

ABN: 44 103 423 981

Tel: +61 8 9322 6974 Fax: +61 8 9486 9393

email: dcrook@PIOresources.com.au Address: 21 Ord Street

> West Perth Western Australia Postal: PO Box 1787 West Perth

West Pertin Western Australia 6872

ASSAYS CONFIRM MULTIPLE, WIDE SPODUMENE-PEGMATITE INTERSECTIONS AT MAVIS LAKE LITHIUM PROJECT, ONTARIO, CANADA

Perth, Western Australia: 6 April 2018: Pioneer Resources Limited (the "Company" or "Pioneer") (ASX: PIO), in conjunction with its joint venture partner International Lithium Corp. ("ILC") (TSX Venture: ILC.V), (together the "Joint Venture") is pleased to provide the results of a highly successful drilling programme at the Mavis Lake Lithium Project in the province of Ontario, Canada, (Refer ASX announcement 19 February 2018).

STANDOUT INTERSECTION* | MF18-53: 55.25m at 1.04% Li₂O from 82.75m

Other intersections* of spodumene-bearing pegmatites returned:

- MF18-58: 28.95m at 1.14% Li₂O from 116.8m
- MF18-51: 23.30m at 1.09% Li₂O from 76.8m
- MF18-52: 13.45m at 1.17% Li₂O from 149.95m
- MF18-54: 18.20m at 1.27% Li₂O from 94.8m and
- MF18-54: 6.10m at 2.33% Li₂O from 139.25
- MF18-55: 12.35m at 1.41% Li₂O from 135.14m

DRILLING AT MAVIS LAKE LITHIUM PROJECT

The programme, targeting the Fairservice Pegmatite 6 Prospect, (see Figures 1 and 2 below) consisted of nine diamond core holes for a total of 1,591 metres.

All nine holes intersected significant spodumene mineralisation, usually in the form of multiple wide zones of pegmatite. These results greatly enhance the prospectivity of the Project.

Image 1: MF18-53. The entire interval, including internal waste, returned 55.25m at 1.04% Li_2O from 82.75m. Higher grade zones included 25m at 1.12% Li_2O from 82.70m and 13.70m at 1.41% Li_2O from 122.30m

* All reported widths are drill hole intersection widths and have not been converted to true width. True width is unknown at this time.

ABOUT THE FAIRSERVICE PROSPECT

The Fairservice Prospect comprises a swarm of 6 pegmatites that outcrop at surface over an east-west strike length of 700m.

Drilling completed during the 2018 winter intersected the Fairservice Pegmatite 6 generally between 100 and 140m vertically below surface along a strike length of 200m.

Results of drilling successfully complemented 2017 drill results in this area, with all 2018 holes intersecting between one and three mineralised pegmatite lenses on step-outs of between 20 and 40m.

Future drilling will test the spodumene-bearing pegmatite further along strike and at progressively shallower depths.

Pioneer's Managing Director, David Crook, said that the 2018 step-out drilling programme confirmed and improved upon the very encouraging lithium intersections achieved in the 2017 drilling programme.

"The Joint Venture considers the 2018 drilling programme to be definitive for the Project, as all 9 holes intersected significant lithium mineralisation, including the most heavily mineralised hole drilled to date," he said.

	Table 1					
Fairservice Pegmatite 6 Prospect: Significant Drilling intersections						
Hole ID	From	То	Intersection	Lithia		
noic is	(m)	(m)	(m)	(Li ₂ 0 %)		
MF18-51	76.80	100.10	23.30	1.09		
Including	87.75	100.10	12.35	1.50		
MF18-51	119.95	129.20	9.25	1.47		
MF18-52	83.30	89.65	6.35	1.32		
MF18-52	150.45	161.00	10.55	1.18		
Including	154.55	161.00	6.45	1.56		
MF18-53	80.75	136.00	55.25	1.04		
Including	82.70	89.30	6.60	1.47		
Including	115.50	117.90	2.40	2.61		
Including	122.30	132.75	10.45	1.54		
MF18-54	94.80	113.00	18.20	1.27		
Including	107.80	113.00	5.20	2.42		
MF18-54	139.25	145.35	6.10	2.33		
MF18-55	135.10	147.45	12.35	1.41		
MF18-56	142.10	148.90	6.80	1.26		
MF18-57	141.53	151.20	9.67	1.23		
Including	143.25	149.20	5.95	1.63		
MF18-58	55.00	58.65	3.65	1.87		
MF18-58	116.80	145.75	28.95	1.14		
Including	119.75	128.95	9.20	1.80		
MF18-59	144.80	152.35	7.55	1.30		

^{*} All reported widths are drill hole intersection widths and have not been converted to true width. True width is unknown at this time. Intersections > 0.5% Li₂O (**including >1.00% Li₂O**)

ABOUT THE MAVIS LAKE LITHIUM PROJECT

The Mavis Lake Project is situated 19 kilometres east of the town of Dryden, Ontario (see *Figure 1. Location of the Mavis Lake and Raleigh Projects*). The Project is ideally situated in close vicinity to the Trans-Canada highway and railway major transportation arteries linking larger cities such as Thunder Bay, Ontario, to the southeast and Winnipeg, Manitoba, to the west.

The current drill programme was wholly funded by Pioneer as part of its earn-in on the Project (see ASX release dated 15 March, 2016).

Yours faithfully

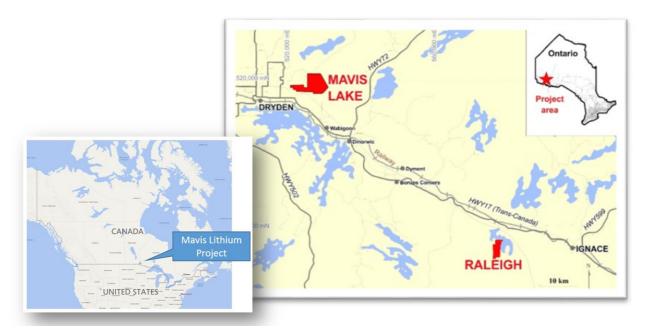
Managing Director

For further information please contact:

David Crook Managing Director Pioneer Resources T: +61 8 9322 6974

E: dcrook@pioresources.com.au

James Moses


Media and Investor Relations

Mandate Corporate M: +61 420 991 574

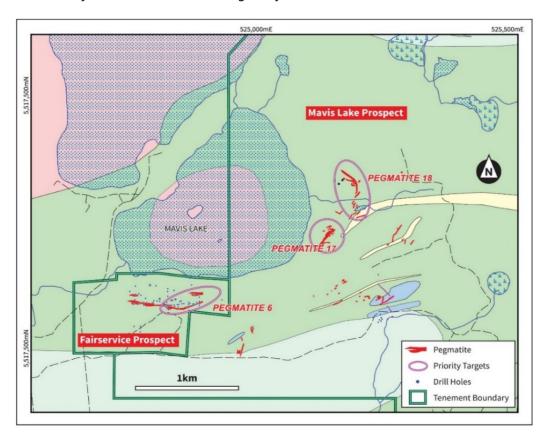

E: james@mandatecorporate.com.au

Image 2. Mavis Lake Drill Site laydown area, with drilling equipment prior to the first hole set-up.

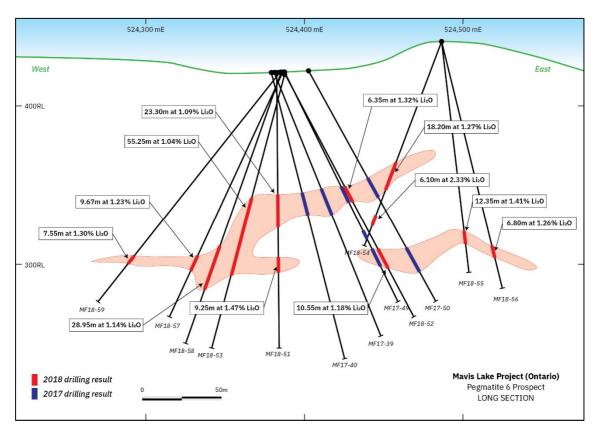

Figure 1. Location of the Mavis Lake and Raleigh Projects.

Figure 2. Location of the Fairservice Pegmatite 6 drilling area.

Figure 3. Plan View of 2018 drill hole collar locations and hole traces summarising lithium mineralisation at the Fairservice Pegmatite 6 Prospect. The plan shows the north-dipping pegmatite where it outcrops at surface (425m RL) and the intersected pegmatite (dashed pink) at approximately 100m below surface (i.e. 425m R.L.).

Figure 4. East-West Long Section through the Fairservice Pegmatite 6 Prospect at approximately 5,518,050mN (see dashed pink line on Figure 3). The section shows 2018 drilling intersections in red with annotated grades. Mineralisation was intersected between 100 and 140m (approximately 325m +- 30mRL) below surface.

About Pioneer Resources Limited

Pioneer is an active exploration company focused on key global demand-driven commodities. The Company operates a portfolio of strategically located lithium, caesium, potassium ("alkali metals"), nickel, cobalt and gold projects in mining regions in Western Australia, plus a portfolio of high quality lithium assets in Canada. Drilling is in progress, or has been recently completed, at each of these Projects:

Lithium: Mavis Lake and Raleigh Projects, Canada; Pioneer Dome Project, WA: Lithium has been classed as a 'critical metal' meaning it has a number of important uses across various parts of the modern, globalised economy including communication, electronic, digital, mobile and battery technologies; and transportation, particularly aerospace and automotive emissions reduction. Critical metals seem likely to play an important role in the nascent green economy, particularly solar and wind power; electric vehicle and rechargeable batteries; and energy-efficient lighting.

Caesium: Pioneer Dome Project, WA: Caesium occurs in the mineral pollucite, a rare mineral that forms in extremely differentiated LCT pegmatite systems. It is primarily used in the manufacture of Caesium Formate brine, a high value, high density fluid used in high temperature/high pressure oil and gas drilling.

Cobalt: Golden Ridge Project, WA: Cobalt demand is expanding in response to its requirement in the manufacture of cobalt-based lithium batteries in certain electric vehicles and electricity stabilisation systems (powerwalls). Other uses for cobalt include in the manufacture of super-alloys, including jet engine turbine blades, and for corrosion resistant metal applications.

Nickel: Blair Dome/Golden Ridge Project: The Company recently announced a significant new nickel sulphide drilling intersection at the Leo's Dam Prospect, highlighting the prospectivity of the greater project area. The Company owns the closed Blair Nickel Sulphide Mine located between Kalgoorlie and Kambalda, WA, where near-mine target generation is continuing.

About International Lithium Corp.

International Lithium Corp. is an exploration company with lithium projects in South America and Ireland in addition to the Mavis and Raleigh Projects the subject of this announcement. ILC also has strong management ownership, robust financial support and a strategic partner and keystone investor Ganfeng Lithium Co. Ltd., a leading China based lithium product manufacturer.

With the increasing demand for high tech rechargeable batteries used in vehicle propulsion technologies, energy stabilisation systems and portable electronics, lithium is paramount to tomorrow's "green-tech", sustainable economy. Pioneer and ILC believe that by judicious positioning with high quality projects at an early stage of exploration, the Companies aim to be resource explorers of choice for investors in green tech and build value for its shareholders.

REFERENCES

- Mavis Lake and Raleigh Projects: Refer Company's announcements to ASX dated 15 March 2016, 20 April 2016, 13 July 2016, 26 July 2016, 12 October 2016,7 February 2017, 8 February 2017, 10 March 2017, 11 April 2017; 17 January 2018, 19 February 2018 and Quarterly Activities Reports
- Work prior to Pioneer's involvement in the Mavis Lake Project is documented in the International Lithium Corp. 2009 Ontario Work Assessment Report and NI43-101 technical report dated February 5th, 2010.

The Company is not aware of any new information or data that materially affects the information included in this Report

GLOSSARY

For descriptions of any technical terms that are not described within the report, the reader is directed to various internet sources such as Wikipedia (www.wikipedia.org) or Mindat (www.mindat.org)

COMPETENT PERSON

The information in this report that relates to Exploration Results is based on information supplied by Mr Patrick McLaughlin (P.Geo) and compiled by Mr David Crook. Mr Crook is a full time employee of Pioneer Resources Limited. Mr Crook is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists and has sufficient experience which is relevant to the exploration processes undertaken to qualify as a Competent Person as defined in the 2012 Editions of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Patrick McLaughlin (P.Geo) is a Qualified Person on the project as defined under NI 43-101 and has reviewed the technical information contained in this press release.

Mr Crook and Mr McLaughlin consent to the inclusion of the matters presented in the announcement in the form and context in which they appear.

CAUTION REGARDING FORWARD LOOKING INFORMATION

This Announcement may contain forward looking statements concerning the projects owned or being earned in by the Company. Statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions.

Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based on the Company's beliefs, opinions and estimates of the Company as of the dates the forward looking statements are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

There can be no assurance that the Company's plans for development of its mineral properties will proceed as currently expected. There can also be no assurance that the Company will be able to confirm the presence of additional mineral deposits, that any mineralisation will prove to be economic or that a mine will successfully be developed on any of the Company's mineral properties. Circumstances or management's estimates or opinions could change. The reader is cautioned not to place undue reliance on forward-looking statements.

Appendix 1

	Table 2						
	Fairser	vice Prospect	:: Drill Hole (Collar Data			
Hole ID	East	North	RL	Azimuth	Dip	Depth	
	(m)	(m)	(m)	(o)	(o)	(m)	
MF18-51	524,387	5,518,072	420	175.0	-75.0	179.0	
MF18-52	524,390	5,518,074	420	110.0	-61.0	177.0	
MF18-53	524,387	5,518,074	420	226.0	-72.0	185.0	
MF18-54	524,486	5,518,089	438	206.0	-53.0	161.0	
MF18-55	524,486	5,518,089	438	166.0	-65.0	170.0	
MF18-56	524,486	5,518,089	438	142.0	-67.0	170.0	
MF18-57	524,387	5,518,104	418	218.0	-54.0	188.0	
MF18-58	524,389	5,518,041	420	260.0	-72.0	179.0	
MF18-59	524,389	5,518,041	420	265.0	-52.0	182.0	

- Datum: UTM15N/NAD83
- Collar location coordinates are 'preliminary'. Collar locations were determined using a compass and tape measure from a GPS-located point. RL is nominal. Formal surveys will follow.

			Access Det	Table 3	ised Interval			
Hole ID	From (m)	To (m)	Li ₂ O**	Cs (ppm)	Rb (ppm)	Ta (ppm)	K (ppm)	Sn (ppm)
MF18-51	76.3	76.8	0.34	330	1163	1.9	11000	40
MF18-51	76.8	78.4	2.05	75.3	1932	30.8	21000	632
MF18-51	78.4	79.8	0.17	250	1320	62.8	11000	149
MF18-51	79.8	81.2	0.57	205	720	0.25	8000	8
MF18-51	81.2	82	0.33	343	1322	67.3	10000	82
MF18-51	82	83.7	0.02	35.5	824	43.4	13000	375
MF18-51	83.7	84.6	0.81	120	4581	10.5	55000	104
MF18-51	84.6	86.45	0.32	23.1	557	45.4	7000	416
MF18-51	86.45	87.1	0.92	135	4741	17.7	53000	126
MF18-51	87.1	87.75	0.51	31.5	702	55.3	8000	359
MF18-51	87.75	89.1	2.53	57.8	1743	24	21000	170
MF18-51	89.1	89.85	0.11	24.5	850	89.2	11000	63
MF18-51	89.85	91.7	2.47	55.6	1572	28.9	19000	132
MF18-51	91.7	93.7	1.59	60.9	1422	30.7	21000	113
MF18-51	93.7	95	1.08	57.8	2107	19.4	30000	107
MF18-51	95	97	0.98	59.9	1784	36.8	26000	96
MF18-51	97	98.5	1.32	65.9	1738	30.4	28000	106
MF18-51	98.5	100.1	1.19	58.3	1636	29.5	24000	122
MF18-51	100.1	101.15	0.36	32.4	977	52.8	12000	390
MF18-51	118.85	119.45	0.36	40.9	135	0.25	4000	1
MF18-51	119.45	119.95	0.19	15.3	61.2	0.25	3000	0.5
MF18-51	119.95	120.45	1.19	155	769	0.25	8000	7
MF18-51	120.45	122.5	1.55	37.1	1178	30.4	14000	196
MF18-51	122.5	124.55	0.73	66.6	2374	61.8	28000	131
MF18-51	124.55	126.6	1.4	56.5	1990	48.5	22000	186
MF18-51	126.6	128.7	2.47	39	929	105	12000	391

			Assav Data	Table 3	ised Interval	s		
Hole ID	From (m)	To (m)	Li ₂ O**	Cs (ppm)	Rb (ppm)	Ta (ppm)	K (ppm)	Sn (ppm)
MF18-51	128.7	129.2	0.59	188	1141	10.9	9000	79
MF18-51	129.2	129.7	0.07	3.3	47.7	0.25	3000	4
MF18-52	80.35	81.75	0.36	81.4	1954	42	24000	221
MF18-52	81.75	83.3	0.31	84	1817	42.7	27000	170
MF18-52	83.3	85.2	1.25	85.9	1676	19.9	25000	126
MF18-52	85.2	87.2	1.83	91.6	1959	26.9	30000	118
MF18-52	87.2	89.2	1.02	73.1	1716	21.5	27000	107
MF18-52	89.2	89.65	0.68	82.7	221	0.8	4000	11
MF18-52	89.65	90.15	0.1	8.3	68.3	0.25	3000	2
MF18-52	148.9	149.4	0.54	24.4	110	0.25	3000	7
MF18-52	149.4	149.95	0.32	97.7	373	2.9	6000	9
MF18-52	149.95	150.45	0.31	36	993	66.8	12000	890
MF18-52	150.45	152.45	0.76	84.1	2114	23.3	29000	161
MF18-52	152.45	152.95	0.35	64.8	200	0.9	6000	9
MF18-52	152.95	153.5	0.34	230	541	1.2	10000	25
MF18-52	153.5	154.25	0.52	105	264	1.7	6000	10
MF18-52	154.25	154.55	0.17	201	677	58.4	6000	97
MF18-52	154.55	156.7	1.69	63.5	1508	13.9	18000	148
MF18-52	156.7	158.85	1.19	71.1	1978	48	28000	258
MF18-52	158.85	161	1.81	128	2956	22	33000	284
MF18-52	161	162.2	0.1	38.5	710	26.9	12000	204
MF18-52	162.2	163.4	0.02	35.4	336	52.5	5000	145
MF18-52	163.4	163.9	0.55	171	559	0.6	7000	8
MF18-52	163.9	164.4	0.35	5.5	64.1	0.25	4000	3
MF18-52	164.4	164.8	0.09	3.6	47.8	0.25	3000	4
MF18-52	164.8	165.2	0.25	231	941	1	11000	16
MF18-52	165.2	165.65	0.09	209	966	45.6	7000	79
MF18-52	165.65	166.2	0.91	210	755	0.25	9000	14
MF18-52	166.2	166.7	0.74	33.2	144	0.6	4000	9
MF18-52	166.7	167.2	0.9	37.1	118	0.25	3000	2
MF18-52	167.2	167.75	0.79	74.3	174	1.8	4000	2
MF18-52	167.75	168.15	0.67	87.8	202	0.25	4000	2
MF18-52	168.15	168.6	0.61	33	71.7	0.25	3000	2
MF18-52	168.6	169.1	0.67	48.6	121	0.25	3000	2
MF18-52	169.1	169.6	0.13	38.5	173	0.6	4000	11
MF18-53	79.75	80.75	0.46	72.6	131	0.25	4000	2
MF18-53	80.75	81.75	0.61	94.7	252	0.25	5000	3
MF18-53	81.75	82.25	0.64	23.5	77.8	0.25	3000	2
MF18-53	82.25	82.7	0.68	114	407	0.25	6000	211
MF18-53	82.7	84.65	1.96	69.4	2095	28.5	26000	311
MF18-53	84.65	86 97.75	1.09	33.2	540	35.2	7000	785
MF18-53	86 97.75	87.75	1.61	45.5	1112	18.2	15000	467
MF18-53	87.75	89.3	1.03	62.3	1509	69.1	16000	787
MF18-53	89.3	89.75	0.4	409	1303	9.3	9000	37

			Assav Data	Table 3	ised Interval	s		
Hole ID	From (m)	To (m)	Li ₂ O** (%)	Cs (ppm)	Rb (ppm)	Ta (ppm)	K (ppm)	Sn (ppm)
MF18-53	89.75	90.3	0.3	2.9	27.3	0.25	3000	6
MF18-53	90.3	90.7	0.41	246	632	0.25	7000	7
MF18-53	90.7	91.2	0.26	146	469	0.8	6000	6
MF18-53	91.2	91.65	0.31	350	1351	0.5	11000	14
MF18-53	91.65	92.6	0.06	46.7	701	91.8	7000	258
MF18-53	92.6	94.6	1.56	69.6	1857	29.8	22000	217
MF18-53	94.6	96.5	1.13	69.1	2490	30.6	29000	95
MF18-53	96.5	98.45	0.74	34.6	973	41.5	12000	90
MF18-53	98.45	100	1.04	22.7	663	25.4	7000	276
MF18-53	100	101.75	1.06	28.6	646	48.3	8000	161
MF18-53	101.75	102.35	1.08	619	4627	36.7	25000	79
MF18-53	102.35	102.95	1.19	1213	9028	8.7	43000	158
MF18-53	102.95	104.9	0.05	24.6	779	94.6	9000	882
MF18-53	104.9	106.85	0.91	31.9	725	61.8	9000	201
MF18-53	106.85	108.85	0.46	71.8	1682	203	27000	2030
MF18-53	108.85	111.05	0.85	51	1685	53.7	27000	249
MF18-53	111.05	113.3	0.49	53.4	1260	66.1	16000	235
MF18-53	113.3	114	1.01	193	935	1.6	7000	23
MF18-53	114	114.5	0.34	548	2614	44.4	17000	52
MF18-53	114.5	115	0.45	247	1163	0.25	10000	6
MF18-53	115	115.5	0.5	327	2071	12.6	13000	48
MF18-53	115.5	117.9	2.61	38.1	1160	52.8	12000	293
MF18-53	117.9	118.5	0.7	74	1716	138	18000	331
MF18-53	118.5	119	0.54	127	685	0.6	7000	20
MF18-53	119	119.5	0.28	40.4	151	0.25	3000	8
MF18-53	119.5	120.1	0.1	7.4	49.7	0.25	2000	8
MF18-53	120.1	120.65	0.15	3.8	70	0.25	3000	6
MF18-53	120.65	121.3	0.45	3.5	35.1	0.25	2000	3
MF18-53	121.3	121.8	0.41	46	353	0.7	5000	6
MF18-53	121.8	122.3	0.64 1.32	204 70	1409 2326	6.6	11000	38
MF18-53 MF18-53	122.3 124.7	124.7	1.52	51.9	1423	90.6 40.5	25000 15000	915 343
MF18-53	126.75	126.75 128.75	2.35	40.6	1118	52.7	12000	201
MF18-53	128.75	130.75	1.11	37.4	1174	59	13000	219
MF18-53	130.75	132.75	1.41	96.6	2764	56.3	32000	192
MF18-53	132.75	134.75	0.75	71	1834	35.2	22000	192
MF18-53	134.75	136	0.73	77.1	1385	28.9	19000	100
MF18-53	136	137.95	0.25	132	2355	25.5	39000	108
MF18-53	137.95	139.25	0.23	114	1783	25.7	33000	100
MF18-53	139.25	140.6	0.10	69.3	1080	42.3	16000	64
MF18-53	140.6	141.85	0.19	206	1800	55.6	17000	411
MF18-53	141.85	142.35	1.18	326	1826	8.3	18000	60
MF18-53	142.35	142.85	1.32	180	835	0.25	10000	15
MF18-53	142.85	143.3	0.76	275	1459	8.8	14000	35

			Assay Date	Table 3	ised Interval	s		
Hole ID	From (m)	To (m)	Li ₂ O**	Cs (ppm)	Rb (ppm)	Ta (ppm)	K (ppm)	Sn (ppm)
MF18-53	143.3	143.95	0.5	436	2259	27.3	20000	126
MF18-53	143.95	145.85	0.66	61.6	2493	53.2	31000	466
MF18-53	145.85	147.65	1.08	57.5	1337	41.1	15000	147
MF18-53	147.65	149.4	0.34	61.4	1961	43.6	23000	341
MF18-53	149.4	150.85	0.6	55.3	1694	57.7	19000	482
MF18-53	150.85	151.35	0.64	98.8	674	2.2	11000	21
MF18-53	151.35	151.85	0.36	44.9	322	0.8	7000	2
MF18-54	93.65	94.2	0.36	1451	2408	0.25	13000	16
MF18-54	94.2	94.8	0.19	625	2536	165	19000	354
MF18-54	94.8	97.2	2.59	96.9	1633	33	18000	190
MF18-54	97.2	98.2	0.2	101	1414	99.3	10000	148
MF18-54	98.2	98.7	0.5	863	4559	8.3	22000	49
MF18-54	98.7	99.2	0.53	60.6	185	0.25	3000	1
MF18-54	99.2	99.7	0.56	48.7	174	0.25	3000	4
MF18-54	99.7	101	0.08	186	1497	235	13000	56
MF18-54	101	101.4	0.24	363	954	4.1	9000	9
MF18-54	101.4	101.85	0.76	261	709	0.25	8000	4
MF18-54	101.85	102.65	0.03	85.6	1158	186	11000	57
MF18-54	102.65	103.15	0.33	258	877	0.25	12000	14
MF18-54	103.15	103.65	0.43	18.4	81.9	0.25	4000	0.5
MF18-54	103.65	104.2	0.44	78.9	247	11.1	5000	8
MF18-54	104.2	104.8	0.4	23.9	88.8	1	4000	4
MF18-54	104.8	105.4	0.94	369	1104	0.9	10000	14
MF18-54	105.4	106.1	0.14	25.5	128	76.8	2000	28
MF18-54	106.1	107.8	0.71	120	4690	27	50000	155
MF18-54	107.8	109.65	3.42	52.8	1236	35.7	13000	169
MF18-54	109.65	111.65	2.38	68.1	2224	24.9	23000	134
MF18-54	111.65	113	1.11	77.6	3499	10.3	43000	93
MF18-54	113	114.05	0.16	71.8	2964	46.3	34000	77 0.5
MF18-54 MF18-54	136.75 137.75	137.75 138.25	0.25 0.18	16	41.7 23.3	0.25 0.25	3000 2000	0.5
MF18-54	138.25	138.75	0.16	105	517	11.1	7000	12
MF18-54	138.75	139.25	0.33	206	4658	48.6	41000	242
MF18-54	139.25	140.55	2.6	122	3272	35.8	29000	360
MF18-54	140.55	141.35	0.32	125	2457	65.6	23000	62
MF18-54	141.35	142.9	3.75	63.7	837	65.2	8000	149
MF18-54	142.9	144.35	2.6	116	3473	27.7	31000	178
MF18-54	144.35	144.85	1.12	167	2542	75.6	21000	243
MF18-54	144.85	145.35	0.9	407	2289	0.8	17000	38
MF18-54	145.35	145.85	0.3	23.6	104	1.2	4000	2
MF18-55	131.6	132.1	0.44	50.8	147	0.25	3000	0.5
MF18-55	132.1	132.65	0.67	253	1214	2.2	12000	28
MF18-55	132.65	133.9	0.02	24	572	45	6000	71
MF18-55	133.9	135.1	0.03	19.7	324	55.5	4000	130

			Assay Date	Table 3	ised Interval	e		
Hole ID	From (m)	To (m)	Li ₂ O**	Cs (ppm)	Rb (ppm)	Ta (ppm)	K (ppm)	Sn (ppm)
MF18-55	135.1	137.05	2.84	80.5	1535	57.5	15000	192
MF18-55	137.05	139.05	1.2	68.9	2541	52.8	26000	192
MF18-55	139.05	141.05	2.37	77.3	1987	35.6	20000	235
MF18-55	141.05	141.55	0.74	468	2471	6.5	14000	41
MF18-55	141.55	142.05	1.43	48.6	185	0.25	3000	2
MF18-55	142.05	142.6	0.6	254	516	16.2	5000	4
MF18-55	142.6	143.15	1.14	113	226	0.9	3000	2
MF18-55	143.15	143.75	0.68	5.2	25.3	0.25	2000	3
MF18-55	143.75	144.25	0.41	24.8	53.7	0.25	3000	2
MF18-55	144.25	144.75	0.43	2281	2307	4.8	11000	69
MF18-55	144.75	145.3	0.25	1791	2055	15.9	10000	59
MF18-55	145.3	146.85	0.87	88.1	1839	314	17000	123
MF18-55	146.85	147.45	0.7	60.2	273	0.25	4000	2
MF18-55	147.45	148	0.39	11.8	40.1	0.25	3000	1
MF18-55	148	149	0.32	17.1	49.8	0.6	3000	2
MF18-56	140.15	141.1	0.1	18.9	88.8	0.25	3000	9
MF18-56	141.1	142.1	0.21	5.7	33.3	0.25	2000	2
MF18-56	142.1	143.1	0.59	4.5	54.6	0.25	2000	0.5
MF18-56	143.1	143.65	0.82	9.4	77.3	0.5	3000	1
MF18-56	143.65	144.2	0.79	548	2074	5.6	12000	20
MF18-56	144.2	145.7	0.42	28.5	1043	45.9	11000	191
MF18-56	145.7	147.3	2.17	71.6	2073	25.6	22000	155
MF18-56	147.3	148.9	1.88	70.5	2287	23.8	26000	289
MF18-56	148.9	149.7	0.08	45.7	2016	45.1	27000	74
MF18-56	149.7	150.3	0.37	137	560	2.5	7000	12
MF18-57	139.7	140.75	0.2	98.1	511	0.6	7000	8
MF18-57	140.75	141.53	0.08	169	684	33.9	6000	92
MF18-57	141.53	142.25	0.98	130	547	0.25	7000	7
MF18-57	142.25	143.25	0.23	57.7	1257	33.3	13000	251
MF18-57	143.25	145.2	1.5	118	2785	15.9	30000	529
MF18-57	145.2	147.2	1.38	64.1	1777	37.3	20000	253
MF18-57	147.2	149.2	2.02	55.6	1053	54.6	13000	341
MF18-57	149.2	151.2	0.61	80.3	1979	37.1	23000	99
MF18-57	151.2	152.7	0.44	70.3	1866	34	28000	72
MF18-57	152.7	154.2	0.05	75.5	1341	24.5	27000	114
MF18-57	154.2	154.7	1.32	272	1212	3.5	14000	31
MF18-57	154.7	155.2	0.86	14.2	66.2	0.7	3000	3
MF18-57	155.2	155.7	0.67	50	118	1.6	3000	5
MF18-57	155.7	156.7	0.15	66.2	230	0.6	6000	6
MF18-58	115.8	116.3	0.33	1.1	19	0.25	3000	0.5
MF18-58	116.3	116.8	0.46	131	751	0.25	10000	5
MF18-58	116.8	118.35	1.03	40.4	1041	51.7	13000	168
MF18-58	118.35	119.75	0.39	69.9	1633	25.4	18000	456
MF18-58	119.75	121.65	3.59	53.3	1198	17.1	12000	228

			Access Det	Table 3	lieed Interval	_		
Hole ID	From (m)	To (m)	Li ₂ O** (%)	Cs (ppm)	lised Interval Rb (ppm)	s Ta (ppm)	K (ppm)	Sn (ppm)
MF18-58	121.65	123.45	0.7	73.4	2307	41	23000	166
MF18-58	123.45	125.4	1.73	48.1	1828	28.2	19000	210
MF18-58	125.4	127.1	0.78	82.4	4292	15.3	50000	68
MF18-58	127.1	128.95	2.02	41	1180	47.3	14000	187
MF18-58	128.95	130.2	0.06	31.6	456	27.4	6000	104
MF18-58	130.2	130.65	0.82	406	1785	7.7	18000	24
MF18-58	130.65	131.15	0.67	158	684	0.25	8000	1
MF18-58	131.15	131.65	0.55	466	2048	10.5	19000	57
MF18-58	131.65	133.75	0.04	34.5	674	44.5	10000	126
MF18-58	133.75	135.75	1.13	59.9	1350	42.7	18000	203
MF18-58	135.75	137.7	1.36	57.1	1911	54	21000	142
MF18-58	137.7	139.7	0.58	51.2	1551	50.7	18000	129
MF18-58	139.7	141.8	0.77	85.4	2504	29.9	33000	74
MF18-58	141.8	143.75	1.89	47	1218	39.4	18000	148
MF18-58	143.75	145.75	0.9	36.8	1063	40.5	16000	147
MF18-58	145.75	146.6	0.08	28.5	776	74.5	9000	266
MF18-58	146.6	147.1	0.45	176	1502	9.3	20000	128
MF18-59	143.3	144.3	0.08	9.5	34.7	0.25	2000	2
MF18-59	144.3	144.8	0.15	1.2	29.4	0.25	3000	1
MF18-59	144.8	145.3	0.53	210	930	6.6	10000	46
MF18-59	145.3	147.3	1.7	65.1	1681	59.5	18000	350
MF18-59	147.3	149.3	1.22	342	3433	58.3	22000	147
MF18-59	149.3	151.35	1.55	77.5	1538	58.6	17000	222
MF18-59	151.35	151.85	0.49	538	3221	0.8	23000	88
MF18-59	151.85	152.35	0.59	31.9	217	0.6	4000	4
MF18-59	152.35	152.85	0.26	29.8	95.6	0.25	3000	2

^{**} The laboratory Li value is converted to industry standard lithia (Li_2O). The factor used is Li * 2.2153 = Li_2O .

Appendix 2

Section 1 - Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Mavis Lake Lithium Project:

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut Faces, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	NQ2 Diamond Core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Core: Standard core delivery and markup into core trays Certified Reference Material was developed from trench material collected on the property. CRMs were inserted with a sampling density of 5.0% at random intervals to provide assay quality checks. Quartz and limestone blanks were also inserted in to the sampling stream on density of 5.0%. The standards reported are within acceptable limits.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Core samples: selected typically between 1 to 2m samples of half core. Samples were up to 2.5m in length and narrow as 0.3m. Samples did not cross lithological boundaries. Phases identified within the pegmatites were samples separately for better characterization. Approximately 2kg per m of core in sample were crushed with 80% passing 2mm; a 250g split was then pulverized to 95% passing 105µ. Samples were analysed using a sodium peroxide fusion digestion with ICP-AES or ICP-MS with graphite crucibles finishing. SGS Lakewood GE_IC90A and GE_IC90M.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	NQ2 diamond core. Core was orientated, and measurements collected relative to bottom line using the Reflex ACT II core orientation system.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	The geologist records occasions when sample quality is poor, or core return is low, or the sample compromised in any fashion.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Diamond core recovery was monitored, and very high rates of recovery were achieved.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Sample recoveries were generally very good; therefore, no study was made. The samples were considered fit for purpose.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Lithological logs exist for these holes in a database. Fields captured include lithology, mineralogy, pegmatite phase, alteration, texture, recovery and colour.
	Whether logging is qualitative or quantitative in nature. Core (or costean, Face, etc) photography.	 Logging has primarily been qualitative. Samples that are representative of lithology are kept in core trays for future reference and detailed photographic records are kept of the entire hole.
	The total length and percentage of the relevant intersections logged.	The entire length of the drill holes was logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 Core samples were sawn in half. Sample preparation was deemed fit for purpose.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 Geologist looks for evidence of sample contamination, which would be recorded if evident. Samples are for geochemistry, and therefore fit for purpose.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Standard Reference Material is included at a rate of 1 per 20 samples (5%) Laboratory quality control samples are also carefully monitored.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Field samples in the order of 2-3.5kg are considered to correctly represent the lithium and rare metals in potential ore at the Mavis-Fairservice Project.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 The Laboratory utilised was SGS, Lakefield Ontario. Assay technique: GEICM90A. The sample preparation and assay method used is considered to be standard industry practice and is appropriate for the type of deposit. The sodium peroxide fusion digestion process results in total metal digestion.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None were used
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Standards and laboratory checks have been assessed. Most of the standards show results within acceptable limits of accuracy using Western Electric Rules control charts, with good precision in most cases. Internal laboratory checks indicate very high levels of precision. Recent certified reference material assay results have not been validated however a preliminary review shows results are within acceptable levels.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	Not at this stage of the project development.
, -	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary field data is collected using best industry practices/protocols and entered directly in to a secure cloud-based data management system

Criteria	JORC Code explanation	Commentary
		 Data is then further validated, loaded and stored in to an SQL based RDBMS database by a range of Company consultants. Consultants also appraise reference material and assay data.
	Discuss any adjustment to assay data.	 The laboratory Li value is converted to industry standard lithia (Li₂O). The factor used is Li * 2.2153 = Li₂O.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Collar surveys were calculated based on a confidently measured drill hole collar to act a datum then compass and tape measure thereafter. A Registered Surveyor will provide accurate locations at a later date. Downhole deviation tests were conducted with a Reflex EZ-shot single shot instrument and each test was verified for accuracy.
	Specification of the grid system used.	UTM Zone 15N, NAD83EPSG:26915
	Quality and adequacy of topographic control.	Fit for purpose.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Individual drill holes.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Diamond core spacing is too wide for a resource calculation at present.
	Whether sample compositing has been applied.	Composites were not calculated other than individual pegmatite intersections by weighted average over arbitrary length intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• The azimuth and dip of holes was determined to ascertain the (unknown) geometry of multiple lenses of pegmatite, which in turn have multiple orientations. In some cases the topography restricted where drill sites could be set up, meaning the dip and azimuth were not optimal to intersect each pegmatite on a perpendicular basis. Mineralisation intersection thicknesses are likely to be wider than the actual thickness of the pegmatite lens. No sampling assay bias is thought to have been introduced.
Sample security	The measures taken to ensure sample security.	 The Company uses standard industry practices when collecting, transporting and storing samples for analysis. Drilling pulps are retained off site in a secure lab facility.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques for assays have not been specifically audited but follow common practice in the Canadian and Australian exploration industry.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites	 The drilling reported herein is within K498290, a granted Mining Lease. The tenements are located approximately 20km NE of Dryden, Ontario, Canada. International Lithium Corp is the registered holder of the tenements and holds a 100% unencumbered interest in minerals within the tenement. There is no registered claim for Native Title which covers the tenements.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	At the time of this Statement the mineral claims are in Good Standing. To the best of the Company's knowledge, other than industry standard permits to operate there are no impediments to Pioneer's operations within the tenement.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	This report refers to data generated by Pioneer Resources Limited and International Lithium Corp.
Geology	Deposit type, geological setting and style of mineralisation.	The Fairservice and Mavis Lake Prospects host zoned pegmatites that are prospective for lithium and tantalum.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Refer to Table 3 and 4 of this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intersections noted in Table 4 have the 'from' and 'to' meterage marked. Intervals reported are generally above a 0.5 % Li₂O (lower) cutoff however may include internal or marginal dilution. Lithium (Li) assays reported by the laboratory are converted to Lithia (Li₂O) using the formula: Li assay * 2.2153 = Li₂O determination

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Downhole lengths are reported in the text, images, figures and Tables 1 and 3 are of drilled metres down the hole from surface, and most often are not an indication of true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to figures and tables in this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of drill details has been provided in Appendix 1 and Appendix 2 of this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material exploration data has been reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Having ascertained the strike and dip of mineralised pegmatites at the Mavis-Lithium Project the next phase of drilling will be conducted using a similar drilling pattern. Fences of additional drill holes, on a nominal 100 x 20m grid are planned to test other geochemical, geophysical and geological targets.