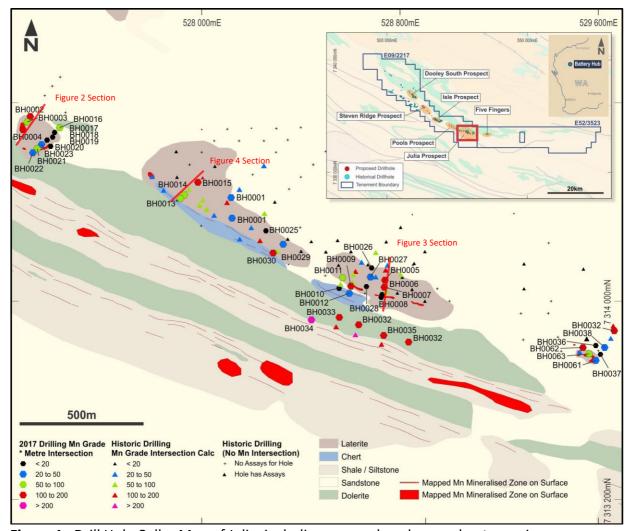


11 January 2018

ASX Announcement


POSITIVE INITIAL DRILL RESULTS FROM JULIA PROSPECT AT BATTERY HUB PROJECT

- Drilling highlights shallow bulk tonnage potential at Julia Prospect:
 - 43 significant primary intercepts from 42 holes
 - Up to 47m intercept thickness (average 8.9m)
 - Average maximum intercept depth 20.6m
- Reverse circulation drilling results from first 42 holes include:
 - o BH0003: 5m @ 12.44% Mn from 3m, including 2m @ 26.77% Mn
 - O BH0004: 9m @ 14.85% Mn from 0m, including 2m @ 28.80% Mn
 - O BH0021: 5m @ 16.80% Mn from 1m
 - o BH0030: 9m @ 13.55% Mn from 1m
 - O BH0062: 8m @ 14.66% Mn from 3m, including 2m @ 30.13% Mn
- Drilling results (37 holes) from Pools, Isles and Steven Ridge prospects to be published in coming weeks.

Pure Minerals Limited (ASX: PM1) ("Pure Minerals", "the Company") is pleased to announce initial drill results from its first phase of drilling at its 100%-owned Battery Hub manganese project, located in Western Australia's Gascoyne region. The initial results come from 42 drill holes located at the Julia Prospect, located at the eastern end of tenement E09/2217 (Figure 1, below).

Prior to drilling, Pure Minerals identified the Julia area to have shallow bulk tonnage potential and the recently completed drill program has successfully highlighted this potential. Key statistical highlights of the drilling include:

- Out of the 42 holes drilled at Julia, Pure Minerals identified 43 significant intercepts of manganese mineralisation.
- The average intercept thickness was 8.9m with a weighted average intercept grade of 7.4% Mn.
- The average maximum depth of intercepts was a shallow 20.6m.
- 39 intercepts exceeding 5.0% Mn had an average intercept thickness of 7.6m and a weighted average grade of 8.3% Mn.
- 18 significant intercepts exceeded an average of 10% Mn with an average intercept thickness of
 6.2m and a weighted average grade of 12.6% Mn.

Figure 1: Drill Hole Collar Map of Julia, including mapped geology and outcropping manganese mineralisation

Moreover, the drill program has been successful in classifying different zones of shallow mineralisation at Julia over an approximate 2,500m strike length, including weathered lateritic mineralisation, together with higher-grade cap-rock mineralisation, and thick stratiform manganese mineralisation within the host siltstone formation.

Lateritic Mineralisation

Lateritic mineralisation is represented by nodular manganese mineralisation hosted within recemented manganese nodules near surface ("cap rock") and at the base of a thick weathering horizon of saprolite clay.

Cap rock mineralisation represents a relatively thin (<10m) but high-grade zone occurring mostly at surface but occasionally covered by colluvium and other unconsolidated transported sediments. Within these zones, grades exceeding 30% Mn have been returned. Pure Minerals views this mineralisation to be potentially high-grade "starter" mineralisation requiring minimal pre-stripping and beneficiation prior to transporting to market.

Pure Minerals Limited (A.C.N: 125 368 658) Address: Level 1, 1 Altona Street, West Perth, WA, 6005 Highlights from drilling in cap rock mineralisation include:

- BH0002: 8m @ 12.77% Mn from 7m, including 3m @ 19.88% Mn
- BH0003: 5m @ 12.44% Mn from 3m, including 2m @ 26.77% Mn
- BH0004: 9m @ 14.85% Mn from 0m, including 2m @ 28.80% Mn
- BH0016: 3m @ 21.39% Mn
- BH0062: 8m @ 14.66% Mn from 3m, including 2m @ 30.13% Mn

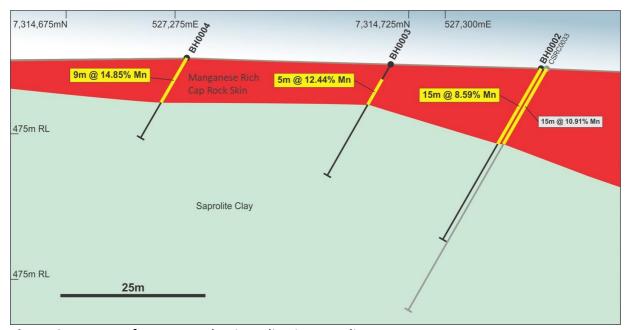


Figure 2: Near-surface cap-rock mineralisation at Julia Prospect

Mineralisation at the base of the laterite often dips shallowly to the NNE along a paleaogeographic weathering surface similar to the ridge lines observed in the area. A relatively high level of grade and geological continuity is observed. Key intercepts in this laterite mineralisation include:

- BH0005: 11m @ 11.77% Mn from 13m
- BH0006: 11m @ 9.58% Mn from 4m
- BH0009: 9m @ 11.19% Mn from 10m
- BH0015: 15m @ 9.52% Mn from 20m
- BH0021: 5m @ 16.80 Mn from 1m
- BH0030: 9m @ 13.55% Mn from 1m

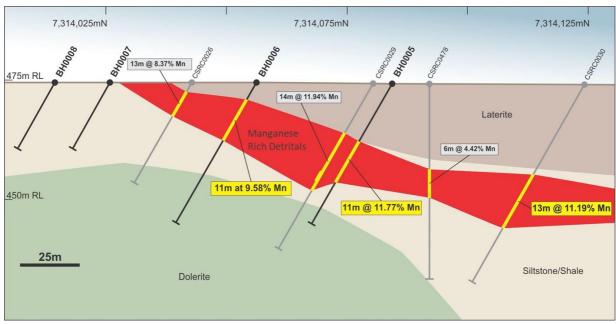


Figure 3: Weathered manganese mineralisation at base of laterite

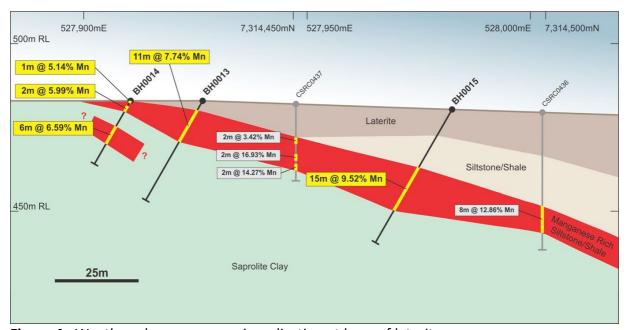


Figure 4: Weathered manganese mineralisation at base of laterite

Stratiform Mineralisation

Stratiform mineralisation occurs as manganese-enriched laminae typically over a >25m thickness within the siltstone host-rock. Grade continuity is very high. Mineralisation occurs from surface and dips shallowly to the NNE. Pure Minerals tested down-dip extensions to known surface mineralisation. Pure Minerals anticipated this style of mineralisation to have the greatest bulk-tonnage potential at the Battery Hub prospect, albeit not the primary target at Julia as it is elsewhere at BatteryHub. Key drill hole intercepts include:

- BH0031: 47m @ 4.38% Mn from 29m
- BH0032: 26m @ 5.88% Mn from 38m, including 4m @ 8.47% Mn
- BH0033: 26m @ 5.50% Mn from 44m
- BH0034: 38m @ 6.04% Mn from 14m

Upcoming Results and Test Work

Pure Minerals intends to release results from an additional 37 holes from the First Phase drilling programs at Pools, Isles and Steven Ridge in coming weeks. These results will be used to plan additional Phase 2 drilling within the E09/2217 tenement at Battery Hub, which Pure Minerals expects to initiate in early 2018. In conjunction with this drilling, Pure Minerals will drill RC holes within the E52/3523 tenement, which contains the prospective Five Fingers prospect.

A heritage survey was completed in December 2017 for the second phase of drilling.

In addition, Company geologists have identified and sampled specific zones of mineralisation for preliminary metallurgical testwork aimed at determining the ability to beneficiate the mineralised material and assess its suitability to produce Electrolytic Manganese Dioxide (EMD) or Electrolytic Manganese Metal (EMM) — a key ingredient in the electric vehicle battery market.

About the First Phase Drilling Program

The 79 hole, 2,880m reverse circulation drilling program, completed in early December 2017, tested for shallow (less than 60m depth) manganese mineralisation with bulk tonnage potential at the Julia, Pools, Isles and Steven Ridge prospects, all located within tenement E09/2217. An additional objective was to confirm historic drilling for which no physical records remain.

More than 1,500 samples, comprising 413 composite samples and 1,125 one-metre split samples, were submitted to ALS Global laboratory in Wangara, Western Australia, for assay testwork in December 2017.

The Company intends to utilise this drill data, plus the historic database of more than 500 drill holes, in the calculation of a maiden JORC resource.

For and on behalf of the Board,

Mauro Piccini

Company Secretary

Competent Persons Statement

The information in this report that relates to Exploration Results complies with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) and has been compiled and assessed under the supervision of Mr Kell Nielsen BSc (Geol.), MSc (Mineral Econ.), a consultant to Pure Minerals Limited and director of Mannika Resources Group Pty Ltd. Mr Nielsen is a Member of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the JORC Code. Mr Nielsen consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears. The Exploration Results are based on standard industry practises for drilling, logging, sampling, assay methods including quality assurance and quality control measures as detailed in Appendix B.

Pure Minerals Limited (A.C.N: 125 368 658) Address: Level 1, 1 Altona Street, West Perth, WA, 6005

Appendix A: Drill Hole Data

ID	East	ar Co-Ordinat North	RL	Hole Depth	Dip	Azim	Depth From	Depth To	Thickness	Mn	MnO
	m	m	m	m	deg.	deg.	m	m	m	%	%
H0001	E20 110	7,314,417	479.3	64	-60°	210°	15	16	1	5.92	7.64
nd	320,113	7,314,417	4/3.3	04	-00	210	23	24	1	8.02	10.36
H0002	527.308	7,314,745	486.8	34	-60°	210°	0	15	15	8.59	11.09
ncl.	,	.,,					1	3	2	9.26	11.96
nd							7	15	8	12.77	16.48
ncl.							10	13	3	19.88	25.66
H0003	527,296	7,314,722	488.2	22	-60°	210°	3	8	5	12.44	16.06
ncl.							5	7	2	26.77	34.56
H0004	527,279	7,314,691	490.0	16	-60°	210°	0	9	9	14.85	19.17
ncl.							6	8	2	28.80	37.12
H0005	,	7,314,084	474.9	34	-60°	180°	13	24	11	11.77	15.20
3H0006	528,737	7,314,056	474.6	34	-60°	200°	4	15	11	9.58	12.37
ncl.							5	14	9	10.94	14.12
3H0007		7,314,026	474.9	16	-60°	200°					
8H0008		7,314,015	475.2	16	-60°	200°	40	40	•	44.40	44.45
3H0009 3H0010		7,314,060	476.4	34	-60°	200°	10	19 4	9 4	11.19	14.45
3H0010 3H0011		7,314,031 7,314,094	477.0 475.9	22 34	-60° -60°	200° 200°	0 6	21	4 15	9.46 6.20	12.21 8.00
ncl.	320,300	7,314,034	473.5	34	-00	200	6	10	4	5.27	6.81
ind							14	21	7	9.61	12.41
3H0012	528 554	7,314,052	476.6	22	-60°	200°	14	21	,	3.01	12.41
3H0013	,	7,314,428	483.3	34	-60°	225°	3	14	11	7.74	9.99
H0014		7,314,414	483.8	22	-60°	225°	0	1	1	5.14	6.63
nd	327,314	7,314,414	403.0	22	00	223	2	4	2	5.99	7.73
ınd							9	15	6	6.59	8.51
ncl.							9	10	1	12.90	16.66
and							10	15	5	5.33	6.88
3H0015	527,985	7,314,479	481.2	46	-60°	225°	20	35	15	9.52	12.29
ncl.							20	32	12	10.74	13.87
3H0016	527,427	7,314,699	487.0	40	-60°	210°	0	3	3	21.39	27.61
3H0017	527,407	7,314,680	488.2	22	-60°	225°					
3H0018	527,399	7,314,661	489.0	28	-60°	225°					
H0019	527,376	7,314,650	490.1	28	-60°	225°					
3H0020	527,354	7,314,631	490.0	34	-60°	225°	1	6	5	8.00	10.32
3H0021		7,314,614	489.3	16	-60°	225°	0	5	5	16.80	21.69
3H0022		7,314,598	488.6	16	-60°	225°	0	5	5	9.06	11.70
3H0023		7,314,624	490.1	16	-60°	120°					
3H0024	528,122	7,314,334	480.7	28	-60°	220°	14	17	3	9.06	11.69
ncl.						0	14	16	2	12.08	15.60
3H0025		7,314,283	478.8	34	-60°	220°	18	19	1	4.58	5.91
3H0026		7,314,134	474.5	52	-60°	200°	25	29	4	4.55	5.87
3H0027	528,681	7,314,097	475.0	46	-60°	200°	16	18	2	6.51	8.41
and 3H0028	E20 CCE	7,314,059	475.4	34	-60°	200°	37 6	38 8	1 2	18.52 4.22	23.91 5.44
3H0028		7,314,039	473.4	28	-60°	200°	10	12	2	10.56	13.63
3H0030		7,314,232	477.1	28	-60°	200°	10	10	9	13.55	17.50
ind	320,200	7,314,134	470.1	20	-00	200	20	28	8	3.80	4.90
3H0031	528.835	7,313,835	476.4	76	-60°	200°	29	76	47	4.38	5.65
ncl.	,	.,,					29	31	2	5.52	7.12
ınd							36	39	3	6.49	8.38
ınd							41	44	3	5.26	6.79
ınd							47	64	17	4.67	6.03
nd							65	76	11	6.15	7.95
3H0032	528,633	7,313,905	478.9	82	-60°	200°	38	64	26	5.88	7.59
ncl.							38	50	12	6.19	8.00
and							50	60	10	4.47	5.77
and							60	64	4	8.47	10.94
and							75	82	7	5.40	6.97
3H0033	528,555	7,313,934	478.8	70	-60°	200°	44	70	26	5.50	7.10
ncl.							44	48	4	8.19	10.58
and							60	70	10	7.34	9.47
3H0034	528,443	7,313,924	479.6	52	-60°	200°	14	52	38	6.04	7.80
ncl.							14	25	11	6.71	8.66
and							25	52	27	5.77	7.45
3H0035	528,734	7,313,862	477.8	58	-60°	208°	21	58	37	3.38	4.36
ncl.							21	23	2	4.90	6.32
and							26	28	2	8.46	10.92
and							49	55	6	6.05	7.81
and	E20 F00	7 212 024	467.0	2.4	eo°	210°	55 6	58	3	8.72	11.26
BH0036 BH0037		7,313,821 7,313,785	467.0 466.7	34 22	-60° -60°	210° 210°	6	8	2	4.26	5.50
3H0037 3H0038			465.7	22	-60°	210°	5	10	5	4.69	6.06
	329,020	7,313,813	407.0	20	-00	210	5 17	10 19	2	4.69 12.90	16.65
and 3H0039	520 664	7,313,880	467.4	34	-60°	210°	17 15	19 27	2 12	10.28	13.27
and	525,004	,,313,000	407.4	34	-00	210	30	34	4	3.79	4.89
ana BH0061	529 500	7,313,761	466.5	16	-60°	210°	30 5	34 9	4	3.79 8.25	10.65
3H0061 3H0062		7,313,761	467.0	22	-60°	210°	0	8	8	8.25 14.66	18.92
ncl.	J2J,J30	.,515,013	407.0	44	30	210	5	7	2	30.13	38.90
							14	16	2	6.51	8.40
							17	TO	~	J.J.	0.40
and BH0063	529 563	7,313,787	466.8	22	-60°	210°	0	4	4	11.80	15.23

Pure Minerals Limited (A.C.N: 125 368 658) Address: Level 1, 1 Altona Street, West Perth, WA, 6005 Email info@pureminerals.com.au Website www.pureminerals.com.au

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.) Criteria **JORC Code explanation** Commentary Sampling Drilling was conducted using Reverse Nature and quality of sampling Circulation (RC) Drilling utilising a face techniques (eg cut channels, random chips, sampling hammer. Samples were or specific specialised industry standard measurement tools collected over one metre intervals as measured by the progress of the drill pipe appropriate to the minerals under in comparison with the mast. Samples investigation, such as down hole gamma sondes, or handheld XRF were split on the rig into a smaller split instruments, etc). These sample contained within a sealed bag and examples should not be taken as a larger bulk sample that was either stored in a plastic bag or bucketed onto the limiting the broad meaning of ground using a rotary cone splitter sampling. attached to the rig Include reference to measures Sampling equipment was cleaned at taken to ensure sample regular intervals and the end of each rod representivity and the appropriate to maintain clean and representative calibration of any measurement samples. tools or systems used. No tools were used Aspects of the determination of Each metre was geological logged and mineralisation that are Material to where manganese was logged within the the Public Report. hole, the one metre split samples were collected and sent for analysis. From the In cases where 'industry remaining samples parts of the hole where standard' work has been done one metre splits were not collected, this would be relatively simple (eg smaller samples were collected from up to 'reverse circulation drilling was 5 individual metres of the bulk samples used to obtain 1 m samples from using a scoop and composited to form a which 3 kg was pulverised to new sample. produce a 30 g charge for fire assay'). In other cases more Routine QAQC samples were inserted in explanation may be required, the RC sample strings at the rate of 4 such as where there is coarse samples for every 100, comprising Mn gold that has inherent sampling standards (CRM's or Certified Reference problems. Unusual commodities Materials). RC field duplicate samples or mineralisation types (eg were taken at a rate of one every fifty submarine nodules) may warrant samples. disclosure of detailed information. In regard to drilling completed prior to Pure Minerals involvement in the project, no information regarding the practices and quality of sampling, assaying and drilling completed by the previous operator of the project has yet to be verified or assessed by Pure Minerals. Drilling Drilling was completed by Reverse Drill type (eg core, reverse techniques Circulation (RC) drilling using a face circulation, open-hole hammer, sampling hammer bit. rotary air blast, auger, Bangka, sonic, etc) and details (eg core Drilling was conducted by a modern truck diameter, triple or standard tube, mounted rig (Schramm 660WS) utilising depth of diamond tails, face-

Pure Minerals Limited (A.C.N: 125 368 658) Address: Level 1, 1 Altona Street, West Perth, WA, 6005

sampling bit or other type,

Email info@pureminerals.com.au Website www.pureminerals.com.au

<2250cfm 1000psi of onboard air capacity

Criteria	JORC Code explanation	Commentary		
	whether core is oriented and if so, by what method, etc).	that was increased and boosted when required using a Sullair 1350cfm 350psi / 1150cfm 500psi auxillary compressor and a Hurricane 1000psi Booster		
		In regards to drilling completed prior to Pure Minerals involvement in the project, no information regarding the practices and quality of sampling, assaying and drilling completed by the previous operator of the project has yet to be verified or assessed by Pure Minerals.		
Drill sample recovery	Method of recording and assessing core and chip sample	Drill samples were logged for poor recovery and moisture		
	 recoveries and results assessed. Measures taken to maximise sample recovery and ensure 	Water injection was used as required to maximise recovery and maintain sample integrity		
	representative nature of the samples.	Whether a relationship exists between sample recovery and grade and whether		
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	sample bias may have occurred has not been assessed at this stage		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate	All RC chips were geologically logged. Lithology, veining, oxidation and weathering are recorded in the geology table of the drill hole database.		
	Mineral Resource estimation, mining studies and metallurgical studies.	RC logging is qualitative and descriptive ir nature, the geologists collected chip trays and these were photographed at the		
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	completion of the hole		
	 The total length and percentage of the relevant intersections logged. 			
Sub- sampling	 If core, whether cut or sawn and whether quarter, half or all core 	No drill core collected, not applicable One Metre RC samples were sub-sampled		
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	using a rig mounted cone splitter to produce original split samples of approximately 3kg weight, a standard industry practice. Composite samples		
	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	using a scoop of up to 5m were taken from parts of the holes where one metre split samples were not submitted for assay		
	Quality control procedures adopted for all sub-sampling stages to maximise representivity	The splitter was routinely cleaned at the end of each drill rod (6m) or as needed if damp material clung to the splitter.		
	of samples. • Measures taken to ensure that	Duplicate samples were collected using a scoop from the RC bulk samples to assess the sampling precision		

Criteria	JORC Code explanation	Commentary
	the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are	Sample size assessment was not conducted, though the sampling method and size used was typical for this type of mineralisation
	appropriate to the grain size of the material being sampled.	
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	RC samples were prepared and assayed at NATA accredited ALS Minerals laboratory in Perth. RC samples were weighed, dried, and
tests	 considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and 	pulverized in total to nominal 85% passing 75 micron (Method PUL23), then a portion was collected for analysis by by fused disc XRF using lab method ME-XRF26s a Manganese ore speciality analysis
	model, reading times, calibrations factors applied and their	No testing of the ore was completed by PM1 in the field
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	In addition to the Company QAQC samples included within the batches, the laboratory includes its own CRM's, blanks and duplicates with every batch.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Drill assays were documented by external consultants to Pure Minerals from Mannika Resources Group Pty Ltd and Omni GeoX Pty Ltd on behalf of Pure Minerals
	The use of twinned holes.	
	Documentation of primary data, data entry procedures, data verification, data storage	Three historic holes were twinned in order to assess their suitability in defining a JORC compliant resource
	(physical and electronic) protocols.	All assay data were received in electronic format from ALS, checked and verified by Pure Minerals and merged into a
	 Discuss any adjustment to assay data. 	proprietary database.
		Assay results were reported as oxides, in the case of Mn, MnO was divided by 1.291 to obtain the compound value (Mn)
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and	All collars were located using a handheld GPS for easting and northing. An elevation was assigned to the collar using SRTM data obtained from Geoscience Australia
	other locations used in Mineral Resource estimation.	All work has been conducted in UTM grid (MGA94 Zone 50).
	 Specification of the grid system used. 	The accuracy of the collar locations is approximately +/- 5m
	 Quality and adequacy of 	·

Criteria	JORC Code explanation	Commentary
	topographic control.	The dip of the hole was set by the driller using a protractor attached to the drill mast, with the azimuth of the hole being set by the geologist utilising a compass. The holes are of yet to be surveyed downhole.
		The quality and adequacy of topographic control is not known.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	Drilling has been based on varying section lines to gain an understanding of the requirements for a resource estimation
		Data spacing and distribution of the holes has yet to be determined if sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure.
	Whether sample compositing has been applied.	Sample compositing has been completed outside of the logged mineralisation; Where the composite samples are found to contain elevated levels of Mn, the one metre RC splits shall be collected for analysis
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Where possible drill lines are oriented approximately at right angles to the currently interpreted strike of known mineralisation.
		No bias is considered to have been introduced by the existing sampling orientation.
Sample security	The measures taken to ensure sample security.	Samples were collected, secured and sent in closed polyweave sacks via either a registered transport company, or where hand delivered directly to the laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	As this is part of a first pass programme for Pure Minerals, no audits or reviews have been conducted at this stage

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint 	Results reported are from the Julia Prospect which is wholly located with E09/2217

Pure Minerals Limited (A.C.N: 125 368 658) Address: Level 1, 1 Altona Street, West Perth, WA, 6005 Email info@pureminerals.com.au Website www.pureminerals.com.au

Criteria	JORC Code explanation	Commentary
tenure status	ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Battery Hub Project is comprised of two exploration licences E09/2217 and E52/3523 that are wholly owned by Pure Manganese Pty Ltd, a wholly owned subsidiary of Pure Minerals Limited with a total combined area of 724.43 km2 There are no joint ventures or other agreements in place. Exploration licences 09/2217 and 52/3523 fall wholly within the Wajarri Yamatji (WC2004/010) Native Title Claimant (NTC) group. The Yamatji Marlpa Aboriginal Corporation (YMAC) is the Native Title Representative Body (NTRB) for the NTC
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Battery Hub Project has had previous exploration completed by Aztec Mining Company, Rio Tinto Exploration BHP and Aurora Minerals. The majority of exploration was completed by Aurora Minerals which included soil and rock chip assays and 509 holes of reverse circulation drilling.
Geology	Deposit type, geological setting and style of mineralisation.	The primary exploration target at the Battery Hub Project is manganese mineralisation associated with specific stratigraphic units and laterites with other targeted minerals including graphite, copper, zinc and other base metals.
		Geological information is included in the attachment.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the 	All information is included in Appendix 1.
	 drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	o dip and azimuth of the hole	
	 down hole length and interception depth 	
	o hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is	

Pure Minerals Limited (A.C.N: 125 368 658) Address: Level 1, 1 Altona Street, West Perth, WA, 6005

Criteria	JORC Code explanation	Commentary
	the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	Weighted average techniques were used for the calculation of intersections
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Intersections were calculated using a low-grade cut-off or trigger value of 3% Mn with internal waste included to report a greater than 5% Mn intersection No metal equivalents have been used
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	no motal oquivalente nave seen acce
Relationshi p between mineralisati on widths	These relationships are particularly important in the reporting of Exploration Results.	Drilling was inclined at -60 degrees to asses the ridge lines and the results may not represent a true thickness of the material.
and intercept lengths	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Due to this only the down hole length of the mineralisation and not the true width of the material has been reported
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Maps and appropriate sections are included in this announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are tabulated in Appendix 1 and shown on figures in this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and	Substantive historical data is summarised in previous announcements by Pure Minerals (and Aurora Minerals) and is being reviewed as part of the exploration of the Battery Hub Project. These include historical drilling results, an XTEM survey

Pure Minerals Limited (A.C.N: 125 368 658) Address: Level 1, 1 Altona Street, West Perth, WA, 6005 Email info@pureminerals.com.au Website www.pureminerals.com.au

Criteria	JORC Code explanation	Commentary
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	and preliminary metallurgical test results of samples
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). 	As detailed in the Report.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	