ASX Announcement 28 March 2018 #### YILGANI GRAVITY SURVEY CONFIRMS WEST TARGET STRUCTURE - Gravity survey confirms presence of 12km long bedrock structure at West Target - Yilgani Aircore drilling campaign nearing completion results within three weeks **Riversgold Limited (ASX:RGL**, "Riversgold" or the "Company") is pleased to provide an update on activities within its Yilgani Project, in the Eastern Goldfields region of Western Australia. A recently completed project-wide gravity survey has confirmed the presence of a 12km long bedrock structure at the "West Target", which is the focus of the current aircore drilling campaign at Yilgani, confirming the potential for the Project to host primary gold mineralisation. The Yilgani Project is located approximately 100km east of Kalgoorlie-Boulder in the Eastern Goldfields of Western Australia and is characterised by a 25km long package of north-south trending greenstone stratigraphy along a major regional structure, the "Yilgangi Fault". The local geology within Riversgold's Yilgani tenements is interpreted to represent the westerly dipping western limb of a regional antiform, with the easterly dipping eastern limb hosting the recent "Lake Roe" gold discovery currently being explored by Breaker Resources Limited. #### Gravity survey confirms presence of bedrock structure underlying West Target Data received from the recent project-wide gravity survey at Yilgani, completed by Haines Surveys Pty Ltd, has confirmed the presence of a NE-trending basement structure within the "West Target", which is the focus of the current aircore drilling campaign at Yilgani. Gravity readings were collected at a spacing of 800m x 400m and have highlighted a NE-trending structure over at least 12km of strike within Riversgold's tenements (Figure 1). The structure appears to crosscut and terminate denser units, interpreted to represent thick units of mafic rocks. Riversgold has so far outlined a 3km long zone of supergene gold mineralisation at the southern end of this structure with a number of shallow aircore holes also intersecting and/or ending in what appears to be primary mineralisation, including YLAC0224, which returned 8m @ 0.5g/t Au from 60m (including 4m @ 0.73g/t Au from 60m) within the interpreted structure (see ASX Release dated 7 February 2018). Riversgold's Managing Director, Mr Allan Kelly, said the residual gravity data showed the N-S trending Yilgangi Fault as a linear low between two highs similar to the expression of the Yilgangi Fault further to the north at Carosue Dam (Saracen Mineral Holdings Limited) and Pinnacles (Nexus Minerals Limited). "Mineralisation at the nearby Carosue Dam and Pinnacles deposits is located close to the Yilgangi Fault, within volcaniclastic sedimentary units, is related to NE-SW trending second order structures where the greenstone rocks narrow between internal granitoids and generally occurs within a gravity low," Mr Kelly said. "From our work to date, we are seeing a very similar structural setting developing at Yilgani," he added. The survey has also identified a second NE-trending structure at the "Northern Target", which will require further work, including further aircore drilling, based on this new information. #### Aircore drilling nearing completion The Company advises that the current aircore drilling campaign at Yilgani is nearing completion. The program consists of more than 100 holes and a substantial number of samples have already submitted to the laboratory for analysis. First assay results are expected within two to three weeks. Figure 1. Yilgani Project showing residual gravity image with respect to drill targets. **Figure 2.** Yilgani Project showing bouguer gravity image with respect to drill targets (contour interval is 2mgal). #### **About Riversgold Limited** Riversgold Limited (ASX:RGL) is a new mineral exploration company which listed on the ASX in October 2017 and has a portfolio of gold exploration projects within the Eastern Goldfields of Western Australia, the Tintina Gold Belt in southwest Alaska, USA, and the Gawler Craton of South Australia. The Company also has a number of applications for mineral exploration tenements in Cambodia, adjacent to the 1 million ounce Okvau gold deposit. Riversgold's Board has a track record of successful exploration, discovery, development and production. For further information please contact: Allan Kelly Managing Director Riversgold Limited info@riversgold.com.au Michael Vaughan Fivemark Partners +61(0)422 602 720 michael.vaughan@fivemark.com.au #### **Competent Person Statement** The information in this document that relates to Exploration Results is based on information compiled by Mr Allan Kelly, a Competent Person who is a Member of The Australian Institute of Geoscientists (AIG). Mr Kelly is the Managing Director and CEO of Riversgold Ltd. He is a full time employee of Riversgold Ltd and holds shares and options in the Company. Mr Kelly has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Kelly consents to the inclusion in the presentation of the matters based on his information in the form and context in which it appears. Information on previous drilling results for the Yilgani Project, including Table 1 information, is contained in the Riversgold ASX Announcements dated 30 November 2017 and 7 February 2018. The Company confirms that it is not aware of any new information or data that materially affects the information in the original market announcements, and that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements. ### JORC Code, 2012 Edition – Table 1 # Section 1 Sampling Techniques and Data — Yilgani gravity survey (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code explanation | Commentary | |-----------------------------|--|---| | Sampling
techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | Gravity readings taken at 800m x 400m spacing, located with Real Time Kinematic GPS | | | Include reference to measures taken to
ensure sample representivity and the
appropriate calibration of any measurement
tools or systems used. | | | | Aspects of the determination of mineralisation
that are Material to the Public Report. | | | | • In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | | | Drilling
techniques | Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | No drilling undertaken | | Drill
sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. | No drilling undertaken | | | Whether a relationship exists between
sample recovery and grade and whether
sample bias may have occurred due to
preferential loss/gain of fine/coarse material. | | | Logging | Whether core and chip samples have been
geologically and geotechnically logged to a
level of detail to support appropriate Mineral
Resource estimation, mining studies and
metallurgical studies. | No drilling undertaken | | | Whether logging is qualitative or quantitative
in nature. Core (or costean, channel, etc)
photography. | | | | The total length and percentage of the
relevant intersections logged. | | | Sub-
sampling | If core, whether cut or sawn and whether | No drilling undertaken | | Criteria | JORC Code explanation | Commentary | |--|--|---| | techniques | quarter, half or all core taken. | | | and sample
preparation | If non-core, whether riffled, tube
sampled, rotary split, etc and whether
sampled wet or dry. | | | | For all sample types, the nature, quality
and appropriateness of the sample
preparation technique. | | | | Quality control procedures adopted for
all sub-sampling stages to maximise
representivity of samples. | | | | Measures taken to ensure that the
sampling is representative of the in-situ
material collected, including for instance
results for field duplicate/second-half
sampling. | | | | Whether sample sizes are appropriate to
the grain size of the material being
sampled. | | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness
of the assaying and laboratory
procedures used and whether the
technique is considered partial or total. | Survey completed by Haines Surveys Pty Ltd using a Scintrex CG-5 Autograv Gravity Meter | | | For geophysical tools, spectrometers,
handheld XRF instruments, etc, the
parameters used in determining the
analysis including instrument make and
model, reading times, calibrations factors
applied and their derivation, etc. | Repeat readings conducted a frequency
of 2% | | | Nature of quality control procedures
adopted (e.g. standards, blanks,
duplicates, external laboratory checks)
and whether acceptable levels of
accuracy (i.e. lack of bias) and precision
have been established. | | | Verification
of
sampling
and | The verification of significant
intersections by either independent or
alternative company personnel. | No verification completed | | assaying | The use of twinned holes. | | | | Documentation of primary data, data
entry procedures, data verification, data
storage (physical and electronic)
protocols. | | | | Discuss any adjustment to assay data. | | | Location of data points | Accuracy and quality of surveys used to
locate drill holes (collar and down-hole
surveys), trenches, mine workings and
other locations used in Mineral Resource
estimation. | Survey planned on a 800 x 400m grid,
using Real Time Kinematic GPS | | | Specification of the grid system used. | | | | Quality and adequacy of topographic control. | | | Data
spacing
and | Data spacing for reporting of Exploration
Results. | Survey planned on a 800 x 400m grid,
using Real Time Kinematic GPS | | | Whether the data spacing, and | Station spacing is appropriate for a first | | | | | | Criteria | JORC Code explanation | Commentary | |---|--|---| | distribution | distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | pass project-wide gravity survey No compositing applied | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Gravity readings taken along E-W lines, orthogonal to the dominant strike direction | | Sample
security | The measures taken to ensure sample security. | Not relevant for gravity data | | Audits or reviews | The results of any audits or reviews of
sampling techniques and data. | None completed at this stage | ## Section 2 Reporting of Exploration Results – Yilgani aircore drilling (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | The results are located within E28/2583
and E28/2650 which is owned 80% by
Riversgold Ltd and 20% by Serendipity
Resources Pty Ltd and subject to an
exploration Joint Venture, whereby
Serendipity is free carried to Decision
to Mine. | | | The security of the tenure held at the time of
reporting along with any known impediments
to obtaining a licence to operate in the area. | See Riversgold Replacement
Prospectus dated 11 August 2017 for
further information in relation to the
Exploration JV Agreement | | Exploration
done by other
parties | Acknowledgment and appraisal of
exploration by other parties. | Exploration was previously conducted by: Avoca/Teck JV (auger sampling); and Serendipity Resources P/L (auger sampling) Newcrest (aircore drilling) | | Geology | Deposit type, geological setting and style of mineralisation. | Riversgold is targeting Archaean mesothermal lode gold. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar | No drilling undertaken | | | elevation or RL (Reduced Level – | | | Criteria | JORC Code explanation | Commentary | |---|---|---| | | elevation above sea level in metres) of the drill hole collar | | | | dip and azimuth of the hole | | | | o down hole length and interception depth | | | | o hole length. | | | | If the exclusion of this information is justified
on the basis that the information is not
Material and this exclusion does not detract
from the understanding of the report, the
Competent Person should clearly explain
why this is the case. | | | Data
aggregation
methods | In reporting Exploration Results, weighting
averaging techniques, maximum and/or
minimum grade truncations (e.g. cutting of
high grades) and cut-off grades are usually
Material and should be stated. | No data aggregation applied | | | Where aggregate intercepts incorporate
short lengths of high grade results and
longer lengths of low grade results, the
procedure used for such aggregation should
be stated and some typical examples of
such aggregations should be shown in
detail. | | | | The assumptions used for any reporting of
metal equivalent values should be clearly
stated. | | | Relationship
between
mineralisation
widths and | These relationships are particularly
important in the reporting of Exploration
Results. | No drilling undertaken | | intercept
lengths | If the geometry of the mineralisation
with respect to the drill hole angle is
known, its nature should be reported. | | | | If it is not known and only the down
hole lengths are reported, there should
be a clear statement to this effect (e.g.
'down hole length, true width not
known'). | | | Diagrams | Appropriate maps and sections (with
scales) and tabulations of intercepts
should be included for any significant
discovery being reported These should
include, but not be limited to a plan
view of drill hole collar locations and
appropriate sectional views. | Plan of residual gravity data shown as
Figure 1 | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low
and high grades and/or widths should
be practiced to avoid misleading
reporting of Exploration Results. | All data shown | | Other
substantive
exploration
data | Other exploration data, if meaningful and
material, should be reported including (but
not limited to): geological observations;
geophysical survey results; geochemical
survey results; bulk samples – size and
method of treatment; metallurgical test | No other relevant data is available | | Criteria | JORC Code explanation | Commentary | |--------------|---|--| | | results; bulk density, groundwater,
geotechnical and rock characteristics;
potential deleterious or contaminating
substances. | | | Further work | The nature and scale of planned further
work (e.g. tests for lateral extensions or
depth extensions or large-scale step-out
drilling). | Infill gravity surveys and follow-up aircore drilling is planned | | | Diagrams clearly highlighting the areas of
possible extensions, including the main
geological interpretations and future drilling
areas, provided this information is not
commercially sensitive. | |