

29 November 2017

Drill Hole PB01-17 Intersects 16.64% Pb+Zn at the JB Zone Prospect on the Paperbark Project

Highlights

- Drill hole PB01-17 at the JB Zone on the Paperbark Project, north-west Queensland, intersected a 68m interval of zinc-lead mineralisation from down-hole depth of 271m
- Intersections recorded within the broad zone of zinc-lead mineralisation in drill hole PB01-17 include:
 - o 68m @ 1.44% Zn+Pb
 - 13m @ 3.57% Zn+Pb
 - o 3.0m @ 5.40% Zn+Pb
 - o 10m @ 1.99% Zn+Pb
- High-grade zinc-lead mineralisation was recorded above the main JB Zone mineralisation, with 252m-253m (down-hole depth) returning 16.64% Zn+Pb
- JB Zone Mineral Resource is currently 10.4Mt @ 2.7% Zn, 0.2% Pb, 1g/t Ag at 1.5% Zn cut-off grade and is classified as Inferred in accordance with the JORC Code (2012)*
- Samples of the JB Zone zinc-lead mineralisation have been submitted for Dense Media Separation testing, to further investigate the potential to upgrade the JB Zone mineralisation and determine if a stand-alone project could be economically viable
- Planning for follow up drilling will commence with the objective of significantly expanding the JB Zone Mineral Resource at shallow depth

Pursuit Minerals Limited (ASX: PUR) (**Pursuit** or the **Company**) is pleased to announce drill hole PB01-17 completed on the Paperbark Project, northwest Queensland (Figure One), intersected 68m of zinc-lead mineralisation within the main JB Zone Mineral Resource. Within the JB Zone Mineral Resource higher grade intervals occur including; 13m @ 3.57% Zn+Pb, 3.0m @ 5.40% Zn+Pb and 10m @ 1.99% Zn+Pb. In addition to the known JB Zone mineralisation, a high-grade interval of 1m @ 16.64% Pb+Zn, occurs 19m stratigraphically above the JB Zone mineralisation.

Pursuit Minerals Managing Director Jeremy Read said the thickness and grade of zinc-lead mineralisation intersected in hole PB01-17 was very much in line with expectations and the previous drilling completed at the JB Zone, but the high-grade interval of 16.64% Zn+Pb, will require further study to determine its size potential.

Pursuit Minerals Limited

ACN 128 806 977

+61 447 379 744

Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000

PO Box 5807, Brisbane QLD 4000

^{*} Detailed information regarding the JB Zone Mineral Resource is presented in the Company's ASX announcement dated 24 April 2017.

"The mineralisation at the JB Zone is of substantial thickness and within the overall mineralised package there are higher grade intervals which are able to be correlated from section to section within the Mineral Resource," Mr Read said.

"The information we have obtained from drill hole PB01-17 will assist in our overall evaluation of the economic potential of the JB Zone Mineral Resource. In particular it has provided fresh mineralisation which we have sent off for Dense Media Separation testing to determine if, through the use of DMS, the JB Zone can deliver an economic standalone project."

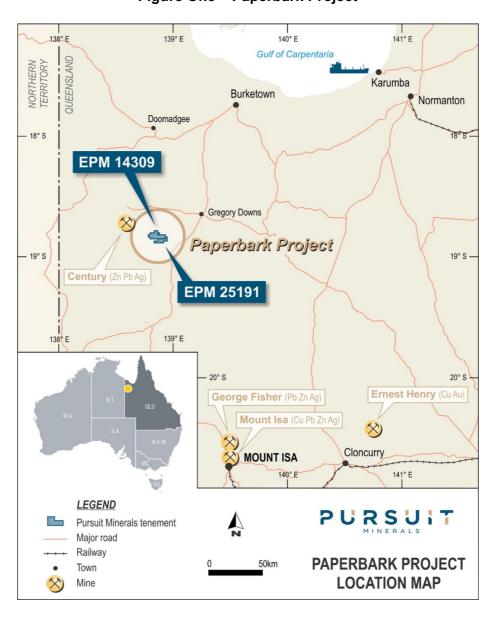


Figure One - Paperbark Project

Pursuit Minerals Limited

ACN 128 806 977

+61 447 379 744

Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000

PO Box 5807, Brisbane QLD 4000

Paperbark Project – JB Zone Drilling Program

The Paperbark Project is located approximately 215km north-northwest of Mount Isa and 25km south-east of the Century Mine in north-west Queensland. It occurs within the Lawn Hill Platform of the Western Succession of the Mt. Isa Province. The project consists of two exploration permits (EPM's 14309, 25191), covering an area of approximately 110km². Previous exploration focused on the JB Zone, where a Mineral Resource of 10.4Mt @ 2.7% Zn, 0.2% Pb, 1g/t Ag at 1.5% Zn cut-off grade and classified as Inferred in accordance with the JORC Code (2012), has been defined.

At Paperbark, Proterozoic basement rocks, members of the McNamara Group sediments, are well exposed. Geological mapping by previous tenement holders has contributed to a good understanding of the distribution of the various geological units, including:

- Torpedo Creek Quartzite (orthoquartzite and conglomerate);
- Gunpowder Creek Formation (dolomitic, feldspathic fine-grained sandstone-siltstone);
- Paradise Creek Formation (stromatolitic, dolomitic siltstone);
- Esperanza Formation (stromatolitic chert, sandstone and dolomitic siltstone);
- Lady Loretta Formation (laminated, stromatolitic siltstone and shale);
- Shady Bore Quartzite (orthoquartzite, fine dolomitic sandstone); and
- Riversleigh Siltstone (carbonaceous siltstone, shale and sandstone).

The sediments dip moderately (30 degrees) to the southwest and all units are potential hosts for base metal mineralisation. The Proterozoic rocks are cross cut by two significant, north-east trending faults (named the Grunter and Barramundi faults), with a series of second order faults splaying off the main structures.

The type of mineralisation present at the JB Zone is replacement, epigenetic/hydrothermal style, of similar character to Mississippi Valley Type (MVT) and Irish style mineralisation. The Grunter and Barramundi faults exhibit clear controls on mineralisation as elevated metal values are localised along them and in favourable horizons within the sediments where they are intersected by fault planes.

Drill Hole PB01-17

Drill hole PB01-17 (Table One) was designed to drill through the southern section of the JB Zone Mineral Resource in order to investigate the variation and extent of higher grade zinc and lead mineralisation, within the Mineral Resource (Figure Two). The hole was also designed to test the lateral and down-dip extent of copper mineralisation (6m @ 1.1% Cu), which was intersected in historical drill hole JB008.

Pursuit Minerals Limited

ACN 128 806 977

+61 447 379 744

Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000

PO Box 5807, Brisbane QLD 4000

Table One

Prospect	Drill Hole Name	Easting (GDA94, Zone 54)	Northing (GDA94, Zone 54)	Azimuth (Degrees, Magnetic)	Dip (Degrees)	Actual Depth (m)
Paperbark	PB01_17	271 549	7 918 128	050	-60	536.2

The zinc and lead mineralisation of the JB Zone Mineral Resource was intersected in the Paradise Creek Formation. The mineralisation occurs in the lower dolomite, from a down-hole depth of 251.0m until 324.3m, a down-hole depth of 73.3m. Minor copper mineralisation was intersected from a down-hole depth of 432m until 470m and from a down-hole depth of 508m until 511m. Drill hole PB01-17 was completed at a down-hole depth of 536.2m in Kamarga Volcanics.

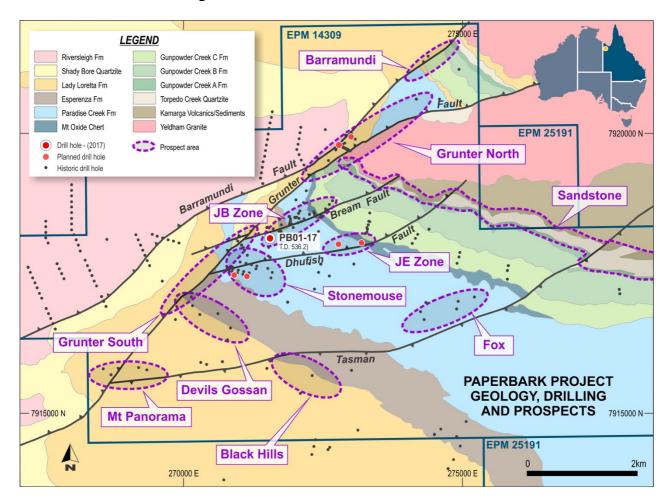


Figure Two - Location of Drill Hole PB01-17

Pursuit Minerals Limited

ACN 128 806 977

Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000

PO Box 5807, Brisbane QLD 4000

The most significant assay results are summarised in Table Two and full assay results are included in Appendix One. A geological summary is given in Figure Three.

Table Two – Summary of Assay Results from Drill Hole PB01-17

Hole ID	Down Hole Depth From	Down Hole Depth To	Down Hole Interval	Zn	Pb	Zn+Pb	Си
	(m)	(m)	(m)	(%)	(%)	(%)	(%)
PB01-17	252	253	1	7.34	9.30	16.64	
	271	339	68	1.39	0.05	1.44	
including	286	299	13	3.57	0.10	3.57	
and	296	299	3	5.35	0.05	5.40	
and	308	318	10	1.93	0.05	1.99	
and	334	339	7	1.27	0.05	1.32	
	464	468	4	-	-	-	0.29

The copper mineralisation intersected between 464m-468m (down-hole depth), is interpreted to be the lateral extension of the copper mineralisation intersected in historical drill hole JB008. However, due to the low grade of the copper mineralisation intersected in drill hole PB01-17, no further investigation of the copper mineralisation is planned.

Dense Media Separation Test Work

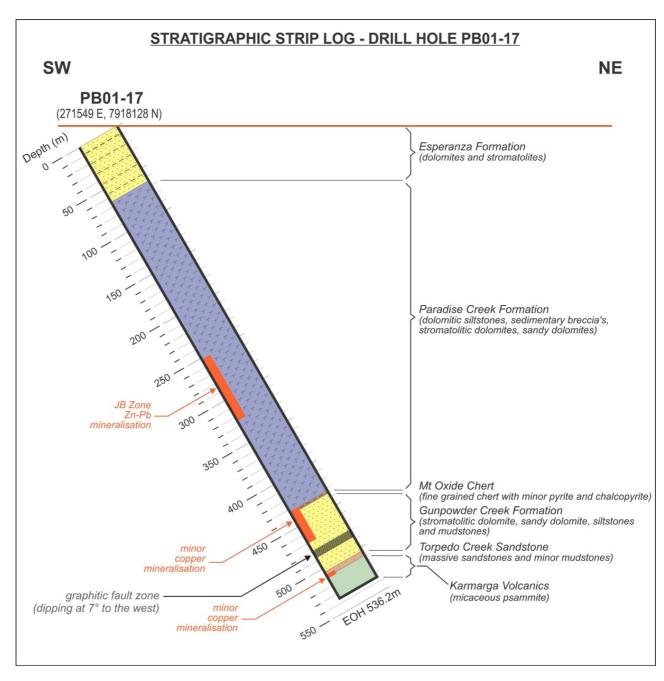
Quarter core samples from the mineralised section (271m-339m down-hole depth) of the JB Zone have been submitted to ALS for Dense Media Separation (DMS) test work.

Previous DMS test work completed on the JB Zone zinc-lead mineralisation by RMG Resources Limited (see ASX Announcement by RMG Resources Limited, 23 January 2013), indicated that zinc mineralisation with a head grade of 1.8% Zn may be able to be upgraded to a >10% Zn head grade, through use of a dense media separation circuit in a processing plant, prior to grinding and flotation. Further test work was recommended in order to optimise sample selection and crusher sizing to maximise zinc and lead recovery.

Pursuit has contracted ALS to undertake the test work previously recommended on the JB Zone mineralisation by RMG Resources. The results of the DMS test work will be utilised in an open pit optimisation study of the JB Zone Mineral Resource in order to determine if a standalone operation, based upon the JB Zone Mineral Resource, could be economically viable.

Pursuit Minerals Limited

ACN 128 806 977


+61 447 379 744

Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000

PO Box 5807, Brisbane QLD 4000

Figure Three – Geological Summary for Drill Hole PB01-17

Pursuit Minerals Limited

ACN 128 806 977

+61 447 379 744

Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000

PO Box 5807, Brisbane QLD 4000

About Pursuit Minerals

Following completion of acquisition of the Bluebush, Paperbark and Coober Pedy Projects from Teck Australia Pty Ltd, Pursuit Minerals Limited (ASX:PUR) has become a mineral exploration and project development company advancing copper and zinc projects in world-class Australian metals provinces.

Having acquired zinc and copper projects in the heart of the Mt Isa Province, Pursuit Minerals is uniquely placed to deliver value as it seeks to discover world class deposits adjacent to existing regional infrastructure and extract value from its existing mineral resources.

Led by a team with a wealth of experience from all sides of minerals transactions, Pursuit Minerals understands how to generate and capture the full value of minerals projects. From local issues to global dynamics, Pursuit Minerals knows how to navigate development and deliver returns to shareholders and stakeholders.

For more information about Pursuit Minerals and its projects, visit:

www.pursuitminerals.com.au

- ENDS -

Competent person's statement

Statements contained in this announcement relating to exploration results are based on, and fairly represents, information and supporting documentation prepared by Mr. Jeremy Read, who is a member of the Australian Institute of Mining & Metallurgy (AuslMM), Member No 224610. Mr. Read is a full-time employee of the Company and has sufficient relevant experience in relation to the mineralisation styles being reported on to qualify as a Competent Person as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Read consents to the use of this information in this announcement in the form and context in which it appears.

The data in this announcement that relates to the Mineral Resource for the JB Prospect is based on, and fairly represents, information and supporting documentation prepared by Mr Simon Tear, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM), Member No 202841 and who has sufficient experience relevant to the style of mineralisation and the type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Tear is a director of H&S Consultants Pty Ltd and he consents to the inclusion of the estimates of the Mineral Resource for the JB Prospect Resource in this announcement in the form and context in which it appears.

Pursuit Minerals Limited

ACN 128 806 977

+61 447 379 744

Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000

PO Box 5807, Brisbane QLD 4000

Appendix One – Geochemical Assay Results from Drill Hole PB01-17

Pursuit Minerals Limited

ACN 128 806 977

+61 447 379 744

Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000

☑ PO Box 5807, Brisbane QLD 4000

@ info@pursuitminerals.com.au

pursuitminerals.com.au

	Sample		Sample	Sample	ME-ICP61a Ag	ME-ICP61a	ME-ICP61a As	ME-ICP61a Ba	ME-ICP61a Be	ME-ICP61a Bi	ME-ICP61a Ca %	ME-ICP61a Cd	ME-ICP61a Co	ME-ICP61a Cr	ME-ICP61a	ME-ICP61	ME-ICP61a Ga	ME-ICP61 K %	ME-ICP61a La	ME-ICP61a Mg	ME-ICP61a Mn	ME-ICP61a Mo	ME-ICP61a Na	a ME-ICP61a Ni	ME-ICP61	ME-ICP61 Pb	a ME-ICP61a S	ME-ICP61 Sb	a ME-ICP61a Sc	ME-ICP61a Sr	ME-ICP61a Th	ME-ICP61a Ti	ME-ICP61a ME-ICP	61a ME-IC		ME-ICP61a Zn-OG62 Zn Zn
PB01_1	7 28	29	DD - HALF	Description 187441	ppm1	0.5	<50	230	<10	<20	15.05 15.4	10 10	<10	10 10	20 20	1.94	<50	0.5	<50	8.15	640	10 10	<0.05	<10	110	20 40	<0.05	<50	<10	40 40	<50	<0.05	<50 <50		0 <50	9pm % 4180
PB01_1 PB01_1 PB01_1	30	30 31 32	DD - HALF DD - HALF DD - HALF	187442 187443 187444	1	0.6 1.79	120	140 280	<10 <10 <10	<20 <20 20	19.75 14.25	<10 <10	<10 <10	10	430 190	9.03 3.63	<50 <50	0.5	<50 <50	0.5 5.11	680 720 870	<10 <10	<0.05 <0.05 <0.05	<10 10 <10	<50 130	1130 1020	<0.05 <0.05	<50 <50	<10 <10	10	<50 <50 <50	<0.05 <0.05 0.07	<50 <50 <50 <50		0 <50 0 <50	2420 2500 5150
PB01_1	32	33	DD - HALF	187445	4	1.2	120	210	<10	<20 30	14.15	30	<10	10	180	4.88 3.44	<50	1.1	<50 <50	5.77	700 550	10	<0.05	<10	70	1520	<0.05	<50	<10	20	<50	0.05	<50 <50	11	0 <50	8430
PB01_1 PB01_1	53	54 55	DD - HALF DD - HALF DD - HALF	187446 187447 187448	41	1.31	100	400 370 250	<10 <10	20	11.2 14.1 15.3	<10 <10	10	10	260 80	3.91 1.83	<50 <50	1.2	<50 <50	7.91 8.66	1070 800	<10 <10	<0.05 <0.05 <0.05	<10 10 <10	120 180 150	720 100	<0.05 <0.05	<50 <50	<10 <10	40 40	<50 <50 <50	0.06	<50 <50 <50 <50		0 <50 0 <50	3960 1070 460
PB01_1	55	56 57	DD - HALF DD - HALF	187449 187450	<1 1	0.88	60 110	190 110	<10 <10	<20 <20	15.5	<10	<10	10	290	3.04 5.22	<50 <50	0.8	<50 <50	8.57 8.08	810 1000	<10 <10	<0.05 <0.05	<10 <10	100 170	120	<0.05 <0.05	<50	<10 <10	40	<50 <50	<0.05 <0.05	<50 <50 <50 <50	10	0 <50	1650 2780
PB01_1	7 179	180	DD - HALF	187451 187452	4	0.69	<50	140	<10	<20	12	<10	<10	10	10	2.19	<50	0.6	<50 <50	6.34	1780	<10	< 0.05	<10	460	<20	<0.05	<50 <50	<10	30	<50	<0.05	<50 <50		0 <50	290
PB01_1	7 181	182	DD - HALF DD - HALF DD - HALF	187453 187454	<1 <1	0.4	<50 <50	50	<10	<20	6.37 7.04	<10	<10	20	20	6.41	<50 <50	0.1	<50 <50	3.34	2480 2730	<10 10	<0.05 <0.05 <0.05	10	780 1420	30	<0.05 0.19		<10	20	<50 <50 <50	<0.05 <0.05	<50 <50 <50 <50		0 <50	480 570 470
PB01_1 PB01_1	7 182 7 250 7 251	251	DD - HALF DD - HALF	187455 187456	4	0.66	<50 <50	90 70	<10 <10 <10	30 <20 <20	16.95 16.2	<10 <10	<10 <10	10	70 10	3.22 1.25 1.13	<50 <50	0.7	<50 <50	9.28	820 750	10 <10 <10	<0.05	<10 <10 <10	150 100	20	0.3	<50 <50	<10 <10 <10	20 40 30	<50 <50	<0.05	<50 <50 <50 <50	1	0 <50 0 <50 0 <50	470 1240 4480
PB01_1	7 252	253	DD - HALF DD - HALF	187457 187458	14	0.39	430	120	<10 <10	<20 <20	10.5	250 <10	<10	<10	h~~~~	7.52	<50 <50 <50	0.5	<50 <50	5.59 8.53	700 710	<10	<0.05 <0.05	40 <10	710	73400 50	14.25	<50 <50	<10	30 50	<50 <50	<0.05			10 100 0 <50	93000
PB01_1 PB01_1	7 254 7 255		DD - HALF DD - HALF	187459 187460	<1 <1	0.76	<50 <50	110 120	<10 <10	30 <20	17.45 16.9	<10 <10	<10	<10	<10	1.12	<50 <50	0.9	<50 <50	9.59 9.27	710 990	<10 <10	<0.05 <0.05	10	520 200	230	0.37	<50 <50	<10 <10	50 40	<50 <50	<0.05 0.05	<50 <50 <50 <50	10	0 <50 0 <50	70 250
PB01_1 PB01_1	256	257	DD - HALF	187461 187462	d d	1.06	<50	190	<10	20	16.25 15.5 15.75	<10	10 <10	10	10	1.28	<50	1.2	<50 <50	8.95	970 1010	<10	<0.05	<10 <10	100	50 50	0.37	<50 <50	<10 <10	50 60	<50	0.05	50 <50	11	0 <50	280
PB01_1 PB01_1	7 257 7 258 7 259	259 260	DD - HALF DD - HALF DD - HALF	187463 187464	<1 <1	1.31	<50 <50	170 230 190	<10 <10 <10	30 <20 <20	15.75 16.5	<10 <10	<10 <10	10 10	20	1.23 1.21 1.04	<50 <50 <50	1.5	<50 <50	8.55 9.18	890 900	10 <10 <10	<0.05 <0.05 <0.05	<10 <10	570 220 370	40 <20	0.48 0.59 0.46	<50 <50	<10 <10 <10	40	<50 <50 <50	0.08	<50 <50 <50 <50	20	0 <50 0 <50 0 <50	2390 730 30
PB01_1 PB01_1	7 260 7 261	261 262	DD - HALF DD - HALF	187465 187466	2 <1	0.53 1	<50 <50	150 220	<10 <10	<20 20	16.2 15.3	40 10	<10 <10	<10 10	20 10	1.29 1.14	<50	0.7 1.2	<50 <50	8.79 8.43	1130 850	<10 <10	<0.05 <0.05	<10 <10	270	3210 30	1.23 0.64	<50 <50	<10 <10	50 40	<50 <50	<0.05 0.06	<50 <50 <50 <50		0 <50 0 <50	13500 1880
PB01_1 PB01_1	7 262 7 263	263 264	DD - HALF DD - HALF	187467 187468	<1 <1	0.83 1.1	<50 <50	200 310	<10 <10	<20 <20	16.55 15.25	<10 <10	<10 <10	10 10	10 10	0.98 0.89	<50 <50	1 1.3	<50 <50	9.22 8.4	800 780	<10 <10	<0.05 <0.05	10 10	130 260	<20 80	0.44 0.34	<50 <50	<10 <10	50 60	<50 <50	0.05	<50 <50 <50 <50	1	0 <50 0 <50	50 100
PB01_1 PB01_1	7 264 7 265	265	DD - HALF DD - HALF	187469 187470	d d	0.66 0.8	<50 60	170 240	<10 <10	<20 <20	16.65 12.9	<10 <10	10 <10	<10 10	30 30	1.59 3.06	<50 <50	0.8	<50 <50	9.23 7.11	970 890	<10 <10	<0.05 <0.05	10 <10	90 350	40 70	0.97 2.65	<50 <50	<10 <10	40 40	<50 <50	<0.05 0.06	<50 <50 <50 <50	10	0 <50 0 <50	20 20
PB01_1 PB01_1	7 266 7 267	266 267 268	DD - HALF DD - HALF	187471 187472	<1 1	0.94 0.91	<50 <50	180 150	<10 <10	<20 <20	16.15 16.5	<10 <10	<10 <10	10 <10	10 10	1.1 0.89	<50 <50	1.1 1.1	<50 <50	8.98 9.31	770 720	<10 10	<0.05 <0.05	<10 <10	<50 80	520 190	0.51 0.27	<50 <50 <50	<10 <10	60 50	<50 <50	0.06 0.05	<50 <50 <50 <50			70 780
PB01_1 PB01_1			DD - HALF DD - HALF	187473 187474	<1 1	1.19 1.92 0.67	<50 <50	240 300 140	<10 <10	<20 <20	15.5 13.9	<10 <10	<10 20	10 10 10	20 10	1.06 1.26 1.09	<50 <50	1.3 1.8	<50 <50	8.57 7.74 9.57	730 600 850	<10 <10	<0.05 <0.05	<10 <10	190 190 170	210 90	0.53 0.8	<50 <50	<10 <10	50 50	<50 <50	0.07 0.11	<50 <50 <50 <50	21	0 <50 0 <50	290 150
PB01_1 PB01_1		271	DD - HALF DD - HALF	187478 187479	<1 1	0.67 1.49	<50 <50	140 310	<10 <10	<20 <20	17.05 13.5	10 10	<10 10	10 10	60 80	1.09 2.99	<50 <50	0.8 1.4	<50 <50	9.57 7.68	850 690	<10 <10	<0.05 <0.05	10 10	170 190	100 2790	0.46 3.05	<50 <50	<10 <10	50 50	<50 <50	0.05 0.08	<50 <50 <50 <50	10	0 <50 0 <50	1590 4670
PB01_1 PB01_1	7 272 7 273	273 274	DD - HALF DD - HALF	187480 187481	1 <1	0.79 1.34	90 70	150 410	<10 <10	<20 <20	14.95 14.8	70 40	10 <10	10 10	90 30	2.27 1.5	<50 <50	0.9 1.5	<50 <50	8.45 8.21	1120 940	10 <10	<0.05 <0.05	10 <10	180 330	470 40	2.7 1.58	<50 <50	<10 <10	50 50	<50 <50	0.05 0.08	<50 <50 60 <50	10	0 <50 0 <50	25200 13400
PB01_1 PB01_1	7 274 7 275	275 276	DD - HALF DD - HALF	187482 187483	<1 <1	1.13 1.4	<50 <50	190 230	<10 <10	<20 <20	16.1 15.3	<10 10	<10 <10	10 20	20 30	1.03 1.17	<50 <50	1.3 1.5	<50 <50	9.01 8.53	790 780	<10 <10	<0.05 <0.05	<10 <10	150 240	50 60	0.48 0.74	<50 <50	<10 <10	50 40	<50 <50	0.06	<50 <50 <50 <50	10	0 <50 0 <50	260 2930
PB01_1 PB01_1	7 276 7 277	278	DD - HALF DD - HALF	187484 187485	<1 1	0.85 1.92	<50 <50	300 390	<10 <10	<20 <20	15.1 13.85	20 <10	<10 <10	10 10	30 20	1.28 1.22	<50 <50	1.9	<50 <50	8.43 7.55	860 730	<10 <10	<0.05 <0.05	10 <10	180 220	850 150	1.06 0.69	<50 <50	<10 <10	40 50	<50 <50	0.05 0.11	<50 <50	21	0 <50	6060 420
PB01_1 PB01_1	7 278 7 279	279 280 281	DD - HALF DD - HALF	187486 187487	1	0.95 0.82	<50 60 <50	320 300	<10 <10	20 <20	16.5 14.7	30 60 10	<10 <10	10 10	20 40	1.2 1.27	<50 <50	1.1	<50 <50	9.03 7.97	830 940	<10 <10	<0.05 <0.05	<10 <10	110 170	70 80	1.26 1.87	<50 <50	<10 <10	50 40	<50 <50 <50	0.05 0.05 0.05	<50 <50 <50 <50 <50 <50	10	0 <50 0 <50 0 <50	11750 24800
PB01_1 PB01_1	7 280 7 281 7 282	281 282	DD - HALF DD - HALF DD - HALF	187488 187489	<1 1	0.79 0.74	<50 <50	190 190 400	<10 <10	<20 <20	15.7 14.85	10 40	10 <10	10 10	20 40	1.22 1.13 0.93	<50 <50 <50	0.9	<50 <50	8.6 8.16	970 870 620	10 10 10	<0.05 <0.05	<10 <10	100 260	50 30	0.8 1.31	<50 <50	<10 <10 <10	40 50	<50 <50 <50	0.05 <0.05 0.07	<50 <50 <50 <50	10	0 <50 0 <50 0 <50	6740 14950 3300
PB01_1 PB01_1	283	284	DD - HALF	187490 187491	2	1.29	<50 <50	220	<10 <10	<20 <20	16.45 15.3	40	<10 <10	10	20 60	1.11	<50	1.5	<50 <50	9.12 8.43	620 690	10	<0.05	<10 <10	80 390	<20 120	0.58 1.34	<50 <50	<10 <10	50	<50	0.08	<50 <50		0 <50	14600
PB01_1 PB01_1	7 284	285 286	DD - HALF DD - HALF	187492 187493	<1	0.72	<50 <50	140 130	<10 <10	20 <20	17.05	10	<10 <10	10	20	1.09	<50 <50	1.1	<50 <50	9.5	740	<10 <10	<0.05 <0.05	<10 <10	60	110	0.56	<50 <50	<10 <10	40 40	<50 <50	<0.05 0.05	<50 <50 <50 <50	10	0 <50 0 <50	3650 3670
PB01_1	7 286 7 287		DD - HALF DD - HALF DD - HALF	187494 187495	1	0.78	<50 <50	170 130	<10 <10	30	13.1 16.45	190 10	<10	10	30	0.98	<50 <50	1	<50	7.48 9.21	750 690 610	<10 10	<0.05 <0.05	<10	390 300	580 420	4.29 0.46	<50 <50	<10 <10	40 50	<50 <50	0.05	<50 <50 <50 <50		0 120 0 <50	79600 2300
PB01_1 PB01_1 PB01_1	7 288 7 289 7 290	289 290 291	DD - HALF DD - HALF	187496 187497 187498	2	0.56 0.41	240	300 120 120	<10 <10 <10	<20 <20 <20	14.1 9.23 15.3	260 20	<10 10 <10	20	80 30	1.1 2.33 1.42	<50 <50 <50	1.8 0.6 0.5	<50 <50	7.82 4.95 8.31	680 1030	<10 10 10	<0.05 <0.05 <0.05	10	180 80 180	1260 3230 4260	1.27 7.71 1.01	<50 <50 <50	<10 <10 <10	30 40	<50 <50 <50	0.11 <0.05 <0.05	<50 <50 <50 <50 <50 <50	10	0 170	12750 >100000 11.65 4950
PB01_1 PB01_1	7 291 7 292	292	DD - HALF DD - HALF	187499 188503	<1 1	0.62	<50 130	70 70	<10 <10	<20 <20	16.55 13.2	<10 80	10	20	20	1.14 3.36	<50 <50	0.7	<50 <50	9.31	750 590	<10 <10	<0.05 <0.05	10 <10	50 120	470 430	0.6	<50 <50	<10	50	<50 <50	<0.05 <0.05	<50 <50 <50 <50	1		190 61300
PB01_1	7 293 7 294	294 295	DD - HALF DD - HALF	188504 188505	-d -d	0.98	70	120 70	<10 <10	<20 <20	13.7	20	<10 <10	20	10	3.55 0.83	<50 <50	1.1	<50 <50	7.54 9.07	580 530	<10 <10	<0.05 <0.05	<10 <10	60	180 650	4.39 0.36	<50 <50	<10 <10	40	<50 <50	0.06	<50 <50 <50 <50	10		11800 70
PB01_1 PB01_1	295	296 297	DD - HALF DD - HALF	188506 188507	<1 4	0.94 0.6	<50 110	90	<10 <10	<20 20	16.2 14.25	<10 190	<10 <10	10 <10	10	0.83 1.71	<50 <50	1.1 0.7	<50 <50	9.1 8.08	560 700	10 <10	<0.05 <0.05	<10 10	170 110	60 150	0.48 4.61	<50 <50	<10 <10	50 40	<50 <50	0.05 <0.05	<50 <50 <50 <50		0 <50 0 90	1420 65900
PB01_1 PB01_1	7 297 7 298	298 299	DD - HALF	188508 188509	2	1.22 0.74	50 90	90 100 100	<10 <10	<20 <20	14.75 13.55	80 190	<10 <10	10 10	20 40	1.04 1.92	<50 <50	1.4 0.9	<50 <50	8.18 7.49	600 670	<10 <10	<0.05 <0.05	10 10	110 190	200 1220	2 5.01	<50 <50	<10 <10	50 40	<50 <50	0.07 0.05	<50 <50 <50 <50		0 <50	26300 68200
PB01_1 PB01_1	7 299 7 300	300	DD - HALF DD - HALF	188510 188511	1 <1	1.27 0.59	<50 <50	90 60	<10 <10	<20 30	16.4 16.75	<10 <10	<10 <10	10 20	20 20	0.87 0.99	<50 <50	1.5 0.7	<50 <50	9.16 9.29	660 720	<10 <10	<0.05 <0.05	<10 10	130 130	70 100	0.43 0.49	<50 <50	<10 <10	50 50	<50 <50	0.07 <0.05	<50 <50 <50 <50	10	0 <50	570 780
PB01_1 PB01_1	7 301 7 302	302 303	DD - HALF DD - HALF	188512 188513	1 <1	0.82 0.58	<50 <50	70 60	<10 <10	20 30	16.45 18.25	10 10	20 10	10 10	60 20	1.57 1	<50 <50	0.8 0.7	<50 <50	9.11 9.99	740 980	10 10	<0.05 <0.05	10 10	110 130	1870 30	1.23 0.48	<50 <50	<10 <10	50 50	<50 <50	0.05 <0.05	<50 <50 <50 <50	1		2220 4110
PB01_1 PB01_1	7 303 7 304		DD - HALF DD - HALF	188514 188515	d d	0.86 0.3	<50 <50	90 <50	<10 <10	60 20	16.4 17.1	<10 <10	<10 <10	10 10	10 10	0.97 0.86	<50 <50	0.9 0.4	<50 <50	9.13 9.53	890 760	<10 10	<0.05 <0.05	<10 <10	170 90	930 <20	0.31 0.27	<50 <50	<10 <10	40 50	<50 <50	0.05 <0.05	<50 <50 <50 <50	10	0 <50 0 <50	70 960
PB01_1 PB01_1	7 305 7 306	306 307	DD - HALF DD - HALF DD - HALF	188516 188517	2	0.68 0.38	<50 <50	140 100	<10 <10	50 20	17.15 16.55	<10 30	20 10	10 10	10 20	0.95 0.91	<50 <50	0.8 0.5	<50 <50	9.57 9.26	830 750	10 10	<0.05 <0.05	<10 10	160 130	30 3550	0.32 0.98	<50 <50	<10 <10	50 50	<50 <50	<0.05 <0.05	<50 <50 <50 <50		0 <50 0 <50	960 290 12500 260
PB01_1 PB01_1	7 307 7 308	308 309	DD - HALF DD - HALF	188518 188519	4	0.71 0.58	50 50	90 70	<10 <10	30 40	16.4 14.6	<10 170	<10 <10	10 10	20 50	1.57 1.01	<50 <50	0.8 0.7	<50 <50	9.12 8.01	880 640	10 10	<0.05 <0.05	10 <10	120 130	110 2570	0.86 3.06	<50 <50	<10 <10	60 50	<50 <50	<0.05 <0.05	<50 <50 <50 <50		~~~	51800
PB01_1 PB01_1	7 309 7 310	310 311	DD - HALF DD - HALF	188520 188521	3	0.42	<50 90	50 90	<10 <10	20 40	18.2 16.2 15.8	20 70	<10 <10	<10 10	10 20	1.18	<50 <50	0.5 0.7	<50 <50	10.1 8.97	930	<10 10	<0.05	<10 20	80 140	360 410	0.85 2.47	<50 <50	<10 <10	60 60	<50 <50	<0.05 <0.05	<50 <50 <50 <50	10	0 <50 0 <50	7160 28700
PB01_1 PB01_1	311	312 313	DD - HALF	188522 188523	1	0.64	<50 <50	70 60	<10 <10	30	16.25	20	<10 10	10	10	1.27	<50 <50	0.7	<50 <50	8.71 8.95	1010 940	10	<0.05	<10 <10	200 90	1380 120	0.61	<50 <50	<10 <10	60	<50 <50	<0.05	<50 <50 <50 <50	10	0 <50 0 <50	2270 8670
PB01_1	7 313 7 314	315	DD - HALF DD - HALF DD - HALF	188524 188528 188529	2	0.88 0.94 0.67	<50 <50	70 60	<10 <10	20	13.85 16.7 16.2	10 90	<10 <10	10	10 10 10	1.01 1.18 1.84	<50 <50	0.9 0.9 0.8	<50 <50	7.62 9.19 8.87	780 1160	<10 10	<0.05 <0.05 <0.05	10 <10 <10	80 80 220	120 <20	0.63 2.79	<50 <50	<10 <10 <10	50 60 60	<50 <50	0.05 0.05 <0.05	<50 <50 <50 <50	11	0 <50	17500 3270 38500
PB01_1 PB01_1	7 315 7 316	316 317	DD - HALF	188530	1	0.67	50	80 80	<10	<20	15.8	30 70	<10	10	10	1.56	<50	1	<50	8.66	1030	10 <10	<0.05	<10	190	100 <20	1.37	<50 <50	<10	60	<50 <50	0.05	<50 <50	1	0 <50	12900
PB01_1 PB01_1 PB01_1	7 317 7 318 7 319	318 319 320	DD - HALF DD - HALF DD - HALF	188531 188532 188533	41	0.85 0.9 0.68	<50 <50 70	80 80 70	<10 <10 <10	40 620	15 16.75 14.2	70 10 10	10	10	20 20	1.29 1.29 2.04	<50 <50	0.8 0.8	<50 <50 <50	9.28 7.76	810 1040 1030	10 <10 10	<0.05 <0.05 <0.05	<10 <10 <10	200 170 230	80	1.61 0.64 1.6	<50 <50 <50	<10 <10 <10	50 50	<50 <50 <50	0.05 <0.05 <0.05	<50 <50 <50 <50 <50 <50	10	0 <50	22500 5790 4530
PB01_1	7 320 7 321	321 322	DD - HALF	188533 188534 188535	4	0.84	80	80 170	<10 <10 <10	20	13.9 12.85	40 <10	<10 10	10	30 40	2.52 1.38	<50 <50	0.8 0.9 1.7	<50		1180	10 10 10	<0.05 <0.05	10 20	180 180	80 230	2.45 0.62	<50 50	<10 <10 <10	50 50	<50 <50	0.05 0.13	<50 <50	10	0 <50 0 <50 0 <50	21000 1130
PB01_1 PB01_1 PB01_1	322	323	DD - HALF DD - HALF	188535 188536 188537	<1 <1 <1	2.26 0.95 0.8	<50 <50	70 80	<10 <10	50 40	13.4 10.35	<10 <10 <10	<10 <10	10 20	10	1.38 1 1.89	<50 <50	0.9 0.8	<50 <50 <50	7.07 7.34 5.51	780 680 1010	10 10 <10	<0.05 <0.05	10 <10	160 160	230 20 20	0.23	<50 <50	<10 <10	50 50	<50 <50	0.05 0.05	<50 <50 <50 <50 <50 <50	1	0 <50	80 1470
PB01_1	7 324	325	DD - HALF	188538	4	1.11	90	90	<10	30	12.1	20	<10	20	670	2.24	<50	0.9	<50	6.45	1330	10	<0.05	10	230	280	1.53	<50	<10	40	<50	0.05	<50 <50	1	0 <50	6240

				NAT LCDC1-	ME ICDC1-	MAT ICDC1-	NAT ICDC1-	MAT ICDC1-	ME ICOCI-	ME ICDC1-	NAT ICDC1-	ME ICOCI - M	r icnc1-	ME ICOCA	ME ICOCI	NAT ICDC1	NAT ICDC1	- ME ICOCI	ME ICDC1-	NAT LCDC1	- MAT ICDC1 - MA	IT ICDC1-	NAT ICDC1-	ME ICOCA-	ar icnci-	AF ICDC1-	ΛΕ-ICP61a ME-ICP6	1- NAT LCDC	1- 145 150	ca - laar so	nca-laar	CDC1- NA	F ICDC1-	AF ICDC1-	ME ICDC1-	AF ICDC1 - 7- C	2002
Sample	Sample	Sample	Sample	Ag	Al	As	Ba Ba	Be	Bi Bi	Ca Ca	Cd Cd	Co Co	Cr Cr	Cu Cu	Fe Fe	Ga	K K	La La	Mg	Mn	Mo Mo	Na Na	Ni Ni	P P	Pb Pb	S	Sb Sc	Sr Sr	Th	Ti NIE-IC			n F-ICLOTA II	V V	W W	Zn Z	
Hole ID From (m)		Type	Description	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm ppm	ppm	ppm		5 р		ppm	ppm	ppm	ppm 9	6
PB01_17 325 PB01_17 326	326 327	DD - HALF DD - HALF	188539 188540	<1	1.15 1.3	70 <50	100 90	<10 <10	40 <20	11.1 14.85	30 <10	<10 <10	10	170 30	1.01	<50 <50	1.1 1.2	<50 <50	5.9 8.16	1020 680	10 10	<0.05 <0.05	10 <10	130 140	120 <20	1.82 0.2	<50 <10 <50 <10	40 60	<50 <50	0.0	07 <	50	<50 <50	10 10	<50 <50	11200 20	
PB01_17 327		DD - HALF	188541	<1	0.96	<50	90	<10	<20		<10		10	20	1.06			<50	7.76	720		<0.05	<10	170	20	0.29	<50 <10	50	<50	0.0)5 <			10		500	
PB01_17 328	329	DD - HALF DD - HALF	188542	<1	1.94	<50 <50	140	<10	<20	11.5	10	10	20	30	1.47	<50	1.7	<50 <50	6.11	900	10	<0.05	10	260	60	0.63 0.49	<50 <10	50	<50	0.1	12 <	50	<50	30	<50	1700	
PB01_17 329 PB01_17 330	330 331	DD - HALF	188543 188544	<1 <1	2.27 1.45	<50	160 100	<10	40	13.55	<10	10 10	20	40 50	1.22	<50	1.6 1.2	<50	5.97 7.51	590 650		<0.05 <0.05	<10 <10	260	80	0.42	<50 <10 <50 <10	50	<50 <50	0.0	08 <	50	<50	30 20	<50	40 110	
PB01_17 331	332	DD - HALF	188545	<1	1.01	<50	100	<10	40	14.9	<10	10	10	40	1.45	<50	0.9	<50	8.09	980	10	<0.05	<10	220	<20	0.49	<50 <10	50	<50	0.0	06 ∢	50	<50	10	<50	860	
PB01_17 332 PB01_17 333	333 334	DD - HALF DD - HALF	188546 188547	<1 1	0.74 1.32	<50 <50	120	<10 <10	<20 30	9.71 13.85	20 <10	<10 <10	10	100 50	1.77 1.41	<50 <50	0.8	<50 <50	5.11 7.5	1030 870	<10 10	<0.05 <0.05	10	160 150	90 20	0.99	<50 <10 <50 <10	30 40	<50 <50	<0.	05 <	50 50	<50 <50	10 20	<50 <50	5770 1360	
PB01_17 334	335	DD - HALF	188548	<1	0.72	<50	80	<10	<20	13	40	<10	20	130	1.71	<50	0.8	<50	6.86	1270	10	<0.05	<10	110	2140	1.23	<50 <10	40	<50	<0.		50	<50	10	<50	15050	
PB01_17 335	336	DD - HALF	188549 188553	<1	1.19	<50	90	<10	<20	13.45	<10	<10	10	160	1.45	<50	1.1	<50	7.33	840		<0.05	10	190	190	0.43	<50 <10	40	<50				<50	10	<50	780	
PB01_17 336 PB01_17 337	337 338	DD - HALF DD - HALF	188554	<1	1.04 0.9	<50 50	90	<10 <10	<20 <20	10.55 8.51	50	<10 <10	10	180 110	2.76	<50 <50	0.9	<50	5.45 4.28	1410 1660	10	<0.05 <0.05	<10 <10		880 300	0.82 2.33	<50 <10 <50 <10	30		0.0)5 <		<50	10 10	<50 <50	9320 21100	
PB01_17 338	339	DD - HALF	188555	<1	1.19	60	120	<10	<20	10.9	90	<10	10	120	2.29	<50	1.2	<50	5.9	1520	10	<0.05	10	280	170	2.46	<50 <10	30	<50	0.0)7 <	50	<50	10	<50	35400	
PB01_17 339 PB01_17 400	340 401	DD - HALF DD - HALF	188556 188557		1.39 1.6	<50 <50	110 110	<10 <10	<20 <20	12.4	<10 <10	10 <10	20	40 80	1.27 1.22	<50 <50	1.2 1.5	<50 <50	6.78 6.13	780 490		<0.05 <0.05	<10 10	90 1670	190 <20	0.41	<50 <10 <50 <10	40	<50	0.0			<50 <50	10	<50 <50	1370 60	
PB01_17 401		DD - HALF		<1	1.74	<50		<10				10	20	310	1.64	<50	1.9	<50		670		<0.05	10	2410			<50 <10	40	<50	0.0	08 <	50		20		50	
PB01_17 402	403	DD - HALF	188559 188560	1	1.43	<50	140	<10	<20	8.51	<10	20	20	650	4.82	<50	0.9	<50	7.87	1700		<0.05	10	3030	50	0.75	<50 <10	40	<50	0.0)6 <	50	<50	10	<50	30 30	
PB01_17 403 PB01_17 404	404 405	DD - HALF DD - HALF	188561	<1 1	1.34 1.31	<50 <50	150 140	<10 <10	<20 20	4.08 3.67	<10 <10	<10 <10	20 30	230 1310	2.87 1.53	<50 <50	1.1	<50 <50	2.29 1.31	870 380	10 10	<0.05 <0.05	<10 <10	4760 4780	<20 30	0.72 0.68	<50 <10 <50 <10		<50 <50		05 <		<50 <50	10 10	<50 <50	60	
PB01_17 405	406	DD - HALF	188562	⊲	1.39	<50	160	<10	<20	2.98	<10	20	30	1580	2	<50	1.1	<50	0.85	420	10	<0.05	10	6200	<20	0.99	<50 <10	20	<50	<0.	05 <	50	<50	10	<50	30	
PB01_17 406 PB01_17 407	407 408	DD - HALF DD - HALF	188563 188564	41	1.57 3.17	<50 <50	170 220	<10 <10	<20 20	4.24 3.68	<10 <10	30	30	230 120	2.69 1.87	<50 <50	2.4	<50 <50	1.33	510 480		< 0.05	10	9500 2140	40 30	1.41 0.83	<50 <10 <50 <10	30	<50 <50	0.0		50	<50 <50	10 20	<50 <50	30	
PB01_17 407 PB01_17 408	409	DD - HALF	188565	<1	3.17 3.76	<50 <50	220 390	<10 <10	20 <20	3.68 6.25	<10 <10	<10	30	50	1.83	<50	2.4 1.7	<50	1.9 3.32		10 10	0.05	10	1790	30	1.01	<50 10	30	<50	0.1 0.1	18 4		<50 <50	30	<50 <50	30	1
PB01_17 409	410	DD - HALF	188566	<1	1.6	<50	110	<10	<20	12.2	<10 <10	<10	10	10	1.69	<50	1.4	<50	6.61	490 700	10	<0.05	10	680	20	0.61	<50 <10	40	<50	0.0	08 <	50	<50	20	<50	20]
PB01_17 430 PB01_17 431	431 432	DD - HALF DD - HALF	188567 188568	<1	1.96 1.92	<50 <50	150 120	<10 <10	<20 20	15.3 14.7	<10 <10	<10 <10	10 10	30 80	1.6 2.36	<50 <50	1.6	<50 <50	8.32 8.47	670 820	10 10	<0.05 <0.05	<10 10	990 1520	20 <20	0.54 0.85	<50 <10 <50 <10	60 60	<50 <50	0. 0.	~~	50 50	<50 <50	20 20	<50 <50	20 30	
PB01_17 432	433	DD - HALF	188569	<1	1.71	<50	90	<10	20	10.45	<10	30	10	300	4.41	<50	0.3	<50	7.31	1350	10	< 0.05	<10	2680	80	1.62	<50 <10	50	<50	0.0	08 <	50	<50	20	<50	40	1
PB01_17 433 PB01_17 434	434 435	DD - HALF DD - HALF	188570 188571	<1	3.14 2.61	<50 <50	240 300	<10 <10	20 20	2.24 1.97	<10 <10	30 40	30	420 1790	1.94	<50 <50	2.1	<50 <50	1.73 0.5	310 230	<10 10	<0.05 0.05	<10 10	2790 5120	30 30	0.95	<50 10 <50 <10	30	<50 <50	0.1	17 <	50 50	<50 <50	20	<50 <50	30	
PB01_17 435	436	DD - HALF	188572	1	2.24	<50	340	<10	<20		<10	20	30	2860	1.52	<50		<50	0.32	180	10	0.05	10		<20	0.91	<50 <10	20	<50		14 <			10		50	
PB01_17 436	437	DD - HALF	188573	<1	4	<50	410	<10	20	3.06	<10	20	40	440	2.1	<50	4	<50	1.37	300	10	0.06	20	4560	30	1.54	<50 10	40	<50	0.2	23 <	50	<50	40	<50	50	
PB01_17 437 PB01_17 438	438 439	DD - HALF DD - HALF	188574 188578	<1	2.01	<50 <50	150 220	<10 <10	<20 <20	13.5 13.7	<10 <10	<10 <10	20	160 40	2.12	<50 <50	1.5	<50 <50	7.31 7.25	870 1010	<10 10	<0.05 <0.05	<10	1830 770	<20 <20	0.78	<50 <10 <50 <10	40	<50 <50	0.1	1	50 50	<50 <50	20	<50 <50	50	
PB01_17 439	440		188579	<1	2.53	<50	410	<10	<20	10.95	<10	40	20	380	2.02	<50	1.6	<50	4.93	880	10	0.06	10	7160	30	1.04	<50 <10	50	<50	0.0	08 ≺	50	<50	20	<50	60	
PB01_17 440	441	DD - HALF	188580	<1	1.24	<50 <50	330	<10	<20	10.6	<10	20	10 10 10	800	2.13	<50	1.2	<50 <50	4.91	1370	10	< 0.05	<10	3370	30	0.64	<50 <10	30	<50	<0.	05 <	50	<50	10	<50 <50	20	
PB01_17 442	443	DD - HALF	188582	1	0.99	<50	210	<10	<20	5.12	<10	50	10	40	6.01	<50	0.1	<50	14.1	1710	<10	0.05	<10	1150	<20	1.13	<50 <10	80	<50	<0.	05 <	50	<50	10	<50	50	
PB01_17 443	444	DD - HALF	188583	<1	1.13	<50	120	<10	<20	5.48	<10	20	10	90	5.02	<50	0.1	<50	12.15	1390	<10	0.05	<10	3190	<20	0.94	<50 <10	60	<50	<0.			<50	10	<50	20	
PB01_17 444 PB01_17 445	445 446	DD - HALF DD - HALF	188584 188585	1	1.17	<50 <50	160 <50	<10 <10	<20	10 9.04	<10 <10	10	10	540 470	4.03 4.59	<50 <50	0.1	<50 <50	8.18 9.45	1270 1810		0.05	<10	3660 1650	<20 <20	1.04 0.44	<50 <10 <50 <10	50	<50 <50	<0. 0.0			<50 <50	10	<50 <50	30 20	
PB01_17 446	447	DD - HALF	188586	1	1.56	<50	130	<10	<20	6.25	<10 <10	10 10	10	330	2.02	<50	1.2	<50 <50	3.01	780	<10	0.06	<10	4240	<20	0.53	<50 <10	40	<50	0.0)5 <	50	<50	10	<50	<20 <20	
PB01_17 447 PB01_17 448	448 449	DD - HALF DD - HALF	188587 188588	<1	2.19 2.67	<50 <50	360	<10	<20 20	2.85	<10	<10 50	20	1080 3190	1.17 1.73	<50 <50	2	<50 <50	0.81	160 190	مهمستتسمهم	0.08	<10	6140 8410	<20	0.72	<50 <10	40	<50 <50	0.0	~~~	~~~	<50 <50	20	<50 <50	<20	
PB01_17 449	450	DD - HALF	188589	1	3.1	<50	540 290	<10 <10	20	3.3 2.87	<10	30	30	880	1.92	<50	1.5 2	<50 <50	0.8 2.13	220	<10 10	0.08	10	8410 4950	<20 20	1.26 0.95	<50 <10 <50 <10	40 40	<50		15 <	50	<50	20	<50 <50	<20 20	
PB01_17 450	451	DD - HALF	188590	2	3.14	<50	120	<10	<20	4.02	<10	60	30	1130	4.26	<50	0.7	<50	5.48	450	<10	0.05	10	5360	30	2.46	<50 10	30	<50	0.1	~~~	50	<50	30	<50	40	
PB01_17 451 PB01_17 452	452 453	DD - HALF DD - HALF	188591 188592	<1	2.74	<50	280 130	<10 <10	<20 <20		<10	40	20	370 950	2.14	<50 <50	1.5	<50	2.61	400 320	<10 <10	0.06 0.05	<10 10	1880 2120		0.95 0.97	<50 <10 <50 <10	30	<50 <50	0.0	07 <	50	<50	10 10	<50 <50	<20 <20	
PB01_17 453	454	DD - HALF	188593	<1	2.6	<50	210	<10	<20	2.69	<10	30	20 20	1310	1.43	<50	1.8	<50	1.29	280 120	<10	0.06	<10	2460	<20	0.76 0.59	<50 <10	10	<50	0.1	13 <	50	<50	20	<50	<20	
PB01_17 454 PB01_17 455	455 456	DD - HALF DD - HALF	188594 188595	1	2.42 3.06	<50 <50	350 450	<10 <10	<20 <20	1.07	<10 <10	10	20 40	2070 3170	1.13 2.12	<50 <50	1.8	<50 <50	0.26 1.21	120 150	<10	0.06	<10 <10	3250 1910	<20 <20	0.59 1.36	<50 <10 <50 <10	20	<50 <50				<50 <50	10 20	<50 <50	<20 <20	
PB01_17 456	457	DD - HALF	188596	1	2.66	80 50	220	<10	20		<10 <10	40	30 30	1630	1.85			<50 <50	1.47	200 230		0.06	<10	1930	<20	1.22	<50 <10	20		0.1	12 <		<50 <50		<50	<20	
PB01_17 457	458	DD - HALF DD - HALF	188597 188598	1	3.6 2.89	50 60	210 130	<10	<20	1.93		60 40	30 30	1850 560	2.88 2.26	<50	مستنشمما		3.14	230 290	<10	0.05 <0.05	10 20	1760	<20	1.76	<50 10 <50 10	20	<50 <50	0.1	19 <			30 30	<50	20 20	
PB01_17 458 PB01_17 459	459 460	DD - HALF	188598	1	2.89	<50	80	<10 <10	<20 <20	3.09 3.17	<10 <10			370	3.5	<50 <50	1.2 0.8	<50 <50	2.99 5.17	580		<0.05	20	2530 2190	<20 <20	1.01 1.11	<50 10 <50 <10	10					<50 <50	30	<50 <50	30	
PB01_17 460	461	DD - HALF	188603	<1	2.65	<50	120	<10	<20	3.4	<10	30 20	30	130	3.17	<50	1	<50	3.78	650	<10	<0.05	10	2870	20	0.98	<50 <10	30	<50	0.1	11 <	50	<50	20	<50	20	1
PB01_17 461 PB01_17 462	462 463	DD - HALF	188604 188605	1	4.24 3.35	<50 50	280 250	<10 <10	<20 <20	2.62	<10 <10	20	40 40	210 140	3.71 2.66	<50 <50	1.4	<50 <50	3.74 2.28	830 460	<10 <10	0.05	10	1180 2040	20 <20	1.42	<50 10 <50 10	20	<50 <50	0.2	22 <	50 50	<50 <50	40 30	<50 <50	20	
PB01_17 463	464	DD - HALF	188606	2	3.69	<50	240	<10	<20	3.09	<10	10	40	420	3.05	<50	1.3	<50	3.44	630	<10	0.05	10	2160	<20	1.02	<50 10	30	<50	0.1	17 <	50	<50	30	<50	20	
PB01_17 464	465	DD HALF	188607	4	3.07	80	150	<10	<20	2.28	<10	60	30	1300	2.56	<50	1.3	<50 <50	2.14	410	<10	<0.05	10	1340	20	1.62	<50 10	20	<50	0.1	16 <	50	<50	30	<50	<20	
PB01_17 465 PB01_17 466	465 467	DD - HALF DD - HALF	188608 188609	2	1.41	120 <50	140	<10 <10	<20 <20	2.18 1.84	<10	70	30	3340 2800	1.32	<50	1	<50 <50	0.86 0.66	230 280	<10 <10	<0.05 <0.05	<10 <10	2170 2380	<20 <20	0.59	<50 <10 <50 <10	20	<50 <50			50	<50	10	<50 <50	<20 <20	1
PB01_17 467	468	DD - HALF	188610	2	2.2	60	190	<10	<20	2.5	<10	50	30	3990	2.2	<50	1.3	<50	0.97	240	<10	0.05	<10	3010	<20	1.86	<50 <10	30	<50	0.0)9 <			10	<50	<20]
PB01_17 468 PB01_17 469	469 470	DD - HALF DD - HALF	188611 188612	1	3.32 3.61	50 <50	170 230	<10 <10	<20 <20	4.34 4.5	<10 <10	20 20	30 40	660 90	5.84 4.47	<50 <50	1.1	<50 <50	4.82 4.1	1910 1090	<10 10	<0.05 0.05	<10 10	2170 1300	<20 <20	1.24	<50 10 <50 10	20 30	<50 <50	0.1	2	50 50	<50 <50	30 40	<50 <50	40 20	
PB01_17 470	471	DD - HALF	188613	1	3.91	<50	270	<10	<20	3.9	<10	10	40	20	3.41	<50	1.7	<50	2.68	550	10 <10	0.05	20	1910	<20	1.91	<50 10	40	<50	0.2	23	50	<50	40	<50	<20	
PB01_17 471	472 506	DD - HALF	188614	<1	3.98	50 240	290	<10	<20	5 2 67	<10	100	50	10	2.99	<50 <50	1.5	<50	2.92	590 310	<10	0.05	10	1580 7270	<20 40	1.46	<50 10	40	<50 c50				<50 <50	50 10	<50	<20	
PB01_17 505 PB01_17 506	506 507	DD - HALF DD - HALF	188615 188616	1	2.44	240 400	310 310	<10	<20 <20		<10 <10	100 100	30	2240 1930	1.64 1.53	<50 <50		<50 <50	0.54 0.35	310 180	<10 <10	0.06	20	7270 7330	40 40	1.16	<50 <10 <50 <10	40 30	<50	0. 0.1	15 <			10 20		<20 <20	••••
PB01_17 507	508	DD - HALF	188617	1	1.13	360	60	<10	<20	4.53	<10	140	30	1880	2.65	<50	0.8	<50	1.35	180 570	<10	<0.05	20	8060	20	1.9	<50 10	30	<50	0.0)5 <	50	<50	10	<50	200	
PB01_17 508 PB01_17 509	509 510	DD - HALF DD - HALF	188618 188619	<1 1	1.86 1.06	310 610	210 100	<10 <10	<20 20	2.47 3.04	<10 <10	130 90	40 30	1930 2060	2.46	<50 <50	1.3 0.7	<50 <50	0.39 1.06	300 690	<10 10	0.05 <0.05	30	7400 2670	40 20	1.96 2.24	<50 <10 <50 <10	30	<50 <50				<50 <50	20 10	<50 <50	2570 40	
PB01_17 510	511	DD - HALF	188620	<1	1.24	240	130	<10	<20	1.64	<10 <10	60	30	640	1.87	<50	0.8	<50	0.55	430		0.05	20	2100	<20	0.98	<50 <10	20	<50	0.0)6 <	50	<50	10	<50	50	
PB01_17 511	512	DD - HALF	188621	<1	3.04	<50	390	<10	<20	0.26	<10	30	40	100	0.96	<50	3.1	50	0.32	90	10	0.06	<10	850	<20	0.21	50 10	20	<50	0.2	25 <	50	<50	60	<50	<20]
PB01_17 512 PB01_17 513		DD - HALF	188622 188623	41	3.13	<50 <50	610 470	<10 <10	<20 <20	0.15 0.12	<10 <10	20	40 60	40 <10	0.69 1.26	<50 <50	5.3 4	<50 <50	0.29 0.5	60	<10 <10	0.09	10 <10	330 770	<20 <20	0.13	<50 <10 <50 10	10 <10	<50 <50		32	50 50	<50 <50	50 70	<50 <50	<20 <20	
PB01_17 514	515	DD - HALF	188624	1	4.78	<50	330	<10	<20	0.48	<10	10	50	10	1.94	<50	3.7	<50	0.84	320	<10	0.07	10	610	<20 <20	0.06	<50 10	10	<50	0.2	24 <	50	<50	70 60	<50	<20	1

JORC TABLE

TABLE 1 – Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	From depth 28m until 34m, one metre samples of half NQ2 core were used to obtain samples for analysis. From depth 53m until 57m, one metre samples of half NQ2 core were used to obtain samples for analysis. From depth 179m until 515m, one metre samples of half NQ2 core were used to obtain samples for analysis. All Samples were pulverised (ALS Preparation PREP31B) and a split of up to 250g was taken and pulverised to better than 85% passing a 75 micron screen. From the 250g split a 0.25g sample was taken, digested with perchloric, nitric, hydrofluoric and hydrochloric acids and analysed using ALS technique MEICP61A
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	The drilling technique was diamond HQ drilling, which drilled the rock sequences from 0m until 57m. From 57m until the end of the hole at 536.2m the drilling technique was NQ2 diamond drilling. The drill hole was drilled at an inclination of -60 degrees towards 50 degrees (magnetic). The drill core was orientated and direction of geological structures were recorded. The diamond drilling used triple tube.

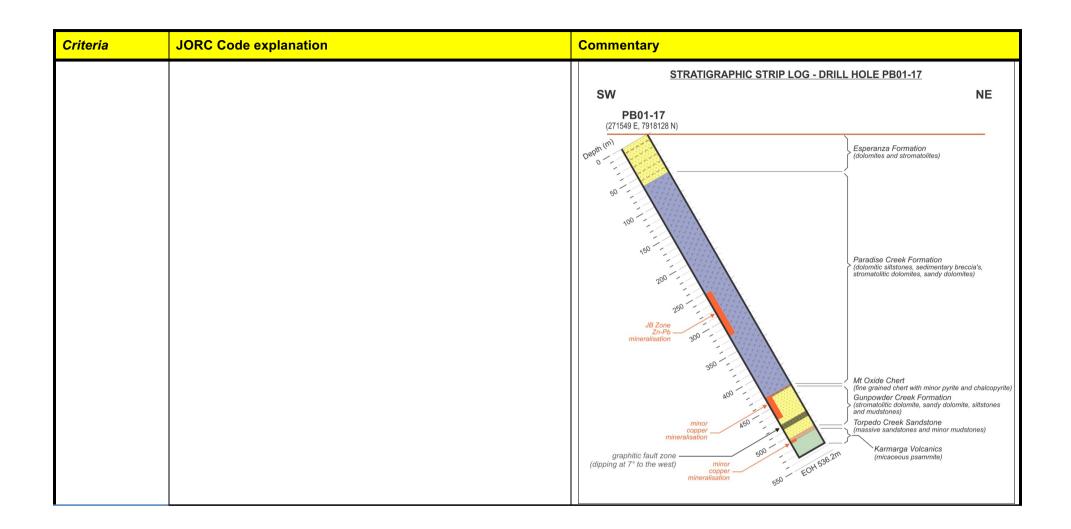
Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The HQ and NQ2 diamond drill core from the Proterozoic basement rocks was measured and compared against the drilled depths of the hole on a metre by metre basis. This allowed core recovery factors to be determined. Drill core recovery was generally in excess of 80%. Areas of core loss were experienced throughout the drill hole, with sections of core loss ranging in down hole width from 0.2m – 0.5m. In order to ensure the drill core samples are representative of the rock sequences drilled, half drill core was cut and submitted to the laboratory for analysis.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	The diamond drill core has been fully geologically and geotechnically logged to a standard which would support a Mineral Resource estimation. The geological and geotechnical logging was quantitative in nature. A Mineral Resource has previously been defined at the JB Zone of 10.4Mt @ 2.7% Zn, 0.2% Pb, 1g/t Ag at 1.5% Zn cut-off grade and is classified as Inferred in accordance with the JORC Code (2012) (see ASX Announcement by Pursuit Minerals on 24 April, 2017). If further drilling is undertaken with the objective of revising the JB Zone Mineral Resource, then the geological and geotechnical logging has been completed to a sufficient standard to allow the re-estimation of JB Zone Mineral Resource.

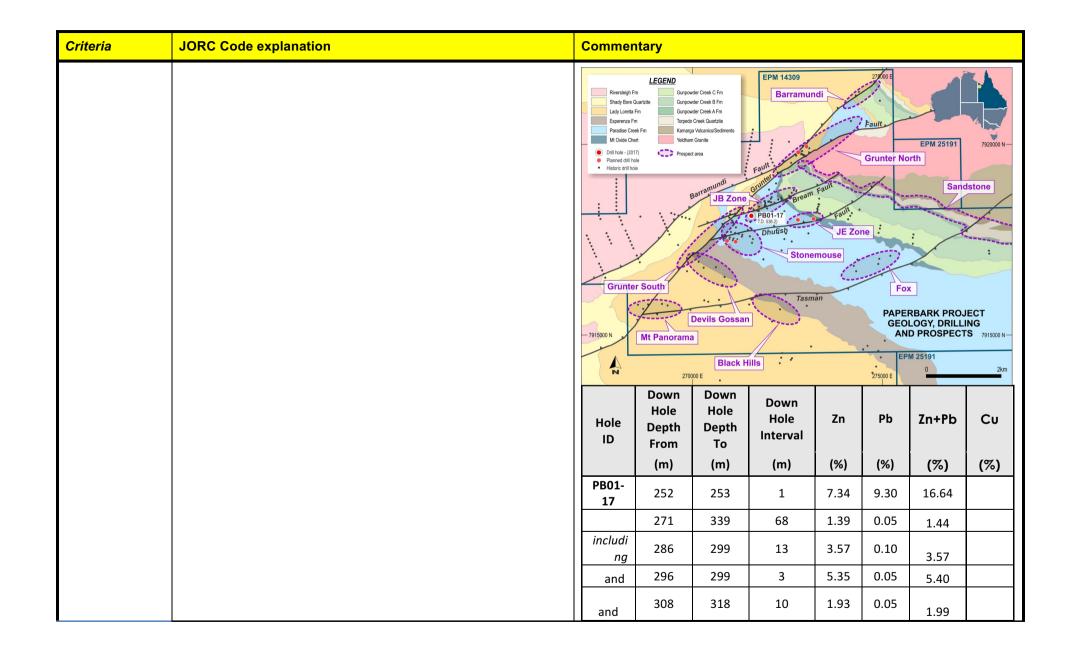
Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled	Samples taken were of half core, 1 metre in length. Half NQ2 core samples are entirely appropriate for accurately sampling the MVT/Irish Style, style of mineralisation of the JB Zone Mineral Resource. Sub-sampling was not undertaken. Geochemical standards and duplicate samples were inserted into the assay run, every 20 samples. This is deemed to be appropriate for the drill core samples being collected. All samples passed Pursuits internal QA/QC checks plus the laboratory's (ALS) QA/QC checks.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	The half core samples were submitted to the ALS laboratory in Mt Isa for assaying. Samples were prepared using Sample Preparation PREP31B. A sample prepared using ALS PREP31B is placed into the ALS tracking system, weigher, dried and finely crushed to better than 70% passing a 2mm screen. A split of up to 250g is taken and pulverised to better than 85% passing a 75 micron screen. This method is deemed suitable for half core drill samples and rock chips from mud rotary drilling. Each sample was assayed using ALS technique MEICP61A. The ALS MEICP61A analysis technique takes as a 0.25g sample and digests the sample with perchloric, nitric, hydrofluoric and hydrochloric acids. The reside is topped up with dilute hydrochloric acid and the resulting solution is analysed by inductively coupled plasma-emission spectrometry. The four acid digestion used in this method is described by ALS as a "near-total" digest. Standard, duplicate and blank samples were submitted in the sample run every 20 samples. The results from the standard and duplicates did not indicated a bias in the data. All standards for Ag, As, Cu, Co, Fe, Mg, Ni, Pb, Zn were within the 95% percentile.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	The intersection reported in the announcement is from the first drill hole to be completed by Pursuit Minerals into the JB Zone Mineral Resource. As only one drill hole has been completed by Pursuit, no independent verification has yet been completed. If a program for extensive follow up drilling into the JB Zone Mineral Resource, will be conducted in 2018, then independent verification if significant intersections maybe appropriate.
	The use of twinned holes. Documentation of primary data, data entry procedures, data	The intersection reported in this announcement is the first intersection into the JB Zone in a drill hole completed by Pursuit Minerals. Consequently, no twinned holes have yet been completed. If further follow up drilling into the JB Zone is undertaken in 2018, this program will include twinning one of the historical drill holes. Geological and geotechnical data was collected in the field and
	verification, data storage (physical and electronic) protocols.	entered directly into an acQuire database on a MacBook field

Criteria	JORC Code explanation	Commentary						
		computer. Data was verified using the acQuire data base and upon verification was uploaded into a "cloud based" acQuire data base hosted by a third-party provider.						
	Discuss any adjustment to assay data.	No adjustments to the assay data were made.						
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The drill hole collar location was located in the field using a hand-held GPS and reported in GDA94 Zone 54K with an accuracy of +/- 5m.						
	Specification of the grid system used.	Datum: Geocentric Datum of Australia (GDA) Grid Co-ordinates: Map grid of Australia 1994 (MGA94), Universal Transverse Mercator, using the GRS80 Ellipsoid, Zone 54K						
	Quality and adequacy of topographic control.	The altitude of each sample location were recorded using a hand-held GPS to an accuracy of +/- 5m.						
Data spacing and	Data spacing for reporting of Exploration Results.	The drill core from drill hole PB01-17 was sampled on a 1 metre basis using half core samples.						
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Drill hole PB01-17 is the first drill hole completed by Pursuit Minerals into the JB Zone Mineral Resource. However, as samples and geological data are being collected on a metre by metre basis, the data will be of sufficient quality to establish the geological and grade continuity if Pursuit undertake a re-estimation of the JB Zone Mineral Resource.						
	Whether sample compositing has been applied.	Samples were not composited						
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The entire length of mineralisation in hole PB01-17 was sampled on a 1m length basis of half drill core. The drill hole appears to have intersected the mineralisation at a high angle and thus the sampling is considered to be unbiased.						
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The mineralisation is structurally controlled, as is common for MVT and Irish type deposits. The drill hole was planned to intersect the structure controlling the mineralisation at a high angle and appears to achieved this objective. Therefore, there will be no to little bias in the sampling of the mineralised zone.						
Sample security	The measures taken to ensure sample security.	Samples were collected in the field by Pursuit Minerals staff and were under their control at all times. Samples were then taken to the						

Criteria	JORC Code explanation	Commentary
		laboratory by Pursuit Minerals staff and submitted directly to the laboratory. Therefore, there was no opportunity for samples to be tampered with.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews of sampling techniques and data were completed.


TABLE 1 – Section 2: Exploration Results


Criteria	JORC Code explanation	Commentary						
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The tenements comprising the Paperbark Project are 100% owned by Pursuit Minerals Limited. A 2% Net Smelter Return to Teck Australia Pty Ltd will be due from any production from Paperbark						
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	EPM14309 is valid until 12 September, 2022.						
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No assay or geochemical results from other parties are used in this announcement. The JB Zone Mineral Resource was initially defined by RMG Resources Limited and announced to the ASX on 23 January, 2013. Pursuit Minerals engaged Mr. Simon Tear, who originally defined the JB Mineral Resource for RMG Resources, to review and reclassify the JB Zone Mineral Resource. The reviewed JB Zone Mineral Resource was announced to the ASX by Pursuit Minerals on 24 April, 2017.						

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The Paperbark Project is located within the Lawn Hill Platform, a relatively undeformed portion of the Mount Isa Inlier, which has seen low, greenschist grade metamorphism. Four folding events are recognized over the Lawn Hill Platform and of those, the regional D2 macroscopic folding with axes trending northeast-southwest or north-south are most common. The D2 event is considered coeval with deformation and metamorphism in the Mount Isa Group. Proterozoic basement rocks, members of the McNamara Group sediments at Paperbark are well exposed. Geological mapping by previous tenement holders has contributed to a good understanding of the distribution of various units recognised, including: • Torpedo Creek quartzite (orthoquartzite and conglomerate); • Gunpowder Creek Formation (dolomitic, feldspathic fine grained sandstone-siltstone); • Paradise Creek Formation (stromatolitic, dolomitic siltstone); • Esperanza formation (stromatolitic chert, sandstone and dolomitic siltstone); • Lady Loretta formation (laminated, stromatolitic siltstone and shale); • Shady Bore Quartzite (orthoquartzite, fine dolomitic sandstone); and • Riversleigh Siltstone (carbonaceous siltstone, shale and sandstone). The sediments dip moderately (30 degrees) to the southwest and all units are potential hosts for base metal mineralisation. The package of rocks are cross cut by two significant, northeast trending faults (named the Grunter and Barramundi), with a series of second order faults splaying off the main structures. The faults form an anastomosing array that produce up to 7 km of strike slip apparent displacement with a mostly dextral sense of shear, in places, however, the offsets are sinistral. The faults are a clear control on mineralisation as elevated metal values are localised along them and in favourable horizons within the sediments

Criteria	JORC Code explanation	Commentary				
		where they are intersected by fault planes. The type of mineralisation is replacement, epigenetic/hydrothermal of similar character to Mississippi Valley Type (MVT) and Irish style mineralisation. Dissolution textures, cavity fill and solution collapse breccia, typical for this style are well developed, within the lime rich and dolomitic host rocks, including evaporites.				
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	Prospect Hole (GDA94, Name Zone 54) Zone 54) Azi mut Dip h (De gre gre es) (m)				
		PB01- Paperbark 271549 7918128 050 -60 536.2				
		Hole PB01_17 started on 13 th October to target the potential copper zone below the JB Zone and the southern section of the JB Zone Mineral Resource. The hole was collared at 271549E 7918128 N it was completed at 536.2 m on 29/10/2017. Hole PB01-17 was drilled at -60 towards 50 degrees. The JB Zone mineralisation was seen from 251 to 324.3 m, with minor Pb/Zn mineralisation to 339m. There was minor copper mineralisation from 432 to 470m and 508 to 511m.				

Criteria	JORC Code explanation	Commentary
		The geology intersected by hole JB01-17 was: 0 – 17.1 Very weathered rocks (probable silicified and part cavernous weathered dolomite or stromatolite 17.1 – 45.9 brown weathered dolomites and stromatolites 45.9 – 65.1 stromatolitic dolomites 65.1 – 208 interbedded dolomitic siltstones and mudstones (LMDc) 208 – 319 stromatolitic dolomites with increasing interbeds of sedimentary breccias (LMDa) the breccias may be mostly rip-up clasts of shallow water dolomitic beds. 319 – 350.6 predominantly sedimentary breccias (LMDb) of shallow water origin 350.6 – 394 evaporate dominated chaotically recrystallised sediments 394 – 411.2 massive stromatolitic dolomite beds 411.2 – 432.3 interbeds of silty sandy dolomite and domal stromatolites 432.3 – 436.3 fine grained dark cherty rock with minor fine disseminations of pyrite and chalcopyrite (Mt Oxide Chert) 436.3 – 439.8 domal stromatolitic dolomite 439.8 – 455.7 evaporitic to sandy dolomite 455.7 – 468.2 graded siltstone to mudstone thin beds with minor sandy interbeds very minor chalcopyrite and pyrite in basal parts of sand interbeds 468.2 – 504 thin bedded graded siltstones to mudstones – included graphitic faulted zone 479 to 487m 504 – 511.2 massive sandstone very minor mudstone and small conglomeratic interval (0.2m) with minor chalcopyrite (Torpedo Creek Sandstone?) 511.2 – 536.2 very micaceous psammite with old quartz veins foliated and with several pegmatitic patches.

Criteria	JORC Code explanation	Commentary							
		and	334	339	7	1.27	0.05	1.32	
			464	468	4	-	-	-	0.29
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	This infor	mation ha	as not bee	en excluded	l.			
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	The diamond drill core samples were taken on standard one metre lengths and therefore, weighted average means were not used to calculate intersections widths and grades for these samples. Top cutting of assay results was not employed.							
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	The reported intersections did not include short lengths of high grade results, but lengths of medium grade lead and zinc. Therefore, the results were not aggregated.							
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are reported.							
Relationship between mineralisation widths and intercept lengths	If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported.	The mineralisation comprising the JB Zone Mineral Resource is interpreted to dip to the south-west at a moderate dip of 20-40 degrees, with the drop increasing to the south. Drill hole PB01-17 was designed to intersect the JB Zone Mineralisation at a high angle and this objective appears to have been achieved. Therefore, the down-hole depths will be close of the true width of the mineralisation.						signed to ctive	
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Down-hole widths were report. The exact true width is not known, but down hole widths are anticipated to be close to true thicknesses.							

Criteria	JORC Code explanation	Commentary
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	STRATIGRAPHIC STRIP LOG - DRILL HOLE PB01-17 SW NE PB01-17 (271549 E, 7918128 N)
		Depth mineralisation Depth mineralisation Depth mineralisation Bo Depth mineralisation So Mit Oxide Chert (fine grained hert with minor pyrite and chalcopyrite) (stromatolitic dolomite, sandy dolomite, siltstones and mudstones) Torpedo Creek Sandstone
		graphitic fault zone (dipping at 7° to the west) Graphitic fault zone (dipping at 7° to the west) Graphitic fault zone (minor copper mineralisation s50 ECM 506.2m (micaceous psammite)

Criteria	JORC Code explanation	Commentary
		Riversieigh Fin Stody Gove Quartate Curpowder Creek A Fin Curpowder Creek A Fin Eupernaa Fin Paradee Creek Fin Namanya Volanica/Sediments Watham Grante Planeed did hole Planeed Sediments Prospect area Parameted Mit Debut Sediments Prospect area PB03-17 (TD 343) Prospect area PB03-17 (TD 543) PB03-17 (TD 543) PB03-17 (TD 543) PAPERBARK PROJECT GEOLOGY, DRILLING AND PROSPECTS 7915000 N Mt Panorama Black Hills 27000 E PM 25191 PAPERBARK PROJECT GEOLOGY, DRILLING AND PROSPECTS 7915000 N Black Hills 27000 E PM 25191 PAPERBARK PROJECT GEOLOGY, DRILLING AND PROSPECTS 7915000 N
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All assay results have been included in Appendix One.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported) including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data relevant to the reported intersections, which is not already included in the announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Pursuit Minerals has not yet determined if follow up drilling will definitely be conducted at the JB Zone in 2018. It is a possibility that further drilling will be conducted at the northern end of the JB Zone, in order to determine the extent of the Mineral Resource at shallow depth, given that

Criteria	JORC Code explanation	Commentary
		the JB Zone Mineral Resource is open both to the north, east and south. The next work to be conducted at the JB Zone is Dense Media Separation test work to determine if it is possible to upgrade feed head grade into a processing plant from around 2%Pb+Zn to >10% Pb+Zn. The results of this work will then be economically modelled to determine is the JB Zone Mineral Resource could sustain a stand-alone project which is economic. If this is indicated by the economic modelling and open pit Whittle optimisation, then further drilling of the JB Zone will be undertaken in 2018.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	LEGEND Riversleigh Fm Shady Bore Cuartale Lody Lorest a Fn Espensera Fm Fpaudise Creek A Fm Pandise Creek Fm M Oude Chert Planned dill hole Planned dill hole Planned dill hole Planned dill hole Patramundi Patramundi Pa