g/t Au
BADH008	50	51	1m at 0.5g/t Au
BADH008	58	59	1m at 2.3g/t Au
BADH008	78.9	79.5	0.6m at 0.6g/t Au
BADH008	102.3	102.9	0.6m at 12.5g/t Au
BADH008	121	122	1m at 0.5g/t Au
BADH009	1	4.5	3.5m at 1.0g/t Au
BADH009	22	23	1m at 0.9g/t Au
	57	58	1m at 0.9g/t Au 1m at 0.6g/t Au
BADH009	L /	X	

Hole ID	From (m)	To (m)	Significant Intersections (>0.5 g/t gold)
BADH009	94.7	107.7	13m at 0.7g/t Au
BADH009	113.6	117.8	4.2m at 1.3g/t Au; incl. 1m at 3.2g/t from 113.6m
BADH010	1.27	2.12	0.9m at 1.0g/t Au
BADH010	20	20.89	0.9m at 0.8g/t Au
BADH010	25.7	34.7	9m at 1.1g/t Au; incl. 1m at 5.5g/t from 25.7m
BADH010	50.1	51	0.9m at 0.7g/t Au
BADH010	76.8	77.8	1m at 1.9g/t Au
BADH010	112.2	117.4	5.2m at 0.6g/t Au
BADH010	135.7	139.4	3.6m at 1.0g/t Au; incl 0.6m at 3.4g/t from 138.8m
BADH011	35	36	1m at 0.7g/t Au
BADH011	79.5	80.5	1m at 0.7g/t Au
BADH011	87.8	88.8	1m at 0.6g/t Au
BADH011	111.8	112.8	1m at 0.6g/t Au
BADH011	120	121	1m at 0.9g/t Au
BADH011	132.3	133.3	1m at 0.7g/t Au
BADH012	21.7	22.7	1m at 0.7g/t Au
BADH012	54	55	1m at 1.4g/t Au
BADH012	58	59	1m at 0.7g/t Au
BADH012	77	83.3	6.3m at 1.0g/t Au; incl. 0.7m at 3.2g/t from 78.7m

Notes

- All reported intersections are assayed on geological intervals ranging from 0.5m to 2m.
- Intercept cut-off grade is 0.5 g/t gold
- Intervals are reported with a maximum of 3m of internal dilution unless the total intercept grade falls below 0.5 g/t gold
- Sample preparation and assaying conducted by BIGS Laboratory in Ouagadougou.
- Assayed by 50g charge fire assay with Atomic Absorption Spectrometry (AAS) finish

Table 3. Significant intercepts from the RC drilling at Kouri

Hole ID	From (m)	To (m)	Significant Intersections (>0.5 g/t gold)
BARC131	8	9	1m at 0.7g/t Au
BARC131	17	18	1m at 4.5g/t Au
BARC131	30	31	1m at 1.1g/t Au
BARC131	37	38	1m at 16.6g/t Au
BARC131	45	46	1m at 0.7g/t Au
BARC132	39	41	2m at 1.0g/t Au
BARC132	45	46	1m at 0.6g/t Au
BARC132	57	61	4m at 1.9g/t Au
BARC132	70	88	18m at 1.1g/t Au; incl. 1m at 5.9 g/t from 79m
BARC132	94	96	2m at 1.5g/t Au
BARC132	112	113	1m at 9.7g/t Au
BARC132	118	119	1m at 1.3g/t Au
BARC133	10	15	5m at 0.9g/t Au
BARC133	26	28	2m at 1.1g/t Au
BARC133	32	33	1m at 0.5g/t Au
BARC133	35	36	1m at 0.9g/t Au
BARC133	42	43	1m at 0.5g/t Au
BARC133	48	49	1m at 1.5g/t Au
BARC133	86	87	1m at 1.6g/t Au

Hole ID From (m) To (m) Significant intersection (>0.5 g/t gold) BARC133 95 97 2m at 1.4g/t Au BARC134 0 1 1m at 0.7g/t Au	
BARC134 0 1 1m at 0.7g/t Au	
BARC134 46 47 1m at 0.7g/t Au	
BARC134 52 53 1m at 0.7g/t Au	
BARC134 86 87 1m at 0.6g/t Au	
BARC135 0 11 11m at 1.1g/t Au; incl. 1m at 6.	.4g/t from 9m
BARC135 29 33 4m at 0.8g/t Au	
BARC135 42 47 5m at 0.6g/t Au	
BARC135 93 96 3m at 1.5g/t Au	
BARC136 27 33 6m at 0.5g/t Au	
BARC136 38 41 3m at 1.0g/t Au	
BARC136 45 47 2m at 0.8g/t Au	
BARC136 116 117 1m at 0.7g/t Au	
BARC136 126 130 4m at 4.9g/t Au; incl. 1m at 12.9	g/t from 128m
BARC136 143 151 8m at 1.1g/t Au; incl. 1m at 3.1 g	g/t from 146m
BARC137 2 3 1m at 1.6g/t Au	
BARC137 33 43 10m at 0.6g/t Au	
BARC137 52 53 1m at 1.4g/t Au	
BARC137 66 67 1m at 0.9g/t Au	
BARC137 71 72 1m at 1.8g/t Au	
13m at 0.9g/t Au; incl. 1m at 3.8g/t	from 79m and 1m
BARC137 79 92 at 3.0g/t from 87n	
BARC138 25 30 5m at 0.5g/t Au	
BARC138 52 58 6m at 0.5g/t Au	
BARC138 62 68 6m at 0.7g/t Au; incl. 1m at 2.7	g/t from 66m
BARC138 72 73 1m at 0.7g/t Au	
BARC138 76 77 1m at 1.3g/t Au	
BARC138 87 91 4m at 1.6g/t Au; incl. 1m at 3.1	g/t from 89m
BARC138 97 98 1m at 3.1g/t Au	
BARC138 101 102 1m at 1.0g/t Au	
BARC138 108 109 1m at 2.4g/t Au	
16m at 2.1g/t Au; incl. 1m at 9.7g/t	from 22m and 1m
BARC139 20 36 at 16.8g/t from 31	
BARC139 96 97 1m at 0.8g/t Au	
BARC140 35 42 7m at 1.2g/t Au; incl. 1m at 3.0	g/t from 41m
BARC140 60 63 3m at 7.8g/t Au; incl. 1m at 20. 8	8g/t from 60m
BARC140 83 84 1m at 1.0g/t Au	
BARC140 88 89 1m at 0.7g/t Au	
BARC141 0 2 2m at 1.3g/t Au	
BARC141 16 17 1m at 0.8g/t Au	
BARC141 24 25 1m at 0.6g/t Au	
16m at 0.9g/t Au: incl. 1m at 4.1g/t	from 32m and 1m
BARC141 29 45 at 3.9g/t from 44n	
BARC141 56 57 1m at 0.6g/t Au	
BARC141 62 63 1m at 1.8g/t Au	
BARC141 69 70 1m at 0.8g/t Au	
BARC141 105 106 1m at 0.7g/t Au	
BARC142 7 8 1m at 2.8g/t Au	
BARC142 22 24 2m at 0.6g/t Au	
BARC142 43 46 3m at 0.7g/t Au	

Hole ID	From (m)	To (m)	Significant Intersections
BARC142	101	102	(>0.5 g/t gold) 1m at 0.6g/t Au
BARC142	116	119	3m at 0.7g/t Au
BARC143	35	36	1m at 0.7g/t Au
BARC144	3	4	
		14	1m at 4.9g/t Au
BARC144	13		1m at 1.4 g/t Au
BARC144	27	35	8m at 1.2g/t Au; incl. 1m at 5.2g/t from 35m
BARC145	34	43	10m at 0.8g/t Au; incl. 1m at 3.5g/t from 40m
BARC145	69	70	1m at 0.6g/t Au
BARC145	82	88	6m at 1.1g/t Au; incl. 1m at 3.1g/t from 87m
BARC145	98	99	1m at 1.0g/t Au
BARC145	101	102	1m at 0.7g/t Au
BARC145	106	107	1m at 0.5g/t Au
BARC146	1	3	2m at 1.1g/t Au
BARC146	3	4	Artisanal mining stope
BARC146	5	13	8m at 0.8g/t Au
BARC146	17	19	2m at 1.0g/t Au
BARC146	30	31	1m at 0.7g/t Au
BARC146	37	38	1m at 0.9g/t Au
BARC146	53	58	5m at 0.9g/t Au; incl. 1m at 3.1g.t from 57m
BARC146	69	74	5m at 0.5g/t Au
BARC146	87	96	9m at 1.1g/t Au; incl. 1m at 5.6g/t from 94m
BARC146	116	117	1m at 1.2g/t Au
BARC147	1	3	2m at 1.1g/t Au
BARC147	14	15	1m at 0.8g/t Au
BARC147	20	27	7m at 1.0g/t Au; incl. 1m at 3.1g/t from 26m
BARC147	51	52	1m at 0.9g/t Au
BARC147	62	63	1m at 1.0g/t Au
BARC147	67	75	8m at 2.2g/t Au; incl. 1m at 8.1g/t from 68m
	-		and 1m at 6.7g/t from 73m
BARC147	98	102	4m at 1.1g/t Au
BARC147	118	119	1m at 1.6g/t Au
BARC148	39	40	1m at 1.7g/t Au
BARC148	113	115	2m at 2.3g/t Au
BARC148	119	126	7m at 1.2g/t; incl. 1m at 5.6g/t from 124m
BARC148	130	131	1m at 1.6g/t Au
BARC148	136	137	1m at 0.6g/t Au
BARC149	16	17	1m at 0.9g/t Au
BARC149	66	75	9m at 0.8g/t Au; incl. 1m at 3.1g/t Au from 74m
BARC149	86	93	7m at 0.9g/t Au; incl. 1m at 5.1g/t Au from 92m
BARC149	98	99	1m at 0.8g/t Au
BARC150	0	5	5m at 0.7g/t Au
BARC150	14	15	1m at 3.0g/t Au
BARC150	25	31	6m at 3.5g/t Au; incl. 1m at 17.9g/t from 29m
BARC150	47	50	3m at 0.9g/t Au
BARC150	59	61	2m at 6.6g/t Au; incl.1m at 12.1g/t from 59m
BARC150	70	71	1m at 1.1g/t Au
BARC150	80	81	1m at 0.7g/t Au
BARC150	91	92	1m at 5.7g/t Au
BARC150	111	112	1m at 0.9g/t Au
BARC150	118	119	1m at 4.4g/t Au
DAICTOO	110	113	IIII at 7.48/t Au

Hole ID	From (m)	To (m)	Significant Intersections
			(>0.5 g/t gold)
BARC150	125	126	1m at 5.1g/t Au
BARC150	133	134	1m at 4.0g/t Au
BARC150	145	146	1m at 0.6g/t Au
BARC151	24	28	4m at 1.8g/t Au; incl. 1m at 3.2g/t from 26m
BARC151	98	99	1m at 0.6g/t Au
BARC151	108	109	1m at 0.7g/t Au
BARC151	113	114	1m at 1.0g/t Au
BARC152	41	42	1m at 0.5g/t Au
BARC152	46	47	1m at 1.8g/t Au
BARC152	133	134	1m at 2.0g/t Au
BARC152	143	144	1m at 1.9g/t Au
BARC152	154	155	1m at 1.3g/t Au
BARC152	165	166	1m at 0.6g/t Au
BARC153	33	34	1m at 0.5g/t Au
BARC153	60	61	1m at 2.5g/t Au
BARC153	77	78	1m at 1.2g/t Au
BARC153	82	83	1m at 1.6g/t Au
BARC153	118	119	1m at 3.2g/t Au
BARC154	3	5	2m at 0.9g/t Au
BARC154	12	13	1m at 1.1g/t Au
BARC154	33	34	1m at 1.2g/t Au
BARC154	46	48	2m at 4.9g/t Au
BARC154	92	104	12m at 8.3g/t Au; incl. 1m at 78.9g/t from 100m
BARC154	112	113	1m at 1.9g/t au
BARC154	117	118	1m at 1.7g/t Au
BARC155	1	2	1m at 1.1g/t Au
BARC155	15	20	5m at 3.8g/t au; incl. 1m at 11.9g/t from 17m
BARC155	67	68	1m at 1.7g/t Au
BARC155	86	87	1m at 0.9g/t Au
BARC155	102	103	1m at 4.7g/t Au
BARC156	2	3	1m at 0.9g/t Au
BARC156	14	15	1m at 1.4g/t Au
BARC156	85	86	1m at 4.5g/t Au
BARC156	106	107	1m at 0.8g/t Au
BARC157	5	6	1m at 0.5g/t Au
BARC157	14	15	1m at 1.0g/t Au
BARC157	33	35	2m at 1.1g/t Au
BARC157	62	63	1m at 0.5g/t Au
BARC157	75	76	1m at 0.5g/t Au
BARC157	108	114	6m at 1.0g/t Au; incl. 1m at 4.1g/t from 110m
BARC158	0	1	1m at 1.2g/t Au
BARC158	8	9	1m at 0.7g/t Au
BARC158	31	32	1m at 0.8g/t Au
BARC158	34	35	1m at 0.7g/t Au
BARC158	37	38	1m at 0.5g/t Au
BARC158	43	44	1m at 1.7g/t Au
BARC159	24	27	3m at 1.8g/t Au; incl. 1m at 3.0g/t from 26m.
BARC160	2	9	7m at 1.1g/t Au
BARC160	38	39	1m at 1.1g/t Au
BARC160	51	52	
DALCION	21	52	1m at 0.8g/t Au

			Significant Intersections
Hole ID	From (m)	To (m)	(>0.5 g/t gold)
BARC160	57	63	6m at 1.2g/t Au
BARC160	76	88	12m at 1.1g/t Au; incl. 1m at 3.5g/t from 87m
BARC160	92	99	7m at 1.4g/t Au; incl. 1m at 7.0g/t from 94m
BARC160	103	113	10m at 1.5g/t Au; incl. 2m at 5.5g/t from 105m
BARC160	130	133	3m at 0.8g/t Au
BARC161	0	2	2m at 0.9g/t au
BARC161	12	13	1m at 0.7g/t Au
BARC161	22	27	5m at 0.8g/t Au
BARC161	45	50	5m at 1.8g/t Au; incl. 1m at 6.3g/t from 48m
BARC161	66	67	1m at 2.2g/t Au
BARC161	90	91	1m at 0.5g/t Au
BARC162	2	3	1m at 2.6g/t Au
BARC162	16	17	1m at 0.6g/t Au
BARC162	20	21	1m at 0.6g/t Au
BARC162	89	90	1m at 4.4g/t Au
BARC162	117	118	1m at 1.6g/t Au
BARC163	5	6	1m at 1.2g/t Au
BARC163	48	49	1m at 6.2g/t Au
BARC163	58	62	4m at 0.9g/t Au

Notes:

- All reported intersections are assayed at 1m intervals
- Intercept cut-off grade is 0.5 g/t gold
- Intervals are reported with a maximum of 3m of internal dilution unless the total intercept grade falls below 0.5 g/t gold
- Sample preparation and assaying conducted by BIGS Laboratory in Ouagadougou.
- Assayed by 50g charge fire assay with Atomic Absorption Spectrometry (AAS) finish

Appendix 1: JORC Code (2012 Edition), Assessment and Reporting Criteria

Section 1: Sampling Techniques and Data

Section 1: Sampling Techniques and Data				
Criteria	JORC Code Explanation	Explanation		
Sampling Techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All the sampling described in this report refers to diamond and reverse circulation (RC) drill samples. The diamond drilling was sampled using a geologic lithology and/or mineralization boundary bracketing system whereby samples are no less than 0.5m and no more than 2.0m. The diamond drill core was cut in half with a core saw on site. Half of the core was sampled (right side), retaining the other half on site. The RC drilling was used to obtain 1m samples, from which 2kg was pulverised to produce a 50g charge for fire assay. The RC samples were reduced to a 2kg sample by riffle splitting on site. Measures were taken to avoid wet RC drilling. Samples were all collected by qualified geologists or under geological supervision. The samples are judged to be representative of the rock being drilled. Location of each hole was recorded by hand held GPS with positional accuracy of approximately +/- 5 metres. This was then followed up by surveying with a differential GPS, which is accurate to +/-0.1m in X, Y and Z. Location data was collected in WGS 84, UTM zone 31N. 		
Drilling Techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling was carried out using a Golden Bear 1400 rig. PQ core was used in the weathered zone (85mm in diameter) and HQ core was used for the remainder of the hole (63.5mm in diameter). The RC rig is a Schramm Rota 685GT equipped with a compressor 1500 CFM-500 PSI. RC drilling was carried out sing a 4.5-inch face sampling hammer. 		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	The diamond drill core was collected in aluminium boxes; labelled with the name of the drillhole, box number and from-to meterage. Drill core strings are identified at the start and end of each string with wooden blocks.		

Criteria	JORC Code Explanation	Explanation
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Diamond and RC recoveries are logged and recorded in the database. There are no significant sample recovery problems. A technician is always present at the rig to monitor and record recovery. Samples were visually checked for recovery, moisture and contamination. The style of mineralisation, with common higher-grade, requires good recoveries to evaluate the mineralisation adequately. The consistency of the mineralised intervals and density of drilling is considered to prevent any sample bias issues due to material loss or gain.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Detailed geological logging has been carried out on all drill samples, recording lithology, weathering, structure, veining, mineralisation, grainsize and colour. Logging of sulphide mineralisation and veining is quantitative. The geological logging was done using a standardised logging system. This information and the sampling details were transferred into Golden Rim's drilling database. No judgement has yet been made on whether the geological logging has been sufficient to support Mineral Resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For diamond drilling, the standard sample interval was between 0.5-2m lengths of half core. When duplicate samples were taken quarter core samples were taken. The sampling interval may be broken at changes in geology or mineral zone, so the length of the sample interval can vary. A technician cut the core in half along the axis using a diamond cutting saw, at intervals defined by the geologist during logging. Half of the core is stored in the tray for backup purposes, while the other half is collected in a plastic bag for chemical analysis. The bag includes two tickets (one that is loose inside sample bag and one which is stapled to interior of bag) which identify the sample number. The sample numbers are also written on both sides on the exterior of the sample bag. The geologist leaves one ticket in the core tray at the beginning of each sample interval and stores a duplicate of the

Criteria	JORC Code Explanation	Explanation
		ticket with the same number, hole-id, from, to, etc. Samples were then put into sealed sacks and stored securely on site at project. RC samples were collected on the rig
		using a three-tier riffle splitter. All samples were dry. The standard RC sample interval was
		1m.
		 Samples were transported by road to BIGS Laboratory in Ouagadougou.
		The sample preparation for all samples follows industry best practice.
		At the laboratory, all samples were weighed, dried and crushed to -2mm in a jaw crusher. A split of the crushed sample was subsequently pulverised in a ping mill to achieve a nominal particle size of 85% passing 75um.
		Field QC procedures involve the use of certified reference material as assay standards, blanks and duplicates for the RC samples. The insertion rate of these averaged 3:30. Field duplicates were taken on 1m RC splits using a riffle splitter.
		The sample sizes are considered appropriate to correctly represent the style of mineralisation, the thickness and consistency of the intersections.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and	The laboratory used an aqua regia digest followed by fire assay with an AAS finish for gold analysis.
	whether the technique is considered partial or total.	No geophysical tools were used to determine any element concentrations.
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations 	Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 90% passing 75 microns.
	factors applied and their derivation, etc.	Internal laboratory QAQC checks are reported by the laboratory.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks)	Review of the internal laboratory QAQC suggests the laboratory is performing within acceptable limits.
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	For RC samples, we insert one blank, on standard and one duplicate for every 30 samples.
Verification of sampling and	The verification of significant intersections by either independent or	Sample data is compiled and digitally captured by Golden Rim geologists.
assaying	alternative company personnel.The use of twinned holes.	The compiled digital data is verified and validated by the Company's database geologist.

Criteria	JORC Code Explanation	Explanation
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Reported results are compiled by the Company's Senior Geologist and the Managing Director. There were no adjustments to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Down-hole surveys were completed at the end of every hole (where possible) using a Reflex down-hole survey tool. Measurements were taken at approximately every 50 meters. At the completion of the program all holes are surveyed with a DGPS, which has locational accuracy of +/- 0.1m, X, Y and Z. Location data was collected in UTM grid WGS84, zone 31north.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill intercepts are irregularly spaced. No judgement has been made on whether the drill density is sufficient to calculate a Mineral Resource. There was no sample composting.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All drill holes reported here were drilled approximately at right angles to the strike of the target mineralisation. No orientation based sampling bias has been identified in the data at this point.
Sample security	The measures taken to ensure sample security.	Samples are stored on site prior to road transport by Company personnel to the laboratory in Ouagadougou, Burkina Faso.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There has been no external audit or review of the Company's techniques or data.

Section 2: Reporting of Exploration Results

Criteria	orting of Exploration Results JORC Code explanation	Explanation
Mineral	Type, reference name/number, location	The RC drilling results are from the Kouri
tenement and land tenure status	and ownership including agreements or material issues with third parties such as	permit. Golden Rim owns 100% of the licence.
	joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Tenure is in good standing.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	The area that is presently covered by the Kouri permit has undergone some previous mineral exploration.
Geology	Deposit type, geological setting and style of mineralisation.	The Kouri Project covers part of a highly prospective Lower Proterozoic Birimian, Samira Hill Greenstone belt and is traversed by a significant NE-trending fault splay which is connected to the major Markoye Fault system. This fault system controls several major gold deposits in Burkina Faso, including Kiaka (5.9 Moz), Bomboré (5.2 Moz) and Essakan (6.2 Moz).
		The mineralisation lies in a package of highly altered volcanic and volcaniclastic host rocks and is associated with a major gold-in-soil anomaly and a prominent dilational structural jog along a regional NE-trending shear zone.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Beasting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip and azimuth of the hole Beasting and northing of the drill hole collar dip azimuth of the hole Beasting and northing of the drill hole collar dip azimuth of the hole dip az	Intercepts that form the basis of this announcement are tabulated in Tables 1 to 3, within the body of this announcement and incorporate Hole ID, Easting, Northing, Dip, Azimuth, Depth and Assay data for the mineralised intercepts.
		Appropriate locality maps for some of the holes also accompanies this announcement.
	justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of 	Diamond samples were taken at intervals ranging from 0.5m to 2.0m. They were

Criteria	JORC Code explanation	Explanation
	 high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 based on observed geological and/or mineralisation boundaries All RC samples were taken at 1m intervals. For the 0.5 g/t Au cut-off calculations, up to 3m (down hole) of internal waste, unless the total intercept grade falls below 0.5 g/t gold. No weighting or high grade cutting techniques have been applied to the data reported. Assay results are generally quoted rounded to 1 decimal place. Metal equivalent values are not reported in this announcement.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The orientation of the mineralised zone has been established and the drilling was planned in such a way as to intersect mineralisation in a perpendicular manner.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Maps are provided in the main text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All sample results containing significant (>0.5 g/t) gold are reported the table in the main text.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other exploration data which is considered material to the results reported in the announcement.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further infill drilling is planned to follow up the results reported in this announcement.

Criteria	JORC Code explanation	Explanation
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	