

06 December 2017

Significant Exploration Results Continue at Bald Hill

Tawana Resources NL (ASX:TAW) **("Tawana"** or the **"Company"**) and **Alliance Mineral Assets Limited** (SGX: AMA) **(AMAL)** are pleased to announce that extensional step-out drilling and mapping at the Bald Hill Project, in the Eastern Goldfields region of Western Australia has significantly increased the footprint of the known lithium and tantalum pegmatite swarm. The Bald Hill Project is a joint project between Tawana and AMAL.

Highlights - Drilling

- Eastern high-grade extension. Significant results include:
 - **31m at 1.46% Li₂O** from 143m, including **18m at 1.88% Li₂O** in LRC0702;
 - **35m at 1.74% Li₂O** from 146m including **15m at 2.11% Li₂O** in LRC0703.

This mineralised zone remains open to the east and south.

- Boreline South Eastern Extension. Significant results include:
 - **7m at 1.38%** Li₂O from 113m in LRC0665;
 - **6m at 1.45%** Li₂O from 150m LRC0675;
 - 9m at 0.93% Li₂O from 41m and 10m at 1.11% Li₂O from 117m in LRC0677.

This mineralised zone remains open to the south.

- Initial lithium drilling at Fenceline prospect. Significant results include:
 - 7m at 1.35% Li₂O from 29m in LRC0672;
 - **7m at 0.54%** Li₂O from 65m and **5m at 0.80%Li₂O** from 82m in LRC0674.
- Deeper pegmatite below starter pit. Significant results include:
 - **7.78m at 2.46%** Li₂O from 234m including **2.78m at 4.27%** Li₂O in LDD0001;
 - 6m at 2.03% Li₂O from 135m in LDD0003.

Highlights - Mapping, Water Exploration Drilling

- Several outcropping lithium and tantalum pegmatites discovered SW of the Fenceline prospect.
- A single water exploration drill hole drilled on R15/001, 700m west of the starter pit, intercepted 3 spodumene pegmatites.

Tawana Resources Managing Director Mark Calderwood stated: "With a number of significant resource targets, the Joint Venture is considering increasing the pace of drilling in the new year. One rig will continue with infill drilling whilst one to two rigs will work on step out drilling and testing newly discovered lithium pegmatites.

We remain on track to joining the lithium producer ranks in 1Q18."

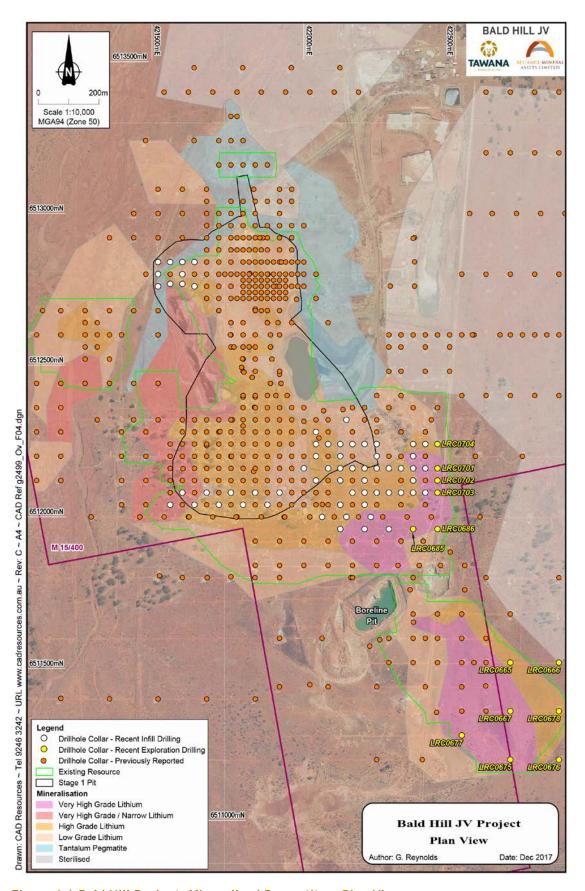


Figure 1 | Bald Hill Project, Mineralised Pegmatites, Plan View

Recent Drilling

A further 87 Reverse Circulation drill holes totalling 12,222m and 7 core holes totalling 750m were completed between 2 August and 4 October 2017. Of these 94 holes drilled, only 20 were completed in time to be included in the October Resource Estimate (Refer ASX Release 11 October 2017). Recent intercepts are summarised in Tables 3, 4 and 5 in Appendix A.

Areas of focus for recent drilling were:

- Eastern high-grade extension, six holes completed. Significant results include:
 - 17m at 0.93% Li₂O from 119m in LRC0685;
 - 19m at 0.98% Li₂O from 156m, including 9m at 1.26% Li₂O in LRC0701;
 - 31m at 1.46% Li₂O from 143m, including 18m at 1.88% Li₂O in LRC0702;
 - 35m at 1.74% Li₂O from 146m including 15m at 2.11% Li₂O in LRC0703.

This mineralised zone remains open to the east and south.

- Boreline South Eastern Extension, eight holes completed. Significant results include:
 - 7m at 1.38% Li₂O from 113m in LRC0665;
 - 6m at 1.45% Li₂O from 150m LRC0675;
 - 9m at 0.93% Li₂O from 41m and 10m at 1.11% Li₂O from 117m in LRC0677.

This mineralised zone remains open to the south.

- Initial lithium drilling at Fenceline prospect, four holes completed. Significant results include:
 - 7m at 1.35% Li₂O from 29m in LRC0672;
 - 7m at 0.54% Li₂O from 65m and 5m at 0.80%Li₂O from 82m in LRC0674.
- Deeper pegmatite below starter pit, two prior holes partly assayed. Significant new results include:
 - 7.78m at 2.46% Li₂O from 234m including 2.78m at 4.27% Li₂O in LDD0001;
 - 6m at 2.03% Li₂O from 135m in LDD0003.
- Notable intercepts from Resource Infill drilling not included in the October Resource Estimate include:
 - 23m at 1.31% Li₂O from 115m in LRC0494;
 - 11m at 2.01% Li₂O from 132m followed by 10m at 1.00% Li₂O from 146m in LRC0495;
 - 28m at 1.48% Li₂O from 110m including 12m at 2.04% Li₂O from 124m in LRC0499;
 - 22m at 1.03% Li₂O from 83m in LRC0500;
 - 29m at 0.90% Li₂O from 105m followed by 11m at 1.35% Li₂O from 133m in LRC0636;
 - 14m at 1.59% Li₂O from 133m including 7m at 2.03% Li₂O from 138m in LRC0637;
 - 31m at 1.50% Li₂O from 134m in LRC0638;
 - 11m at 1.72% Li₂O from 40m and 12m at 1.17% Li₂O from 80m in LRC0640;
 - 14m at 1.56% Li₂O and 296ppm Ta₂O₅ from 63m including 6m at 2.93% Li₂O in LRC0695.

Exploration has recently focused on initial grade control, water bore installation and water exploration drilling. A recently completed water exploration hole (LRC0706) drilled 700m west of the current proposed starter pit (refer Figure 2) intercepted four pegmatites at shallow depths, three of which contained visible spodumene; 23-25m - moderate spodumene; 27-31m - high spodumene; and 43-49m - moderate spodumene.

Mapping and Sampling

Outcrop mapping and sampling has been undertaken on R15/01. Several outcropping spodumene and tantalum pegmatites have been located highlighting the potential, at depth, for the more important sub-horizontal pegmatites. A total of 75 rock chip and channel samples were collected over a wide area of which 54 contained visual spodumene or anomalous lithium, tantalum or tin. Refer Table 1.

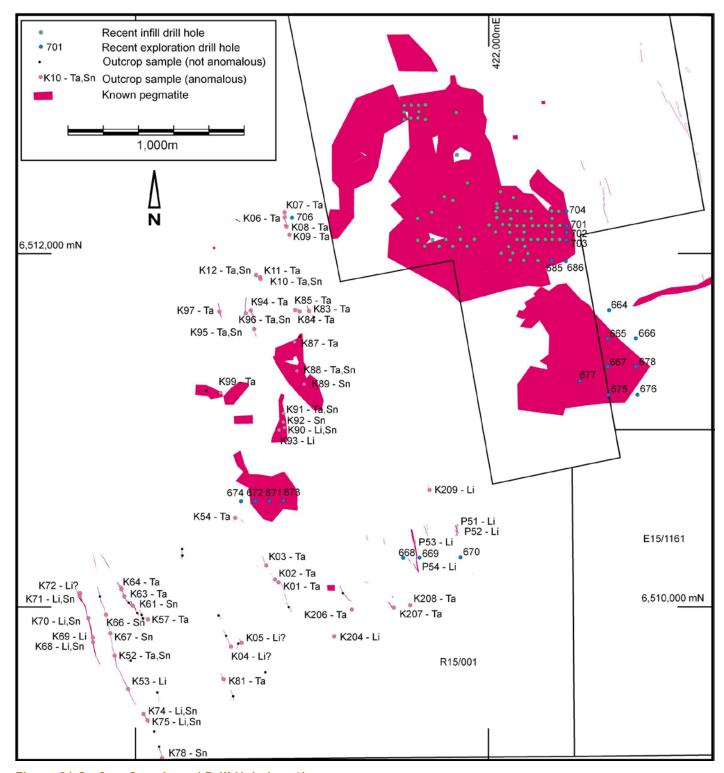


Figure 2 | Surface Sample and Drill Hole Locations

Table 1 | Surface Rock Chip and Channel Sampling Results

Sample ID	Easting	Northing	Sample Material	Sample Method	Anomalous	Cs ₂ O	Li₂O	Rb₂O	Ta₂O₅	Nb ₂ O ₅	SnO ₂
BHRK0001	420810	6510139	ОС	CHIP	Та	178	43	3,273	192	64	17
BHRK0002	420790	6510154	ОС	CHIP	Та	113	<20	2,342	305	79	41
BHRK0003	420741	6510233	ОС	CHIP	Та	110	22	2,222	277	64	11
BHRK0004	420541	6509773	ОС	CHIP		225	22	5,175	110	29	27
BHRK0005	420600	6509795	ОС	CHIP		104	<20	3,340	46	64	18
BHRK0006	420845	6512205	SC	CHIP	Та	86	86	1,712	359	107	155
BHRK0007	420844	6512233	SC	CHIP	Та	65	129	1,225	199	143	46
BHRK0008	420856	6512152	SC	CHIP	Та	38	86	734	253	100	58
внкк0009	420872	6512107	SC	CHIP	Та	70	108	1,096	315	122	84
BHRK0010	420709	6511857	SC	CHIP	Ta, Sn	46	<20	331	324	93	401
BHRK0011	420706	6511866	SC	CHIP	Та	66	43	696	304	72	99
BHRK0012	420683	6511878	SC	CHIP	Ta, Sn	523	172	3,783	1,243	129	419
BHRK0052	419882	6509722	ОС	CHNL	Ta, Sn	53	65	870	212	114	359
BHRK0053	419958	6509535	ОС	CHIP	Li	126	4,952	2,232	44	64	123
BHRK0054	420565	6510503	SC	CHIP	Та	187	<20	3,378	326	200	79
BHRK0057	420071	6509928	SC	CHIP	Та	55	43	645	199	79	36
BHRK0061	419985	6510005	ОС	CHNL	Sn	28	43	571	96	93	424
BHRK0063	419936	6510059	ОС	CHNL	Та	124	43	2,126	372	143	94
BHRK0064	419921	6510097	ОС	CHNL	Та	152	<20	2,482	233	93	99
BHRK0066	419833	6509954	ОС	CHNL	Sn	103	22	1,757	127	114	404
BHRK0067	419857	6509849	ОС	CHNL	Sn	85	108	1,332	114	93	453
BHRK0068	419759	6509798	SC	CHIP	Li, Sn	36	20,303	560	81	136	269
BHRK0069	419758	6509825	SC	CHIP	Li	91	14,511	1,454	70	114	207
BHRK0070	419733	6509935	SC	CHIP	Li, Sn	66	15,609	1,954	49	107	413
BHRK0071	419683	6510060	ОС	CHNL	Li, Sn	32	4,995	735	49	79	321
BHRK0072	419686	6510076	ОС	CHNL		77	129	2,475	61	79	226
BHRK0074	420046	6509393	ОС	CHIP	Li, Sn	46	7,815	729	54	86	250

Sample ID	Easting	Northing	Sample Material	Sample Method	Anomalous	Cs ₂ O	Li ₂ O	Rb₂O	Ta₂O₅	Nb ₂ O ₅	SnO ₂
BHRK0075	420069	6509357	ОС	CHNL	Li, Sn	83	14,683	1,163	53	100	363
BHRK0078	420151	6509143	ОС	CHNL	Sn	30	65	945	48	50	278
BHRK0081	420499	6509589	ОС	CHIP	Та	12	<20	138	239	107	14
BHRK0083	420983	6511676	SC	CHIP	Та	41	86	387	222	86	56
BHRK0084	420930	6511673	SC	CHIP	Та	45	86	340	333	79	169
BHRK0085	420904	6511681	ОС	CHIP	Та	100	65	892	680	79	154
BHRK0087	420901	6511500	FT	GRAB	Ta, Cs	907	560	9,164	230	29	122
BHRK0088	420914	6511336	ОС	CHIP	Ta, Sn	101	172	1,067	1,082	129	859
BHRK0089	420955	6511260	SC	CHIP	Sn	248	108	3,356	168	72	260
BHRK0090	420843	6511014	ОС	CHIP	Li, Sn	230	9,322	1,900	116	122	724
BHRK0091	420837	6511095	SC	CHIP	Ta, Sn	32	86	579	187	129	537
BHRK0092	420837	6511045	SC	CHIP	Sn	263	108	4,344	122	100	456
BHRK0093	420814	6511000	SC	CHIP	Li	273	9,968	3,091	67	72	147
BHRK0094	420653	6511678	SC	CHIP	Та	85	108	705	591	100	211
BHRK0095	420672	6511573	SC	CHIP	Ta, Sn	111	517	1,178	670	143	649
BHRK0096	420624	6511662	SC	CHIP	Ta, Sn	235	151	2,155	630	114	330
BHRK0097	420476	6511672	SC	CHIP	Та	43	43	510	377	122	152
BHRK0099	420482	6511211	ОС	CHIP	Та	154	86	2,886	217	179	191
BHRK0204	421125	6509832	FT	GRAB	Li	236	11,583	1,989	4	7	51
BHRK0206	421225	6509984	ОС	CHIP	Та	135	43	2,440	258	114	70
BHRK0207	421462	6509995	ОС	CHIP	Та	24	65	307	592	150	15
BHRK0208	421556	6510008	ОС	CHIP	Та	53	86	982	437	272	189
BHRK0209	421665	6510662	SC	CHIP	Li	46	8,547	1,450	138	143	72
P51	421821	6510441	ОС	CHIP	Li	30	16,737	689	46	142	65
P52	421824	6510409	ОС	CHIP	Li	58	20,968	769	61	102	64
P53	421592	6510302	ОС	CHIP	Li	43	24,040	1,143	62	114	194
P54	421601	6510204	ОС	CHIP	Li, Sn	85	17,635	2,410	88	136	295

Notes: OC = outcrop, SC = sub-outcrop, FT = float,

 $\it CHIP = chip\ sample,\ CHNL = channel\ sample,\ GRAB = grab\ sample.$

Samples BHRK0004, 0005 and 0072 contained visible weathered spodumene however were not analytically anomalous.

Competent Persons Statement

The information in this news release that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Mark Calderwood and Mr Gareth Reynolds, both employees of Tawana Resources NL ("Tawana"). Mr Calderwood is a member of The Australasian Institute of Mining and Metallurgy and Mr Reynolds is a member of the Australian Institute of Geoscientists. Mr Calderwood and Mr Reynolds have sufficient experience relevant to the style of mineralisation under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Calderwood and Mr Reynolds consent to the inclusion in this report of the matters based on their information in the form and context in which it appears. Mr Calderwood and Mr Reynolds meet the requirements to act as a Qualified Person (as defined in the SGX Catalist rules).

Mr Calderwood is a significant shareholder in Tawana. Mr Calderwood and Tawana do not consider these to constitute a potential conflict of interest to his role as Competent Person. Mr Calderwood is not aware of any other relationship with Tawana which could constitute a potential for a conflict of interest.

Mr Reynolds is an employee of Tawana. Mr Reynolds is not aware of any other relationship with Tawana which could constitute a potential for a conflict of interest.

Forward Looking Statement

This report may contain certain forward looking statements and projections regarding estimated, resources and reserves; planned production and operating costs profiles; planned capital requirements; and planned strategies and corporate objectives. Such forward looking statements/projections are estimates for discussion purposes only and should not be relied upon as representation or warranty, express or implied, of Tawana Resources NL and/or Alliance Mineral Assets Limited. They are not guarantees of future performance and involve known and unknown risks, uncertainties and other factors many of which are beyond the control of Tawana Resources NL and/or Alliance Mineral Assets Limited. The forward looking statements/projections are inherently uncertain and may therefore differ materially from results ultimately achieved.

Tawana Resources NL and/or Alliance Mineral Assets Limited does not make any representations and provides no warranties concerning the accuracy of the projections, and disclaims any obligation to update or revise any forward looking statements/projects based on new information, future events or otherwise except to the extent required by applicable laws. While the information contained in this report has been prepared in good faith, neither Tawana Resources NL and/or Alliance Mineral Assets Limited or any of their directors, officers, agents, employees or advisors give any representation or warranty, express or implied, as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. Accordingly, to the maximum extent permitted by law, none of Tawana Resources NL and/or Alliance Mineral Assets Limited, their directors, employees or agents, advisers, nor any other person accepts any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy or completeness of the information or for any of the opinions contained in this announcement or for any errors, omissions or misstatements or for any loss, howsoever arising, from the use of this announcement.

Appendix A

Table 2 | Drill Summary, Infill and Exploration Holes with Pegmatite Intercepts

Hole ID	Easting	Northing	RL	Depth	Azm	Dec.	Туре	From	То	Width	Pegmatite
	m	m	m	m				m	m	m	Туре
LRC0487	422137	6512003	277	110	90	-60	RC	48	57	9	Li, Ta
								87	102	15	Li, Ta
LRC0488	422222	6512001	277	164	90	-60	RC	6	7	1	Ta
								54	57	3	Li, Ta
1000100	122151	6542070	270	400	_	00		115	133	18	Li, Ta
LRC0489	422161	6512079	278	102	0	-90	RC	29 72	34	5	Ta
LDC0400	422194	CE 12070	270	102	0	00	D.C.		84	12	Li, Ta
LRC0490	422194	6512079	278	102	U	-90	RC	40 71	43 79	3	Li, Ta
LDC0401	422240	6512070	270	120	0	-90	RC	40		8	Li, Ta
LRC0491	422240	6512079	278	138	"	-90	KC	63	42 75	2 12	Ta Li
								78	85	7	Li, Ta
LRC0492	422279	6512080	279	150	0	-90	RC	38	40	2	Ta
LNC0432	422273	0312080	2/3	130		-90	KC	67	71	4	Ta
								82	87	5	Li
								98	106	8	Li, Ta
								113	125	12	barren
								126	127	1	Ta
LRC0493	422321	6512079	279	144	0	-90	RC	44	47	3	Та
								104	116	12	Li, Ta
LRC0494	422360	6512079	279	162	0	-90	RC	49	51	2	Ta
2.100 .5 .	.22500	0322073	275	102				95	97	2	Та
								103	105	2	Та
								106	112	6	Li, Ta
								113	123	10	Li, Ta
								125	145	20	Li, Ta
LRC0495	422402	6512079	279	174	0	-90	RC	70	71	1	Та
								131	156	25	Li, Ta
LRC0496	422039	6512122	279	116	90	-60	RC	41	51	10	Li, Ta
								80	95	15	Li, Ta
LRC0497	422120	6512120	279	134	90	-60	RC	17	26	9	Li, Ta
								44	45	1	Ta
								86	97	11	Li, Ta
LRC0498	422201	6512121	279	164	90	-60	RC	23	25	2	Та
								83	89	6	Li, Ta
								119	120	1	Li
								122	134	12	Li, Ta
								142	153	11	Li, Ta
LRC0499	422362	6512121	280	152	270	-80	RC	36	40	4	Та
								101	102	1	Та
								109	138	29	Li
LRC0500	422002	6512161	280	116	90	-60	RC	82	106	24	Li, Ta
LRC0597	422080	6512165	280	86	0	-90	RC	32	40	8	Li, Ta
								62	67	5	Li, Ta
LRC0598	422117	6512162	280	80	0	-90	RC	19	25	6	Li, Ta
								48	67	19	Li, Ta
LRC0599	422161	6512158	280	92	0	-90	RC	43	49	6	Li, Ta
								71	80	9	Li
LRC0600	422200	6512158	280	104	0	-90	RC	17	19	2	Та
								36	39	3	Ta
								68	77	9	Li
					<u> </u>			85	87	2	Li
LRC0622	421920	6512081	278	180	90	-60	RC	93	96	3	Ta
								124	126	2	Та
								127	128	1	Li
								149	161	12	Та
		1		l	1			472	475		1
								173	175	2	Li, Ta

	Easting	Northing	RL	Depth				From	То	Width	Pegmatite
Hole ID	m	m	m	m	Azm	Dec.	Туре	m	m	m	Туре
								169	172	3	Ta
LRC0624	421759	6512079	279	169	90	-60	RC	7	10	3	Ta
								119	131	12	Li, Ta
								136	153	17	Li, Ta
1800035	424.602	6542077	200	402	00	60	D.C.	156	161	5	Li, Ta
LRC0625	421682	6512077	280	193	90	-60	RC	26 67	30 69	4 2	Ta Ta
								111	115	4	Li, Ta
								133	150	17	Li, Ta
								170	178	8	Li, Ta
LRC0626	421599	6512075	282	204	90	-60	RC	57	60	3	Ta
								112	129	17	Li, Ta
								141	163	22	Li, Ta
								188	194	6	Li, Ta
LRC0627	421878	6512040	278	199	90	-60	RC	110	117	7	Та
								146	150	4	Ta
								153	161	8	Li, Ta
								182 197	189 198	7 1	Ta Ta
LRC0628	421797	6512040	278	163	90	-60	RC	117	120	3	Та
LINCOUZO	121737	0312010	270	103	30	00	i.e	131	151	20	Li, Ta
LRC0629	421720	6512040	279	187	90	-60	RC	134	141	7	Li, Ta
								160	180	20	Li, Ta
								181	182	1	Li
LRC0630	421638	6512041	282	175	90	-60	RC	44	45	1	Та
								76	77	1	Та
								78	79	1	Та
								115	125	10	Li, Ta
								133 150	144 164	11 14	Li, Ta Li, Ta
LRC0632	422140	6512317	286	49	0	-90	RC	0	4	4	Ta
LINCOUSE	422140	0312317	200	43		30	I.C	34	43	9	Li, Ta
LRC0633	422047	6512282	283	126	90	-60	RC	27	28	1	Ta
								46	56	10	Li, Ta
								79	95	16	Li, Ta
LRC0634	422249	6512158	280	158	0	-90	RC	23	26	3	Та
								68	72	4	Li
1800035	422202	6542450	200	4.40	0	00	B.C.	86	120	34	Li, Ta
LRC0635	422283	6512158	280	140	0	-90	RC	25 49	32 55	7 6	Ta Ta
								57	60	3	Li
								70	74	4	Li
								104	121	17	Li
LRC0636	422324	6512159	280	164	0	-90	RC	34	37	3	Та
LICOUSU	422324	0312133	200	104		-30	NC.	104	147	43	Li
								151	147 154	3	Li, Ta
LRC0637	422357	6512158	281	176	0	-90	RC	23	27	4	Ta
	,]]			132	148	16	Li
LRC0638	422404	6512160	280	182	0	-90	RC	134	165	31	Li
LRC0639	422047	6512204	281	110	90	-60	RC	36	37	1	Ta
								40	47	7	Li, Ta
								48	49	1	Ta –
								63	74 104	11	Ta
LRC0640	422126	6512197	281	110	90	-60	RC	102 39	104 54	2 15	Ta Li Ta
LNCU04U	422120	0312197	201	110	90	-80	NC.	55	54 56	15	Li, Ta Ta
								70	72	2	Li
								74	76	2	Li, Ta
								80	92	12	Li
LRC0641	422242	6512199	281	140	90	-80	RC	65	110	45	Li, Ta
								111	112	1	Li
				l				113	122	9	Li

Hole ID	Easting	Northing	RL	Depth	Azm	Dec.	Туре	From	То	Width	Pegmatite
TIOIC ID	m	m	m	m	AZIII	Dec.	туре	m	m	m	Туре
LRC0642	422360	6512198	282	170	0	-90	RC	15	19	4	Та
								134	158	24	Li
LRC0643	422041	6512238	282	122	0	-90	RC	74	93	19	Li, Ta
LRC0644	422087	6512239	281	104	0	-90	RC	55	59	4	Ta
LRC0645	422123	6512245	283	86	0	-90	RC	23	32 69	9 15	Ta
LRC0646	422163	6512241	282	98	0	-90	DC	54 31	39	15	Li, Ta
LKCU040	422103	6512241	282	98	"	-90	RC	62	76	8 14	Li, Ta Li, Ta
LRC0647	422207	6512240	282	116	0	-90	RC	16	18	2	Ta
2.1.00017	.22207	00122.0	202	110				43	53	10	Ta
								72	77	5	barren
								88	95	7	Ta
LRC0648	422240	6512239	283	134	0	-90	RC	10	15	5	Та
								45	61	16	Li, Ta
								101	113	12	Ta
LRC0649	422397	6512239	282	194	0	-90	RC	160	182	22	Li, Ta
LRC0650	422357	6512241	283	170	0	-90	RC	18 129	22 158	4 29	Ta Li, Ta
LRC0665	422674	6511520	272	180	0	-90	RC	104	106	29	Ta
LICOUUS	422074	0311320	2/2	180		-30	NC	112	121	9	Li, Ta
LRC0667	422675	6511361	271	180	0	-90	RC	94	96	2	Ta
								97	112	15	Li, Ta
								121	122	1	Li
								132	151	19	Та
								157	160	3	Li, Ta
LRC0670	421840	6510280	269	162	90	-60	RC	27	30	3	Та
LRC0671	420758	6510601	274	162	0	-90	RC	0	12	12	Ta –
1000070	120570	6540500	275	2.4	_	0.0		27	31	4	Ta
LRC0672	420678	6510598	275	84	0	-90	RC	27 51	38 55	11 4	Li, Ta Li
LRC0674	420598	6510598	275	114	0	-90	RC	65	73	8	Li
LICOU74	420330	0310338	2/3	114		-30	I.C	82	89	7	Li
LRC0675	422679	6511199	271	252	0	-90	RC	147	167	20	Li, Ta
								178	181	3	Li
								187	193	6	Та
								216	220	4	Та
								234	244	10	Li, Ta
LRC0677	422517	6511279	272	144	0	-90	RC	41 71	53 73	12	Li
								113	131	2 18	Ta Li Ta
LRC0678	422835	6511360	271	244	0	-90	RC	204	212	18 8	Li, Ta Li, Ta
LICOUTO	422033	0311300	2/1	277		30	II.C	217	222	5	Li, Ta
LRC0679	422114	6512039	277	110	90	-60	RC	26	39	13	Li, Ta
								87	100	13	Li, Ta
LRC0680	422205	6512040	277	140	90	-60	RC	49	50	1	Ta
								81	95	14	Li, Ta
								97	100	3	Ta
I D CC CC :	4000=:	05:00	6==	125				110	121	11	Li, Ta
LRC0681	422071	6512002	277	128	90	-60	RC	54	65	11	Li, Ta
LDCCCCC	422422	CE440C3	276	133		00	D.C	84	113	29	Li, Ta
LRC0682	422123	6511963	276	122	0	-90	RC	47 73	51 91	4 18	Ta Li, Ta
LRC0683	422199	6511962	276	122	0	-90	RC	43	46	3	Ta
LICOUUS	722133	0311302	270	122			ii.c	83	102	19	Li
LRC0684	422280	6511961	277	140	0	-90	RC	54	58	4	Ta
			,]			68	69	1	Li
								71	73	2	Li
								101	116	15	Li, Ta
LRC0685	422358	6511960	277	164	0	-90	RC	63	66	3	Та
LICOUSS				ī.	1			119	138	19	Li, Ta
LRC0686	422438	6511957	278	218	0	-90	RC	66	69	3	Ta

Hole ID	Easting m	Northing m	RL m	Depth m	Azm	Dec.	Туре	From m	To m	Width m	Pegmatite Type
LRC0691	421642	6512843	288	86	90	-60	RC	61	75	14	Li, Ta
LRC0692	421603	6512841	287	86	90	-60	RC	61	72	11	Li, Ta
LRC0693	421562	6512841	287	98	90	-60	RC	77	85	8	Li, Ta
LRC0694	421523	6512839	286	98	90	-60	RC	7	9	2	Ta
								82	87	5	Та
LRC0695	421605	6512804	287	92	90	-60	RC	2	5	3	Та
								62	77	15	Li, Ta
LRC0696	421520	6512802	286	113	90	-60	RC	15	16	1	Та
								25	26	1	Та
								82	83	1	Та
								88	100	12	Li, Ta
LRC0697	421642	6512760	288	92	90	-60	RC	56	59	3	Та
								69	80	11	Li, Ta
LRC0698	421600	6512768	287	93	90	-60	RC	74	85	11	Li, Ta
								89	94	5	Li, Ta
LRC0699	421559	6512768	286	122	90	-60	RC	16	19	3	Та
								83	93	10	Li, Ta
								100	107	7	Li, Ta
LRC0700	421522	6512760	286	122	90	-60	RC	27	29	2	Ta
								86	102	16	Li, Ta
LRC0701	422442	6512157	279	198	0	-90	RC	155	175	20	Li –
LRC0702	422443	6512120	279	183	0	-90	RC	81	83	2	Ta
								143	177	34	Li –
LRC0703	422440	6512077	279	199	0	-90	RC	74	75 102	1	Ta
100704	400444	6540000	200	224	_		50	146	183	37	Li, Ta
LRC0704	422441	6512239	280	234	0	-90	RC	69	70	1	Та
								155 159	156 160	1 1	Li Li
								174	178	4	Li, Ta
								190	207	17	Li, Ta
LDD0001	421749	6512322	284	245.9	270	-60	DD Met	232.75	241.78	9.03	Li
LDD0003	421880	6512400	286	150.4	90	-60	DD Met	113	114.91	1.91	Ta
								132.84	142.37	9.53	Li, Ta
LDD0007	421820	6512559	297	84	85	-60	DD	60.16	72.23	12.07	Li, Ta
LDD0008	421817	6512800	291	42.4	87	-60	DD	24.95	32.64	7.69	Li, Ta
LDD0009	421797	6512301	283	111.4	295	-60	DD GeoTech	84	90.53	6.53	Ta
								91	94.83	3.83	Та
LDD0010	422066	6512351	285	109.9	60	-60	DD GeoTech	62.22	64.3	2.08	Та
								76.14	82.87	6.73	Li, Ta
								87.88	90.22	2.34	Li
LDD0011	422049	6512260	282	110	135	-60	DD GeoTech	74.68	76.35	1.67	barren
LDD0012	421835	6512148	279	152	160	-60	DD GeoTech	125.85	128.23	2.38	Li, Ta
				<u> </u>	<u> </u>			128.56	140.5	11.94	Li, Ta
LDD0013	421678	6512234	283	140	295	-60	DD Geotech	57.19	59.01	1.82	barren
								71.81	73.46	1.65	barren
								126.45	128.3	1.85	Li, Ta
								129.15	132.62	3.47	Li, Ta
LRCD0041	421598	6512199	282	297.15	90	-60	RC/DD	259.13	265.35	6.22	Li, Ta
								281.08	283.5	2.42	Та
								291.65	294.5	2.85	Li, Ta

Notes

- 1) The true width of pegmatites are generally considered 80-95% of the intercept width. 2) Only pegmatite intercepts of 1m or more in width are included.

Table 3 | Significant Exploration Drill Intercepts

Hole ID	From m	To m	Interval m	Li ₂O %	Ta ₂ O ₅	Nb ₂ O ₅	SnO ₂
LDD0001	234	241.78	7.78	2.46	49	64	220
incl			2.78	4.27	32	20	276
IIICI	239	241.78					
LDD0003	113	114.91	1.91	0.06	336	115	118
	135	141	6	2.03	137	63	183
LRC0665	104	105	1	0.15	159	36	1914
	113	120	7	1.38	97	102	61
	120	121	1	0.09	306	122	156
LRC0667	95	96	1	0.19	236	64	94
	98	112	14	0.56	80	91	74
incl	107	108	1	1.66	81	143	56
	121	122	1	0.42	4	-5	58
	143	144	1	0.03	187	279	47
	157	158	1	0.35	7	7	117
	158	159	1	0.12	182	64	116
LRC0670	27	28	1	0.12	193	186	62
LRC0671	2	3	1	0.02	327	301	248
	28	29	1	0.04	385	150	370
LRC0672	29	36	7	1.35	108	118	143
	52	54	2	0.47	49	79	102
LRC0674	65	72	7	0.54	56	86	83
	82	87	5	0.80	70	104	78
incl	86	87	1	1.59	107	193	99
LRC0675	147	167	20	0.77	70	85	99
incl	150	156	6	1.74	88	128	71
	179	180	1	0.36	125	93	51
	188	190	2	0.07	411	154	108
	217	218	1	0.02	247	79	22
	235	237	2	1.29	52	65	32
incl	236	237	1	2.27	76	93	37
	237	238	1	0.16	330	122	22
LRC0677	41	50	9	0.93	63	62	81
incl	43	46	3	1.89	46	79	63
	71	72	1	0.07	370	343	131
	114	115	1	0.09	155	79 67	93
	117 124	127 127	10 3	1.11 1.75	84 64	67 64	80 113
			1				
1000070	127	128	1	0.27	171	86	102
LRC0678	204 205	205 207	2	0.04 0.71	181 89	122 100	36 41
			1		9	7	
	211 217	212 219	2	0.32 0.78	81	61	116 96
	219	220	1	0.15	287	93	117
LDCOCOE	119	136	17	0.13	93	89	60
LRC0685							
LRC0686	67 147	68 156	1 9	0.05 0.99	231 81	86 110	93 63
			1		81 57	79	
	160 195	161 197	2	0.45 0.23	183	79 165	156 82
	199	200	1	0.23	85	72	103
LRC0692	61	62	1	0.39	554	114	257
LNCUUJZ	62	62 69	7	1.29	456	206	257

Hole ID	From	То	Interval	Li ₂ O	Ta ₂ O ₅	Nb_2O_5	SnO ₂
Hole ID	m	m	m	%	ppm	ppm	ppm
and	66	68	2	1.20	1255	547	379
	70	71	1	0.05	194	79	472
LRC0693	77	81	4	0.83	164	95	313
	82	85	3	0.09	405	150	822
LRC0694	7	8	1	0.09	198	43	146
	85	86	1	0.02	415	207	413
LRC0696	15	16	1	0.11	155	36	70
	25	26	1	0.08	203	43	311
	82	83	1	0.21	672	229	216
	89	97	8	1.36	74	50	189
incl	92	94	2	2.95	56	61	151
	99	100	1	0.07	233	64	122
LRC0700	27	28	1	0.11	171	79	269
	87	88	1	0.19	173	86	237
	88	90	2	0.35	42	32	290
	91	92	1	0.09	204	86	175
	96	98	2	1.42	221	118	409
	99	100	1	0.14	166	50	1057
LRC0701	156	175	19	0.98	83	91	48
incl	157	166	9	1.26	76	79	46
LRC0702	81	82	1	0.06	159	21	58
	143	174	31	1.46	56	65	54
incl	148	166	18	1.88	46	68	55
LRC0703	74	75	1	0.05	288	36	71
	146	181	35	1.74	35	84	63
incl	156	171	15	2.11	48	79	46
LRC0704	69	70	1	0.04	204	29	113
	155	156	1	0.44	2	7	44
	159	160	1	0.47	2	7	22
	175	176	1	0.09	223	100	98
	176	177	1	0.34	42	29	97
	191	197	6	0.83	78	97	56
	205	206	1	0.15	181	64	62

Note: Only intercepts of 0.3% Li₂O or 150ppm Ta_2O_5 considered significant.

Table 4 | Significant Infill Drill Intercepts for Drill Holes Included in Current Resource

11-1-15		From	То	Interval	Li ₂ O	Ta₂O₅	Nb ₂ O ₅	SnO ₂
Hole ID		m	m	m	%	ppm	ppm	ppm
LRC0487		49	57	8	0.21	231	60	101
		87	101	14	1.38	130	66	129
	incl	91	98	7	2.15	143	65	104
LRC0624		120	129	9	0.76	310	122	134
	incl	122	123	1	0.34	1134	322	212
		137	149	12	0.86	105	91	98
LRC0626		112	125	13	0.87	181	92	94
	incl	117	122	5	1.52	178	109	102
		151	162	11	0.78	292	148	105
	and	156	157	1	1.35	1149	601	151
LRC0628		132	149	17	0.82	163	90	95
	incl	135	144	9	1.05	175	91	113
LRC0629		137	141	4	0.63	342	122	200
		160	173	13	1.26	193	110	112
	incl	161	170	9	1.58	200	114	114
LRC0679		27	35	8	1.21	165	81	113
	incl	27	32	5	1.51	129	82	135
		35	38	3	0.03	726	160	133
	incl	37	38	1	0.05	1210	172	258
		87	98	11	1.34	201	101	124
	incl	93	96	3	2.26	329	150	133
LRC0681		55	64	9	0.76	542	143	122
	incl	56	59	3	2.02	827	219	160
	and	60	61	1	0.05	1234	229	72
		86	109	23	1.58	193	99	120
	incl	86	87	1	0.51	1021	429	249
	and	88	92	4	2.14	148	102	134
	and	95	105	10	1.99	187	83	130

Note: Only intercepts of greater than 5.0m% Li_2O or 2000 mppm Ta_2O_5 considered significant.

Table 5 | Significant Infill Drill Intercepts for Drill Holes Completed since the Last Resource

II-la ID		From	То	Interval	Li ₂ O	Ta₂O₅	Nb ₂ O ₅	SnO ₂
Hole ID		m	m	m	%	ppm	ppm	ppm
		m	m	m	%	ppm	ppm	ppm
LDD0007		61	69	8	1.48	360	168	186
	incl	61	65	4	2.26	209	86	219
		67	70	3	0.36	739	327	189
LRC0489		29	34	5	0.07	340	92	105
		72	83	11	0.90	142	102	70
	incl.	79	83	4	1.71	91	90	78
LRC0492		67	71	4	0.09	978	978	67
	incl	68	69	1	0.07	3083	3277	58
LRC0493		104	114	10	1.32	67	89	54
	incl	105	110	5	2.07	74	103	66
LRC0494		115	138	23	1.31	92	108	78
	incl	116	122	6	2.19	76	111	105
LRC0495		132	143	11	2.01	57	87	49
		146	156	10	1.00	111	85	49
LRC0497		17	26	9	0.64	244	90	117
		86	92	6	1.21	122	76	93

_		From	То	Interval	Li ₂ O	Ta₂O₅	Nb ₂ O ₅	SnO ₂
Hole ID		m	m	m	%	ppm	ppm	ppm
LRC0499		110	138	28	1.48	70	79	58
	incl	124	136	12	2.04	72	86	66
LRC0500		83	105	22	1.03	114	81	89
	incl	92	100	8	2.00	77	85	77
LRC0600		68	77	9	1.24	70	65	115
		68	71	3	2.61	48	57	85
LRC0634		108	110	2	0.10	893	312	153
	incl	108	109	1	0.09	1548	487	203
LRC0636		105	130	25	0.90	65	77	64
	incl	105	123	18	1.10	67	87	49
		133	144	11	1.35	75	84	62
	incl	138	143	5	2.13	66	83	82
LRC0637		133	147	14	1.59	70	79	59
	incl	138	145	7	2.03	72	86	62
LRC0638		134	165	31	1.50	78	74	56
	incl	136	139	3	2.64	55	81	63
	and	143	151	8	1.90	61	89	50
	and	156	160	4	2.42	105	91	70
LRC0640		40	51	11	1.72	213	72	93
	incl	40	47	7	2.16	263	74	109
		51	53	2	0.05	513	97	118
		80	92	12	1.17	57	60	86
	and	87	90	3	2.00	59	69	100
LRC0642		134	156	22	0.87	73	89	48
	incl	141	150	9	1.24	68	88	50
LRC0643		74	85	11	0.75	279	165	106
	incl	75	77	2	1.58	626	179	220
LRC0647		88	94	6	0.02	637	161	62
	incl	91	93	2	0.02	1255	258	95
LRC0649		160	179	19	1.20	80	83	54
LRC0650		129	145	16	1.00	50	60	109
	incl	137	145	8	1.34	60	88	53
LRC0682		47	50	3	0.05	1011	198	107
	incl	48	49	1	0.02	2241	415	124
		73	87	14	1.38	149	91	105
	incl	74	77	3	2.71	344	146	182
LRC0683		83	100	17	1.14	85	80	78
	incl	90	95	5	1.92	110	94	103
LRC0695		63	77	14	1.56	296	152	235
	incl	63	69	6	2.93	231	197	232
LRC0697		69	80	11	1.26	223	98	369
	incl	72	75	3	3.22	160	122	300

Note: Only intercepts of greater than 5.0m% Li_2O or 2000 mppm Ta_2O_5 considered significant.

Appendix B

Section 1 Sampling Techniques and Data

Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Diamond drilling, ½ core nominally 1m crushed to
	10mm. ½ of crushed sample assayed as below, ½ retained.
Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples jaw crushed and riffle split to 2-2.5kg for pulverizing to 80% passing 75 microns.
Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to	Prepared samples are fused with sodium peroxide and digested in dilute hydrochloric acid. The resultant solution is analysed by ICP, by Nagrom Laboratory. Certified standards. Field duplicates submitted at
produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	irregular intervals at the rate of approximately 1:20.
Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth	RC and Diamond drilling conducted in line with general industry standards.
of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	All diamond drill holes and approx. 70% of RC drill holes are angled. Approx. 30% of RC drill holes are vertical.
	Diamond tails have been drilled to a max depth of 330m.
	Diamond core has been oriented where possible using the Reflex Ezi-Ori tool.
Method of recording and assessing core and chip sample recoveries and results assessed.	Chip recovery or weights for RC drilling were not conducted.
Measures taken to maximise sample recovery and ensure representative nature of the samples.	Each metre of drill sample recovery and moisture content is visually estimated and recorded.
Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Opportunity for sample bias is considered negligible for dry samples.
Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies	Geological logs exist for all drill holes with lithological codes via an established reference legend.
and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography The total length and percentage of the relevant intersections logged.	Drill holes have been geologically logged in their entirety. Where logging was detailed the subjective indications of mineral content (spodumene, tantalite) have been recorded. Assays have generally only been submitted through
	representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography The total length and percentage of the relevant

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and	RC samples were collected at 1m intervals and riffle or cone split on-site to produce a subsample less than 5kg. The RC drilling samples are considered robust for
	appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	sampling the spodumene and tantalite mineralisation. Most samples were dry.
		Sampling is in line with general industry sampling practices. Field duplicates, standards, laboratory standards and
		laboratory repeats are used to monitor analyses. Sample size is considered appropriate.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The assay technique is considered to be robust as the method used (see above) offers total dissolution of the sample and is useful for mineral matrices that may resist acid digestions.
		Standards and duplicates were submitted in varying frequency throughout the exploration campaign and internal laboratory standards, duplicates and replicates are used for verification
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Twinning of holes undertaken to date show good continuity
	The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	The Ta and Li assays show a marked correlation with the pegmatite intersections via elevated downhole grades.
		Drill logs exist for all holes as electronic files and/or hardcopy (all 2017 logging has been input directly to field logging computers).
		Digital log sheets have been created with inbuilt validations to reduce potential for data entry errors.
		All drilling data has been loaded to a database and validated prior to use.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Accurate surveying using RTK DGPS is currently being undertaken on site. Hole collars have been preserved until completion of survey.
	Specification of the grid system used. Quality and adequacy of topographic control.	All collars are surveyed using MGA Z51.

Criteria	JORC Code Explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Initial exploration has been conducted on an 80m x 80m grid. The majority of infill drilling has been conducted on a 40m x 40m grid with a 15,000m² area drilled out to 20m x 20m. The spacing of holes is considered of sufficient density to provide an 'Indicated' or 'Inferred' Mineral Resource estimation and classification.
		There has been no sample compositing.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Approximately 2/3 of drilling is angled. Vertical holes have been drilled in areas where pegmatites are interpreted to be flat lying. The lithium tantalite-bearing pegmatites are generally flat to shallowly dipping in nature. The true width of pegmatites are generally considered 80-95% of the intercept width, with minimal opportunity for sample bias.
Sample security	The measures taken to ensure sample security.	The RC samples are taken from the rig by experienced personal and stored securely and transport to the laboratory by a registered courier and handed over by signature.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	An external review of sampling techniques and data has been carried out by CSA Global. No issues identified.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The portfolio of mineral tenements, comprising mining leases, exploration licences, prospecting licences, miscellaneous licences, a general-purpose lease, and a retention lease are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Alluvial tantalite has been mined periodically from the early 1970s. Gwalia Consolidated Limited undertook exploration for tantalite-bearing pegmatites from 1983-1998. Work included mapping, costeaning, and several phases of drilling using RAB, RC, and diamond methods. The work identified mineral resources that were considered uneconomic at the time. Haddington entered agreement to develop the resource and mining • commenced in 2001 and continued until 2005. • Haddington continued with exploration until 2009.

Criteria	Explanation	Commentary
		Living Waters acquired the project in 2009 and continued with limited exploration to the north of the main pit area.
Geology	Deposit type, geological setting and style of mineralisation.	The Bald Hill area is underlain by generally north- striking, steeply dipping Archaean metasediments (schists and greywackes) and granitoids.
		Felsic porphyries and pegmatite sheets and veins have intruded the Archaean rocks. Generally, the pegmatites cross cut the regional foliation, occurring as gently dipping sheets and as steeply dipping veins.
		The pegmatites vary in width and are generally comprised quartz-albite- muscovite-spodumene in varying amounts. Late-stage albitisation in the central part of the main outcrop area has resulted in fine-grained, banded, sugary pegmatites with visible fine-grained, disseminated tantalite. A thin hornfels characterised by needle hornblende crystals is often observed in adjacent country rocks to the pegmatite.
		Tantalite generally occurs as fine disseminated crystals commonly associated with fine-grained albite zones, or as coarse crystals associated with cleavelandite.
		Weathering of the pegmatites yields secondary mineralised accumulations in alluvial/eluvial deposits.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Only results for drill holes that have intercepted lithium and or tantalum pegmatites of 1m or more in width that have been assayed for lithium and tantalum have been included in the release. All drill hole details are contained in Table 1 and 2 of the release.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No cutting to intercept grades has been undertaken. Assays are report as pure elements such as Li, Ta, Nb, Sn and converted to oxides using atomic formulas. Reported intervals in Table 1 and 2 represent the aggregation of the intercepts containing samples of at least 0.3% Li ₂ O and/or 150ppm Ta ₂ O ₅ , lower grade zones are included adjacent to higher grade zones where the grade varies significantly from the average of the entire width of the mineralised pegmatite. Only lithium, tin, niobium and tantalum oxide results are

Criteria	Explanation	Commentary
		tabled, other potential by-products are currently considered to be insignificant in economic importance.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Approximately 2/3 of drilling is angled. Vertical holes have been drilled in areas where pegmatites are interpreted to be flat lying. The lithium tantalite-bearing pegmatites are generally flat to shallowly dipping in nature. The true width of pegmatites are generally considered 85-95% of the intercept width, with minimal opportunity for sample bias.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Drilling locations are shown on figure 1 of the release. Appendix A comprises is a long section through the principal pegmatites.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Results for all drill holes that have intercepted lithium pegmatites that have been assayed for lithium have been included in the release.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No metallurgical test work is referred to in this announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further RC and diamond drilling is warranted at the various deposits to explore for additional resources and improve the understanding of the current resources prior to mining.