

# YAMARNA EXPLORATION UPDATE: HIGH-GRADE BEDROCK SUCCESS AND NEW ANOMALIES DEFINED

Well-funded mid-tier gold development and exploration company, Gold Road Resources Limited (Gold Road or the Company) provides the following update on the 2017 greenfields exploration drilling campaign <sup>1</sup> on the Yamarna tenements (Figure 1). The Yamarna tenements comprise North Yamarna (100% Gold Road), South Yamarna Joint Venture (South Yamarna JV) a 50:50 joint venture with Sumitomo Metal Mining Oceania Pty Limited (Sumitomo), and the Gruyere Project Joint Venture (Gruyere JV) a 50:50 joint venture with Gold Fields Limited (Gold Fields).

# **Highlights**

- Diamond and RC drilling continues to deliver high-grade bedrock intersections improving the understanding of the geological framework of the belt
- Aircore drilling continued to generate new gold anomalies along the strike of the belt
- Bedrock mineralisation intersected includes:
  - North Yamarna Gilmour-Morello 5 metres at 12.52 g/t Au from 143 metres (17WDRC0057)<sup>2</sup> and Satriani 12 metres at 1.17 g/t Au from 60 metres (17WDRC0090) within the 12 kilometre Wanderrie Supergroup Trend
  - Gruyere JV Montagne 8.5 metres at 15.38 g/t Au from 56 metres (17ALDD0011) and 22 metres at 1.93 g/t Au from 8 metres (17ALRC0212) within the Attila-Alaric Trend
  - South Yamarna JV Yaffler South 2 metres at 2.10 g/t Au from 152 metres (17SYRC0122)
- Anomalies generated include:
  - North Yamarna Stratocaster 12 metres at 0.19 g/t Au (17CWAC0357) within a 3.5 kilometre anomaly at 0.1 g/t Au cut-off. Stock Route with a best intercept of 3 metres at 0.60 g/t Au (17SRAC0144) within a 1.5 kilometre anomaly at 0.1 g/t Au cut-off
  - South Yamarna JV Kingston North 12 metres at 1.60 g/t Au from 60 metres including 4 metres at 4.63 g/t Au from 60 metres (17SYAC1183) within a 1 kilometre anomaly at 0.1 g/t Au cut-off

Gold Road Executive Director - Exploration & Growth Justin Osborne said: "We have closed out the year with another round of significant results from both our bedrock drilling and aircore programmes, generating momentum for the 2018 drill campaign on a number of new gold targets. The Gold Road exploration team has had a very successful year in completing our planned programmes on budget and delivering results that give us confidence in our targeting practices and exploration methodologies. We are looking forward to a drilling break over the summer period to collate the results of this year's work to reassess and reaffirm the priorities for 2018."

ASX Code GOR

ABN 13 109 289 527

COMPANY DIRECTORS

Tim Netscher

Chairman Ian Murray

Managing Director & CEO

Justin Osborne

Executive Director,

Exploration & Growth

Brian Levet

Non-Executive Director

Sharon Warburton
Non-Executive Director

Carol Marinkovich
Company Secretary

#### CONTACT DETAILS

Principal & Registered Office Level 2, 26 Colin St West Perth WA 6005

www.goldroad.com.au perth@goldroad.com.au

T +61 8 9200 1600 F +61 8 9481 6405



<sup>&</sup>lt;sup>1</sup> ASX announcement dated 22 February 2017

<sup>&</sup>lt;sup>2</sup> Refer Tables in Appendices 1 to 3 for individual grades >10 g/t Au (all intersections reported uncut)



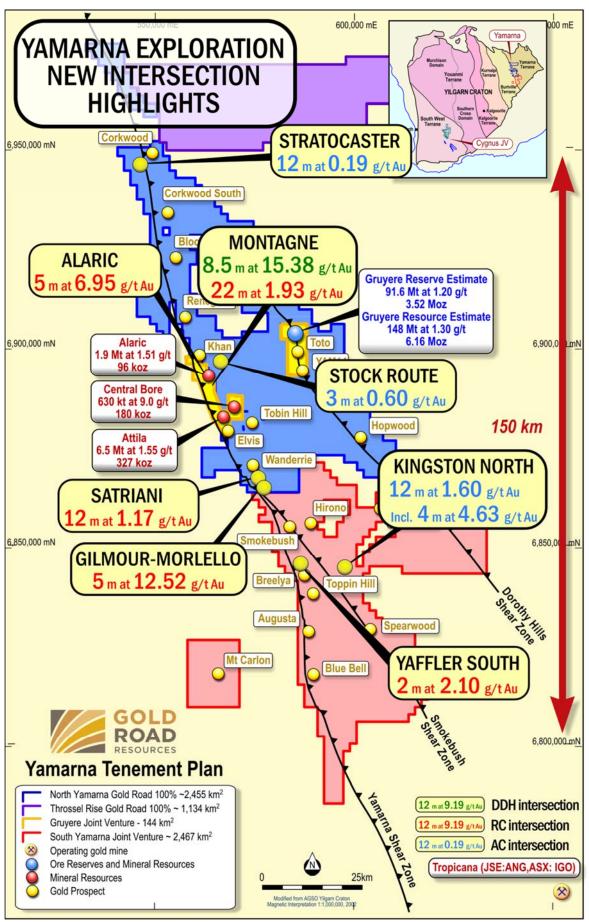



Figure 1: Yamarna - selected diamond, RC and AC drill intersections



# **Exploration Overview**

**Table 1:** Selected diamond, RC and aircore drilling results by Project and/or Prospect and ranked by gram x metres. Milestone numbers relate to Gold Road's Exploration Project Pipeline process (Figure 2) for managing exploration success. M1 = Target generated, M2 = Anomaly generated, M3 = Target defined, M4 = Mineral Resource generated, M5 = Ore Reserve generated

|                  |                   |            | Select        | ed Bed      | lrock In        | tersection  | ons by Project -           | Ranked by grar                        | n x metres                                 |                          |                         |
|------------------|-------------------|------------|---------------|-------------|-----------------|-------------|----------------------------|---------------------------------------|--------------------------------------------|--------------------------|-------------------------|
| Camp             | Prospect          | Hole ID    | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre | From<br>(m) | Exploration<br>Milestone   | Context                               | Comment                                    | Strike<br>Length<br>(km) | Spacing<br>(m E by m N) |
|                  |                   |            |               |             |                 |             | North Yamarna              |                                       |                                            |                          |                         |
|                  | Gilmour-Morello   | 17WDRC0057 | 5             | 12.52       | 62.6            | 143         |                            |                                       | Sedimentary unit contact, south of fault   | + 4.0                    | 100 by 400              |
| Wanderrie        | Californi         | 17WDRC0090 | 12            | 1.17        | 14.0            | 60          | 1                          | Broad Spaced                          | Basalt, dolerite and volcanic sedimentary  | . 2.5                    | 400 1 200               |
| Supergroup Trend | Satriani          | 17WDRC0082 | 7             | 1.76        | 12.3            | 126         | M3 - Target<br>Definition  | Bedrock Testing for                   | host rocks                                 | + 2.5                    | 100 by 200              |
| +12 km Strike    | Gilmour-Morello   | 17WDRC0051 | 4             | 3.06        | 12.2            | 88          | Definition                 | Significant Discovery                 | Sedimentary unit contact, north of fault   | + 4.0                    | 100 by 200              |
|                  | Santana-Blackmore | 17WDRC0065 | 13            | 0.82        | 10.7            | 42          | 1                          |                                       | Hangingwall to main trend                  | + 1.0                    | 50 by 400               |
|                  |                   | •          |               | •           | •               | G           | ruyere Joint Venture       | •                                     |                                            | •                        |                         |
|                  |                   | 17ALDD0011 | 8.47          | 15.38       | 130.3           | 56          |                            | Resource and                          | Successful twin of historic RC hole        | 4.5                      | 25 501 50 400           |
| Attila-Alaric:   | Montagne          | 17ALRC0212 | 22            | 1.93        | 42.5            | 8           | M4 - Resource              | Reserve                               | Thick mineralisation near surface          | +1.5                     | 25 - 50 by 50 - 100     |
| Golden Highway   | Argos             | 17ALRC0206 | 10            | 3.83        | 38.3            | 165         | Definition                 | Development for                       | 100 m down dip of historic RC              | +2.0                     | 25 - 50 by 50 - 100     |
| +14 km Strike    | Montagne          | 17ALRC0211 | 16            | 2.36        | 37.8            | 76          |                            | the Gruyere Mill in                   | 80 m down dip of historic RC               | +1.5                     | 25 - 50 by 50 - 100     |
|                  | Alaric            | 17ALRC0215 | 5             | 6.95        | 34.8            | 51          |                            | Construction                          | 70 m below existing Mineral Resource       | +2.5                     | 25 - 50 by 50 - 100     |
|                  |                   |            |               |             |                 | Sout        | h Yamarna Joint Ventu      | ire                                   |                                            |                          |                         |
|                  |                   | 17SYRC0122 | 2             | 2.10        | 4.2             | 152         |                            | Broad Spaced                          | Two sub-parallel structures with dolerite, |                          |                         |
| Riviera-         | Yaffler South     | 17SYRC0123 | 2             | 1.88        | 3.8             | 227         | M3 - Target                | Bedrock Testing for                   | felsic intrusives and sedimentary host     | + 1.4                    | 50 by 400               |
| Smokebush        |                   | 17SYRC0123 | 3             | 0.73        | 2.2             | 152         | Definition                 | Significant Discovery                 | rocks                                      |                          |                         |
|                  |                   | Selec      | ted And       | omalou      | s Inters        | ections     | by Project/Pro             | spect - Ranked I                      | oy gram x metres                           |                          |                         |
| Camp             | Prospect          | Hole ID    | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre | From<br>(m) | Exploration<br>Milestone   | Context                               | Comment                                    | Strike<br>Length<br>(km) | Spacing<br>(m E by m N) |
|                  |                   |            |               |             |                 |             | North Yamarna              |                                       |                                            |                          |                         |
| Wanderrie        | Gilmour-Morello   | 17WDAC0430 | 24            | 0.53        | 12.7            | 52          | A42 A                      | Reconnaissance                        | Infill of existing anomaly                 | + 4.5                    | 50 by 200               |
| Corkwood         | Stratocaster      | 17CWAC0357 | 12            | 0.19        | 2.3             | 40          | M2 - Anomaly<br>Generation | Testing of                            | Extension of existing anomaly              | + 3.5                    | 50 by 200 - 400         |
| Stock Route      | Stock Route       | 17SRAC0144 | 3             | 0.60        | 1.8             | 44          | Generation                 | Weathered Zone to                     | New anomaly                                | +1.5                     | 100 by 600 - 800        |
| McKinley         | McKinley          | 17SRAC0287 | 1             | 0.15        | 0.2             | 26          | M1 - Target<br>Generation  | Seed New Bedrock<br>Targets           | Single line intersection                   | na                       | 100 by 400              |
|                  |                   |            |               |             |                 | Sout        | h Yamarna Joint Ventu      | ire                                   |                                            |                          |                         |
| Spearwood        | Kingston North    | 17SYAC1183 | 12            | 1.60        | 19.2            | 60          | M2 - Anomaly<br>Generation | Reconnaissance<br>Testing of          | New anomaly                                | + 1.0                    | 50 by 400               |
| Beefwood         | Landmark          | 17SYAC1130 | 4             | 0.38        | 1.5             | 48          | M1 - Target                | Weathered Zone to<br>Seed New Bedrock | Single line intersection                   | na                       | 100 by 1 200            |
| Beerwood         | Landinark         | 17SYAC1163 | 4             | 0.18        | 0.7             | 56          | Generation                 | Targets                               | Single line intersection                   | na                       | 100 by 1,200            |



Gold Road is pleased to report that final results for 2017 have delivered wide high-grade bedrock drilling intersections from its advanced stage projects and significant anomalies from its early stage projects (Table 1 and Intersection Tables in Appendix 1, 2 and 3). Assay results are reported from 1,284 diamond (**DDH**), Reverse Circulation (**RC**) and aircore (**AC**) drill holes (76,494 metres) (Table 2) distributed over a 100 kilometre strike length within the 200 kilometre long Yamarna Shear Zone, and over a 20 kilometre strike length within the 100 kilometre long Dorothy Hills Shear Zone (Figures 1, 2 and 3).

| Project Group    | Hole Type | Number of Holes | Metres (m) |
|------------------|-----------|-----------------|------------|
| North Yamarna    | DDH       | 8               | 1,150      |
|                  | RC        | 74              | 12,874     |
|                  | AC        | 992             | 41,021     |
| Gruyere JV       | DDH       | 11              | 2,894      |
|                  | RC        | 41              | 7770       |
| South Yamarna JV | RC        | 3               | 798        |
|                  | AC        | 155             | 9,988      |
|                  | DDH       | 19              | 4,043      |
|                  | RC        | 118             | 21,442     |
|                  | AC        | 1,147           | 51,009     |
|                  | Total     | 1,284           | 76,494     |

High-grade bedrock mineralisation from the **Gilmour-Morello** Target (Wanderrie Camp) includes **5 metres at 12.52 g/t Au from 143 metres** (17WDRC0057), while a **new >1.5 kilometre anomaly** has been defined at the **Stock Route** Target (North Yamarna). Stratigraphic diamond drilling provided valuable geological information to support an updated regional geological interpretation and stratigraphic column(s).

Resource definition and extensional drilling programmes from the **Montagne** Prospect returned significant intersections including **8.5 metres at 15.38 g/t Au from 56 metres** (17ALDD0011) on the Gruyere JV project area. Target definition drilling at Yaffler South continued to return bedrock mineralisation and a **new >1 kilometre anomaly** was defined at **Kingston North** on the South Yamarna JV.

The Company's ranked and prioritised greenfields exploration strategy and activities at Yamarna are guided by an exploration "Project Pipeline" process to maximise the probability of discovery (Figure 2). Each Milestone is defined by a specific deliverable and has a decision "gate" which projects must pass through before moving to the next Milestone. Economic criteria and probability of success increase as projects move along the pipeline. The methodology helps to ensure work is carried out across all stages of the process, that focus is kept on the best quality targets and that the pipeline is kept full with early Milestone projects.

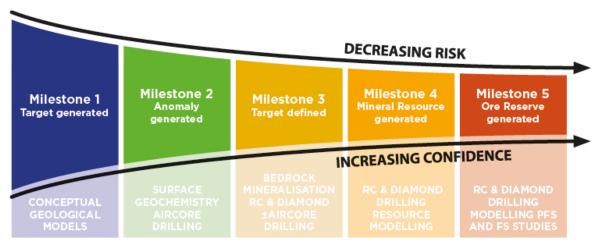



Figure 2: Exploration Project Pipeline process used by Gold Road at Yamarna. Primary data types on bottom line



# **Future Work - Plan for Discovery**

The geological team will be reviewing and assessing the geological information gathered from the 2017 drilling programmes, combined with previously collected historic data. This will be followed by targeting and ranking of prospects and projects to define the highest priority targets to be drilled in 2018. We are also reviewing and updating the regional geological interpretation to produce a revised geological map (refer Figures 3 and 4) and stratigraphic column to advance geological understanding and exploration focus.

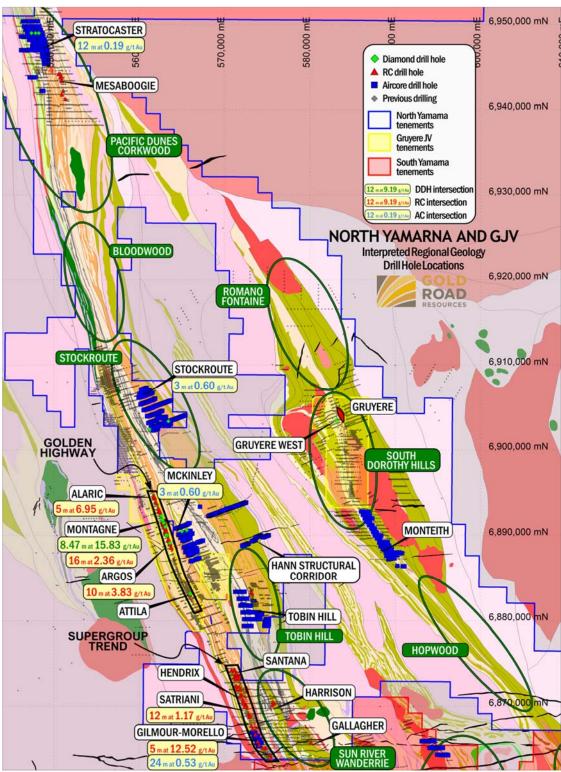



Figure 3: North Yamarna and Gruyere JV – selected diamond, RC and AC drilling intersections.

Version 1 of new regional interpreted geology map



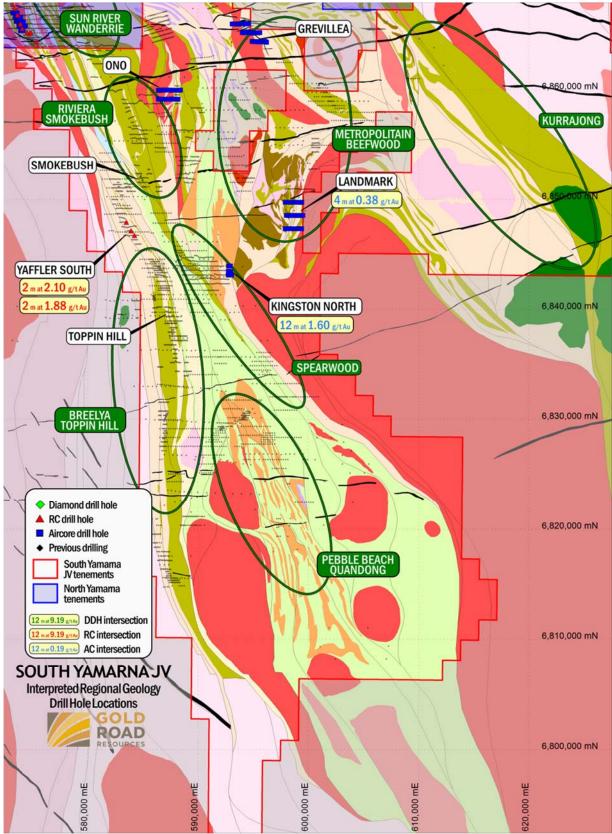



Figure 4: South Yamarna JV - selected RC and AC drilling intersections. Version 1 of new regional interpreted geology map



# **North Yamarna Exploration (100% Gold Road)**

#### Wanderrie - Milestone 3

RC and diamond drilling programmes were completed at the Wanderrie Camp, targeting bedrock gold mineralisation along the Supergroup Trend. The drilling infilled previous bedrock intersections and tested depth extensions of aircore anomalism identified at the Santana, Hendrix, Satriani and Gilmour-Morello Prospects. Intersected gold mineralisation is typically vein-poor, shear hosted and sulphide-bearing. Bedrock drilling at Santana has been reduced to a minimum line spacing of 50 metres and Prospects to the south to a line spacing of 200 metres. Best results were returned from the Gilmour–Morello (Figure 5) and Satriani Prospects and included:

- Gilmour-Morello: 5 metres at 12.52 g/t Au from 143 metres, including 3 metres at 20.52 g/t Au from 143 metres (17WDRC0057)
- Satriani: 12 metres at 1.17 g/t Au from 60 metres (17WDRC0090)
- Satriani: **7 metres at 1.76 g/t Au from 126 metres**, including 1 metre at 5.59 g/t Au from 131 metres (17WDRC0082)

Mineralisation at the Gilmour–Morello Prospect is hosted within a broad, sericite-chlorite altered shear with high-grade gold occurring in zones of increased shearing, alteration and quartz veining. The mineralisation at Satriani is broadly hosted within a mafic unit with higher grades occurring at the hangingwall contact.

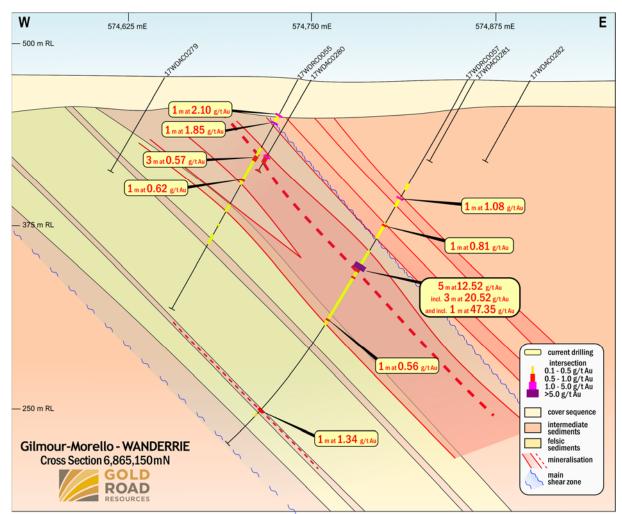



Figure 5: Simplified geological cross section of the Gilmour-Morello Prospect showing selected RC intersections



A 49 hole programme of AC completed at Gilmour-Morello infilled previous drilling to a 200 metre line spacing and confirmed the continuity of regolith anomalism which will aid targeting for future bedrock testing. The better intersections from the programme included:

- 24 metres at 0.53 g/t Au from 52 metres, including 4 metres at 2.31 g/t Au from 60 metres (17WDAC0430)
- 16 metres at 0.61 g/t Au from 80 metres (17WDAC0450)

#### Corkwood – Milestone 2 and 3

A follow-up 188 hole AC programme was completed at the Stratocaster Target. The drilling identified a >3.5 kilometre continuous zone of low-level anomalism above 0.1 g/t Au coincident with a contact between mafic volcanics and sediments, and an intermediate sedimentary sequence (Figure 6). The best intersection from this programme was 12 metres at 0.19 g/t Au from 40 metres (17CWAC0357).

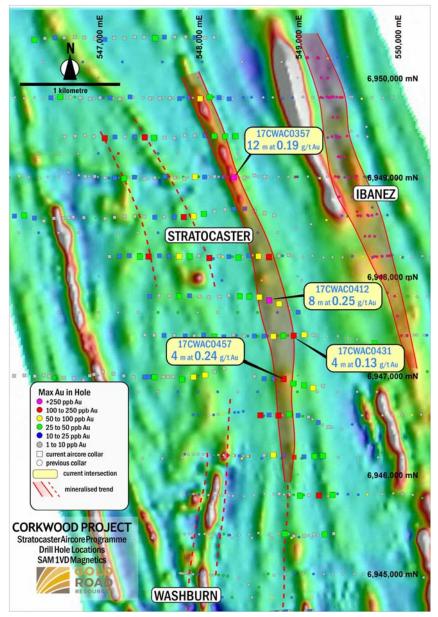



Figure 6: Stratocaster – selected AC intersections defining the >3.5 kilometre anomaly over magnetic image (SAM 1VD = Sub Audio Magnetics First Vertical Derivative)

Diamond and RC drilling at the Mesaboogie Prospect, that represents the southern strike extension of the Ibanez mineralised trend, failed to intersect significant bedrock mineralisation beneath a coherent aircore anomaly. The deeply weathered and highly deformed sediments were commonly difficult to drill.



## Regional Aircore - Milestone 1

Four regional reconnaissance AC drilling programmes were completed testing a number of Milestone 1 targets across the North Yamarna tenements, these included:

- Hann Structural Corridor (an EIS co-funded programme)
- Stock Route
- McKinley
- Tobin Hill Regional

The Stock Route AC drilling programme identified an approximately 1.5 kilometre anomaly defined by 0.1 g/t Au intersections in sediments flanking a monzonite intrusive (Figure 7). The best intersection within the anomaly was 3 metres at 0.60 g/t Au from 44 metres (17SRAC0144).

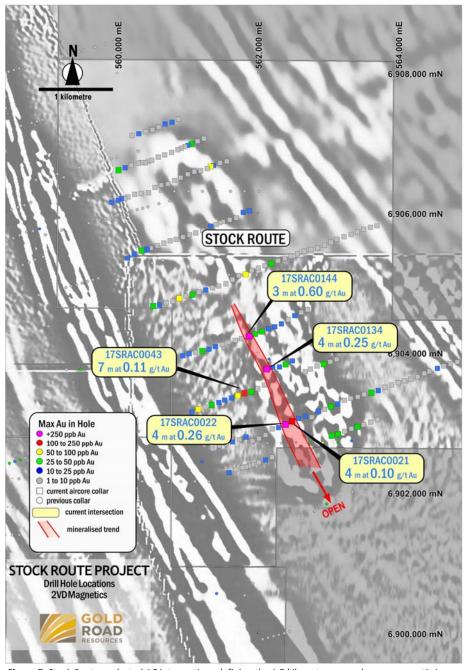



Figure 7: Stock Route - selected AC intersections defining the 1.5 kilometre anomaly over magnetic image (2VD = Second Vertical Derivative)



The McKinley programme recorded an anomalous intersection of 1 metre at 0.15 g/t Au from 26 metres (17SRAC0287). No other significant gold results were returned for the other programmes, though a review of all results is underway to identify zones of gold or pathfinder anomalism that may warrant further investigation in 2018.

## **Stratigraphic Diamond**

Stratigraphic diamond drilling was completed at McKinley, Stock Route, Hann Structural Corridor, and Monteith. Drilling was designed to evaluate poorly understood areas of the Yamarna stratigraphy in areas with no previous drilling. No significant results have been returned to date, however the drilling has provided substantial new information aiding the understanding of the nature of the structure, stratigraphy and alteration at Yamarna, not possible using solely RC or AC drilling techniques.

#### **Future Work**

- Continued bedrock testing at Ibanez and Gilmour-Morello
- Preliminary modelling and economic evaluation of Ibanez, Gilmour-Morello, Santana and Satriani
   Prospects
- Evaluation and follow up of regional AC projects
- Full field testing of the Corkwood South, Torchwood, Romano and Bloodwood Targets



# **Gruyere JV Exploration (50% Gold Road)**

#### Attila-Alaric Trend - Milestone 4

A programme of resource focussed diamond and RC drilling was completed along the 'Golden Highway', the 14 kilometre and up to 90 metres wide zone of anomalous gold defined by grades greater than 0.1 g/t Au that occurs within the Attila-Alaric Trend. The drilling was designed to infill and extend known mineralisation.

Diamond drilling was focused at Montagne, Argos and Attila to infill existing mineralisation; confirm and evaluate existing intersections; test down-dip extents and gain valuable information on lithology and structural controls on mineralisation. All current known deposits along the Golden Highway remain open at depth. The best intersection returned from the recent drilling was at Montagne with an intercept of **8.47 metres at 15.38 g/t Au from 56 metres** (17ALDD0011) which was drilled as a twin of historic drill hole 9EYRC0039 that intersected 7 metres at 11.91 g/t Au from 53 metres. Other significant diamond intersections from Montagne included:

- 2.12 metres at 14.17 g/t Au from 140.23 metres, including 0.33 metres at 87.27 g/t Au from 140.23 metres (17ALDD0018)
- 2.40 metres at 8.59 g/t Au from 104.00 metres (17ALDD0011)

The diamond drilling identified consistent stratigraphy with a hangingwall intermediate sedimentary sequence overlying a package of mafic sediments and dolerite. Gold mineralisation preferentially occurs within the mafic stratigraphy and commonly manifests on or near lithological contacts with discrete moderate to high-grade shoots up to 10 metres wide defined by zones of increased shearing with biotite-albite-pyrite alteration.

RC drilling comprised infill drilling at Montagne (Figure 8), Argos and Alaric and tested zones between the deposits. Thirty eight of the 41 RC holes completed intersected gold grades greater than 1.0 g/t Au. The drilling confirmed internal continuity and extended the depth extents of both Montagne and Argos Prospects. Best RC intersections include:

- Montagne: 22 metres at 1.93 g/t Au from 8 metres (17ALRC0212)
- Argos: 10 metres at 3.83 g/t Au from 165 metres, including 1 metre at 17.68 g/t Au from 169 metres (17ALRC0206)
- Montagne: 16 metres at 2.36 g/t Au from 76 metres, including 2 metres at 11.58 g/t Au from 83 metres (17ALRC0211)
- Alaric: **5 metres at 6.95 g/t Au from 51 metres**, including 1 metre at 24.32 g/t Au from 52 metres (17ALRC0215)

A detailed IP survey has recently been completed over the full strike extent of the Attila-Alaric Trend. The survey will assist in defining the extents of the sulphide-bearing gold mineralisation the understanding of the lithological and structural control of the mineralised shoots.

# **Dorothy Hills - Milestone 1**

A single diamond drill hole, 17GY0338, was completed 650 metres west of Gruyere (Figure 9) targeting an IP conductor co-incident with a gravity low interpreted to represent a possible Gruyere-like body. The hole intersected a sulphidic carbonaceous shale at the contact between a polymictic conglomerate and footwall volcaniclastics. No significant gold mineralisation was intersected. A thin zone with sphalerite and galena in the shale returned an intercept of 0.25m at 0.69% Pb and 25.22% Zn.



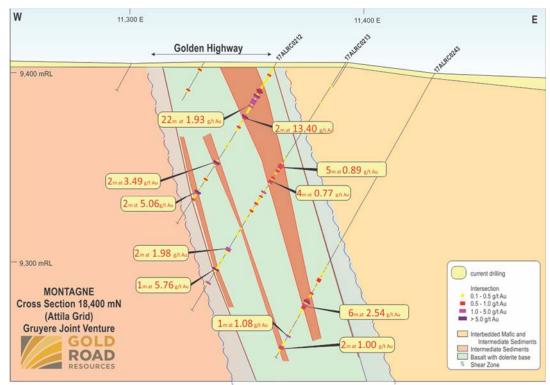



Figure 8: Simplified geological cross section of the Montagne prospect showing selected drill intersections

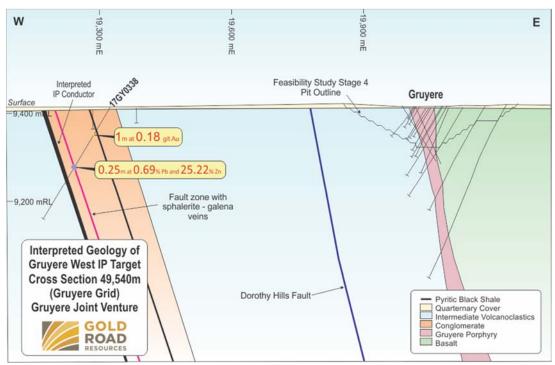



Figure 9: Simplified geological cross section of the Gruyere West prospect showing selected drill intersections

#### **Future Work**

- Generate maiden resource estimates for Argos and Montagne and generate reserves for Attila and Alaric
- Plan continued resource evaluation drilling for Montagne and Argos
- Update geological framework for the Attila-Alaric Trend incorporating IP results and identify additional prospective areas along the Trend to be targeted for drilling in 2018
- Assess Orleans, situated between Argos and Attila, for drill evaluation in 2018
- Further assessment of gold and base metal prospectivity at Gruyere West



# South Yamarna Joint Venture

## Smokebush Camp – Milestone 3

Gold assays from three RC holes at Yaffler South in the Smokebush Camp have been returned (Figures 4 and 10). Best new bedrock intersections included:

- 13 metres at 0.54 g/t Au from 142 metres, including 2 metres at 2.10 g/t Au from 152 metres (17SYRC0122)
- 13 metres at 0.45 g/t Au from 226 metres, including 2 metres at 1.88 g/t Au from 227 metres (17SYRC0123)
- 16 metres at 0.34 g/t Au from 146 metres, including 2 metres at 0.80 g/t Au from 147 metres and 3 metres at 0.73 g/t Au from 152 metres (17SYRC0123)

The new and existing bedrock intersections outline mineralisation over a 1.4 kilometre strike length on 400 metre spaced drill sections to a depth of over 100 metres below surface (Figure 10). Mineralisation is controlled by two shear zones developed on stratigraphic contacts and is associated with pyrite alteration. The system is open to the north, south and at depth.

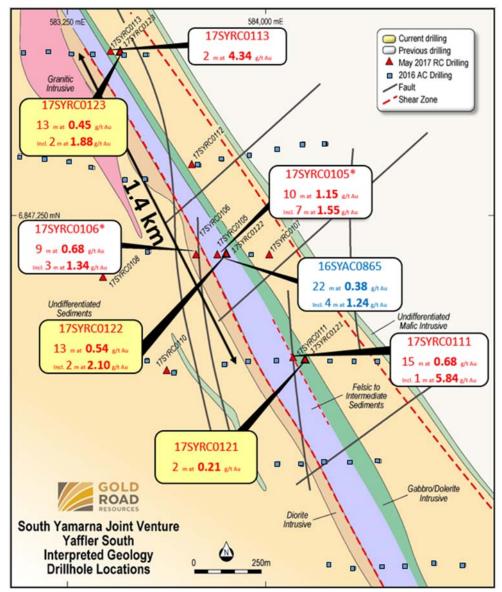



Figure 10: Simplified geological plan of the Yaffler South Prospect showing collar locations and selected intersections.  $RC-red\ text$ ,  $AC-blue\ text$ 



## Spearwood Camp - Milestones 1 and 2

At Kingston North assays for 16 AC holes were received with a best intercept of 12 metres at 1.60 g/t Au from 60 metres, including 4 metres at 4.63 g/t Au from 60 metres (17SYAC1183).

The Kingston North gold mineralisation (Figure 11) is interpreted to be related to the interaction of the north-west trending Smokebush shear system and late north-south trending shear structures proximal to a diorite intrusive body. Gold mineralisation is hosted in intermediate crystal and laminated tuff units, within a 1 kilometre anomaly at 0.1 g/t Au cut-off.

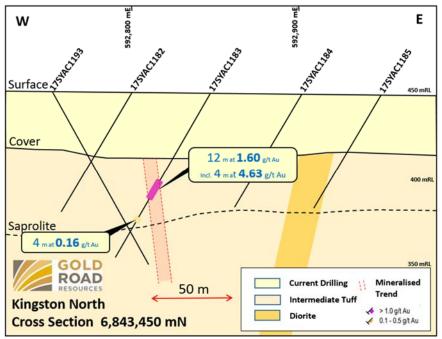



Figure 11: Simplified geological cross section of the Kingston North Prospect showing selected AC intersections

# Beefwood Camp - Milestones 1 and 2

A total of 97 AC holes have been completed to test the Grevillea and Landmark Targets (Figure 4) within the Beefwood Camp, and 40 AC holes were completed over the Ono Prospect located five kilometres west of the Beefwood Camp. All holes targeted interpreted areas of structural complexity potentially associated with gold mineralisation.

Three 1,200 metre spaced drill lines with 100 metre hole spacing were completed at Landmark. Two drill lines returned anomalous results, the best being 4 metres at 0.38 g/t Au from 48 metres (17SYAC1130) hosted in diorite and intermediate tuff units along a north-south trending structural corridor.

Drilling at Grevillea and Ono was completed at 800 metre line spacing with 100 metre hole spacing, the targeted structures were intersected but no significant assays (above 0.1 g/t Au) were returned.

#### **Future Work**

• Geological modelling, targeting, ranking, follow up RC and diamond definition drilling to target potential areas of higher grade and thicker mineralisation and extensions at Yaffler South.

For further information, please visit www.goldroad.com.au or contact:

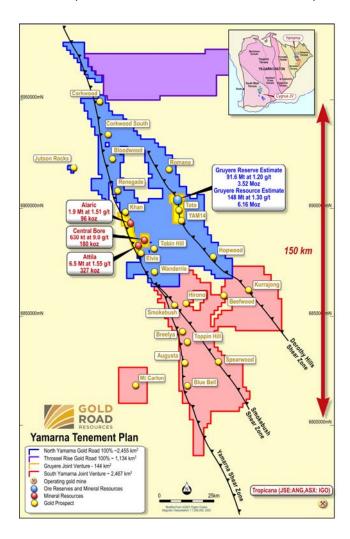
Gold Road Resources Media and Broker Enquiries

lan Murray Warrick Hazeldine - whazeldine@canningspurple.com.au

Managing Director & CEO Cannings Purple
Telephone: +61 8 9200 1600 Tel: +61 417 944 616



# **About Gold Road**


Gold Road is pioneering development of Australia's newest goldfield, the Yamarna Belt, 200 kilometres east of Laverton in Western Australia. The Company holds interests in tenements covering approximately 5,500 square kilometres in the region, which is historically underexplored and highly prospective for gold mineralisation. The Yamarna leases contain a gold resource of 6.8 million ounces, including 6.2 million ounces at the Gruyere deposit, of which the Company owns 50%.

The Feasibility Study for Gruyere, which was completed in October 2016, indicated the Project's 3.5 million ounce Reserve could support average annualised production of 270,000 ounces for 13 years (ASX announcement dated 19 October 2016). In November 2016, Gold Road entered into a 50:50 joint venture with Gold Fields Ltd for the Gruyere Gold Project, with commencement of Project construction in January 2017.

Gold Road continues to explore for similar-scale deposits on its 100%-owned North Yamarna tenements, its 50% owned Gruyere Project Joint Venture tenements (with Gold Fields Ltd) and its 50% owned South Yamarna Joint Venture tenements in conjunction with Sumitomo Metal Mining Oceania (a subsidiary of Sumitomo Metal Mining Co. Limited).

In October 2017, Gold Road entered into an earn-in joint venture with Cygnus Gold Limited to continue exploration of the Wadderin and the Lake Grace greenfield exploration projects, an area of approximately 3,400 square kilometres located in the south-west of Western Australia (ASX announcement dated 10 October 2017).

Location and Geology of the Yamarna Tenements (plan view MGA Grid) showing Gold Road's 100% tenements (blue outline), Gold Road-Sumitomo South Yamarna Joint Venture tenements (red outline), and Gold Road-Gold Fields Gruyere Joint Venture tenements (yellow outline), Mineral Resources, Ore Reserves (100% basis) and main Exploration Projects. Inset map shows location of Cygnus JV tenements.





#### Mineral Resource Estimate for the Yamarna Leases - August 2017

|                                           | Gruyere Project | Joint Venture - | - 100% basis       | (      | Gold Road - 50% | 6                  |
|-------------------------------------------|-----------------|-----------------|--------------------|--------|-----------------|--------------------|
| Project Name / Category                   | Tonnes          | Grade           | Contained<br>Metal | Tonnes | Grade           | Contained<br>Metal |
| , ,                                       | (Mt)            | (g/t Au)        | (Moz Au)           | (Mt)   | (g/t Au)        | (Moz Au)           |
| Gruyere Total (0.5 g/t Au)                | 147.71          | 1.30            | 6.16               | 73.85  | 1.30            | 3.08               |
| Measured                                  | 13.86           | 1.18            | 0.53               | 6.93   | 1.18            | 0.26               |
| Indicated                                 | 91.12           | 1.29            | 3.79               | 45.56  | 1.29            | 1.89               |
| Inferred                                  | 42.73           | 1.35            | 1.85               | 21.36  | 1.35            | 0.92               |
| Attila - Alaric Trend Total (0.45 g/t Au) | 8.49            | 1.54            | 0.42               | 4.25   | 1.54            | 0.21               |
| Measured                                  | 0.31            | 1.90            | 0.02               | 0.16   | 1.90            | 0.01               |
| Indicated                                 | 6.92            | 1.56            | 0.35               | 3.46   | 1.56            | 0.17               |
| Inferred                                  | 1.26            | 1.33            | 0.05               | 0.63   | 1.33            | 0.03               |
| Central Bore Total (1.0 g/t Au)           | 0.63            | 9.0             | 0.18               | 0.32   | 9.0             | 0.09               |
| Measured                                  | 0.04            | 26.5            | 0.04               | 0.02   | 26.5            | 0.02               |
| Indicated                                 | 0.40            | 9.0             | 0.12               | 0.20   | 9.0             | 0.06               |
| Inferred                                  | 0.19            | 5.0             | 0.03               | 0.09   | 5.0             | 0.02               |
| Total                                     | 156.83          | 1.34            | 6.76               | 78.42  | 1.34            | 3.38               |
| Measured                                  | 14.22           | 1.27            | 0.58               | 7.11   | 1.27            | 0.29               |
| Indicated                                 | 98.43           | 1.34            | 4.25               | 49.22  | 1.34            | 2.13               |
| Inferred                                  | 44.18           | 1.36            | 1.93               | 22.09  | 1.36            | 0.97               |

#### Notes:

- All Mineral Resources are completed in accordance with the JORC Code 2012
- Gruyere Mineral Resource reported at 0.5 g/t Au cut-off, constrained within a A\$1,700/oz optimised pit shell based on mining and
  processing parameters from the Gruyere Feasibility Study and geotechnical parameters from the previous Mineral Resource estimate
  (ASX announcement dated 22 April 2016)
- Attila Mineral Resource reported at 0.45 g/t Au cut-off, constrained within a A\$1,850/oz optimised pit shell (ASX announcement dated 25 May 2017)
- Alaric Mineral Resource reported at 0.45 g/t Au cut-off, constrained within a A\$1,850/oz optimised pit shell (ASX announcement dated 24 July 2017)
- Central Bore Mineral Resource reported at 1.0 g/t Au cut-off (2014 Annual Report)
- All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding
- Mineral Resources are inclusive of Ore Reserves
- The Gruyere JV, a 50:50 joint venture between Gold Road and Gruyere Mining Company Pty Ltd a wholly owned Australian subsidiary of Gold Fields, was completed in December 2016. Following execution of the Gruyere Joint Venture Agreement Gold Road's ownership of the Yamarna Mineral Resources reduced to 50%.

#### Ore Reserve Statement for the Gruyere Project

|          | Gruyere Project | Joint Venture     | 100% basis                     | G              | Gold Road 50%     |                                |  |  |
|----------|-----------------|-------------------|--------------------------------|----------------|-------------------|--------------------------------|--|--|
| Category | Tonnes<br>(Mt)  | Grade<br>(g/t Au) | Contained<br>Metal<br>(Moz Au) | Tonnes<br>(Mt) | Grade<br>(g/t Au) | Contained<br>Metal<br>(Moz Au) |  |  |
| Total    | 91.57           | 1.20              | 3.52                           | 45.78          | 1.20              | 1.76                           |  |  |
| Proved   | 14.87           | 1.09              | 0.52                           | 7.44           | 1.09              | 0.26                           |  |  |
| Probable | 76.70           | 1.22              | 3.00                           | 38.35          | 1.22              | 1.50                           |  |  |

#### Notes:

- The Ore Reserve is completed in accordance with the JORC Code 2012
- The 2017 Ore Reserve is evaluated using a gold price of \$\$1,500/oz (ASX announcement dated 19 October 2016)
- The 2017 Ore Reserve is evaluated using variable cut-off grades: Oxide 0.35 g/t Au, Transitional 0.39 g/t Au and Fresh 0.43 g/t Au
- Ore block tonnage dilution averages 3.2%; Ore block gold loss is estimated at 1.4%
- All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding
- The Gruyere JV, a 50:50 joint venture between Gold Road and Gruyere Mining Company Pty Ltd a wholly owned Australian subsidiary of Gold Fields, was completed in December 2016. Following execution of the Gruyere Joint Venture Agreement Gold Road's ownership of the Yamarna Mineral Resources reduced to 50%



#### **Competent Persons Statements**

The information in this report which relates to Exploration Results is based on information compiled by Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road. Mr Osborne is an employee of Gold Road, and a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM 209333). Mr Osborne is a shareholder and a holder of share Options and Performance Rights. Mr Osborne has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Osborne consents to the inclusion in the report of the matters based on this information in the form and context in which it appears

#### **Mineral Resources**

The information in this report that relates to the Mineral Resource Estimation for Gruyere is based on information compiled by Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road and Mr John Donaldson, General Manager Geology for Gold Road.

The information in this report that relates to the Mineral Resource Estimation for the Attila-Alaric Trend is based on information compiled by Mr Justin Osborne, Executive Director-Exploration and Growth for Gold Road, Mr John Donaldson, General Manager Geology for Gold Road and Mrs Jane Levett, Principal Resource Geologist for Gold Road.

- Mr Justin Osborne is an employee of Gold Road and a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM 209333). Mr Osborne is a shareholder and a holder of share Options and Performance Rights.
- Mr John Donaldson is an employee of Gold Road and a Member of the Australian Institute of Geoscientists and a Registered Professional Geoscientist (MAIG RPGeo Mining 10147). Mr Donaldson is a shareholder and a holder of Performance Rights.
- Mrs Jane Levett is an employee of Gold Road, and is a Member of the Australasian Institute of Mining and Metallurgy and a Chartered Professional (MAusIMM CP 112232)

Messrs Osborne and Donaldson and Mrs Levett have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Messrs Osborne and Donaldson and Mrs Levett consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information in this report that relates to the Mineral Resource Estimation for Central Bore is based on geostatistical modelling by Ravensgate using sample information and geological interpretation supplied by Gold Road. The Mineral Resource estimates were undertaken by Mr Craig Harvey, previously Principal Consultant at Ravensgate and Mr Neal Leggo, Principal Consultant at Ravensgate.

Messrs Harvey and Leggo are both Members of the Australian Institute of Geoscientists. Messrs Harvey and Leggo have sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Messrs Harvey and Leggo consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

#### Ore Reserves

The information in this report that relates to the Ore Reserve for Gruyere is based on information compiled by Mr David Varcoe. Mr Varcoe is an employee of AMC Consultants and is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM).

Mr Varcoe has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity currently being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Varcoe consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

#### New Information or Data

Gold Road confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources and Ore Reserves that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not materially changed from the original market announcement.



# **Appendix 1 – North Yamarna Drill Hole Information**

**Table 1:** Collar coordinate details for diamond drilling

| Project<br>Group         | Prospect     | Hole ID    | End of<br>Hole<br>Depth (m) | Easting<br>MGA94-51<br>(m) | Northing<br>MGA94-51<br>(m) | RL<br>(m) | MGA94-51<br>Azimuth | Dip | DDH Tail<br>Depth<br>(m) |
|--------------------------|--------------|------------|-----------------------------|----------------------------|-----------------------------|-----------|---------------------|-----|--------------------------|
| Corkwood                 | Stratocaster | 17CWDD0020 | 172.64                      | 547,380                    | 6,949,000                   | 500       | 270                 | -60 |                          |
|                          |              | 17CWDD0021 | 183.60                      | 547,850                    | 6,949,000                   | 500       | 270                 | -60 |                          |
|                          |              | 17CWDD0022 | 199.90                      | 548,240                    | 6,949,000                   | 500       | 90                  | -60 |                          |
|                          | Mesaboogie   | 17CWRC0066 | 187.80                      | 551,092                    | 6,942,202                   | 451       | 90                  | -60 | 62.80                    |
| Stratigraphic<br>Diamond | McKinley     | 17SRDD0001 | 202.07                      | 564,999                    | 6,890,477                   | 425       | 250                 | -60 |                          |
|                          |              | 17SRDD0002 | 200.10                      | 565,570                    | 6,890,620                   | 427       | 250                 | -60 |                          |
|                          | Carlton      | 17SRDD0006 | 48.80                       | 561,206                    | 6,902,438                   | 408       | 250                 | -60 |                          |
|                          |              | 17SRDD0007 | 79.80                       | 563,416                    | 6,903,381                   | 418       | 250                 | -60 |                          |

Table 2: Collar coordinate details for RC drilling

|                  | ·                 | Tuble 2. cc | End of            | inate details for RC drilling |                          |           |                     |     |  |  |  |  |
|------------------|-------------------|-------------|-------------------|-------------------------------|--------------------------|-----------|---------------------|-----|--|--|--|--|
| Project<br>Group | Prospect          | Hole ID     | Hole Depth<br>(m) | Easting<br>MGA94-51 (m)       | Northing<br>MGA94-51 (m) | RL<br>(m) | MGA94-51<br>Azimuth | Dip |  |  |  |  |
| Corkwood         | Mesaboogie        | 17CWRC0058  | 155               | 550,564                       | 6,944,210                | 456       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0059  | 83                | 550,665                       | 6,944,194                | 457       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0060  | 149               | 550,766                       | 6,944,186                | 458       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0061  | 131               | 550,736                       | 6,943,798                | 446       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0062  | 149               | 550,846                       | 6,943,786                | 447       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0063  | 119               | 550,927                       | 6,943,799                | 448       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0064  | 119               | 550,870                       | 6,943,400                | 447       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0065  | 119               | 550,955                       | 6,943,400                | 447       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0066  | 187.80            | 551,092                       | 6,942,202                | 451       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0067  | 154               | 550,942                       | 6,941,805                | 452       | 90                  | -60 |  |  |  |  |
|                  |                   | 17CWRC0069  | 65                | 551,328                       | 6,941,293                | 449       | 90                  | -60 |  |  |  |  |
| Tobin Hill       | Dead Dog          | 17THRC0007  | 150               | 573,163                       | 6,883,250                | 460       | 270                 | -60 |  |  |  |  |
|                  |                   | 17THRC0008  | 150               | 573,188                       | 6,883,250                | 460       | 270                 | -60 |  |  |  |  |
|                  |                   | 17THRC0015  | 150               | 573,133                       | 6,883,350                | 460       | 270                 | -60 |  |  |  |  |
|                  |                   | 17THRC0016  | 150               | 573,156                       | 6,883,350                | 460       | 270                 | -60 |  |  |  |  |
| Wanderrie        | Gilmour-Morello   | 17WDRC0048  | 160               | 573,163                       | 6,867,746                | 475       | 271                 | -61 |  |  |  |  |
|                  |                   | 17WDRC0049  | 160               | 573,334                       | 6,867,354                | 475       | 272                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0050  | 220               | 573,650                       | 6,866,755                | 475       | 272                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0051  | 200               | 573,599                       | 6,866,753                | 475       | 273                 | -61 |  |  |  |  |
|                  |                   | 17WDRC0052  | 172               | 573,848                       | 6,865,945                | 472       | 266                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0053  | 220               | 573,907                       | 6,865,947                | 473       | 273                 | -61 |  |  |  |  |
|                  |                   | 17WDRC0055  | 178               | 574,741                       | 6,865,150                | 475       | 270                 | -61 |  |  |  |  |
|                  |                   | 17WDRC0056  | 190               | 574,508                       | 6,865,154                | 475       | 269                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0057  | 298               | 574,856                       | 6,865,151                | 475       | 271                 | -61 |  |  |  |  |
|                  |                   | 17WDRC0058  | 196               | 575,295                       | 6,864,346                | 475       | 271                 | -61 |  |  |  |  |
|                  |                   | 17WDRC0059  | 250               | 575,350                       | 6,864,351                | 475       | 274                 | -61 |  |  |  |  |
|                  |                   | 17WDRC0060  | 180               | 575,465                       | 6,863,950                | 475       | 272                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0061  | 220               | 574,052                       | 6,865,551                | 475       | 274                 | -61 |  |  |  |  |
|                  | Santana-Blackmore | 17WDRC0062  | 166               | 570,802                       | 6,874,195                | 476       | 270                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0063  | 226               | 570,900                       | 6,874,201                | 476       | 270                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0064  | 100               | 571,150                       | 6,874,206                | 476       | 267                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0065  | 180               | 571,247                       | 6,874,192                | 476       | 270                 | -61 |  |  |  |  |
|                  |                   | 17WDRC0066  | 130               | 571,301                       | 6,873,805                | 475       | 269                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0067  | 180               | 571,400                       | 6,873,802                | 477       | 273                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0068  | 120               | 571,370                       | 6,873,605                | 476       | 272                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0069  | 180               | 571,476                       | 6,873,600                | 477       | 272                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0070  | 172               | 571,151                       | 6,873,441                | 477       | 269                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0071  | 250               | 571,250                       | 6,873,439                | 472       | 269                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0072  | 160               | 571,251                       | 6,873,197                | 471       | 271                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0073  | 210               | 571,349                       | 6,873,194                | 471       | 271                 | -60 |  |  |  |  |
|                  |                   | 17WDRC0074  | 220               | 571,573                       | 6,873,199                | 474       | 266                 | -60 |  |  |  |  |



| Project<br>Group | Prospect           | Hole ID    | End of<br>Hole Depth<br>(m) | Easting<br>MGA94-51 (m) | Northing<br>MGA94-51 (m) | RL<br>(m) | MGA94-51<br>Azimuth | Dip |
|------------------|--------------------|------------|-----------------------------|-------------------------|--------------------------|-----------|---------------------|-----|
|                  |                    | 17WDRC0075 | 180                         | 571,677                 | 6,873,198                | 472       | 270                 | -60 |
|                  |                    | 17WDRC0076 | 178                         | 571,573                 | 6,873,603                | 471       | 272                 | -60 |
|                  |                    | 17WDRC0077 | 178                         | 571,670                 | 6,873,606                | 476       | 268                 | -60 |
|                  |                    | 17WDRC0078 | 178                         | 571,767                 | 6,873,600                | 477       | 265                 | -61 |
|                  |                    | 17WDRC0079 | 178                         | 571,870                 | 6,873,601                | 477       | 270                 | -61 |
|                  | Satriani           | 17WDRC0082 | 225                         | 572,449                 | 6,870,131                | 467       | 271                 | -60 |
|                  |                    | 17WDRC0083 | 166                         | 572,547                 | 6,870,131                | 468       | 273                 | -59 |
|                  |                    | 17WDRC0084 | 220                         | 572,496                 | 6,869,956                | 477       | 269                 | -60 |
|                  |                    | 17WDRC0085 | 280                         | 572,597                 | 6,869,957                | 469       | 270                 | -61 |
|                  |                    | 17WDRC0086 | 226                         | 572,922                 | 6,868,948                | 473       | 274                 | -61 |
|                  |                    | 17WDRC0087 | 240                         | 572,975                 | 6,868,948                | 471       | 271                 | -60 |
|                  |                    | 17WDRC0089 | 120                         | 572,200                 | 6,870,344                | 460       | 268                 | -61 |
|                  |                    | 17WDRC0090 | 180                         | 572,280                 | 6,870,342                | 462       | 276                 | -61 |
|                  |                    | 17WDRC0091 | 180                         | 572,147                 | 6,870,729                | 452       | 278                 | -60 |
|                  |                    | 17WDRC0093 | 160                         | 572,395                 | 6,869,956                | 471       | 271                 | -60 |
|                  |                    | 17WDRC0094 | 190                         | 572,936                 | 6,868,753                | 475       | 270                 | -60 |
|                  |                    | 17WDRC0095 | 202                         | 572,811                 | 6,869,131                | 473       | 266                 | -61 |
|                  |                    | 17WDRC0096 | 180                         | 572,227                 | 6,870,547                | 456       | 267                 | -61 |
|                  | Page-Hendrix       | 17WDRC0111 | 160                         | 571,301                 | 6,872,337                | 459       | 272                 | -61 |
|                  |                    | 17WDRC0112 | 149                         | 571,398                 | 6,872,330                | 459       | 270                 | -62 |
|                  |                    | 17WDRC0113 | 120                         | 571,706                 | 6,872,311                | 461       | 268                 | -61 |
|                  |                    | 17WDRC0114 | 170                         | 571,446                 | 6,871,943                | 455       | 269                 | -61 |
|                  |                    | 17WDRC0115 | 202                         | 571,843                 | 6,871,937                | 455       | 269                 | -60 |
|                  |                    | 17WDRC0116 | 150                         | 571,996                 | 6,871,359                | 455       | 270                 | -60 |
|                  |                    | 17WDRC0117 | 150                         | 571,785                 | 6,871,132                | 451       | 270                 | -60 |
|                  |                    | 17WDRC0118 | 150                         | 571,936                 | 6,871,130                | 450       | 271                 | -60 |
|                  | Wanderrie Regional | 17WDRC0121 | 196                         | 580,097                 | 6,865,764                | 442       | 270                 | -60 |
|                  |                    | 17WDRC0123 | 178                         | 575,837                 | 6,870,359                | 451       | 270                 | -60 |
|                  |                    | 17WDRC0124 | 214                         | 575,649                 | 6,870,511                | 449       | 267                 | -60 |
|                  |                    | 17WDRC0125 | 232                         | 575,581                 | 6,870,128                | 453       | 270                 | -60 |
|                  |                    | 17WDRC0130 | 200                         | 572,600                 | 6,871,779                | 456       | 271                 | -60 |
|                  |                    | 17WDRC0131 | 86                          | 572,650                 | 6,871,850                | 456       | 267                 | -60 |
|                  |                    | 17WDRC0132 | 150                         | 572,621                 | 6,872,151                | 456       | 267                 | -60 |

# **North Yamarna Diamond Drilling Information**

Table 3: Mineralised diamond drill intersections by Prospect

(intervals > 0.1 g/t Au cut-off including up to 4 metres below cut-off, and intervals > 0.5 g/t Au)

| Project Group            | Prospect     | Hole ID    | From (m) | To (m) | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre |
|--------------------------|--------------|------------|----------|--------|---------------|-------------|-----------------|
| Corkwood                 | Stratocaster | 17CWDD0022 | 40.00    | 41.00  | 1.00          | 0.41        | 0.4             |
|                          |              |            | 51.00    | 53.00  | 2.00          | 0.47        | 0.9             |
|                          |              | Including  | 52.00    | 53.00  | 1.00          | 0.81        | 0.8             |
|                          |              |            | 63.00    | 64.00  | 1.00          | 0.10        | 0.1             |
|                          |              |            | 83.00    | 85.00  | 2.00          | 0.19        | 0.4             |
|                          |              |            | 99.80    | 106.00 | 6.20          | 0.09        | 0.6             |
|                          |              |            | 130.47   | 134.75 | 4.28          | 0.11        | 0.5             |
|                          | Mesaboogie   | 17CWRC0066 | 166.60   | 167.00 | 0.40          | 0.13        | 0.1             |
| Stratigraphic<br>Diamond | McKinley     | 17SRDD0001 | 17.00    | 18.00  | 1.00          | 0.12        | 0.1             |
|                          | Carlton      | 17SRDD0007 | 74.00    | 74.93  | 0.93          | 0.15        | 0.1             |



# North Yamarna RC Drilling Information

 Table 4: Mineralised RC drill intersections by Prospect

(minimum 1 metre >0.5 g/t Au cut-off including up to 2 metres below cut-off, intervals >5.0 g/t Au and individual grades >10 g/t Au).

Values greater than 1.0 gram.metres Au

|               |                   | es greater than 1.0 | gram.metres | -      | Length | Au    | Gram x |
|---------------|-------------------|---------------------|-------------|--------|--------|-------|--------|
| Project Group | Prospect          | Hole ID             | From (m)    | To (m) | (m)    | (g/t) | metre  |
| Tobin Hill    | Dead Dog          | 17THRC0016          | 98          | 99     | 1      | 1.41  | 1.4    |
| Wanderrie     | Gilmour-Morello   | 17WDRC0050          | 130         | 139    | 9      | 0.99  | 8.9    |
|               |                   |                     | 181         | 182    | 1      | 1.85  | 1.9    |
|               |                   | 17WDRC0051          | 48          | 49     | 1      | 1.73  | 1.7    |
|               |                   |                     | 56          | 57     | 1      | 2.09  | 2.1    |
|               |                   |                     | 83          | 85     | 2      | 0.76  | 1.5    |
|               |                   |                     | 88          | 92     | 4      | 3.06  | 12.2   |
|               |                   | Including           | 90          | 91     | 1      | 8.92  | 8.9    |
|               |                   |                     | 96          | 97     | 1      | 2.07  | 2.1    |
|               |                   |                     | 110         | 114    | 4      | 0.37  | 1.5    |
|               |                   |                     | 138         | 139    | 1      | 4.94  | 4.9    |
|               |                   |                     | 187         | 188    | 1      | 1.13  | 1.1    |
|               |                   | 17WDRC0052          | 95          | 98     | 3      | 1.16  | 3.5    |
|               |                   |                     | 150         | 151    | 1      | 1.91  | 1.9    |
|               |                   | 17WDRC0053          | 73          | 74     | 1      | 1.72  | 1.7    |
|               |                   |                     | 130         | 132    | 2      | 0.82  | 1.6    |
|               |                   |                     | 137         | 138    | 1      | 1.66  | 1.7    |
|               |                   |                     | 168         | 170    | 2      | 0.77  | 1.5    |
|               |                   |                     | 196         | 198    | 2      | 0.91  | 1.8    |
|               |                   | 17WDRC0055          | 29          | 30     | 1      | 2.10  | 2.1    |
|               |                   |                     | 35          | 36     | 1      | 1.85  | 1.9    |
|               |                   |                     | 61          | 64     | 3      | 0.57  | 1.7    |
|               |                   | 17WDRC0057          | 91          | 92     | 1      | 1.08  | 1.1    |
|               |                   |                     | 143         | 148    | 5      | 12.52 | 62.6   |
|               |                   | Including           | 143         | 146    | 3      | 20.52 | 61.6   |
|               |                   | Including           | 144         | 145    | 1      | 47.35 | 47.4   |
|               |                   |                     | 265         | 266    | 1      | 1.34  | 1.3    |
|               |                   | 17WDRC0058          | 39          | 43     | 4      | 1.31  | 5.2    |
|               |                   |                     | 46          | 49     | 3      | 0.81  | 2.4    |
|               |                   |                     | 109         | 111    | 2      | 0.71  | 1.4    |
|               |                   | 17WDRC0059          | 56          | 58     | 2      | 0.88  | 1.8    |
|               |                   |                     | 157         | 160    | 3      | 0.40  | 1.2    |
|               |                   | 17WDRC0061          | 71          | 72     | 1      | 1.15  | 1.2    |
|               |                   |                     | 129         | 135    | 6      | 1.38  | 8.3    |
|               |                   |                     | 149         | 150    | 1      | 0.97  | 1.0    |
|               |                   |                     | 198         | 199    | 1      | 6.82  | 6.8    |
|               | Santana-Blackmore | 17WDRC0063          | 71          | 72     | 1      | 1.25  | 1.3    |
|               |                   |                     | 193         | 194    | 1      | 3.64  | 3.6    |
|               |                   | 17WDRC0065          | 42          | 55     | 13     | 0.82  | 10.7   |
|               |                   | 17WDRC0066          | 92          | 93     | 1      | 1.27  | 1.3    |
|               |                   | 17WDRC0067          | 101         | 104    | 3      | 0.53  | 1.6    |
|               |                   |                     | 108         | 109    | 1      | 2.12  | 2.1    |
|               |                   | 17WDRC0069          | 163         | 164    | 1      | 1.35  | 1.4    |
|               |                   | 17WDRC0070          | 102         | 109    | 7      | 1.45  | 10.2   |
|               |                   | 17WDRC0071          | 179         | 183    | 4      | 1.05  | 4.2    |
|               |                   | 17WDRC0074          | 144         | 145    | 1      | 1.00  | 1.0    |
|               |                   |                     | 159         | 160    | 1      | 1.39  | 1.4    |
|               |                   | 17WDRC0077          | 50          | 52     | 2      | 0.80  | 1.6    |
|               | Satriani          | 17WDRC0082          | 98          | 101    | 3      | 0.84  | 2.5    |
|               |                   |                     | 121         | 122    | 1      | 1.29  | 1.3    |
|               |                   |                     | 126         | 133    | 7      | 1.76  | 12.3   |
|               |                   | Including           | 131         | 132    | 1      | 5.59  | 5.6    |
|               |                   | 17WDRC0084          | 59          | 61     | 2      | 2.12  | 4.2    |
|               |                   | 17WDRC0085          | 146         | 147    | 1      | 1.71  | 1.7    |
|               |                   | 17WDRC0090          | 60          | 72     | 12     | 1.17  | 14.0   |
|               |                   |                     | 76          | 78     | 2      | 3.16  | 6.3    |
|               |                   | 17WDRC0091          | 89          | 91     | 2      | 0.62  | 1.2    |
|               |                   |                     |             |        |        |       |        |



| Project Group | Prospect           | Hole ID    | From (m) | To (m) | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre |
|---------------|--------------------|------------|----------|--------|---------------|-------------|-----------------|
|               | •                  | 17WDRC0096 | 87       | 89     | 2             | 1.22        | 2.4             |
|               | Page-Hendrix       | 17WDRC0115 | 155      | 159    | 4             | 0.43        | 1.7             |
|               | Wanderrie Regional | 17WDRC0121 | 131      | 135    | 4             | 1.44        | 5.8             |

# **North Yamarna Aircore Drilling Information**

**Table 5:** Mineralised Aircore drill intersections by Prospect (minimum 1 metre >0.1 g/t Au cut-off including up to 4 metres below cut-off, including intervals >1.0 g/t Au) Eastings, Northings and Azimuths are MGA94\_51

|               | •               | Eastings, Northings and Azimuths are MGA94_51 |                |                 |          | •   |     |             |           | Longth Au     |             | Gram v          |
|---------------|-----------------|-----------------------------------------------|----------------|-----------------|----------|-----|-----|-------------|-----------|---------------|-------------|-----------------|
| Project Group | Prospect        | Hole ID                                       | Easting<br>(m) | Northing<br>(m) | RL       | Azi | Dip | From<br>(m) | To<br>(m) | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre |
| Corkwood      | Stratocaster    | 17CWAC0327                                    | 547,059        | 6,949,393       | 516.5121 | 270 | -60 | 56          | 57        | 1             | 0.17        | 0.2             |
|               |                 | 17CWAC0331                                    | 547,460        | 6,949,407       | 517.3845 | 270 | -60 | 36          | 38        | 2             | 0.12        | 0.2             |
|               |                 | 17CWAC0357                                    | 548,363        | 6,949,002       | 507.7957 | 270 | -60 | 40          | 52        | 12            | 0.19        | 2.3             |
|               |                 | 17CWAC0370                                    | 547,854        | 6,948,596       | 505.4928 | 270 | -60 | 48          | 51        | 3             | 0.10        | 0.3             |
|               |                 | 17CWAC0384                                    | 547,503        | 6,948,200       | 496.2399 | 270 | -60 | 57          | 58        | 1             | 0.15        | 0.2             |
|               |                 | 17CWAC0390                                    | 548,114        | 6,948,186       | 500.1818 | 270 | -60 | 52          | 53        | 1             | 0.14        | 0.1             |
|               |                 | 17CWAC0397                                    | 548,713        | 6,948,198       | 495.257  | 270 | -60 | 52          | 56        | 4             | 0.10        | 0.4             |
|               |                 | 17CWAC0412                                    | 548,711        | 6,947,765       | 488.9327 | 270 | -60 | 44          | 52        | 8             | 0.25        | 2.0             |
|               |                 | 17CWAC0431                                    | 548,958        | 6,947,406       | 484.7119 | 270 | -60 | 48          | 52        | 4             | 0.13        | 0.5             |
|               |                 | 17CWAC0441                                    | 548,860        | 6,946,956       | 477.3695 | 270 | -60 | 44          | 46        | 2             | 0.18        | 0.4             |
|               |                 | 17CWAC0446                                    | 548,624        | 6,946,600       | 470.024  | 270 | -60 | 49          | 50        | 1             | 0.10        | 0.1             |
|               |                 | 17CWAC0452                                    | 548,809        | 6,946,601       | 472.1624 | 90  | -60 | 48          | 49        | 1             | 0.21        | 0.2             |
|               |                 | 17CWAC0457                                    | 548,964        | 6,946,172       | 465.9613 | 270 | -60 | 36          | 40        | 4             | 0.24        | 1.0             |
|               |                 | 17CWAC0465                                    | 549,210        | 6,945,790       | 457.6921 | 270 | -60 | 37          | 38        | 1             | 0.12        | 0.1             |
| Stock Route   | Stock Route     | 17SRAC0021                                    | 562,490        | 6,903,027       | 413.4274 | 70  | -60 | 48          | 52        | 4             | 0.10        | 0.4             |
|               |                 | 17SRAC0022                                    | 562,393        | 6,902,983       | 413.7147 | 70  | -60 | 64          | 68        | 4             | 0.26        | 1.0             |
|               |                 | 17SRAC0043                                    | 561,813        | 6,903,424       | 411.7287 | 70  | -60 | 36          | 43        | 7             | 0.11        | 0.8             |
|               |                 | 17SRAC0134                                    | 562,122        | 6,903,770       | 413.8532 | 70  | -60 | 16          | 20        | 4             | 0.25        | 1.0             |
|               |                 | 17SRAC0144                                    | 561,869        | 6,904,232       | 413.3828 | 70  | -60 | 44          | 47        | 3             | 0.60        | 1.8             |
|               | McKinley        | 17SRAC0287                                    | 564,971        | 6,890,205       | 426.4699 | 270 | -60 | 26          | 27        | 1             | 0.15        | 0.2             |
| Wanderrie     | Gilmour-Morello | 17WDAC0430                                    | 573,659        | 6,866,547       | 460.7299 | 270 | -60 | 52          | 76        | 24            | 0.53        | 12.7            |
|               |                 | Including                                     |                |                 |          |     |     | 60          | 64        | 4             | 2.31        | 9.2             |
|               |                 |                                               |                |                 |          |     |     | 84          | 94        | 10            | 0.87        | 8.7             |
|               |                 | Including                                     |                |                 |          |     |     | 88          | 94        | 6             | 1.31        | 7.9             |
|               |                 | 17WDAC0439                                    | 573,699        | 6,866,168       | 472.5436 | 270 | -60 | 36          | 40        | 4             | 0.23        | 0.9             |
|               |                 |                                               |                |                 |          |     |     | 88          | 89        | 1             | 0.83        | 0.8             |
|               |                 | 17WDAC0442                                    | 573,854        | 6,866,149       | 471.0598 | 270 | -60 | 72          | 80        | 8             | 0.71        | 5.7             |
|               |                 | Including                                     |                |                 |          |     |     | 72          | 76        | 4             | 1.18        | 4.7             |
|               |                 | 17WDAC0443                                    | 573,903        | 6,866,146       | 469.6607 | 270 | -60 | 76          | 78        | 2             | 0.20        | 0.4             |
|               |                 | 17WDAC0447                                    | 573,751        | 6,865,749       | 474.582  | 270 | -60 | 52          | 56        | 4             | 0.11        | 0.4             |
|               |                 | 17WDAC0448                                    | 573,808        | 6,865,750       | 473.5631 | 270 | -60 | 68          | 71        | 3             | 0.18        | 0.5             |
|               |                 | 17WDAC0449                                    | 573,858        | 6,865,755       | 481      | 270 | -60 | 84          | 88        | 4             | 0.34        | 1.4             |
|               |                 | 17WDAC0450                                    | 573,904        | 6,865,760       | 474.5825 | 270 | -60 | 80          | 96        | 16            | 0.61        | 9.8             |
|               |                 |                                               |                |                 |          |     |     | 102         | 103       | 1             | 0.20        | 0.2             |
|               |                 | 17WDAC0451                                    | 573,953        | 6,865,753       | 474.3087 | 270 | -60 | 76          | 80        | 4             | 0.83        | 3.3             |
|               |                 | 17WDAC0452                                    | 574,003        | 6,865,749       | 474.0109 | 270 | -60 | 72          | 76        | 4             | 0.41        | 1.6             |
|               |                 | 17WDAC0455                                    | 574,148        | 6,865,743       | 474.8    | 270 | -60 | 64          | 76        | 12            | 0.30        | 3.6             |
|               |                 | 17WDAC0462                                    | 574,003        | 6,865,345       | 477.488  | 270 | -60 | 72          | 76        | 4             | 0.11        | 0.4             |
|               |                 | 17WDAC0464                                    | 574,096        | 6,865,340       | 474.9049 | 270 | -60 | 56          | 60        | 4             | 0.15        | 0.6             |
|               |                 |                                               |                |                 |          |     |     | 68          | 76        | 8             | 0.22        | 1.8             |



# **Appendix 2 – Gruyere JV Drill Hole Information**

Table 1: Collar coordinate details for diamond drilling

| Project Group       | Prospect | Hole ID    | End of Hole<br>Depth (m) | Easting<br>MGA94-51 (m) | Northing<br>MGA94-51 (m) | RL<br>(m) | MGA94-<br>51<br>Azimuth | Dip |
|---------------------|----------|------------|--------------------------|-------------------------|--------------------------|-----------|-------------------------|-----|
| Attila-Alaric Trend | Argos    | 17ALDD0008 | 300.80                   | 563,596                 | 6,889,110                | 423       | 252                     | -60 |
|                     |          | 17ALDD0009 | 309.30                   | 563,299                 | 6,890,033                | 414       | 252                     | -60 |
|                     |          | 17ALDD0010 | 132.00                   | 563,153                 | 6,890,070                | 420       | 252                     | -60 |
|                     | Montagne | 17ALDD0011 | 150.10                   | 562,715                 | 6,891,794                | 415       | 252                     | -60 |
|                     |          | 17ALDD0012 | 301.20                   | 562,628                 | 6,892,316                | 414       | 252                     | -60 |
|                     |          | 17ALDD0013 | 250.00                   | 562,739                 | 6,891,891                | 414       | 252                     | -60 |
|                     |          | 17ALDD0016 | 300.00                   | 563,047                 | 6,891,002                | 413       | 252                     | -60 |
|                     |          | 17ALDD0018 | 200.00                   | 562,867                 | 6,891,453                | 416       | 252                     | -60 |
|                     | Attila   | 17ATDD0012 | 348.82                   | 565,978                 | 6,883,180                | 443       | 252                     | -60 |
|                     |          | 17ATDD0018 | 301.07                   | 566,005                 | 6,883,098                | 443       | 252                     | -60 |
| Dorothy Hills       | Gruyere  | 17GY0338   | 300.30                   | 583,063                 | 6,903,481                | 411       | 275                     | -60 |

Table 2: Collar coordinate details for RC drilling

| Table 2: Collar coordinate details for RC drilling  End of |          |            |                   |                         |                          |           | MGA94-        |     |
|------------------------------------------------------------|----------|------------|-------------------|-------------------------|--------------------------|-----------|---------------|-----|
| Project Group                                              | Prospect | Hole ID    | Hole Depth<br>(m) | Easting<br>MGA94-51 (m) | Northing<br>MGA94-51 (m) | RL<br>(m) | 51<br>Azimuth | Dip |
| Attila-Alaric Trend                                        | Argos    | 17ALRC0203 | 150               | 563,107                 | 6,890,322                | 419       | 252           | -60 |
|                                                            |          | 17ALRC0204 | 220               | 563,153                 | 6,890,337                | 419       | 252           | -60 |
|                                                            |          | 17ALRC0205 | 170               | 563,106                 | 6,890,427                | 419       | 252           | -60 |
|                                                            |          | 17ALRC0206 | 240               | 563,155                 | 6,890,442                | 419       | 252           | -60 |
|                                                            |          | 17ALRC0207 | 160               | 563,068                 | 6,890,514                | 418       | 252           | -60 |
|                                                            |          | 17ALRC0208 | 235               | 563,118                 | 6,890,528                | 418       | 252           | -60 |
|                                                            | Montagne | 17ALRC0209 | 148               | 562,872                 | 6,891,282                | 416       | 252           | -60 |
|                                                            |          | 17ALRC0210 | 90                | 562,736                 | 6,891,559                | 415       | 252           | -60 |
|                                                            |          | 17ALRC0211 | 150               | 562,784                 | 6,891,574                | 415       | 252           | -60 |
|                                                            |          | 17ALRC0212 | 100               | 562,715                 | 6,891,637                | 415       | 252           | -60 |
|                                                            |          | 17ALRC0213 | 160               | 562,762                 | 6,891,651                | 415       | 252           | -60 |
|                                                            | Alaric   | 17ALRC0214 | 180               | 562,413                 | 6,892,768                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0215 | 130               | 562,382                 | 6,892,819                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0216 | 180               | 562,427                 | 6,892,832                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0217 | 166               | 562,330                 | 6,892,950                | 411       | 252           | -60 |
|                                                            |          | 17ALRC0218 | 200               | 562,364                 | 6,892,961                | 411       | 252           | -60 |
|                                                            |          | 17ALRC0219 | 160               | 562,280                 | 6,893,154                | 411       | 252           | -60 |
|                                                            |          | 17ALRC0220 | 180               | 561,966                 | 6,893,888                | 409       | 252           | -60 |
|                                                            |          | 17ALRC0221 | 150               | 561,769                 | 6,894,456                | 408       | 252           | -60 |
|                                                            |          | 17ALRC0222 | 250               | 561,760                 | 6,894,562                | 407       | 252           | -60 |
|                                                            |          | 17ALRC0223 | 180               | 561,714                 | 6,894,647                | 407       | 252           | -60 |
|                                                            | Argos    | 17ALRC0224 | 220               | 563,764                 | 6,888,582                | 412       | 252           | -60 |
|                                                            | J        | 17ALRC0225 | 242               | 563,619                 | 6,889,069                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0226 | 256               | 563,589                 | 6,889,161                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0227 | 220               | 563,531                 | 6,889,354                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0228 | 220               | 563,502                 | 6,889,447                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0229 | 220               | 563,435                 | 6,889,591                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0230 | 200               | 563,465                 | 6,889,550                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0231 | 220               | 563,253                 | 6,890,158                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0232 | 244               | 563,202                 | 6,890,459                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0233 | 296               | 563,164                 | 6,890,545                | 412       | 252           | -60 |
|                                                            | Montagne | 17ALRC0234 | 173               | 563,089                 | 6,890,803                | 412       | 252           | -60 |
|                                                            | · ·      | 17ALRC0235 | 244               | 563,049                 | 6,890,913                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0236 | 240               | 563,001                 | 6,891,083                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0237 | 120               | 562,890                 | 6,891,146                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0239 | 60                | 562,769                 | 6,891,365                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0240 | 120               | 562,816                 | 6,891,381                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0241 | 200               | 562,864                 | 6,891,396                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0242 | 214               | 562,830                 | 6,891,585                | 412       | 252           | -60 |
|                                                            |          | 17ALRC0243 | 190               | 562,812                 | 6,891,662                | 412       | 252           | -60 |
|                                                            | Attila   | 17ATRC0028 | 272               | 565,961                 | 6,883,041                | 444       | 252           | -60 |



# **GJV Diamond Drilling Information**

**Table 3:** Mineralised diamond drill intersections by Prospect (intervals >0.5 g/t Au cut-off including up to 2 metres below cut-off and individual grades >10 g/t Au). Values greater than 1.0 gram.metres Au

| Project Group       | Prospect | Hole ID    | From (m) | To (m) | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre |
|---------------------|----------|------------|----------|--------|---------------|-------------|-----------------|
| Attila-Alaric Trend | Argos    | 17ALDD0008 | 173.00   | 182.00 | 9.00          | 2.54        | 22.9            |
|                     | 0        | Including  | 181.00   | 182.00 | 1.00          | 10.40       | 10.4            |
|                     |          | J          | 186.00   | 188.00 | 2.00          | 1.27        | 2.5             |
|                     |          |            | 283.00   | 284.00 | 1.00          | 1.86        | 1.9             |
|                     |          |            | 298.00   | 299.00 | 1.00          | 2.66        | 2.7             |
|                     |          | 17ALDD0010 | 47.50    | 52.28  | 4.78          | 1.30        | 6.2             |
|                     |          |            | 57.00    | 57.99  | 0.99          | 1.18        | 1.2             |
|                     |          |            | 65.27    | 67.90  | 2.63          | 0.57        | 1.5             |
|                     |          |            | 126.58   | 127.28 | 0.70          | 2.34        | 1.6             |
|                     | Montagne | 17ALDD0011 | 34.00    | 35.00  | 1.00          | 1.35        | 1.4             |
|                     | · ·      |            | 39.00    | 40.20  | 1.20          | 1.72        | 2.1             |
|                     |          |            | 52.00    | 53.00  | 1.00          | 1.15        | 1.2             |
|                     |          |            | 56.00    | 64.47  | 8.47          | 15.38       | 130.3           |
|                     |          | Including  | 56.00    | 57.00  | 1.00          | 12.09       | 12.1            |
|                     |          | And        | 58.00    | 59.00  | 1.00          | 28.27       | 28.3            |
|                     |          | And        | 59.00    | 59.90  | 0.90          | 11.60       | 10.4            |
|                     |          | And        | 61.75    | 62.00  | 0.25          | 88.13       | 22.0            |
|                     |          | And        | 62.00    | 63.00  | 1.00          | 52.96       | 53.0            |
|                     |          |            | 77.36    | 79.00  | 1.64          | 1.48        | 2.4             |
|                     |          |            | 104.00   | 106.40 | 2.40          | 8.59        | 20.6            |
|                     |          | Including  | 104.00   | 104.75 | 0.75          | 14.62       | 11.0            |
|                     |          | And        | 104.75   | 104.93 | 0.18          | 10.11       | 1.8             |
|                     |          | 71110      | 123.00   | 124.00 | 1.00          | 1.23        | 1.2             |
|                     |          | 17ALDD0012 | 173.28   | 173.97 | 0.69          | 4.85        | 3.3             |
|                     |          | 1771200012 | 187.85   | 191.00 | 3.15          | 1.04        | 3.3             |
|                     |          |            | 195.02   | 195.22 | 0.20          | 9.75        | 2.0             |
|                     |          |            | 211.00   | 212.00 | 1.00          | 1.52        | 1.5             |
|                     |          |            | 236.00   | 238.04 | 2.04          | 1.11        | 2.3             |
|                     |          | 17ALDD0013 | 144.00   | 146.64 | 2.64          | 1.98        | 5.2             |
|                     |          | 17ALDD0013 | 149.60   | 149.80 | 0.20          | 2.87        | 0.6             |
|                     |          |            | 152.85   | 154.40 | 1.55          | 0.70        | 1.1             |
|                     |          |            | 188.00   | 192.00 | 4.00          | 0.58        | 2.3             |
|                     |          | 17ALDD0016 | 215.50   | 216.50 | 1.00          | 0.99        | 1.0             |
|                     |          | 17ALDD0010 | 223.10   | 229.00 | 5.90          | 1.02        | 6.0             |
|                     |          |            | 233.00   | 236.00 | 3.00          | 1.46        | 4.4             |
|                     |          |            | 252.00   | 255.00 | 3.00          | 2.75        | 8.3             |
|                     |          |            | 266.00   | 267.00 | 1.00          | 1.31        | 1.3             |
|                     |          | 1741000019 | 124.76   | 125.40 | 0.64          | 3.88        | 2.5             |
|                     |          | 17ALDD0018 | 134.00   | 136.90 | 2.90          | 1.33        | 3.9             |
|                     |          |            | 140.23   | 142.35 | 2.12          | 1.33        | 30.0            |
|                     |          | Including  | 140.23   | 142.55 | 0.33          | 87.27       | 28.8            |
|                     |          | including  | 155.37   | 155.57 | 0.33          | 5.82        | 1.2             |
|                     |          |            | 173.54   | 174.60 | 1.06          | 4.22        | 4.5             |
|                     |          |            |          |        |               |             |                 |
|                     | A++il-   | 1747000013 | 189.00   | 189.38 | 0.38          | 2.66        | 1.0             |
|                     | Attila   | 17ATDD0012 | 260.00   | 264.00 | 4.00          | 0.89        | 3.6             |
|                     |          |            | 295.00   | 304.00 | 9.00          | 1.45        | 13.1            |
|                     |          |            | 308.32   | 315.00 | 6.68          | 1.16        | 7.7             |
|                     |          |            | 318.00   | 319.00 | 1.00          | 2.90        | 2.9             |
|                     |          | 474700000  | 327.00   | 341.00 | 14.00         | 1.77        | 24.8            |
|                     |          | 17ATDD0018 | 252.12   | 253.03 | 0.91          | 1.24        | 1.1             |
|                     |          |            | 276.14   | 279.00 | 2.86          | 0.82        | 2.3             |
|                     |          |            | 291.00   | 292.00 | 1.00          | 1.17        | 1.2             |

 Table 4: Mineralised diamond drill intersections for Dorothy Hills only (intervals >0.1 g/t Au cut-off including up to 4 metres below cut-off)

| Project Group | Prospect | Hole ID  | From (m) | To (m) | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre |
|---------------|----------|----------|----------|--------|---------------|-------------|-----------------|
| Dorothy Hills | Gruyere  | 17GY0338 | 70.00    | 71.00  | 1.00          | 0.18        | 0.2             |



# **Gruyere JV RC Drilling Information**

**Table 5:** Mineralised RC drill intersections by Prospect (minimum 1 metre > 0.5 g/t Au cut-off including up to 2 metres below cut-off and individual grades > 10.0 g/t Au).

Values greater than 1.0 gram.metres Au

| Project Group       | Prospect | Hole ID                 | From (m)          | To (m)         | Length<br>(m) | Au<br>(g/t)            | Gram x<br>metre     |
|---------------------|----------|-------------------------|-------------------|----------------|---------------|------------------------|---------------------|
| Attila-Alaric Trend | Argos    | 17ALRC0203              | 44                | 49             | 5             | 1.11                   | 5.6                 |
|                     |          |                         | 64                | 68             | 4             | 1.23                   | 4.9                 |
|                     |          |                         | 79                | 81             | 2             | 0.98                   | 2.0                 |
|                     |          | 17ALRC0204              | 118               | 127            | 9             | 1.31                   | 11.8                |
|                     |          |                         | 148               | 151            | 3             | 1.44                   | 4.3                 |
|                     |          |                         | 205               | 206            | 1             | 2.83                   | 2.8                 |
|                     |          | 17ALRC0205              | 76                | 83             | 7             | 1.05                   | 7.4                 |
|                     |          |                         | 107               | 109            | 2             | 3.95                   | 7.9                 |
|                     |          |                         | 113               | 114            | 1             | 1.16                   | 1.2                 |
|                     |          | 17ALRC0206              | 113               | 116            | 3             | 1.05                   | 3.2                 |
|                     |          |                         | 144               | 146            | 2             | 0.57                   | 1.1                 |
|                     |          |                         | 156               | 157            | 1             | 1.40                   | 1.4                 |
|                     |          |                         | 165               | 175            | 10            | 3.83                   | 38.3                |
|                     |          |                         | 181               | 188            | 7             | 1.01                   | 7.1                 |
|                     |          | 4744,000007             | 234               | 235            | 1             | 3.26                   | 3.3                 |
|                     |          | 17ALRC0207              | 53                | 60             | 7             | 1.34                   | 9.4                 |
|                     |          |                         | 69                | 74             | 5             | 1.36                   | 6.8                 |
|                     |          |                         | 88                | 89<br>131      | 1             | 6.96                   | 7.0                 |
|                     |          |                         | 120               | 121            | 1             | 2.10                   | 2.1                 |
|                     |          | 4741.00000              | 147               | 148            | 1             | 1.08                   | 1.1                 |
|                     |          | 17ALRC0208              | 149               | 154            | 5<br>15       | 1.26                   | 6.3                 |
|                     |          |                         | 160               | 175            | 15            | 1.42                   | 21.3                |
|                     |          |                         | 181               | 184            | 3             | 0.57                   | 1.7                 |
|                     |          |                         | 194               | 202            | 8             | 2.30                   | 18.4                |
|                     | Mantagna | 1741.00000              | 211               | 221<br>84      | 10<br>7       | 0.47                   | 4.7<br>9.8          |
|                     | Montagne | 17ALRC0209              | 77                |                |               | 1.40                   |                     |
|                     |          |                         | 88<br>97          | 89             | 1             | 1.07                   | 1.1                 |
|                     |          |                         |                   | 98             | 1<br>2        | 1.00                   | 1.0                 |
|                     |          |                         | 112               | 114            | 1             | 0.80                   | 1.6                 |
|                     |          | 1741.000310             | 130               | 131            |               | 0.87                   | 0.9                 |
|                     |          | 17ALRC0210              | 8                 | 9              | 1             | 0.95                   | 1.0                 |
|                     |          |                         | 15<br>45          | 22             | 7             | 1.41                   | 9.9                 |
|                     |          |                         |                   | 50             | 5             | 0.61                   | 3.1                 |
|                     |          | 17ALRC0211              | 58<br>76          | 60<br>92       | 2<br>16       | 1.13<br>2.36           | 2.3<br>37.8         |
|                     |          |                         |                   |                |               |                        |                     |
|                     |          | Including               | 83<br>84          | 84<br>95       | 1             | 12.77                  | 12.8                |
|                     |          | And                     | 84<br>119         | 85<br>121      | 1             | 10.39                  | 10.4                |
|                     |          |                         | 118<br>129        | 121<br>132     | 3<br>3        | 1.83<br>0.59           | 5.5<br>1.8          |
|                     |          | 17ALRC0212              | 8                 | 30             | 3<br>22       | 1.93                   | 1.8<br>42.5         |
|                     |          | 1/ALNCU212              | 36                | 38             | 2             | 13.40                  | 26.8                |
|                     |          | Including               | 36                | 38<br>37       | 1             | 25.83                  | 25.8                |
|                     |          | meidung                 | 67                | 69             | 2             | 3.49                   | 7.0                 |
|                     |          |                         | 88                | 90             | 2             | 5.06                   | 10.1                |
|                     |          |                         | 93                | 94             | 1             | 0.99                   | 1.0                 |
|                     |          | 17ALRC0213              | 69                | 94<br>74       | 5             | 0.89                   | 4.5                 |
|                     |          | 1/ALNC0213              | 78                | 82             | 4             | 0.89                   | 3.1                 |
|                     |          |                         | 78<br>88          | 92             | 4             | 0.77                   | 2.6                 |
|                     |          |                         | 127               | 129            | 2             | 1.98                   | 4.0                 |
|                     |          |                         | 141               | 142            | 1             | 5.76                   | 5.8                 |
|                     |          |                         |                   |                | 1             | 1.10                   | 1.1                 |
|                     |          |                         | 150               |                |               |                        | 1.1                 |
|                     | Alaric   | 17 <u>01</u> RC0214     | 150<br>3 <i>4</i> | 151<br>36      |               |                        |                     |
|                     | Alaric   | 17ALRC0214              | 34                | 36             | 2             | 11.35                  | 22.7                |
|                     | Alaric   | 17ALRC0214<br>Including | 34<br>34          | 36<br>35       | 2<br>1        | 11.35<br>20.44         | 22.7<br>20.4        |
|                     | Alaric   |                         | 34<br>34<br>45    | 36<br>35<br>46 | 2<br>1<br>1   | 11.35<br>20.44<br>3.16 | 22.7<br>20.4<br>3.2 |
|                     | Alaric   |                         | 34<br>34          | 36<br>35       | 2<br>1        | 11.35<br>20.44         | 22.7<br>20.4        |



| Project Group | Prospect | Hole ID       | From (m)   | To (m)     | Length<br>(m) | Au<br>(g/t)   | Gram x<br>metre |
|---------------|----------|---------------|------------|------------|---------------|---------------|-----------------|
|               |          |               | 103        | 106        | 3             | 3.53          | 10.6            |
|               |          |               | 109        | 115        | 6             | 0.75          | 4.5             |
|               |          | 4741.000245   | 139        | 140        | 1             | 5.09          | 5.1             |
|               |          | 17ALRC0215    | 30         | 32         | 2             | 1.06          | 2.1             |
|               |          | Including     | 51<br>52   | 56<br>53   | 5<br>1        | 6.95<br>24.32 | 34.8<br>24.3    |
|               |          | 17ALRC0215    | 92         | 95         | 3             | 3.71          | 11.1            |
|               |          | 17ALNC0213    | 98         | 106        | 8             | 2.05          | 16.4            |
|               |          |               | 112        | 115        | 3             | 1.05          | 3.2             |
|               |          | 17ALRC0216    | 117        | 118        | 1             | 4.21          | 4.2             |
|               |          | 277121100220  | 156        | 157        | 1             | 13.61         | 13.6            |
|               |          | 17ALRC0217    | 82         | 84         | 2             | 0.80          | 1.6             |
|               |          |               | 87         | 94         | 7             | 1.07          | 7.5             |
|               |          | 17ALRC0218    | 100        | 101        | 1             | 3.09          | 3.1             |
|               |          |               | 132        | 136        | 4             | 1.54          | 6.2             |
|               |          | 17ALRC0219    | 120        | 124        | 4             | 0.39          | 1.6             |
|               |          |               | 143        | 146        | 3             | 0.80          | 2.4             |
|               |          |               | 153        | 157        | 4             | 0.86          | 3.4             |
|               |          | 17ALRC0220    | 79         | 84         | 5             | 0.68          | 3.4             |
|               |          |               | 89         | 90         | 1             | 1.03          | 1.0             |
|               |          |               | 95         | 100        | 5             | 6.87          | 34.4            |
|               |          | Including     | 98         | 99         | 1             | 32.54         | 32.5            |
|               |          |               | 104        | 105        | 1             | 1.06          | 1.1             |
|               |          |               | 121        | 124        | 3             | 2.33          | 7.0             |
|               |          | 17ALRC0221    | 76         | 77         | 1             | 1.69          | 1.7             |
|               |          |               | 93         | 96         | 3             | 1.69          | 5.1             |
|               |          | 17ALRC0222    | 140        | 142        | 2             | 1.25          | 2.5             |
|               |          | 17ALRC0223    | 59         | 60         | 1             | 1.70          | 1.7             |
|               |          |               | 124        | 125        | 1             | 1.28          | 1.3             |
|               |          |               | 179        | 180        | 1             | 1.56          | 1.6             |
|               | Argos    | 17ALRC0224    | 140        | 149        | 9             | 0.87          | 7.8             |
|               |          |               | 173        | 176        | 3             | 4.01          | 12.0            |
|               |          | Including     | 173        | 174        | 1             | 10.58         | 10.6            |
|               |          | 17ALDC022E    | 204        | 206        | 2             | 1.14          | 2.3             |
|               |          | 17ALRC0225    | 195        | 199        | 4             | 0.70          | 2.8             |
|               |          |               | 205<br>210 | 207<br>212 | 2<br>2        | 1.72<br>0.78  | 3.4<br>1.6      |
|               |          |               | 219        | 220        | 1             | 4.02          | 4.0             |
|               |          | 17ALRC0226    | 197        | 202        | 5             | 1.45          | 7.3             |
|               |          | 1/ALNC0220    | 206        | 215        | 9             | 1.45          | 7.5<br>9.5      |
|               |          |               | 232        | 233        | 1             | 0.99          | 1.0             |
|               |          | 17ALRC0227    | 126        | 135        | 9             | 1.49          | 13.4            |
|               |          | 1///[[[(0022/ | 153        | 154        | 1             | 1.51          | 1.5             |
|               |          | 17ALRC0228    | 117        | 128        | 11            | 0.54          | 5.9             |
|               |          |               | 131        | 132        | 1             | 1.56          | 1.6             |
|               |          | 17ALRC0229    | 119        | 126        | 7             | 1.06          | 7.4             |
|               |          |               | 129        | 134        | 5             | 1.19          | 6.0             |
|               |          | 17ALRC0230    | 96         | 97         | 1             | 2.79          | 2.8             |
|               |          |               | 101        | 106        | 5             | 1.95          | 9.8             |
|               |          |               | 109        | 113        | 4             | 0.84          | 3.4             |
|               |          |               | 121        | 124        | 3             | 0.94          | 2.8             |
|               |          |               | 146        | 147        | 1             | 5.72          | 5.7             |
|               |          | 17ALRC0231    | 67         | 68         | 1             | 1.31          | 1.3             |
|               |          |               | 173        | 194        | 21            | 1.54          | 32.3            |
|               |          |               | 218        | 219        | 1             | 1.14          | 1.1             |
|               | Montagne | 17ALRC0235    | 207        | 208        | 1             | 1.01          | 1.0             |
|               |          |               | 230        | 232        | 2             | 3.40          | 6.8             |
|               |          |               |            |            |               |               |                 |
|               |          |               | 242        | 243        | 1             | 1.01          | 1.0             |
|               |          | 17ALRC0236    | 156        | 157        | 1             | 1.27          | 1.3             |
|               |          | 17ALRC0236    |            |            |               |               |                 |



| Project Group | Prospect | Hole ID      | From (m) | To (m) | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre |
|---------------|----------|--------------|----------|--------|---------------|-------------|-----------------|
| •             | •        | <del>-</del> | 213      | 216    | 3             | 3.24        | 9.7             |
|               |          | 17ALRC0237   | 30       | 31     | 1             | 1.70        | 1.7             |
|               |          |              | 52       | 53     | 1             | 1.79        | 1.8             |
|               |          |              | 61       | 65     | 4             | 1.37        | 5.5             |
|               |          |              | 79       | 80     | 1             | 0.86        | 0.9             |
|               |          | 17ALRC0240   | 38       | 45     | 7             | 2.65        | 18.6            |
|               |          | Including    | 40       | 41     | 1             | 14.21       | 14.2            |
|               |          |              | 48       | 58     | 10            | 0.78        | 7.8             |
|               |          | 17ALRC0241   | 94       | 97     | 3             | 2.37        | 7.1             |
|               |          |              | 103      | 114    | 11            | 1.70        | 18.7            |
|               |          | Including    | 109      | 110    | 1             | 11.39       | 11.4            |
|               |          |              | 118      | 119    | 1             | 2.21        | 2.2             |
|               |          |              | 140      | 141    | 1             | 1.70        | 1.7             |
|               |          |              | 151      | 153    | 2             | 1.08        | 2.2             |
|               |          | 17ALRC0242   | 7        | 8      | 1             | 1.75        | 1.8             |
|               |          |              | 146      | 154    | 8             | 1.73        | 13.8            |
|               |          | Including    | 154      | 155    | 1             | 10.12       | 10.1            |
|               |          |              | 167      | 172    | 5             | 0.80        | 4.0             |
|               |          |              | 177      | 178    | 1             | 1.01        | 1.0             |
|               |          |              | 195      | 199    | 4             | 3.12        | 12.5            |
|               |          | 17ALRC0243   | 138      | 141    | 3             | 0.56        | 1.7             |
|               |          |              | 153      | 159    | 6             | 2.54        | 15.2            |
|               |          |              | 177      | 178    | 1             | 1.08        | 1.1             |
|               |          |              | 185      | 187    | 2             | 1.00        | 2.0             |
|               | Attila   | 17ATRC0028   | 168      | 170    | 2             | 0.74        | 1.5             |
|               |          |              | 192      | 193    | 1             | 5.45        | 5.5             |
|               |          |              | 203      | 213    | 10            | 1.38        | 13.8            |
|               |          |              | 216      | 226    | 10            | 1.40        | 14.0            |
|               |          |              | 233      | 236    | 3             | 1.18        | 3.5             |
|               |          |              | 239      | 243    | 4             | 2.36        | 9.4             |



# **Appendix 3 – South Yamarna JV Drill Hole Information**

Table 1: Collar coordinate details for RC drilling

| Project Group | Prospect      | Hole ID    | End of<br>Hole Depth<br>(m) | Easting<br>MGA94-51 (m) | Northing<br>MGA94-51 (m) | RL<br>(m) | MGA94-51<br>Azimuth | Dip |
|---------------|---------------|------------|-----------------------------|-------------------------|--------------------------|-----------|---------------------|-----|
| Riviera       | Yaffler South | 17SYRC0121 | 191                         | 584,226                 | 6,846,744                | 466       | 270                 | -60 |
|               |               | 17SYRC0122 | 250                         | 583,924                 | 6,847,159                | 464       | 276                 | -61 |
|               |               | 17SYRC0123 | 317                         | 583,499                 | 6,847,941                | 478       | 272                 | -61 |

#### **South Yamarna JV RC Drilling Information**

 Table 2: Mineralised RC drill intersections by Prospect

(minimum 1 metre > 0.5 g/t Au cut-off including up to 2 metres below cut-off). Values greater than 1.0 gram.metres Au

| Hole ID    | From (m) | To (m) | Length<br>(m) | Au<br>(g/t) | Gram x<br>metre |
|------------|----------|--------|---------------|-------------|-----------------|
| 17SYRC0122 | 67       | 68     | 1             | 0.53        | 0.5             |
|            | 144      | 145    | 1             | 0.56        | 0.6             |
|            | 152      | 154    | 2             | 2.10        | 4.2             |
| 17SYRC0123 | 147      | 149    | 2             | 0.80        | 1.6             |
|            | 152      | 155    | 3             | 0.73        | 2.2             |
|            | 227      | 229    | 2             | 1.88        | 3.8             |
|            | 238      | 239    | 1             | 0.61        | 0.6             |
|            |          |        |               |             |                 |

# **South Yamarna JV Aircore Drilling Information**

**Table 3:** Mineralised Aircore drill intersections by Prospect

(minimum 1 metre >0.1 g/t Au cut-off including up to 4 metres below cut-off, including intervals >1.0 g/t Au)

Eastings, Northings and Azimuths are MGA94\_51.

| Project Group | Prospect       | Hole ID    | Easting<br>(m) | Northing<br>(m) | RL     | Azi | Dip | From<br>(m) | To<br>(m) | Length<br>(m) | Au<br>(g/t) | Gram<br>x<br>metre |
|---------------|----------------|------------|----------------|-----------------|--------|-----|-----|-------------|-----------|---------------|-------------|--------------------|
| Beefwood      | Landmark       | 17SYAC1130 | 598,096        | 6,849,755       | 430    | 270 | -60 | 48          | 52        | 4             | 0.38        | 1.5                |
|               |                | 17SYAC1163 | 598,203        | 6,847,357       | 421    | 270 | -60 | 56          | 60        | 4             | 0.18        | 0.7                |
| Spearwood     | Kingston North | 17SYAC1178 | 592,778        | 6843955         | 448    | 270 | -60 | 78          | 79        | 1             | 0.52        | 0.5                |
|               |                | 17SYRC1183 | 592,848        | 6843459         | 453    | 270 | -60 | 60          | 72        | 12            | 1.60        | 19.2               |
|               |                | Including  |                |                 |        |     |     | 60          | 64        | 4             | 4.63        | 18.5               |
|               |                |            |                |                 |        |     |     | 84          | 88        | 4             | 0.16        | 0.6                |
|               |                | 17SYAC1187 | 592,791        | 6,843,139       | 455.07 | 270 | -60 | 60          | 64        | 4             | 0.11        | 0.4                |



# **Appendix 4**

# JORC Code, 2012 Edition – Table 1 Report – Yamarna Diamond, RC and Aircore Exploration Results

#### **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.                                                                                                                                                                                                                                        | DDH: Drill core is logged geologically and marked up for assay at approximate 0.5-1 m intervals based on geological observations. Drill core is cut in half by a diamond saw and half core samples submitted for assay analysis.  RC: Samples were collected as drilling chips from the RC rig using a cyclone collection unit and directed through a rotary cone splitter to create a 2-3 kg sample for assay. Samples were taken as individual metre samples and composite samples collected with a spear.  AC: Composite chip samples collected with a scoop from sample piles were used to derive samples for aircore programmes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | Include reference to measures taken to ensure sample representation and the appropriate calibration of any measurement tools or systems used.                                                                                                                                                                                                                                                                                                                                                                                                                       | Sampling was carried out under Gold Road's protocol and QAQC procedures. Laboratory QAQC was also conducted. See further details below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | DDH: Diamond drilling was completed using a HQ3 or NQ2 drilling bit for all holes. Core is cut in half for sampling, with a half core sample sent for assay at measured intervals. All sample pulps are analysed by the laboratory using a desk mounted Portable XRF machine to provide a 30 element suite of XRF assays.  RC: holes were drilled with a 5.5 inch face-sampling bit, 1 m samples collected through a cyclone and static cone splitter, to form a 2-3 kg sample. For all samples the entire 1 m sample was sent to the laboratory for analysis. All samples were fully pulverised at the lab to -75 um, to produce a 50 g charge for Fire Assay with AAS finish. All pulps from the samples were also analysed by the laboratory using a desk mounted Portable XRF machine to provide a 30 element suite of XRF assays.  RC samples suspected to have been subject to any down hole contamination are twinned with DDH as a check.  AC: 1 m AC samples were collected and composited to 4 m to produce a bulk 2 to 3 kg sample. Samples were dried, and fully pulverised at the laboratory to -75 um and split to produce a nominal 200 g sub sample of which 10 g was analysed using aqua-regia digestion. This is deemed acceptable and industry standard for detection of low level gold anomalism in weathered terranes. The samples assayed in the AC programme were analysed using an MS finish with a 1 ppb detection limit.  For all AC programme holes the final metre of each hole (end-of-hole) is collected as a single metre sample. The end-of-hole sample is assayed for gold as described above and is additionally assayed for a suite of 60 different accessory elements (multi-element) using the Intertek 4A/OM20 routine which uses a 4 acid digestion and finish by a combination of ICP-OES and ICP-MS depending on which provides the best detection limit. |
| Drilling techniques    | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                 | DDH: Diamond drilling rigs operated by DDH1 Drilling Pty Ltd collected the diamond core as HQ3 (61.1 mm) and NQ2 (45.1 mm) size for sampling and assay. All suitably competent drill core (100%) is oriented using Reflex orientation tools, with core initially cleaned and pieced together at the drill site, and fully orientated by GOR field staff at the Yamarna Exploration facility.  RC: RC drilling rigs, owned and operated by Ranger Drilling, were used to collect the RC samples. The face-sampling RC bit has a diameter of 5.5 inches (140 mm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AC: AC drilling rigs, owned and operated by Ranger Drilling and sub-contracted to Top Drill, were used to collect the AC samples. The AC bit has a diameter of 3.5 inch (78 mm) and collects samples through an inner tube.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Criteria                 | JORC Code explanation                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill sample<br>recovery | Method of recording and assessing core and chip sample recoveries and results assessed.                                                                                                           | The majority of samples collected from all drilling were dry, minor RC and AC samples were damp. DDH: All diamond core collected is dry. Driller's measure core recoveries for every drill run completed using 3 and 6 metre core barrels. The core recovered is physically measured by tape measure and the length recovered is recorded for every 3 metre "run". Core recovery can be calculated as a percentage recovery. Almost 100% recoveries were achieved, with minimal core loss recorded in strongly weathered material near surface.  RC: The RC samples were dry. Drilling operators' ensured water was lifted from the face of the hole at each rod change to ensure water did not interfere with drilling and to make sure samples were collected dry. All samples collected were dry. RC recoveries were visually estimated, and recoveries recorded in the log as a percentage. Recovery of the samples was good, generally estimated to be full, except for some sample loss at the top of the hole. All mineralised samples were dry.  AC: The AC rig collects samples through an inner tube reducing hole sample contamination and improving sample recovery. |
|                          | Measures taken to maximise sample recovery and ensure representative nature of the samples.                                                                                                       | DDH: Diamond drilling collects uncontaminated fresh core samples which are cleaned at the drill site to remove drilling fluids and cuttings to present clean core for logging and sampling.  RC: Face-sample bits and dust suppression were used to minimise sample loss. Drilling airlifted the water column above the bottom of the hole to ensure dry sampling. RC samples are collected through a cyclone and static cone splitter, the rejects deposited in a plastic bag and the lab samples up to 3 kg collected, to enable a full sample pulverisation.  AC: One-metre drill samples were channelled through a cyclone and then collected in a plastic bucket, and deposited on the ground in rows of 10 samples per row (10m).                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.                                  | DDH: No sample bias or material loss was observed to have taken place during drilling activities.  RC: No significant sample bias or material loss was observed to have taken place during drilling activities. RC samples suspected to have been subject to any down hole contamination are twinned with DDH as a check.  AC: This style of AC drilling is designed to test the rock profile for the presence of geochemical anomalism in gold and other elements that can be related to a gold mineralisation signature. The absolute value is not as important as identification of anomalism above back ground levels, and coincidence of a variety of elements. Overall sample recoveries do not adversely affect the identification of anomalism and the presence of water does not affect the overall sample. The entire sample is collected to minimal loss of material is reported. Samples reported with significant assays were all recorded as being dry, with no water or visible contamination.                                                                                                                                                                    |
| Logging                  | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | All chips and drill core were geologically logged by Gold Road geologists, using the Gold Road logging scheme.  Detail of logging was sufficient for mineral resource estimation and technical studies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.                                                                                            | Logging of <b>DDH</b> core records lithology, mineralogy, mineralisation, alteration, structure, weathering, colour and other features of the samples. All core is photographed in the cores trays, with individual photographs taken of each tray both dry and wet.  Logging of <b>RC</b> chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. All samples are wet-sieved and stored in a chip tray.  Logging of <b>AC</b> chips records lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. All final end of hole samples are wet-sieved and stored in a chip tray. Remaining samples are left in the field in sequential numbered piles for future reference. All of the chip piles are photographed in the field and kept in digital photographic archives.  Portable XRF (pXRF) measurements are taken at the Intertek Laboratory in Perth for all of the RC and diamond samples to assist with mineralogical and lithological determination.                                                                                                                                |
|                          | The total length and percentage of the relevant intersections logged                                                                                                                              | samples to assist with mineralogical and lithological determination.  All holes were logged in full.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



| Criteria                    | JORC Code explanation                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sub-sampling techniques and | If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                | Core samples were cut in half using an automated Corewise diamond saw. Half core samples were collected for assay, and the remaining half core samples stored in the core trays.                                                                                                                                                                                                                                                                                                                                                                                 |
| sample<br>preparation       | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.                                                                            | RC: 1 m drill samples are channelled through a static cone-splitter, installed directly below a rig mounted cyclone, and an average 2-3 kg sample is collected in an un-numbered calico bag, and positioned on top of the plastic bag. >95% of samples were dry, and whether wet or dry is recorded.  AC: 1 m drill samples were laid out onto the ground in 10 m rows, and 4 m composite samples, amounting to 2-3 kg, were collected using a metal scoop, into pre-numbered calico bags. The majority of samples were dry, and whether wet or dry is recorded. |
|                             | For all sample types, the nature, quality and appropriateness of the sample preparation technique.                                                                       | Samples (DDH, RC and AC) were prepared at the Intertek Laboratory in Kalgoorlie. Samples were dried, and the whole sample pulverised to 85% passing 75um, and a sub-sample of approx. 200 g retained. A nominal 50 g was used for the analysis. The procedure is industry standard for this type of sample.                                                                                                                                                                                                                                                      |
|                             | Quality control procedures adopted for all sub-sampling stages to maximise representation of samples.                                                                    | DDH: No duplicates were collected for diamond holes.  RC: A duplicate field sample is taken from the cone splitter at a rate of approximately 1 in 60 samples. At the laboratory, regular Repeats and Lab Check samples are assayed.  AC: At the laboratory 5-10% Repeats and Lab Check samples are analysed per assay batch. No field duplicates are collected.                                                                                                                                                                                                 |
|                             | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. | RC: 1 m samples are split on the rig using a static cone-splitter, mounted directly under the cyclone. Samples are collected to weigh less than 3 kg to ensure total preparation at the pulverisation stage.                                                                                                                                                                                                                                                                                                                                                     |
|                             | Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                    | Sample sizes are considered appropriate to give an indication of mineralisation given the particle size and the preference to keep the sample weight below a targeted 3 kg mass which is the optimal weight to ensure requisite grind size in the LM5 sample mills used by Intertek in sample preparation.                                                                                                                                                                                                                                                       |



| Criteria                                         | JORC Code explanation                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of assay<br>data and<br>laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                         | DDH and RC: Samples were analysed at the Intertek Laboratory in Perth. The analytical method used was a 50 g Fire Assay with ICP finish for gold only, which is considered to be appropriate for the material and mineralisation. The method gives a near total digestion of the material intercepted. Portable XRF provides a semi-quantitative scan on a prepared pulp sample. The scan is done through the pulp packet in an air path. A total of 30 elements are reported using the "soil" mode i.e. calibrated for low level silicate matrix samples. The reported data includes the XRF unit and operating parameters during analysis. The elements available are; Ag, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Ni, P, Pb, Rb, S, Sb, Se, Sn, Sr, Th, Ti, U, V, W, Y, Zn and Zr. Portable XRF data on a prepared pulp are subject to limitations which include absorption by the air path, as well as particle size and mineralogical effects. Light elements in particular are very prone to these effects. Matrix effect correction algorithms and X-ray emission line overlaps (e.g. Fe on Co) are a further source of uncertainty in the data. Gold Road uses XRF only to assist with determination of rock types, and to identify potential anomalism in the elements which react most appropriately to the analysis technique.  Representative lithological units were also analysed using the Intertek multi-element 4A/OM routine which uses a 4 acid digestion of the pulp sample and then analysis of 60 individual elements using a combination of either ICP-OES or ICP-MS. Individual elements have different detection limits with each type of machine and the machine that offers the lowest detection limit is used. Four acid digestion, with the inclusion of hydrofluoric acid targeting silicates, will decompose almost all mineral species and are referred to as "near-total digestions". Highly resistant minerals such as zircon (Zr), cassiterite (Sn), columbite-tantalite (Ta), rutile and wolframite (W) will require a fusion digest to ensure complete dissolution. Four acid dige |
|                                                  | For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, | All of the pulp samples are produced in the Intertek laboratory in Kalgoorlie. XRF analysis in the lab is completed by Lab Staff. XRF machines are calibrated at beginning of each shift. Read times for all analyses are recorded and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |        |        |        |          |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------|--------|--------|----------|
|                                             | Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Gold Road protocols for:  DDH programmes is for Field Standards (Certified Reference Materials) and Blanks inserted at a rate of 3 Standards and 3 Blanks per 100 samples. No field duplicates are collected.  RC programmes is for Field Standards (certified Reference Materials) and Blanks inserted at a rate of 3 Standards and 3 Blanks per 100 samples. Field duplicates are generally inserted at a rate of approximate 1 in 60.  AC programmes is for Field Standards (certified Reference Materials) and Blanks inserted at a rate of 3 Standards and 3 Blanks per 100 samples. No field duplicates are collected.                  |                                                          |        |        |        |          |
|                                             |                                                                                                                                                                                                              | Number of assays an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd QAQC samples submitted by dri  Assay and QAQC Numbers | DDH    | RC     | AC     | 1        |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • • • • •                                                | Number | Number | Number |          |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tal Sample Submission                                    | 3,901  | 23,829 | 15,125 | <b>_</b> |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | says                                                     | 3,609  | 21,541 | 14,020 | 4        |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eld Blanks                                               | 146    | 876    | 555    | 4        |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eld Standards                                            | 146    | 876    | 550    | -        |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eld Duplicates                                           | 100    | 536    | 460    | -        |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | boratory Blanks                                          | 133    | 689    | 462    | 4        |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | boratory Checks                                          | 121    | 647    | 431    | 4        |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | boratory Standards                                       | 131    | 652    | 432    | -        |
|                                             |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | npire Checks  DDH and AC not required. Umpire            |        |        |        | _        |
| Verification of<br>sampling and<br>assaying | The verification of significant intersections by either independent or alternative company personnel.  The use of twinned holes.                                                                             | Significant results are checked by the Exploration Manager, General Manager Geology and Executive Director.  Additional checks are completed by the Database Manager. High grade gold RC and AC samples are panned or sieved to check for visual evidence of coarse gold.  No twined holes have been completed at the early stage projects.  At Montagne 17ALDD0011 was drilled as a twin hole and located 3 metres West of historic RC hole 9EYRC0039 (7 metres at 11.91g/t Au) and the new intersection of 8.47 metres at 15.38 g/t Au confirmed the width and grade of the high grade mineralisation intersected in the historic drilling. |                                                          |        |        |        |          |
|                                             | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.                                                                                   | All field logging is carried out on Xplore tablets using LogChief. Logging data is submitted electronically to the Database Geologist in the Perth office. Assay files are received electronically from the Laboratory. All data is stored in a Datashed/SQL database system, and maintained by the Database Manager.                                                                                                                                                                                                                                                                                                                         |                                                          |        |        |        |          |
|                                             | Discuss any adjustment to assay data.                                                                                                                                                                        | No assay data was adjusted. The lab's primary Au field is the one used for plotting and resource purposes. No averaging is employed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |        |        |        |          |
| Location of data<br>points                  | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.                                  | AC, RC and DDH locations were determined by handheld GPS, with an accuracy of 5 m in Northing and Easting. DDH and RC collars are surveyed post drilling by a Certified Surveyor using a DGPS system.  For angled DDH and RC drill holes, the drill rig mast is set up using a clinometer.  RC drillers use an electronic single-shot camera to take dip and azimuth readings inside the stainless steel rods, at 30 m intervals.  Diamonds drillers use a true north seeking gyroscope at 30 m intervals and end-of-hole.                                                                                                                    |                                                          |        |        |        |          |
|                                             | Specification of the grid system used.                                                                                                                                                                       | Grid projection is GD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>'</u>                                                 |        |        |        |          |
|                                             | Quality and adequacy of topographic control.                                                                                                                                                                 | RL's are allocated to the AC drill hole collars using detailed DTM's generated during aeromagnetic surveys in 2011. The accuracy of the DTM is estimated to be better than 1 to 2 m in elevation. Over the central area of the leases a Lidar survey flown in 2015 provides accurate elevation to better than 0.01 to 0.02 metres. RC and DDH RL's are surveyed by a Qualified Surveyor using DGPS.                                                                                                                                                                                                                                           |                                                          |        |        |        |          |



| Criteria                      | JORC Code explanation                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data spacing and distribution | Data spacing for reporting of Exploration Results.                                                                                                                                                                           | Corkwood: RC drill holes are approximately 40 m apart over seven drill traverses, with drill lines spaced 200 m to 400 m apart.  AC drill holes are approximately 50 to 100 m apart with drill lines spaced 200 to 400 m apart.  Wanderrie: Drill holes at the Santana target have been reduced to 50 m line spacing while prospects to the south at Satriani and Gilmour-Morello have typically been reduced to 200 m line spacing. Spacing at regional drilling is typically irregular, with single drill holes often completed with individual prospects.  AC drill holes are approximately 50 m apart with drill lines spaced 200 m apart.  Stock Route: AC drill holes are approximately 100 m apart with drill lines spaced 600 to 800 m apart.  McKinley: AC drill holes are approximately 100 m apart with drill lines spaced 400 m apart.  Hann Structural Corridor: AC drill holes are approximately 100 m apart with drill lines spaced 4,000 m apart.  Tobin Hill: AC drill holes are approximately 50 to 100 m apart with drill lines spaced 200 to 800 m apart  Attila-Alaric Trend: RC drill holes are located 50 metres apart on drill lines with 100 metre spacing. Diamond drill holes are located with a single hole on each drill line and typically 200-400 metre spacing between drill lines.  Yaffler South RC: Three holes drilled at approximately 50 m apart over three drill lines, with drill lines spaced 400 m to 800 m apart.  Kingston North AC: 16 AC holes were drilled over three drill lines spaced 400m apart, with holes spaced 50 m apart.  Grevillea AC: 47 AC holes were drilled over three drill lines spaced 800m apart, with holes spaced 100 m apart.  Ono AC: 40 AC holes were drilled over three drill lines spaced 1,200m apart, with holes spaced 100 m apart. |
|                               | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | This is not considered relevant for this report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | Whether sample compositing has been applied.                                                                                                                                                                                 | No sample compositing was completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.  If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and | Corkwood: The orientation of the drill lines (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (345 degrees). Most holes are drilled approximately -60 degrees angled to the East (090) to ensure appropriate coverage across the steeply west-dipping stratigraphy, however, in several areas reversals in the dip of the stratigraphy have required drilling to be switched to approximately -60 degrees angled to the West (270).  Wanderrie: The orientation of the drill lines (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (330 degrees). Most holes are drilled approximately -60 degrees angled to the West (270). Some drill holes were oriented to target interpreted structures, with a consistent -60 degrees inclination.  Stock Route: All holes are drilled at approximately 070 degrees azimuth which is perpendicular to the strike of regional geology (340 degrees).  McKinley: All holes are drilled at approximately 250 degrees azimuth which is perpendicular to the strike of regional geology (340 degrees).  Hann Structural Corridor: All holes are drilled at approximately 250 degrees azimuth which is perpendicular to the strike of regional geology (340 degrees).  Attila-Alaric Trend: All holes are drilled at approximately 250 degrees azimuth which is perpendicular to the strike of regional geology (340 degrees). All holes are drilled at a diproximately 250 degrees azimuth which is perpendicular to the strike of regional geology (340 degrees). All holes are drilled at a dip of -60 degrees angled towards the West to intersect the steeply East dipping mineralisation and stratigraphy as perpendicular as possible.  Gruyere: The single hole was drilled with an azimuth of 275 degrees and a dip of -60 degrees bowards the West. Vaffler South: The orientation of the drill holes (270 degrees azimuth) is approximately perpendicular to the strike of the regional geology (350 degrees). All holes are drilled approximately -60 degrees angled to the West (270). Kings |
|                                                         | reported if material.                                                                                                                                                                                                                                                                                                                            | regional strike, however aircore drilling is designed to detect regional mineralisation and not for definition purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample security                                         | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                    | Pre-numbered calico sample bags were collected in plastic bags (five calico bags per single plastic bag), sealed, and transported by company transport to the Intertek Laboratory in Kalgoorlie. Pulps were despatched by Intertek to their laboratory in Perth for assaying.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Audits or reviews                                       | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                            | Sampling and assaying techniques are industry-standard. No specific external audits or reviews have been undertaken at this stage in the programme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



# Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

|                                                  |                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Criteria Mineral tenement and land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | Corkwood: The AC, RC and diamond drilling occurred within tenement E38/2356, which is located entirely inside the Yilka Native Title Claim WC2008/005, registered on 6 August 2009 and is also situated on the Cosmo Newberry Reserves for the Use and Benefit of Aborigines. Gold Road has signed a Deed of Agreement with the Cosmo Newberry Aboriginal Corporation in January 2008, which governs the exploration activities on these Reserves. This tenement forms part of the North Yamarna project, and is 100% owned by Gold Road.  Wanderrie: The RC drilling occurred within tenements E38/2319, E38/2249 and E38/2250, predominately within the Yilka Native Title Claim WC2008/005, registered on 6 August 2009 and is also situated on the Cosmo Newberry Reserves for the Use and Benefit of Aborigines. Gold Road has signed a Deed of Agreement with the Cosmo Newberry Aboriginal Corporation in January 2008, which governs the exploration activities on these Reserves. This tenement forms part of the North Yamarna project, and is 100% owned by Gold Road. The Santana Prospect lies within the Yamarna Pastoral Lease.  Stock Route: The drilling occurred within tenement E38/2987, within the Yilka Native Title Claim WC2008/005, registered on 6 August 2009. This tenement form part of the North Yamarna project, and is 100% owned by Gold Road. The tenement is located on the Yamarna Pastoral Lease.  McKinley: The drilling occurred within tenement E38/2326 and E38/2415, within the Yilka Native Title Claim WC2008/005, registered on 6 August 2009. These tenements form part of the North Yamarna project, and is 100% owned by Gold Road. The tenement is located on the Yamarna Pastoral Lease.  Hann Structural Corridor: The drilling occurred within tenement E38/3235 and E38/2335, within the Yilka Native Title Claim WC2008/005, registered on 6 August 2009. These tenements form part of the North Yamarna project, and is 100% owned by Gold Road. The tenement is located on the Yamarna Pastoral Lease.  Tobin Hill: The drilling occurred within tenement E38/335 and |
|                                                  |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  |                                                                                                                                                                                                                                                                              | on 6 August 2009 and also situated on the Cosmo Newberry Reserves for the Use and Benefit of Aborigines. Gold Road has signed a Deed of Agreement with the Cosmo Newberry Aboriginal Corporation in January 2008, which governs the exploration activities on these Reserves. These tenements form part of the South Yamarna JV in which Sumitomo Metal Mining Oceania Pty Limited holds a 50% interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                  | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                     | The tenements are in good standing with the Western Australian Department of Mines and Petroleum ( <b>DMP</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| Criteria                          | JORC Code explanation                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Corkwood: Limited historic previous drilling has been completed on small target areas within the overall area tested in this drilling programme the subject of this release. Aircore and RC drilling was completed by WMC Resources with Kilkenny Gold in the nineties and in early-mid 2000 by AngloGold Ashanti with Terra Gold. Assay data was incorporated with the new data used in the generation of imagery and interpretation by Gold Road.  Wanderrie: Limited historic previous drilling has been completed on small target areas within the overall areas tested in this drilling programme the subject of this release. AC drilling was completed by WMC Resources and Asarco and assay data was incorporated with the new data used in the generation of imagery and interpretation by Gold Road.  Stock Route: Limited previous AC drilling completed by WMC in 1995.  McKinley: Limited previous RAB drilling completed by Asarco in 2003.  Hann Structural Corridor: There has been no historical drilling or work completed prior to Gold Road Resources activity.  Tobin Hill: Limited previous RAB drilling completed by Asarco in 2003.  Gruyere: There has been no historical drilling or work completed prior to Gold Road Resources activity.  Attila-Alaric Trend: Exploration has been completed by numerous other parties:  1990-1994 Metal Mining Australia  1994-1997 Zanex NL  1997-2006 Asarco Exploration Company Inc  2006-2010 Eleckra Mines Limited  2010-present Gold Road Resources Limited  Gold Road understands that previous exploration has been completed to industry standard  Yaffler South, Kingston North, Grevillea, Ono, Landmark: First exploration of these areas occurred in the nineteen eighties by BHP/MMC, followed by Western Mining Corporation Ltd (WMC) with Kilkenny Gold in the                                                                                                                                                                                                                                                                                   |
| Geology                           | Deposit type, geological setting and style of mineralisation. | nineteen nineties and in early-mid 2000 by AngloGold Ashanti with Terra Gold.  The prospects are located in the Archaean Yilgarn greenstone belt of WA, under varying depths (0 to +60 m) of Permian and recent sand cover. The mafic-intermediate volcano-sedimentary sequence has been multiply deformed and metamorphosed to Lower Amphibolite grade and intruded by later porphyries/granitoids. The Archaean sequence is considered prospective for structurally controlled primary orogenic gold mineralisation, as well as remobilised supergene gold due to subsequent Mesozoic weathering.  Corkwood: The drilling tested conceptual targets, low level AC anomalism and ore-grade intercepts from initial diamond drilling interpreted to be associated with shear zones in mafics and intermediate volcanics.  Wanderrie: The drilling tested narrow high-grade mineralisation intersected in previous diamond and RC drill holes apparently hosted in discrete shears within the stratigraphy along strike of the Santana – Satriani targets, hosted in intermediate volcaniclastic-mafic sequences.  Regional AC: Multiple targets were investigated at Hann Structural Corridor, Stock Route, McKinley and Tobin Hill. The drilling typically tested stratigraphic and structural horizons that conceptually could host mineralisation.  Gruyere: The Gruyere Prospect comprises of a narrow to wide felsic intrusive dyke (Gruyere Porphyry) measuring approximately 35 to 190 metres in width and striking over a current known length of 2,200 metres, and a maximum known depth of 700 metres below surface. The Gruyere Intrusive dips steeply (75-80 degrees) to the north east. A sequence of intermediate volcanic and volcaniclastic rocks define the stratigraphy to the west of the Intrusive and mafic volcanics (basalt) occur to the east of the Intrusive.  Mineralisation is confined ubiquitously to the Gruyere Intrusive and appears to be associated with pervasive overprinting albite-sericite-chlorite-pyrite alteration which has obliterated the primary texture of the rock. Minor fin |



| Criteria                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole<br>Information   | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:  easting and northing of the drill hole collar                                                                                                                                                                                                                                                                 | The Gruyere Prospect is situated in the north end of the regional camp-scale South Dorothy Hills Target identified by Gold Road Resources during its Regional Targeting campaign completed in early 2013. The Gruyere target comprises a coincident structural-geochemical target within a major regional-scale structural corridor associated with the Dorothy Hills Shear Zone.  Attila-Alaric Trend: Gold mineralisation on the Attila-Alaric trend, including the prospects Alaric, Montagne, Argos, Orleans and Attila, is hosted in a sequence of mafic and felsic volcanic intrusives and sediments on the western margin of the Yamarna Greenstone Belt. The sequence is metamorphosed to amphibolite facies and is strongly foliated, with the sequence striking northwest and dipping steeply to the east. A Felsic volcanoclastic (Gotham Tuff) marker is noted to the east of the sequence.  Gold mineralisation is defined by shear zones characterised by laminated quartz-mica-amphibole schist units. High grade mineralisation occurs as 3-5+ metre, gently north plunging, or horizontal, shoots. Mineralisation is laterally continuous. Mineralisation has both a lithological and structural control, being contained within the mafic, iron rich units of the sequence with the morphology of high grade zones appearing to be structurally controlled. The deposits form part of the anomalous structural corridor termed the Golden Highway within the Attila – Alaric Trend that has been defined over 14 km in strike.  Yaffler South: The drilling tested extensions of mineralisation intersected in previous RC drilling associated with shear structures along stratigraphic contacts.  Kingston North: The drilling tested for gold mineralisation related to the interaction of the north-west trending Smokebush shear system and late north-south trending shear structures proximal to a diorite intrusive body.  Grevillea, Ono, Landmark: The drilling targeted interpreted areas of structural complexity potentially associated with gold mineralisation.  All assay results above 0.5 |
|                             | <ul> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | in Appendix 1 to 3, all other collar locations (with no significant assays) are indicated on plans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Data aggregation<br>methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.                                                                                                                                                                                                                                                                                   | No top cuts have been applied to the reporting of the assay results.  Intersections lengths and grades for all holes are reported as down-hole length-weighted averages of grades above a cut-off and may include up to 2 m (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades below that cut-off. Cut-offs of 0.1, 0.5, 1.0 and/or 5.0 g/t Au are used depending on the drill type and results. Individual grades > 10 g/t Au are also reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             | Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.                                                                                                                                                                                                                                 | Intersections lengths and grades are reported as down-hole length-weighted averages of grades above a cut-off and may include up to 2 m (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades below that cut-off.  Geologically selected intervals are used in more advanced stage projects. They are selected to honour interpreted thickness and grade from the currently established geological interpretation of mineralisation and may include varying grade lengths below the cut-off.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                             | The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                                                                                                            | No metal equivalent values are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Criteria                                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | These relationships are particularly important in the reporting of Exploration Results.  If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.  If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').         | Drill hole intersections are reported down hole, true width is not yet known.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Diagrams                                                                     | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.                                                                                                                    | Refer to Figures in the body of text for relevant plans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Balanced<br>reporting                                                        | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.                                                                                                                                                             | Intersections lengths and grades for all holes are reported as down-hole length-weighted averages of grades above a cut-off and may include up to 2 m (cut-offs of 0.3 g/t Au and higher) or 4 m (0.1 g/t Au cut-off) of grades below that cut-off. Cut-offs of 0.1, 0.3, 0.5, 1.0 and/or 5.0 g/t Au are used depending on the drill type and results. Individual grades > 10 g/t Au are also reported.  All assay results for AC are reported at 0.1 g/t Au cut-off, only the collar information from these holes are provided in Appendix 1, all other collar locations (with no significant assays) are indicated on plans.  Numbers of drill holes and metres are included in table form in the body of the report.                                                                                                                                                                                                                                                                                                                    |
| Other substantive exploration data                                           | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Commenced generation of new regional geological and stratigraphic interpretation of the Yamarna and Dorothy Hills Greenstone Belts as a collaborative effort with Concept2Discovery consulting.  An IP survey has been completed along the Attila-Alaric trend and is awaiting final interpretation and is currently being used for detailed geological interpretation and modelling of the trend.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Further work                                                                 | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).  Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.                                               | North Yamarna:  Continued bedrock testing at Ibanez and Gilmour-Morello  Preliminary modelling and economic evaluation of Ibanez, Gilmour-Morello, Santana and Satriani Prospects  Evaluation and follow up of regional AC projects  Full field testing of the Corkwood South, Torchwood, Romano and Bloodwood Targets  Gruyere JV:  Calculation of maiden resource estimates for the Argos and Montagne prospects  Extensional diamond drilling targeted at the down dip extension of identified mineralised lodes that remains open at depth  Extensional RC and diamond drilling testing the undrilled areas along the mineralised trend between the identified prospects  South Yamarna JV:  Yaffler South: Follow up RC drilling pending geological modelling and target ranking.  Kingston North: Follow up infill and extensional AC drilling along strike with RC drilling testing mineralisation into bedrock.  Grevillea: Further work pending geological review and target ranking.  Ono, Landmark: No further work is planned. |