

FURTHER HIGH-GRADE ASSAY RESULTS CONTINUE TO EXTEND MINERALIZATION AT THE PIEDMONT LITHIUM PROJECT (REVISED)

- Assay results from a further 26 drill holes of the Phase 2 program have been received and continue to confirm high grade lithium mineralization along the 4 kilometers of strike within the Project including:
 - o **24.38m** of cumulative thickness of mineralization (non-continuous) across 3 pegmatites which includes high grade intercepts of 18.04m @ 1.01% Li₂O and 1.99m @ 1.28% Li₂O (Hole 17-BD-87)
 - o 23.64m of cumulative thickness of mineralization (non-continuous) across 5 pegmatites which includes high grade intercepts of 11.60m @ 1.29% Li₂O, and 5.97m @ 1.14% Li₂O (Hole 17-BD-77)
 - o 22.82m of cumulative thickness of mineralization (non-continuous) across 4 pegmatites which includes high grade intercepts of 9.74m @ 1.31% Li₂O and 5.73m @ 1.36% Li₂O (Hole 17-BD-98)
 - o 21.86m of cumulative thickness of mineralization (non-continuous) across 4 pegmatites which includes high grade intercepts of 13.95m @ 1.34% Li₂O and 2.93m @ 1.41% Li₂O (Hole 17-BD-95)
 - o 15.69m of cumulative thickness of mineralization (non-continuous) across 3 pegmatites which includes high grade intercepts of 11.09m @ 1.27% Li₂O and 3.41m @ 1.20% Li₂O (Hole 17-BD-90)
 - o 12.51m of cumulative thickness of mineralization (non-continuous) across 2 pegmatites which includes a high grade intercept of 10.55m @ 1.46% Li₂O (Hole 17-BD-102)
- The Company has now received assays for 76 of the 93 Phase 2 drill holes and anticipates receiving assay results for the remaining 17 drill holes over the next few weeks
- A Schematic Long Section for the B and G corridors has been prepared based on drilling results to-date (Figure 1) and illustrates the continuity of mineralization along strike for 1400 meters
- Preliminary geological modelling has, thus far, identified 38 pegmatite bodies within the 4+ kilometers of strike on the Project with the vast majority being intersected at depths less than 100 meters from surface
- As a result of the work done to date the Company is confident in defining a shallow, open-pitable deposit within the Piedmont Lithium Project strategically located within the USA
- This announcement has been updated at the request of ASX to include, amongst other things, a revised JORC Table 1 with additional details on data aggregation methods

Keith D. Phillips, President and Chief Executive Officer, said, "These additional drill results are outstanding and confirm our belief in the Piedmont Lithium Project. Our team has discovered a worldclass mineral system with over 30 pegmatite bodies over a combined 4+ kilometers of strike length, virtually all within 100 meters of surface. We look forward to receiving the remaining Phase 2 assay results over the coming weeks."

New York Office

For further information, contact:

Keith D. Phillips President & CEO T: +1 973 809 0505

E: keith@piedmontlithium.com

Anastasios (Taso) Arima

Executive Director T: +1 347 899 1522

E: taso@piedmontlithium.com

Figure 1: Piedmont Lithium Project – Schematic Northeast-Southwest Long Section

Piedmont Lithium Limited (ASX: PLL, OTC: PLLLY) ("Piedmont" or "Company") is pleased to report further high-grade mineralisation from the 93-hole Phase 2 drilling campaign on the Piedmont Lithium Project ("**Project**") located within the world-class Carolina Tin-Spodumene Belt ("**TSB**").

Phase 2 Results and Discussion

In addition to the first 51 Phase 2 drill holes (reported September 26, 2017 and November 2, 2017), the current group of 26 drill holes reported in this release continue to define high grade mineralised trends totalling over 4 kilometers in strike. The entire Pegmatite system remains open at depth and along strike. Drill hole details and weighted-composite assay intercepts are attached as Table 1.

Geological modelling has begun on the results from the Phase 2 drill campaign with initial results indicating the presence of 38 pegmatite bodies across the 4+ kilometres of strike length on the Project. Importantly, the vast majority of the dykes have been intersected at shallow depths of less than 100 metres vertically. These initial results give the Company confidence in being able to define a shallow, open-pitable deposit which is strategically located within the historical lithium mining and processing region of the USA.

Logging, sampling and shipping of all Phase 2 drill core samples has been completed. All assays from the Phase 2 program should be received from SGS Labs by early-December.

The Phase 2 drill holes reported in this release highlight the initial high grade intercepts with significant cumulative thickness within the Star Corridor (figure 3) and further defined the mineralization in the B, F & G corridors. Significant intercepts within the B, F & G corridors continued to display similar high grade results as have been previously reported.

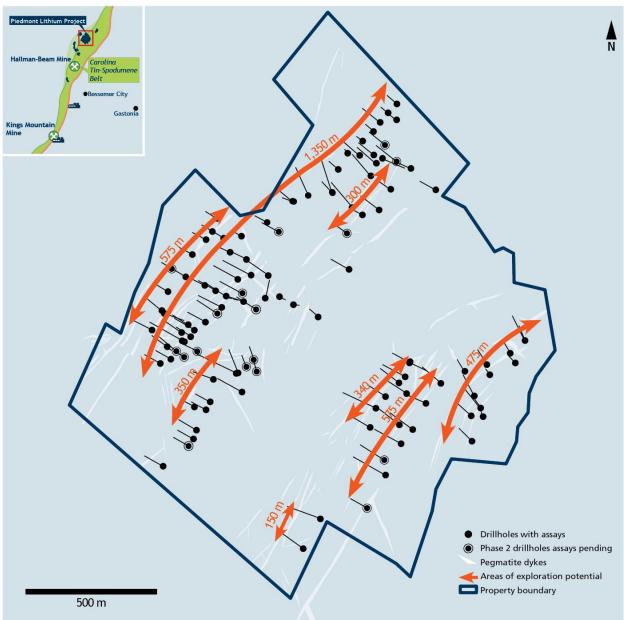


Figure 2: Piedmont Lithium Phase 2 Drilling with Mineralized Trends

Significant intercepts from the Star Corridor include:

- o **22.82m** of cumulative thickness of mineralization across 4 pegmatites which includes high grade intercepts of **9.74m @ 1.31% Li₂O** and **5.73m @ 1.36% Li₂O** in Hole 17-BD-98
- 21.86m of cumulative thickness of mineralization across 4 pegmatites which includes high grade intercepts of 13.95m @ 1.34% Li₂O and 2.93m @ 1.41% Li₂O in Hole 17-BD-95
- o **21.30m** of cumulative thickness of mineralization across 4 pegmatites which includes high grade intercepts of 4.23**m** @ **1.20**% **Li₂O** and **4.52m** @ **1.31% Li₂O** in Hole 17-BD-91
- o **17.42m** of cumulative thickness of mineralization across 3 pegmatites which includes high grade intercepts of **5.35m @ 1.23% Li₂O** and **4.00m @ 1.12% Li₂O** in Hole 17-BD-101

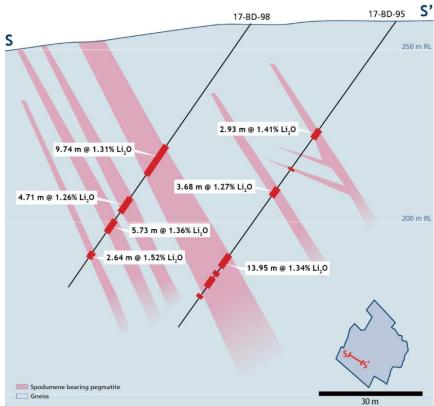


Figure 3: Piedmont Lithium Project - Star Corridor Cross Section

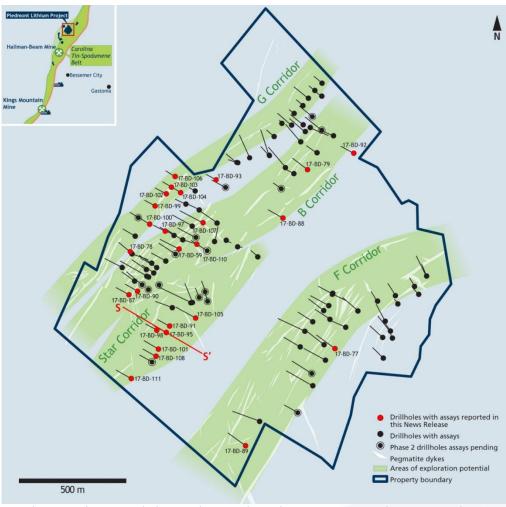


Figure 4: Piedmont Lithium Project - Mineralized Trends and Drill Hole Locations

About Piedmont Lithium

Piedmont Lithium Limited (ASX: PLL; OTC-Nasdaq: PLLLY) holds a 100% interest in the Piedmont Lithium Project ("Project") located within the world-class Carolina Tin-Spodumene Belt ("TSB") and along trend to the Hallman Beam and Kings Mountain mines, historically providing most of the western world's lithium between 1950 and 1990. The TSB is one of the premier localities in the world to be exploring for lithium pegmatites given its history of lithium bearing spodumene mining, favorable geology and ideal location with easy access to infrastructure, power, R&D centers for lithium and battery storage, major high-tech population centers and downstream lithium processing facilities.

Piedmont Lithium Location and Bessemer City Lithium Processing Plant (FMC, Top Right) and Kings Mountain Lithium Processing Facility (Albemarle, Top Left)

The TSB has previously been described as one of the largest lithium provinces in the world and is located approximately 40 kilometers west of Charlotte, North Carolina, United States. The TSB was the most important lithium producing region in the western world prior to the establishment of the brine operations in Chile in the late 1990s. The TSB extends over approximately 60 kilometers in length and reaches a maximum width of approximately 1.6 kilometers.

The Project was originally explored by Lithium Corporation of America which eventually was acquired by FMC Corporation ("FMC"). FMC and Albemarle Corporation ("Albemarle") both historically mined the lithium bearing spodumene pegmatites from the TSB with the historic Kings Mountain lithium mine being described as one of the richest spodumene deposits in the world by Albemarle. These two mines and their respective metallurgy also formed the basis for the design of the two lithium processing facilities in the region which were the first modern spodumene processing facilities in the western world.

Albemarle and FMC continue to operate these important lithium processing facilities with FMC's Bessemer City lithium processing facility being approximately 14 kilometers from the Project whilst Albemarle's Kings Mountain lithium processing facility is approximately 17 kilometers from the Project.

The Company is in a unique position to leverage its position as a first mover in restarting exploration in this historic lithium producing region with the aim of developing a strategic, U.S. domestic source of lithium to supply the increasing electric vehicle and battery storage markets.

Forward Looking Statements

This announcement may include forward-looking statements. These forward-looking statements are based on Piedmont's expectations and beliefs concerning future events. Forward looking statements are necessarily subject to risks, uncertainties and other factors, many of which are outside the control of Piedmont, which could cause actual results to differ materially from such statements. Piedmont makes no undertaking to subsequently update or revise the forward-looking statements made in this announcement, to reflect the circumstances or events after the date of that announcement.

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on, and fairly represents, information compiled or reviewed by Mr Lamont Leatherman, a Competent Person who is a Registered Member of the 'Society for Mining, Metallurgy and Exploration', a 'Recognised Professional Organisation' (RPO). Mr Leatherman is a consultant to the Company. Mr Leatherman has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Leatherman consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

APPENDIX 1: SUMMARY OF CORE DRILL HOLE INTERSECTIONS

Hole ID	Easting	Northing	Elev. (m)	Az. (°)	Dip (°)	Depth (m)		From (m)	To (m)	Intercept (m)	Li₂O (%)
17-BD-59	473573.61	3916192.82	247.91	300	-55	180		19.34	21.19	1.85	1.79
							and	44.57	46.90	2.33	1.07
							and	106.86	11320	6.34	0.73
							including	106.86	108.84	1.98	1.35
							and	122.76	126.49	3.73	1.46
17-BD-77	474291.29	3915729.42	263.27	300	-55	185.9		53.56	59.53	5.97	1.14
							and	64.34	66.41	2.07	1.10
							and	68.50	70.77	2.27	1.44
							and	116.22	127.82	11.6	1.29
							including	116.22	118.90	2.86	1.81
							including	120.69	127.82	7.13	1.41
							and	179.36	181.09	1.73	1.17
17-BD-78	473345.13	3916178.02	255.00	300	-55	126.8		76.73	85.33	8.60	1.19
., 55 , 6											
							including	79.70	84.17	4.47	1.64
17.00.70	474162.90	3916566.70	232.50	310	-55	146.5	and	100.25	102.71	2.46	0.97
17-BD-79	47 4102.70	3710300.70	202.50	010	55	140.0		30.12	39.60	9.48	0.67
							including	30.12	33.12	3.00	1.36
17-BD-83								а	ssays pendin	ng	
17-BD_85							assays pending				
17-BD-86								а	ssays pendin	ng	
17-BD-87	473332.30	3915980.97	241.32	300	-55	117.4		7.85	12.20	4.35	0.96
							and	57.81	75.85	18.04	1.01
							including	57.81	67.52	9.71	1.41
							including	71.82	75.85	4.03	1.12
							and	83.90	85.89	1.99	1.28
17-BD-88	474056.50	3916333.16	238.03	300	-55	128		No :	significant re	sults	
17-BD-89	473871.96	3915279.45	265.01	300	-55	155.45		38.11	42.86	4.75	0.94
							and	111.60	118.92	7.32	1.25
							including	111.60	113.86	2.26	1.91
17-BD-90	473372.29	3915995.85	232.93	300	-55	111.25		16.74	17.93	1.19	1.43
							and	37.52	40.93	3.41	1.20
							and	71.23	82.32	11.09	1.27
							including	71.23	76.23	5.00	1.71
17-BD-91	473519.90	3915830.77	266.58	300	-55	111.25		36.19	40.42	4.23	1.20
							and	52.08	56.60	4.52	1.31
							and	84.66	86.10	1.44	1.21
							and	93.04	104.95	11.11	0.86
							including	98.86	102.74	3.88	1.13
17-BD-92	474389.81	3916644.49	241.94	300	-55	113	" Torouring		significant re		1.10
	473745.13	3916513.93	267.21	300	-55	93					0 ==
17-BD-93	7/0/40.10	0/10010.70	20/.21	500	-55	73		36.29	39.25	2.96	0.72
							and	40.56	42.83	2.27	0.96
							and	50.30	52.16	1.86	1.02
17-BD-94								а	ssays pendin	ng	

Hole ID	Easting	Northing	Elev. (m)	Az. (°)	Dip (°)	Depth (m)		From (m)	To (m)	Intercept (m)	Li₂O (%)
17-BD-95	473508.14	3915794.01	264.82	300	-55	108.2		47.36	50.29	2.93	1.41
							and	60.90	62.20	1.30	1.11
							and	67.02	70.70	3.68	1.27
							and	90.35	104.30	13.95	1.34
							including	93.23	102.38	9.15	1.60
17-BD-96								а	ssays pendin	ng	
17-BD-97	473502.93	3916269.98	250.08	300	-55	104		39.46	48.52	9.06	0.98
							including	39.46	44.46	6.15	1.20
							and	52.39	59.84	7.45	0.99
							including	52.39	54.92	2.53	1.43
17-BD-98	473468.27	3915816.06	258.63	300	-55	92.96		44.66	54.40	9.74	1.31
							including	45.12	51.9	6.78	1.60
							and	63.49	68.20	4.71	1.26
							and	71.03	76.76	5.73	1.36
							and	82.06	84.70	2.64	1.52
17-BD-99	473446.86	3916391.01	262.32	300	-55	94.5		31.65	38.14	6.49	1.33
							and	45.79	46.79	1.00	1.06
17-BD-100	473422.90	3916309.56	258.59	300	-55	131.5		72.64	79.68	7.04	1.08
							including	72.64	75.86	3.22	1.44
							including	78.15	79.68	1,53	1.94
17-BD-101	473472.77	3915727.52	267.51	300	-55	126.49		58.66	61.01	2.35	0.75
							and	78.35	83.70	5.35	1.23
							including	78.35	80.95	2.60	1.56
							and	93.10	102.62	9.52	0.90
							including	93.10	97.10	4.00	1.12
17-BD-102	473513.92	3916451.01	261.57	300	-55	100.58		52.39	62.94	10.55	1.46
							including	54.08	61.64	7.56	1.93
							and	72.64	74.60	1.96	1.52
17-BD-103	473535.81	3916476.52	266.73	300	-55	91.44		48.79	58.60	9.81	1.22
							including	49.19	54.00	4.81	1.53
17-BD-104	473571.48	3916457.54	263.93	300	-55	128.02		87.97	93.63	5.66	1.15
							and	103,10	105.08	1.98	0.73
17-BD-105	473641.00	3915867.59	254.67	300	-55	178.92		34.36	36.66	2.30	0.94
							and	92.20	96.10	3.90	1.72
17-BD-106	473550.52	3916526.96	267.95	300	-55	91.44	una	34.91	41.35	6.44	1.72
17-00-100							l				
17 PD 107	473680.96	3916313.65	259.51	298	-55	231.04	and	57.22	59.62	2.4	1.09
17-BD-107	., 5550., 6	3, 10010.00	207.01	2,0	55	201.07		6.07	8.20	2.13	1.09
							and	128.51	141.26	12.75	1.03
17.00.444	473466.14	3915688.90	262.06	300	-55	114.3	including	128.51	137.18	7.55	1.55
17-BD-108	4/ 0400.14	J/1J000.7U	202.06	300	-55	114.3		65.17	67.04	1.87	1.02
							and	79.52	85.89	6.37	0.59
							including	79.52	81.00	1.48	0.94
17-BD-109								а	ssays pendin	og	

Hole ID	Easting	Northing	Elev. (m)	Az. (°)	Dip (°)	Depth (m)		From (m)	To (m)	Intercept (m)	Li₂O (%)
17-BD-110	473649.49	3916213.14	241.34	294	-67	234.7		41.27	42.76	1.49	1.52
							and	91.00	97.97	6.97	0.53
							including	92.00	94.00	2	1.14
17-BD-111	473344.39	3915575.81	264.85	300	-55	136.25		No s	ignificant re	sults	

APPENDIX 2 - JORC TABLE 1 CHECKLIST OF ASSESSMENT AND REPORTING CRITERIA

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	> Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. > Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. > Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	All results reported are from diamond core samples. The core was sawn at an orientation not influenced by the distribution of mineralization within the drill core (i.e. bisecting mineralized veins, or cut perpendicular to a fabric in the rock that is independent of mineralization, such as foliation). Diamond drilling provided continuous core which allowed continuous sampling of mineralized zones. The core sample intervals were a minimum of 0.35m and a maximum of 1.5m for HQ or NQ drill core (except in saprolitic areas of poor recovery where sample intervals may exceed 1.5m in length), and took into account lithological boundaries (i.e. sample was to, and not across, major contacts). Standards and blanks were inserted into the sample stream to assess the accuracy, precision and methodology of the external laboratories used. In addition, field duplicate samples were inserted to assess the variability of the mineralisation., The laboratories undertake their own duplicate sampling as part of their internal QA/QC processes. Examination of the QA/QC sample data indicates satisfactory performance of field sampling protocols and assay laboratories providing acceptable levels of precision and accuracy.
Drilling techniques	> Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	All diamond drill holes were collared with HQ and were transitioned to NQ once non-weathered and unoxidized bedrock was encountered. Drill core was recovered from surface. Oriented core was collected on select drill holes using the REFLEX ACT III tool by a qualified geologist at the drill rig. The orientation data is currently being evaluated.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	The core was transported from the drill site to the logging facility in covered boxes with the utmost care. Once at the logging facility, the following procedures were carried out on the core: 1. Re-aligning the broken core in its original position as closely as possible. 2. The length of recovered core was measured and meter marks clearly placed on the core to indicate depth to the nearest centimetre. 3. The length of core recovered was used to determine the core recovery, which is the length of core recovered divided by the interval drilled (as indicated by the footage marks which was converted to meter marks), expressed as a percentage. This data was recorded in the database. The core was photographed wet before logged. 4. The core was photographed again immediately before sampling with the sample numbers visible. Sample recovery was consistently good except for zones within the oxidized clay and saprolite zones. These zones were generally within the top 20m of the hole. No relationship is recognized between recovery and grade. The drill holes were designed to intersect the targeted pegmatite below the oxidized zone.
Logging	> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. > Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. > The total length and percentage of the relevant intersections logged.	Geologically, data was collected in detail, sufficient to aid in Mineral Resource estimation. Core logging consisted of marking the core, describing lithologies, geologic features, percentage of spodumene and structural features measured to core axis. The core was photographed wet before logging and again immediately before sampling with the sample numbers visible. All the core from the twenty-six holes reported was logged.

Criteria	JORC Code explanation	Commentary								
Sub-sampling	> If core, whether cut or sawn and whether quarter, half or all core taken.	Core was cut in half wit	h a diamond saw.							
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	· ·	rals were a minimum of 0.35m ar o account lithological boundaries							
	> For all sample types, the nature, quality and appropriateness of the sample preparation techniques. The preparation code is CRU21 (crush to 75% of sample <2mm) and PUL45 250g to 85% <75 microns).									
	> Quality control procedures adopted for all sub- sampling stages to maximise representivity of	(i.e. 5%).	k was included at the rate of one monitored by selecting a sample		•					
	samples. > Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	and splitting the sample These samples are con sample database as "f	e into two ¼ core duplicate sample secutively numbered after the pri ield duplicates" and the primary ed at the rate of 1 in 20 samples	es over the same mary sample an sample numbe	e sample interval. Indicate the recorded in the recorded. Field					
	Whether sample sizes are appropriate to the grain size of the material being sampled.	tag books using 9-digit and one tag stapled or collected. Samples w coinciding to the sam reference materials (Cl	ed sequentially with no duplicates numbers were used, with one to otherwise affixed into the core tracere placed inside pre-numbere ple tag. Quality control (QC) sRMs), were given sample number from the laboratory after samplumbers.	ag inserted into ay at the interva d sample bag samples, consisters within the s	the sample bag I the sample was s with numbers sting of certified ample stream so					
Quality of assay data and	> The nature, quality and appropriateness of the assaying and laboratory procedures used and	All samples from the P Ontario.	hase II drilling were shipped to	the SGS labora	tory in Lakefield,					
laboratory tests	whether the technique is considered partial or total. > For geophysical tools, spectrometers,	The preparation code w 250g to 85% <75 micro	ras CRU21 (crush to 75% of samp ns).	ole <2mm) and	PUL45 (pulverize					
	handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading	MS finish), which has a	s GE ICM40B (multi-acid digestic range for Li of 1 to 10,000 (1%)	ppm Li.						
	times, calibrations factors applied and their derivation, etc.	times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted The over-range method code for Li >5,000 ppm is GE ICP90A, which uses a perfusion with an ICP finish, and has lower and upper detection limits of 0.001 a respectively.								
	(e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and	Starting in August, samples were switched to being analysed using GE ICP90A Li only and then to GE ICP91A Li only.								
	precision have been established.	Bulk Densities are collected from each drill hole (one host rock and one mineralized rock) using analyses code GPHY04V.								
		Phase I samples were shipped to the Bureau Veritas minerals laboratory in Rend Nevada.								
		85% <75 microns).	vas PRP70-250 (crush to 70% of		-					
		finish), which has a ran	s MA270 (multi-acid digestion wige for Li of 0.5 to 10,000 ppm (1% ny elements in refractory minerar Cs.) Li. This digest	ion provides only					
	wi re: sa	with an ICP-ES finish, respectively. The labor	d code for Li>10,000 ppm is PF37 and has lower and upper dete atory was instructed to impleme 000 ppm Li to allow for poor data	ection limits of ent the over-ran	0.001 and 50%, ge method in all					
		Historical samples (holes 09-BD-01 through 10-BD-19) were submitted to ALS Vancouve for analysis. Accuracy monitoring was achieved through submission and monitoring of certifie reference materials (CRMs).								
			d the inclusion of CRMs was to samples. A CRM or coarse blan amples (i.e. 5%).	-						
							Australia. Details of the a range in Li values and dispatched samples so	s program were supplied by Geo e CRMs are provided below. A se d, including blanks, were submitte as to ensure each run of 100 sc CRMs were submitted as "blind" or	equence of these ed to the laborat amples contains	e CRMs covering cory along with all the full range of
			n the drill program (all values ppr		ior identificable by					
		CRM	Manufacturer	Lithium	1 Std Dev					
		GTA-01	Geostats	3132	129					
		GTA-02 GTA-03	Geostats Geostats	1715 7782	64 175					
		GTA-03	Geostats	9275	213					
		GTA-06	Geostats	7843	126					

Criteria	JORC Code explanation	Commentary
		Sampling precision was monitored by selecting a sample interval likely to be mineralized and splitting the sample into two ¼ core duplicate samples over the same sample interval. These samples were consecutively numbered after the primary sample and recorded in the sample database as "field duplicates" and the primary sample number recorded. Field duplicates were collected at the rate of 1 in 20 samples when sampling mineralized drill core intervals. Random sampling precision was monitored by splitting samples at the sample crushing stage (coarse crush duplicate) and at the final sub-sampling stage for analysis (pulp duplicates). The coarse, jaw-crushed, reject material was split into two preparation duplicates, sometimes referred to as second cuts, crusher or preparation duplicates, which were then pulverized and analysed separately. These duplicate samples were selected randomly by the laboratory. Analytical precision was also monitored using pulp duplicates, sometimes referred to as replicates or repeats. Data from all three types of duplicate analyses was used to constrain sampling variance at different stages of the sampling and preparation process.
		Examination of the QA/QC sample data indicates satisfactory performance of field sampling protocols and assay laboratories providing acceptable levels of precision and accuracy.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Multiple representatives of Piedmont Lithium, Inc. have inspected and verified the results. CSA has conducted two site visits. Dennis Arne (Managing Director -Principal Consultant) toured the site, facilities and reviewed core logging and sampling workflow as well as Leon McGarry (Senior Resource Geologist). Each provided comments on how to improve our methods and have been addressed. Verification core samples were collected by Leon McGarry with assays pending. No holes were twinned. Ten-foot rods and core barrels were used, the core was converted from feet to meters.
		Li% was converted to Li2O by multiplying Li% by 2.153.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Drill collars were located with the Trimble Geo 7 which resulted in accuracies <1m. All coordinates were collected in State Plane and re-projected to Nad83 zone17 in which they are reported. Drill hole surveying was performed on each hole using a REFLEX EZ-Trac multi-shot instrument. Readings were taken approx. every 15 meters (50 feet) and recorded depth, azimuth, and inclination.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	For selected areas, the drill spacing is approximately 40 to 80 m along strike and down dip. This spacing is sufficient to establish continuity in geology and grade for this pegmatite system. Composite samples are reported in Li2O%, this is calculated by multiplying drill length by Li ₂ O for each sample; then the weighted averages for multiple samples are totalled and divided by the total drill length for the selected samples
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The pegmatite dikes targeted trend northeast and dip to the southeast, drillholes were designed, oriented to the northwest with inclinations ranging from -45 to -80 degrees, to best intersect the tabular pegmatite bodies as close to perpendicularly as possible.
Sample security	> The measures taken to ensure sample security.	Drill core samples were shipped directly from the field by the project geologist in sealed rice bags or similar containers using a reputable transport company with shipment tracking capability so that a chain of custody can be maintained. Each bag was sealed with a security strap with a unique security number. The containers were locked in a shed if they were stored overnight at any point during transit, including at the drill site prior to shipping. The laboratory confirmed the integrity of the rice bag seals upon receipt
Audits or reviews	> The results of any audits or reviews of sampling techniques and data.	CSA Global developed a "Standard Operating Procedures" manual in preparation for the drilling program. CSA global reviews all logging and assay data, as well as merges all data in to database that is held off site. CSA has conducted two site visits. Dennis Arne (Managing Director -Principal Consultant) toured the site and facilities as well as Leon McGarry (Senior Resource Geologist). Each provided comments on how to improve our methods and have been addressed. Verification core samples were collected by Leon McGarry with assays pending.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Piedmont, through its 100% owned subsidiary, Piedmont Lithium, Inc., has entered into exclusive option agreements with local landowners, which upon exercise, allows the Company to purchase (or long term lease) approximately 715 acres of surface property and the associated mineral rights from the local landowners. There are no known historical sites, wilderness or national parks located within the Project area and there are no known impediments to obtaining a licence to operate in this area.
Exploration done by other parties	> Acknowledgment and appraisal of exploration by other parties.	The Project is focused over an area that has been explored for lithium dating back to the 1950's where it was originally explored by Lithium Corporation of America which was subsequently acquired by FMC Corporation. Most recently, North Arrow explored the Project in 2009 and 2010. North Arrow conducted surface sampling, field mapping, a ground magnetic survey and two diamond drilling programs for a total of 19 holes. Piedmont Lithium, Inc. has obtained North Arrow's exploration data.
Geology	> Deposit type, geological setting and style of mineralisation.	Spodumene pegmatites, located near the litho tectonic boundary between the inner Piedmont and Kings Mountain belt. The mineralization is thought to be concurrent and cross-cutting dike swarms extending from the Cherryville granite, as the dikes progressed further from their sources, they became increasingly enriched in incompatible elements such as Li, tin (Sn). The dikes are considered to be unzoned.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should 	Details of all reported drill holes are provided in Appendix 1 of this report.
Data aggregation methods	 clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	All intercepts reported are for down hole thickness not true thickness. Weighted averaging was used in preparing the intercepts reported. The intercepts reported were calculated by adding the weighted value (drill length x assay) for each sample across the entire pegmatite divided by the total drill thickness of the pegmatite. For each mineralized pegmatite, all assays were used in the intercepts reported calculations with no upper or lower cut-offs. Mineralized pegmatite is defined as spodumene bearing pegmatite. Intercepts were reported for entire pegmatites taking into account lithological boundaries (i.e. sample to, and not across, major contacts), with additional high-grade sub intervals reported from the same pegmatite. In the case where thin wall rock intervals were included, a value of 0% Li ₂ O was inserted for the assay value, thus giving that individual sample a weighted value of 0% Li ₂ O. Cumulative thicknesses are reported for select drill holes. These cumulative thicknesses do not represent continuous mineralized intercepts. The cumulative thickness for a drill hole is calculated by adding the drill widths of two or more mineralized pegmatites encountered in the drill hole and all other intervals are omitted from the calculation. Li% was converted to Li ₂ O% by multiplying Li% by 2.153.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	Drill intercepts are reported as Li2O% over the drill length, not true thickness. The pegmatites targeted strike northeast-southwest and dip moderately to the southeast. All holes were drilled to the northwest and with inclinations ranging between -45 and -80

Criteria	JORC Code explanation	Commentary
Diagrams	> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate diagrams, including a drill plan map and cross-section, are included in the main body of this report.
Balanced reporting	> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All of the relevant exploration data for the Exploration Results and available at this time has been provided in this report.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater,	Eleven thin section samples were collected and submitted to Vancouver Petrographic for preparation, mineral identification and description. The Petrographic report identifies the primary mineralogy as quartz, plagioclase (albite), clinopyroxene (spodumene), K-spar and white mica. Variable amounts of alteration were identified in the pegmatite samples. One sample of the host rock was submitted and identified as a metadiorite.
	geotechnical and rock characteristics; potential deleterious or contaminating substances.	Thirteen samples from the Phase 1 drilling have been analysed by Semi Quantitative XRD (ME-LR-MIN-MET-MN-DO3) by SGS Mineral Services. Within all thirteen samples, spodumene was identified. Spodumene ranged between 5 and 38.6 wt%. The primary mineralogy of the pegmatite was identified as quartz, albite, spodumene, microcline and muscovite.
		Bulk Densities are collected from each of the Phase II drill holes (one host rock and one mineralized rock) using analyses code GPHY04V.
		Composite samples of ore intercepts from the Phase 1 drilling have been submitted to North Carolina State Minerals Research Lab for bench scale spodumene concentrate testing. Results pending.
Further work	> The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	The Phase 2 drilling program of 93 holes totalling 12,262m has been completed. After evaluation of all of the Phase 2 data Piedmont may decide to conduct additional drilling to define the Company's maiden Mineral Resource estimate in early-2018.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	