

Weebit Nano AT A GLANCE

Listed on the ASX in August 2016

Targeting the storage market which is estimated at > USD\$40B

R&D and HQ in Israel, R&D partnership with CEA-Leti, France

Business & Tech partners – CEA-Leti France & Rice University, USA

Developing next-gen solution based on Silicon Oxide (SiOx) ReRAM

Patents Registered in the USA

KEY INVESTMENT HIGHLIGHTS

MASSIVE STORAGE DEMAND

Exponential increase in demand for memory storage

EXCELLENT DEVELOPMENT RESULTS

Scaled devices with a memory array significantly faster than Flash memory imminent

KEY DEVELOPMENT PARTNERSHIP

CEA-Leti, world-class research institution

MARKET DRIVERS

Content explosion and Artificial Intelligence (AI) are creating new opportunities for memory technologies (e.g. ReRAM)

ON TRACK

Working 40nm cells achieved before year end of 2017, on track for 1Mbit by mid 2018

ADDRESSABLE MARKET

> USD\$40B+

SHARE INFORMATION

CAPITAL STRUCTURE

SHAREHOLDING BREAKDOWN

- 1. As of 27 Nov 2017
- 2. Including Options subject to approval at AGM and existing Options & Performance Shares
- 3. Does not include net proceeds of \$2.5m Capital Raise completed on 3 October 2017 nor does it include the proceeds from the 48.7m Options exercised in November 2017

LEADERSHIP TEAM

Scientist of the Year 2013 R&D magazine

Inducted to the National Academy of inventors

Feynman prize in Nano science

Ex-Intel EVP IEEE Fellow

Has led intel into the Data Center

Brought to Market: Centrino™ mobile technology

Extensive management and sales experience

37 years in the semiconductor domain

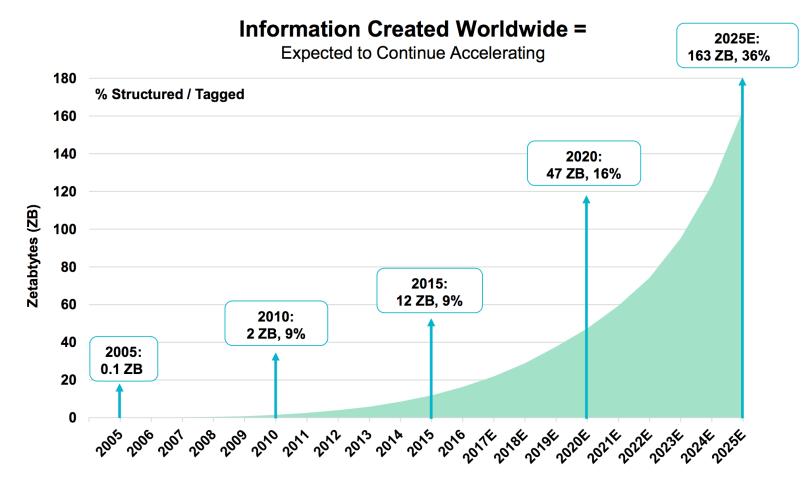
Enabled Verisity and Jasper acquisitions

Two decades in Semiconductors engineering

45nm NOR Flash Technology Development at Micron

Was part of Automotive division at Intel

THE NEW CEO


- 37 years in the semiconductor space
 - 15 years in engineering/engineering management
 - 22 years in CEO and VP Sales roles
- Verisity SVP WW Sales
 - \$315M acquisition by Cadence
- Jasper VP WW Sales
 - \$170M acquisition by Cadence
- Packetlight CEO
- EDAcon Partners

DATA EXPLOSION IS COMING

"We live in a *new data* economy that will generate huge amounts of data. Autonomous vehicles and the network that connects them will generate lots of data. The **Internet of Things** will also be a big source of data. Cognitive computing and artificial intelligence will be used to analyze much of this data"

Marc DurcanMicron CEO Micron Feb 2017

IMAGE RECOGNITION PERSONAL ASSISTANCE

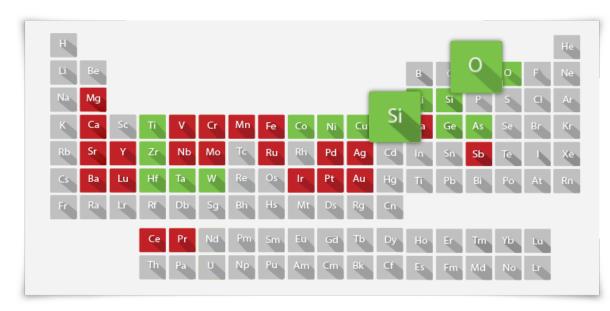
INTELLIGENT MACHINES

Becoming part of our everyday lives

WEEBIT SOLUTIONS FOR THE INDUSTRY

Building smaller cell is better/cheaper

MORE INFORMATION STORED IN A PIECE OF SILICON WITH A FASTER WRITE AND READ


SILICON OXIDE

Weebit NANO NEXT-GEN MEMORY SOLUTION

- ✓ **Fab Friendly** 50 year process & manufacturing experience
- ✓ **Compatibility** well integrated with existing proven processes

MANUFACTURABLE ANYWHERE

- ✓ Any Fab no need for specialised foundry
- ✓ Any Tool no need for special tool
- ✓ **Any process** no need for special process

Not Used in Semiconductor Fabs

Used in Semiconductor Fabs

Shortest time to market, cheaper, Faster

RERAM COMPETITIVE LANDSCAPE

Mar Cap	ket italisation (USD)	\$50M	\$33M	\$250M (E)	\$180M
Men Cap	nory acity	40nm cells achieved Mb Array by mid-2018	Start work on Mb Array	8Mb Array	512Kb
Dim	ension	40nm	40nm	40nm	130nm
Dev time	elopment	<2 years*	7 years	7 years	>10 years

COMPETITIVE ADVANTAGE

The Emerging Memory

	Materials	Silicon Oxide	Pr, Ca, Mn	Silver	Tellurium
	Manufacturability	Production ready materials	Difficult to run in a production Fab	Difficult to run in a production Fab	Difficult to run in a production Fab
	Speed	Fast RD & WR	Fast RD no data on WR	Fast RD & WR	Fast RD & WR
	Retention	10Y > room temp	No data	10Y @ 85 °C	40Y @ 125 °C
	Endurance	10 ⁵ *	10 ³	10 ⁶	10 ⁵
	Production cost	Most cost effective process	Higher Cost of manufacturing	Higher Cost of manufacturing	Higher Cost of manufacturing
Based on public information		* moving to 10 ⁶		374	Weehitnano

FROM PROTOTYPES TO PRODUCTION

Proven international trackrecord in moving from R&D to production

MEMORY EXPERTISE

Over 10 years of experience in memory technology development

NANOTECHNOLOGY SPECIALIST

State of the art industrial tools

MANUFACTURING ALLIANCES

Over 330 industrial partners

INNOVATION HUB

60+ start-ups in semiconductor, architectures or software

COLLABORATION

Working on 40nm SiOx development since September 2016

CUSTOMERS

Intel, ST Microelectronics, Globalfoundries

OPENED FRENCH SUBSIDIARY

- Enhances the cooperation with Leti
- Weebit will be eligible for French R&D benefits and tax refunds
- Base for our French employees

EXPECTATIONS MET

Every committed milestone met

ON TRACK

to reach 40nm

Mbit array

by mid-2018

OCT 2017

300nm 4Kbit Array with strong Endurance and retention results

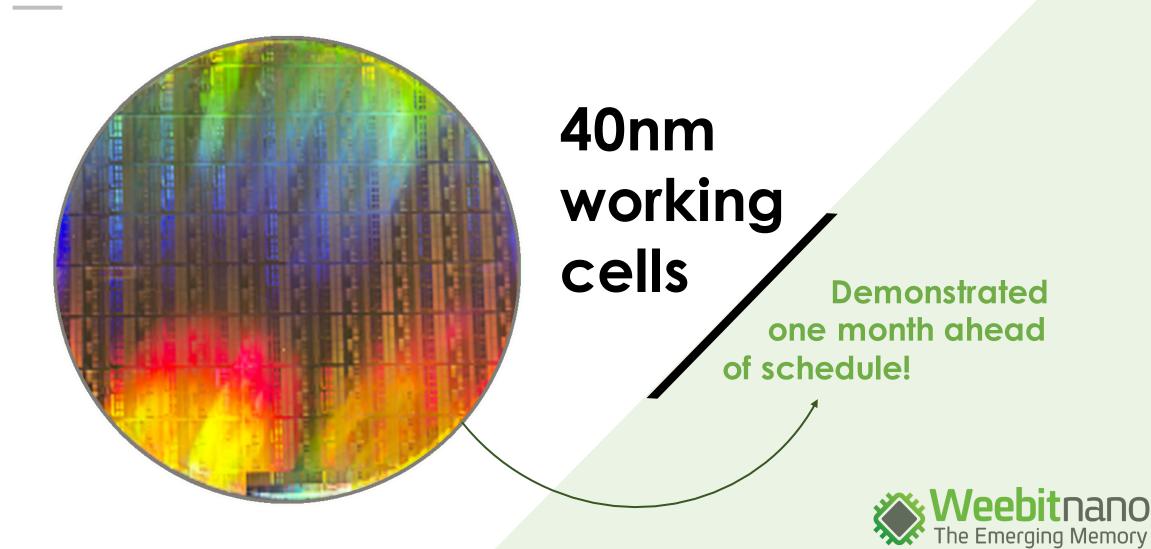
MAY 2017

Miniaturisation started

MARCH 2017

Electrical results validation

NOVEMBER 2016


Successful Technology transfer to Leti

SEPT 2016

Development kicked off at Leti

EXPECTATIONS MET

2018 PLANS

TECHNICAL

- Develop a 40nm Mbit array by mid-2018
- Improved Endurance and Retention to meet industry standards by end 2018
- Define a plan and be on the path to develop 2xnm technology

BUSINESS

Sign first cooperation agreement with a key industry player

DISCLAIMER

This presentation contains certain statements that constitute forward-looking statements. Examples of such statements include, but are not limited to, statements regarding the design, scope, initiation, conduct and results of our research and development programs; our plans and objectives for future operations; and the potential benefits of our products and research technologies. In some cases, forwardlooking statements can be identified by the use of terminology such as "may," "will," "expects," "plans," "anticipates," "estimates," "potential" or "continue" or the negative thereof or other comparable terminology. These statements involve a number of risks and uncertainties that could cause actual results and the timing of events to differ materially from those anticipated by these forward-looking statements. These risks and uncertainties include a variety of factors, some of which are beyond our control. All forward-looking statements and reasons why actual results may differ are based on information available to us when initially made, and we assume no obligation to update these forward-looking statements or reasons why actual results might differ or the information set forth herein. In addition, we do not make any representations or warranties, express or implied, with regard to the information included in this presentation of any other related document or information disclosed or furnished in connection thereto, including, without limitation, with respect to the accuracy, reliability, completeness or its sufficiency for any particular purpose. This information is proprietary and confidential of Weebit and is provided on a confidential basis and may not be disclosed or used without our prior written consent. You acknowledge that the disclosure and use of the information may be further prohibited under applicable securities or other laws. This presentation is made for informational purposes only and does not constitute an offer to sell any interest in Weebit not does it form the basis of any contract or agreement between the parties.

