

OUTSTANDING HISTORICAL DRILL RESULTS AS REDEVELOPMENT WORK CONTINUES

HIGHLIGHTS

- Review of significant historical database on-going; outstanding historical drill results within the un-mined area Pick Lake Mine, include:
 - UP-147: <u>33.2m @ 18.77% Zn 2.26% Cu</u>
 - UP-149: <u>10.5m @ 24.8% Zn 1.33% Cu</u>
 - UP-148: <u>15.8m @ 30.05% Zn 1.91% Cu</u>
- Historical drill results to form part of an initial resource estimate 2Q 2018
- 3D geological model defining resource estimate and brownfields exploration targets to be completed during 2nd quarter 2018

Superior Lake Resources Limited ("**Superior**" or the "**Company**") continues to implement the redevelopment strategy of the Superior Lake Zinc Project (the "**Project**") with historical data compilation and verification ongoing as part of the project timeline to have a 3D geological model by end of Q2 2018. A full validation process inclusive of drill hole collar pick-ups, re-sampling and assaying of core is also planned for Q2 2018

Compilation of historical Pick Lake drill-hole data (Figure 1) is the initial focus of the work currently being undertaken by Superior. Significant intercepts (excluding gold and silver credits) reported historically include:

- UP-58: 2.6m @ 28.35% Zn 1.91% Cu
- UP-172: 3.5m @ 18.34% Zn 0.48% Cu
- UP-174: 5.5m @ 24.32% Zn 0.94% Cu
- UP-147: 33.2m @ 18.77% Zn 2.26% Cu
- UP-109: 2.5m @ 27% Zn 1.86% Cu
- UP-173: 9.0m @ 29.48% Zn 1% Cu
- UP-149: 10.5m @ 24.8% Zn 1.33% Cu
- UP-148: 15.8m @ 30.05% Zn 1.91% Cu

Please refer to **Appendix 1** for accompanying JORC 2012 Table 1 and Appendix 2 for a full list of known drill-hole intercepts.

CEO, Mr David Woodall states: "In less than 3 months since consolidating the Superior Lake Zinc Project, the historical results provide us confidence that this project will again become the highest-grade zinc producer in Canada."

Superior Lake has commenced a redevelopment strategy initially focused on the completion of a 3D geological model of the existing historical resources. Once this is completed in the 2nd quarter 2018, Superior will commence a drilling program targeting a JORC 2012 resource to support the commencement of production.

Superior Lake Resources Limited ACN 139 522 553 Suite 8/1297 Hay Street West Perth WA 6005 Tel: +61 8 9322 6009 Fax: +61 8 9322 6128

Figure 11: Long-section view of Pick Lake and Winston Lake underground workings with drillhole intercepts at Pick Lake. Mine development & stopes (grey), 1998 foreign non- JORC (2012) estimate extents (red dashed line)

This information has been sourced and reproduced from historical Inmet Mining Corp figures and reported results have yet to be validated by the competent person.

Superior Lake Resources Limited ACN 139 522 553 Suite 8/1297 Hay Street West Perth WA 6005 Tel: +61 8 9322 6009 Fax: +61 8 9322 6128

Brownfields Exploration Program

The 3D geological model will allow for the planning and implementation of a <u>brownfields exploration program to commence in Q3 2018</u>. This program will look to confirm historical drill information and target a JORC 2012 Mineral Resource Estimate to support the redevelopment of the Project.

Project Background

The Pick and Winston Lake Projects are located in the Pays Plats Lake Area of Ontario close to the shores of Lake Superior and approximately 150 kilometres east of the city of Thunder Bay (see Figure 1). The deposits are within the northern Wawa terrane in the Archean Superior Province. They are hosted in the Winston Lake Greenstone Belt, between the Shebandowan Greenstone Belt located to the west and the Manitouwadge Greenstone Belt to the east. All three belts have been notable base metal past producers:

- Winston Lake mine, past production of 3.3 MT at 14.1% Zn and 1.0% Cu
- Pick Lake mine past production of 173,000t at 10%Zn and 0.7%Cu
- Geco mine, past production of 58 MT at 3.5% Zn and 1.9% Cu

Superior Lake Resources Limited ACN 139 522 553 Suite 8/1297 Hay Street West Perth WA 6005 Tel: +61 8 9322 6009 Fax: +61 8 9322 6128

The Company entered into an option agreement on 4 December 2017 to acquire Superior Mining Pty Ltd, which has a 70% initial indirect interest in the Pick Lake Zinc Project which is held by Ophiolite Holdings Pty Ltd, an Australian registered company (see ASX announcement dated 6 December 2017).

Further to this Superior Lake entered into an option agreement in February 2018 to acquire 70% of the Winston Lake Project (via its 70% interest in Ophiolite Holdings Pty Ltd) which lies adjacent to the recently acquired Pick Lake Project (see ASX announcement dated 21 February 2018).

This agreement signifies the first time since the cessation of mining in 1998 that the Winston Lake and Pick Lake deposits have been combined into a single project allowing the integration of all available data from both areas. The inclusion of the Winston Lake patented claim area also allows any future development to utilise the existing infrastructure and ensures any new infrastructure can be located on previously occupied land.

The Pick Lake Project area comprises 47.5km² of prospective ground with a further 4.5km² within the Winston lake Project area. Combined, this covers a large portion of the Winston Lake Greenstone Belt and will allow a comprehensive exploration program to be undertaken that encompasses areas of highly prospective geology.

Previous owners, Minnova commenced mining of Winston Lake in 1988 and mined approximately 3.3 million tonnes grading 14% zinc, 1% copper, 1.0g/t gold and 30g/t silver over an 11-year period.

During this period separate zinc and copper concentrates were produced that were shipped to various smelters both locally and internationally. Approximately 900Mlbs of zinc, 53Mlbs of copper and over 50,000 ounces of gold were produced with reported recoveries of 95% (zinc) and 78% (copper).

1993 saw the commencement of a 2,200m drift to mine the nearby Pick Lake deposit through the mine workings at Winston Lake. The upper Pick Lake deposit was the focus of the mining activity, with the lower Pick Lake deposit virtually untouched when the mine closed in 1998 due to low zinc prices.

Pick Lake foreign non- JORC (2012) compliant mineral resource

Dioron et al. (1997) presented a resource estimate of 1.2 Mt at 15.9 % Zn, 0.86 % Cu, 38 g/t Ag and 0.46 g/t Au for the Pick Lake lower zone and 0.26 Mt at 11.21 % Zn, 0.77 % Cu, 31.5 g/t Ag and 0.65 g/t Au for the Pick Lake upper and middle zone (Table 1). Published reserves (including 20% dilution) for Pick Lake by Inmet as of January, 1996 were 124,800 tonnes at 14% Zn and 0.9% Cu for the upper zone and 1,200,000 tonnes at 19% Zn and 1.2% Cu for the lower zone. By the time mining ceased at the end of 1998, the Proven and Probable reserves were reported as 598,000 tonnes at 21.2% Zn, 1.0% Cu and the dilution had increased to 33%.

The reference to tonnes and grade of the Pick Lake Zinc Project is foreign in nature and not reported in accordance with the JORC Code 2012. A competent person has not done sufficient work to classify the resource estimate as mineral resources

or ore reserves in accordance with the JORC Code 2012. It is uncertain that following evaluation and/or further exploration work that the foreign resource estimates of mineralisation will be able to be reported as mineral resources or ore reserves in accordance with the JORC Code 2012.

Donosit	Tonnes	Grade				Dilution
Deposit	(Mt)	%Zn	%Cu	g/tAg	g/tAu	(%)
Pick Lake Upper & Middle	0.26	11.21	0.77	31.5	0.65	30
Pick Lake Lower	1.2	15.9	0.86	38	0.46	25
Total*	1.46	15.06	0.84	36.84	0.49	

Table 1: Summary of the Pick Lake foreign non- JORC (2012) compliant mineral resource calculated by Inmet (Doiron et al 1997)

*Note: it is underdetermined what percentage of these resources are remaining

Under ASX Listing Rule 5.12 (LR 5.12), an entity reporting foreign non- JORC (2012) compliant mineral resource estimates in relation to a material mining project must include all of the information shown in LR5.12. Superior provided this information in its ASX announcement "Pick Lake / Winston lake Zinc Project Exploration Targets Identified" released on 6th March 2018.

Superior has acquired the historic data from the vendors. Following compilation and review of this data Superior will commence a program to fully test the areas peripheral to the main Winston mining area with the view to extending the resource along the plunge directions.

A second program of exploration focused on 'brownfield' type targeting will focus on VMS style mineralisation within the Wawa sub-Province and is aimed at locating VMS horizons within the Archean package of volcanic rocks.

The geochemistry and stratigraphy observed over the extent of the project area within the Wawa sub-Province is consistent with a rifted arc to back-arc setting. The known VMS deposits are tightly constrained with early rifting and the felsic rocks hosting the deposits have been age dated at 2720Ma (2720 million years ago).

A number of geophysical techniques will be used that have the ability to directly detect massive sulphides within this 'marker horizon' due to the physical property contrast between host rock and ore. Also, the use of soil sampling with multi-element assaying has the potential to locate a distal geochemical signature of VMS style mineralisation beyond historic identification of zones of sodic-depletion

Competent Person Statement

The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the 'JORC Code') sets out minimum standards, recommendations and guidelines for Public Reporting in Australasia of Exploration Results, Mineral Resources and Ore Reserves.

The Information contained in this announcement is an accurate representation of the available data and studies for the Pick and Winston Lake Projects.

The information contained in this announcement that relates to geology and exploration results is based, and fairly reflects, information compiled by Miss Rebecca Morgan, who is a member of the Australian Institute of Geoscientists. Miss Morgan is a fulltime employee of Superior Lake Resources. Miss Morgan has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Miss Morgan consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

All parties have consented to the inclusion of their work for the purposes of this announcement. The interpretations and conclusions reached in this announcement are based on current geological theory and the best evidence available to the authors at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however high these probabilities might be, they make no claim for absolute certainty. Any economic decisions which might be taken on the basis of interpretations or conclusions contained in this announcement will therefore carry an element of risks.

Appendix 1: JORC 2012 Table 1

The information in sections 1 and 2 is provided in respect of historical exploration results contained in this announcement. The information in Table 1 has largely been sourced from the following report:

Independent Technical Report on the Pick Lake Property, Pays Plat Lake and Rope Lake Area, Ontario, Canada, dated June 19, 2013 prepared by Bruno Turcotte, MSc, P.Geo and Remi Verschelden, BSc, P.Geo (filed June 21, 2013 on SEDAR). This report can be accessed via the url: http://www.sedar.com under the company name "Silvore Fox".

Intercepts reported in Figure 1 have been directly sourced from Inmet Mining Corp figures. A full list of known intercepts has been tabulated and provided in Appendix 2.

Section 1 Sampling Techniques and Data

Criteria	Explanation	Commentary	
Sampling	Nature and quality of sampling (eg	Sampling of the Pick Lake and Winston Lake	
Techniques	cut channels, random chips, or	deposits has been carried out using diamond	
	specific specialised industry	drilling.	
	standard measurement tools		
	appropriate to the minerals under	Based on information sourced from Inmet Mining	
	investigation, such as down hole	figures there are a total of 205 known surface and	
	gamma sondes, or handheld XRF	underground diamond drillholes have been drilled	
	instruments, etc). These examples	at Pick Lake and a total of 1398 known surface	
	should not be taken as limiting the	and underground diamond drillholes have been	
	broad meaning of sampling.	drilled at Winston Lake	
		Currentier Late is surroughly in the server of	
		Superior Lake is currently in the process of	
		compliing all available historical aniinole aata ana	
	Aspects of the determination of	It is possible additional antiholes may be localed.	
	minoralization that are Material to	precedures have been legated at this stage	
	the Public Report	procedures have been localed at this stage.	
Drilling techniques	Drill type (eq. core reverse	All drilling completed at both Pick Lake and	
Dining lectiniques	circulation open-hole hammer	Winston Lake was diamond drilling which has	
	rotary air blast quaer Banaka	been drilled from both surface or underground	
	sonic, etc) and details (eq core		
	diameter, triple or standard tube.		
	depth of diamond tails, face-	Records signified to date have a core size	
	sampling bit or other type, whether	recorded as BQ, 1146, LIK46, AW34, OF AQIK.	
	core is oriented and if so, by what		
	method, etc).	Core Size Diameter (mm)	
	,	BQ 36.5	
		TT46 35.3	
		LTK46 35.6	
		AW34 33.5	
		AQTK 30.5	
Drill Sample	Method of recording and assessing	No sample/core recovery information has been	
Recovery	core and chip sample recoveries	located at this stage.	
	and results assessed.		
	Measures taken to maximise		
	sample recovery and ensure		
	representative nature of the		
	samples.		
	Whether a relationship exists		
	between sample recovery and		
	grade and whether sample bias		

Criteria	Explanation	Commentary
	may have occurred due to	
	preferential loss/gain of	
	fine/coarse material.	
Logging	Whether core and chip samples	No JORC 2012 mineral resource is being reported
	have been geologically and	in this announcement.
	geotechnically logged to a level of	
	Aliporal Bessures estimation	
	Mineral Resource estimation,	
	Whether logging is gualitative or	Drill core has been deplodically loaded and
	augntitative in nature. Core (or	includes lithology descriptions texture structure
	costean. channel. etc)	alteration, sulphide percentages, colour, and
	photography.	grainsize.
		Ŭ,
		Drill care has not been photographed
	The total length and percentage	100% of the core has been geologically logged
	of the relevant intersections	room of the core has been geologically logged.
	logaed.	
	Sub-Sampling techniques and	Core has been cut and half core samples have
	sample preparation	been taken.
	If core whether cut or sawn and	No further information is available for sampling
	whether quarter, half or all core	methods and approaches used during historical
	taken.	assessment work.
	If non-core, whether riffled, tube	Not applicable.
	sampled, rotary split, etc and	
	whether sampled wet or dry.	
	For all sample types, the nature,	No information is available for sample preparation
	quality and appropriateness of the	techniques used during historical assessment work.
	sample preparation technique.	
	Quality control procedures	No information is available for quality control
	stages to maximise representivity of	procedures adopted for all sub-sampling stages
		work
	Measures taken to ensure that the	No information is available for quality control
	sampling is representative of the in	procedures adopted during historical assessment
	situ material collected, including	work.
	for instance results for field	
	duplicate/second-half sampling.	
Quality of assay	The nature, quality and	No information is available for sampling methods
data and laboratory	appropriateness of the assaying	and approaches used during historical assessment
tests	and laboratory procedures used	work.
	and whether the technique is	
	considered partial of total.	
	For geophysical tools,	No geophysical tools, spectrometers, handheld
	spectrometers, handheld XRF	XRF instruments, have been used in determining
	instruments, etc, the parameters	the results that are being reported in this
	used in determining the analysis	announcement.
	including instrument make and	
	model, redaing times, calibrations	
	derivation etc	
	Nature of quality control	No information is available for quality control
	procedures adopted (eq	procedures adopted during historical assessment
	standards, blanks, duplicates	work.
	external laboratory checks) and	
	whether acceptable levels of	
	accuracy (ie lack of bias) and	
	precision have been established.	
Verification of	The verification of significant	Superior Lake is planning on resampling all
sampling and	intersections by either	available core intervals to verify historical
assaying	independent or alternative	intercepts being reported.
	company personner.	
		This is scheduled to take place during Q2, 2018.

Criteria	Explanation	Commentary		
	The use of twinned holes.	No twin holes have been drilled.		
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	No information is available for details on documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols used during historical assessment work.		
	Discuss any adjustment to assay data.	No adjustment to assay data has been made.		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	No details regarding methods used to survey historical drillhole collars is known. Superior Lake is in the process of compiling all hard copy drillhole data. Details regarding downhole surveys will be provided once data has been		
		compiled. Superior Lake is planning on resurveying all surface drillhole collars by DGPS. This is scheduled to take place during Q2, 2018		
	Specification of the grid system used	Historical mining and exploration activities were carried out in local mine grids. The Winston local mine grid is different to the Pick local mine.		
		All future work will be undertaken in UTM grid. All historical drillhole collars will be converted to UTM once a grid conversion has been established.		
	Quality and adequacy of topographic control	No detailed topographic dtm has been generated. Superior plans on acquiring LiDAR data over the project area in Q3 2018.		
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Pick Lake has been drilled from surface at 200m centres.		
		Underground drilling at both Pick Lake and Winston Lake has been drilled on a much tighter grid of down to less than 10m in places.		
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	A mineral resource is not being declared in this announcement.		
	Whether sample compositing has been applied.	No sample compositing has been applied.		
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known,	Based on cross sections sighted to-date the angle of drilling from surface appears appropriate.		
	considering the deposit type.	historical drillhole data has been completed.		
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	As drillholes were generally drilled perpendicular to the strike of mineralisation, there has not been any sampling bias introduced based on the current understanding of the structural orientations and the dip and strike of mineralisation.		
Sample Security	The measures taken to ensure	This will be assessed further once data-entry of historical drillhole data has been completed. No information is available; it is assumed that		
	sample security.	inmet mining organised aelivery of samples directly to assay laboratories and other previous		

Criteria	Explanation	Commentary	
		explorers followed industry guidelines current at the time.	
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Superior Lake has not carried out any audits or reviews of the historical sampling techniques and data at this stage.	
		Superior Lake is currently in the process of compiling and reviewing all available historical data.	

Section 2 Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral tenement	Type, reference name/number,	The Pick Lake Project comprises 297 claim units
and land tenure	location and ownership including	(each claim unit is 400mx400m or 16Ha in area)
sicilus	third parties such as joint ventures	number of claims acquired in August 2016 and
	partnerships, overriding royalties,	claims recently staked and registered in October
	native title interests, historical sites,	2017. The total of all claim areas is >17,000Ha.
	wilderness or national park and	
	environmental settings.	Superior is the legal and beneficial owner of 70% of the issue capital of Ophiolite Holdings Pty Ltd (ACN 617 182 966) (Ophiolite). Ophiolite is a proprietary exploration company and is the legal and beneficial owner of the zinc and copper prospective "Pick Lake Project", located in Ontario. Please see ASX announcement dated 6 December 2017.
		Superior Lake currently has an option over the Winston Lake project claims. These claims are owned by FQM. For further details please refer to ASX announcement dated 21st February 2018.
	The security of the tenure held at	The claims are in good standing.
	the time of reporting along with	
	obtaining a licence to operate in	
	the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The Pick Lake deposit was discovered in 1983 and the Winston Lake deposit was discovered in 1982. The Pick Lake and Winston Lake project areas have been the subject of a variety of exploration campaigns.
		Some of the previous explorers include Zenamc Metal Mines Limited, Falconbrdge Copper Corporation, Minnova, Inmet Mining, Noranda, and Silvore Fox.
		Please refer to the aforementioned report filed on SEDAR for further details.
Geology	Deposit type, geological setting and style of mineralisation	Pick Lake
		The Pick Lake deposit occurs at the extreme western edge of the Winston-Big Duck Lake sequence of volcanic rocks, approximately 35 metres above a granitic contact. Aeromagnetics within the Project area depicts a distinctive V shaped sequence of magnetic and non- magnetic units converging to a porthern "V" apex
		and appears remarkably similar to the aeromagnetic character of the older Archean

Criteria	Explanation	Commentary
		Warriedar Fold Belt in Western Australia which hosts the Golden Grove VMS deposits.
		The Pick Lake deposit occurs as a large sheet like zone of massive sulphides within a series of bedded pyroclastic rocks. Hydrothermal alteration exists in both footwall and hangingwall rocks resulting in varying assemblages of quartz, cordierite, biotite, anthophyllite, garnet, chlorite and sericite with minor disseminated sulphides. The hydrothermal alteration zone appears to be spatially related to the Winston Lake deposit; recent structural mapping provides evidence that Pick Lake and Winston Lake are hosted within the same stratigraphic horizon.
		The Anderson showing, located near the southeast shore of Winston Lake, appears to be the surface expression of the Pick Lake deposit. This is a rusty pyritic weakly altered series of bimodal volcanics. Massive sulphides of the Pick Lake deposit occur from approximately 300m to 1200m vertically and over a strike length averaging 250 metres. The lower portion of the deposit appears to increase in strike length to approximately 500 metres. The deposit strikes at 20 degrees and dips to the east at 50 degrees. The thickness of the deposit is generally between 2 and 4m, however, locally it is up to 14 metres in width.
		Sulphide mineralisation is generally very consistent, composed of a fine grained mixture of sphalerite (50-80%) and pyrrhotite (5-35%) with minor chalcopyrite (0-5%) and pyrite (0-3%). Commonly contained within the sulphides is up to 5% transparent rounded quartz inclusions up to 3mm in size as well as rare (1-3%) sub-rounded biotitic volcanic inclusions. The contacts to the deposit are typically knife sharp and commonly show the presence of minor amounts of silica.
		Winston Lake
		The Winston Lake deposit lies at the top of the Winston Lake sequence within cherty exhalite and altered felsic-to-intermediate laminated ash tuff. In places, gabbro forms the hanging wall for the deposit. The footwall consists of altered mafic flow rocks and felsic-to-intermediate volcaniclastic rocks which are underlain by altered quartz and feldspar porphyritic rhyolite and feldspar pyritic basalt with intercalated sulphide-rich, bedded, tuffaceous rocks which, in turn, are underlain by the "Main" quartz fledspar porphyry which is intruded by gabbro and pyroxenite.
		Hydrothermal alteration, confined to the Winston Lake sequence, and later metamorphism of altered rock have resulted in spectacular assemblages of cordierite, anthophyllite, biotite, garnet, sillimanite, staurolite, muscovite and quartz coincident with an increase in iron, magnesium, and potassium and a decrease in

Criteria Explanation Commentary	
sodium and calcium. Zinc content proportional to the intensity of alteratio	is directly n.
High copper values occur at the flanks the alteration "pipe" with the core of containing relatively depleted copper most common forms of ore are finel sphalerite and pyrrhotite and massive-t banded sphalerite and pyrrhotite with n and chalcopyrite and up to 45% of su mafic and felsic fragments averagin diameter.	and top of f the pipe values. The y banded o-coarsely ninor pyrite ub-angular ig 3cm in
The north-striking and 50 degrees e dipping deposit has a strike length of width of 350m. It has an average true th 6m and is open to depth.	eastwardly 750m and nickness of
Drill hole Information A summary of all information Please refer to Appendix 2 for drillhole in material to the understanding of available at this stage.	nformation
tabulation of the following information for all Material drill holes: Superior Lake is currently in the p compiling and reviewing all available data. Further information will be provi data has been compiled and validated	process of historical ded once d.
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.	
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. Data aggregation methods In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be Intercept grades are assumed to weighted. These will be validated a newly compiled drillhole database complete).	oe length gainst the se (once
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. Data aggregation methods In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated Intercept grades are assumed to weighted. These will be validated a newly compiled drillhole databas complete).	oe length gainst the se (once
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to I weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be statedIntercept grades have been used.RelationshipThese relationships are particularly to maximum and to make and should be to the statedNo cut-off grades have been rep truncations day this stage	pe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to I weighted. These will be validated a newly compiled drillhole databas complete).Data methodsaggregation weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be statedIntercept grades are assumed to I weighted. These will be validated a newly compiled drillhole databas complete).Relationship between mimortant in the reporting of important in the reporting of true width is not confirmed at this stage	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to I weighted. These will be validated a newly compiled drillhole databas complete).Data aggregation methodsIn reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be statedIntercept grades are assumed to I weighted. These will be validated a newly compiled drillhole databas complete).Relationship between mineralisationThese relationships are particularly important in the reporting of Exploration Results.Downhole intercepts have been rep true width is not confirmed at this stageWidths and intercentExploration Results.Historical mining at Pick Lake and Wir	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to I weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be statedIntercept grades are assumed to I weighted. These will be validated a newly compiled drillhole databas complete).Relationship between mineralisation widths and intercept lengthsThese relationships are particularly important in the reporting of Exploration Results.Downhole intercepts have been rep true width is not confirmed at this stage	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to it weighting averaging techniques, maximum and/or minimum grades grades) and cut-off grades are 	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to I weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high 	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to I weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high 	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to I weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high 	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. Intercept grades are assumed to I weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated Intercept grades are assumed to I weighted. These will be validated a newly compiled drillhole databas complete). Relationship between mineralisation widths and intercept lengths These relationships are particularly important in the reporting of Exploration Results. Downhole intercepts have been used. If the geometry of the drill hole angle is known, its nature should be reported. If the geometry of the drill hole angle is known, its nature should be a clear statement to this effect (eg 'down hole length, true width not known'). True widths will be established of completed. Diagrams Refer to body of announcement for fighter	orted. The orted. The conted. The conted. The conted. The content to be the base to base the base been
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length.Intercept grades are assumed to I weighting averaging techniques, maximum and/or minimum grade grades) and cut-off grades are usually Material and should be statedIntercept grades are assumed to I weighted. These will be validated a newly compiled drillhole databas complete).Relationship between mineralisation widths and intercept lengthsThese relationships are particularly important in the reporting of Exploration Results.Downhole intercepts have been used.If the geometry of tril hole angle is known, its nature should be reported.If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').Refer to body of announcement for fightDiagramsRefer to body of announcement for fight	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interceptionData methodsaggregation In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be statedIntercept grades are assumed to I weighted. These will be validated a newly compiled drillhole database complete).Relationship between mineralisation widths and intercept lengthsThese relationships are particularly important in the reporting of Exploration Results.Downhole intercepts have been used.If the geometry of thill hole angle is known, its nature should be reported.Historical mining at Pick Lake and Win report mineralisation widths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').True widths will be established or compilation of all historical data completed.DiagramsWhere comprehensive reporting of kalanced reportingRefer to body of announcement for figre	orted. The orted. The conted. The conted. The conted. The content to base to base the has been conce the has been conce the base to conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conce the conc
easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length.Data aggregation methodsIn reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grades inucations (eg cutting of high grades) and cut-off grades are usually Material and should be statedIntercept grades are assumed to a weighted. These will be validated a newly compiled drillhole databas complete).Relationship between mineralisation widths and intercept lengthsThese relationships are particularly important in the reporting of Exploration Results.Downhole intercepts have been used.If the geometry of hole lengthsIf the geometry of the mineralisation with respect to the dril hole angle is known, its nature should be reported.Downhole intercept have been rep tree width is not confirmed at this stage average of 2 to 4m and at Winsto average 7m.DiagramsWhere comprehensive reporting of all Exploration Results is not practicableRefer to body of announcement for figures Assay results for significant intercepts so inmer Mining Corp figures have been to practicableBalanced reportingWhere comprehensive reporting of all Exploration Results is not practicableAssay results for significant intercepts so inmer thing Corp figures have been to practicable	orted. The se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length.Data aggregation methodsIn reporting Exploration Results, 	oe length gainst the se (once orted. The
easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. Intercept grades are assumed to I weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated Intercept grades are assumed to I weighted. These will be validated a newly compiled drillhole databas complete). Relationship between mineralisation widths and intercept lengths These relationships are particularly important in the reporting of Exploration Results. Downhole intercepts have been used. If the geometry of the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, three should be a clear statement to this effect (eg 'down hole length, true width not known'). True widths will be established compilation of all historical data completed. Diagrams Where comprehensive reporting all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be Assay results for significant intercepts son homet Mining Corp figures have been to Appendix 2.	ore length gainst the se (once orted. The

Criteria	Explanation	Commentary
Other substantive	Other exploration data, if	Exploration activities carried out by other parties
exploration data	meaningful and material, should	include surface geochemistry, drilling, surface
	limited to): aeological	geology mapping, view, silocioidi mapping.
	observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating	Please refer to the aforementioned report filed on SEDAR for further details.
	substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 The following work is planned for the Pick Lake and Winston Lake Projects: Compilation of all drillhole hardcopy data into a drillhole database DGPS pick-up of all existing surface drillhole collars. Downhole survey measurements of exsiting surface drillholes (if possible) Resampling (quarter core) of all remaining and available drill core. Scanning and digitising of underground drive geology mapping. Generation of a 3D geology model in Leapfog.

Appendix 2: All known drillhole intercepts as sourced from Inmet Mining Corp figures.

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
WL-072	2	0.13	2.41	Pick Lake
UP-1A	1.9	0.39	14.65	Pick Lake
UP-114	2	0.11	6.69	Pick Lake
UP-115	2	0.1	6.27	Pick Lake
UP-116	2	0.03	2.85	Pick Lake
UP-117	2	0.22	21.81	Pick Lake
WL-075A	0.16	0.31	4.03	Pick Lake
WL-032A	4.45	0.73	18.48	Pick Lake
WL-065	2	0	0	Pick Lake
WL-023	2	0.3	5.34	Pick Lake
WL-076	0.17	0.28	24.95	Pick Lake
WL-029	2	0.02	0.46	Pick Lake
WL-058A	3.51	0.48	18.34	Pick Lake
WL-025A	2	0.02	1.28	Pick Lake
WL-024	2	0.09	5.29	Pick Lake
WL-078	2	0	0	Pick Lake
WL-079	2	0.3	0.24	Pick Lake
WI -070A	2	0	0	Pick Lake
WI -069	2	0	0	Pick Lake
WI -069A	2	0	0	Pick Lake
WI -026	2	0	0	Pick Lake
WL-026B	2	0	0	Pick Lake
WI-025	3 / 2	0.78	9.24	Pick Lake
WL-025	1 97	0.78	3.24	Pick Lake
WL-081	1.87	0.38	5 27	Pick Lake
	2	1.20	26.50	Pick Lake
0P-5A	2.0	1.59	20.39	PICK Lake
	4.4	0.80	22.02	PICK Lake
	5	1.74	27.42	PICK Lake
	5 11	1.20	34.98	PICK Lake
UP-4	2	0.28	8.04	PICK Lake
UP-30	2	0	0	PICK Lake
WL-071A	2	0.01	0.08	Pick Lake
VVL-0/1	17.00	0.06	0.18	PICK Lake
VVL-067	17.86	2.22	22.89	Pick Lake
UP-6	0.79	28.5	5.5	PICK Lake
WL-067A	2	0.69	24.48	PICK Lake
UP-5	5	0.6	22.09	PICK Lake
UP-5A	5	1.3	14.73	PICK Lake
UP-2	3.3	0.86	15.71	Pick Lake
WL-042	2	0.01	0.11	Pick Lake
WL-010	2	0	0	Pick Lake
WL-021	2	0.03	0.39	Pick Lake
WL-009	2	0.02	0.29	Pick Lake
WL-013	2	0.07	0.89	Pick Lake
WL-031	2	0.06	1.26	Pick Lake
WL-034	2	0.13	0.06	Pick Lake
WL-016	2	0.18	1.44	Pick Lake
WL-059	2	0.01	0.08	Pick Lake
WL-018	2	0.08	0.78	Pick Lake
UP-111	2	1.02	16.43	Pick Lake
UP-109	2.5	1.86	27	Pick Lake
UP-110	2	0.8	14.82	Pick Lake
UP-106	2	0.81	14.09	Pick Lake
UP-107	2	0.12	8.79	Pick Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
UP-105	2	0.95	16.5	Pick Lake
UP-103	2	0.21	8.25	Pick Lake
UP-102	2	0.14	3.19	Pick Lake
UP-108	2	0.35	10.46	Pick Lake
UP-56	2	0.97	14.36	Pick Lake
WL-012	2	0.87	12.34	Pick Lake
UP-55	2	1.32	15.74	Pick Lake
UP-58	2.6	1.91	28.35	Pick Lake
UP-51	2.5	1.49	21.34	Pick Lake
UP-57	2	0.4	7.58	Pick Lake
UP-68	2	0.28	2.55	Pick Lake
WL-047	2	0.13	2.35	Pick Lake
UP-67	2	0.22	3.45	Pick Lake
WL-027	2	0.58	7.15	Pick Lake
UP-70	2	0.02	1.23	Pick Lake
UP-79	2	0.27	2.66	Pick Lake
UP-74	2	0.04	1.43	Pick Lake
UP-64	2	0.14	2.31	Pick Lake
UP-65	2	0.34	6.55	Pick Lake
UP-69	2	0.4	8.54	Pick Lake
UP-65	2	1.17	13.61	Pick Lake
WI -045	2	0.69	9.83	Pick Lake
UP-22	2	0	0	Pick Lake
LIP-104	2	0.05	5.84	Pick Lake
LIP-60	2	0.05	3.96	Pick Lake
UP-50	2	0.33	8.93	Pick Lake
LIP-62	2	0.55	2.88	Pick Lake
LIP-54	2	1 16	12.00	Pick Lake
LIP-49	2	0.35	3.26	Pick Lake
LIP-59	2	0.04	1 71	Pick Lake
WI-033	2	0	0	Pick Lake
UP-48	2	0.51	15.26	Pick Lake
UP-52	2	0.4	8.2	Pick Lake
UP-53	3.4	1.7	20.83	Pick Lake
UP-19	5	1.76	24.27	Pick Lake
UP-78	2	0	0	Pick Lake
UP-72	2	0.21	3.71	Pick Lake
UP-73	2	0.19	3 33	Pick Lake
UP-75	2	0.59	10.02	Pick Lake
UP-77	2	0.38	5.37	Pick Lake
WL-028	2	0.51	1.67	Pick Lake
UP-76	2	0.32	5.33	Pick Lake
UP-07	2	0.81	8.44	Pick Lake
UP-09	2	1.02	11 89	Pick Lake
WI -048	3.26	1.85	24.35	Pick Lake
UP-10	2	0.65	9 44	Pick Lake
UP-11	3	1.79	25.65	Pick Lake
UP-12	2	1.53	18.35	Pick Lake
UP-13	2	1.57	21.93	Pick Lake
UP-38	2	1.4	26.26	Pick Lake
UP-37	2	1.16	22.58	Pick Lake
UP-15	2	0.17	2.48	Pick Lake
UP-34	2	0.01	1.23	Pick Lake
UP-33	2.6	1.48	24.55	Pick Lake
UP-14	3.6	1.33	27.08	Pick Lake
UP-35	2	0.11	12.33	Pick Lake
0.00				

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
UP-26	2	0.13	13.2	Pick Lake
UP-32	2	0.07	0.93	Pick Lake
UP-40	2	0.05	4.02	Pick Lake
UP-17	2	0.12	3.06	Pick Lake
UP-20	2	0.54	10.6	Pick Lake
UP-61	2	0.02	1.22	Pick Lake
UP-47	2	1.38	14.03	Pick Lake
UP-08	2	0	0	Pick Lake
UP-16	3.6	0.89	26.58	Pick Lake
UP-39	2	0	0.2	Pick Lake
UP-18	27	1 84	24 79	Pick Lake
UP-46	2	0.52	10.41	Pick Lake
UP-63	2	0.52	8 73	Pick Lake
UP-45	2	0.55	6.46	Pick Lake
LIP-21	2	0.40	0.40	Pick Lake
UP-80	2	0.44	10.6	Pick Lake
LIP-81	2	1 44	27.92	Pick Lake
WI-011	2 29	1.44	21.92	Pick Lake
110-83	2.25	1.45	18.34	Pick Lake
	2	1.27	22.05	Pick Lake
	2	0.55	23.05	Pick Lake
0F-64	2	0.55	2.33	Pick Lake
WL-049	2	0.15	5.22	PICK Lake
	2	0.25	5.23	PICK Lake
00-88	2	0.23	5.22	PICK Lake
WL-030	2	0.71	12.44	PICK Lake
UP-91	2	0.37	4.61	PICK Lake
UP-93	2	0.26	3.93	PICK Lake
UP-95	2	0.52	8.32	PICK Lake
UP-98	2	0.39	6.97	PICK Lake
UP-97	2	0.41	1.9	PICK Lake
UP-100	2	0.24	3.38	PICK Lake
UP-101	2	0.04	1.09	Pick Lake
UP-94	2	0.1	1.56	Pick Lake
UP-96	2	0.07	3.41	Pick Lake
UP-92	2	0.16	4.83	Pick Lake
UP-99	2	0.15	2.41	Pick Lake
UP-90	2	0.09	3.14	Pick Lake
UP-89	2	0.03	0.99	Pick Lake
UP-87	2	0.28	5.94	Pick Lake
UP-85	2	0.04	1.68	Pick Lake
UP-186	2	0.22	19.99	Pick Lake
UP-183	1.5	0.58	24.87	Pick Lake
UP-171	3	0.57	34.87	Pick Lake
UP-170	2	0.78	26.35	Pick Lake
UP-168	2	0.63	17.89	Pick Lake
UP-180	1.5	1.08	27.32	Pick Lake
UP-166	3.3	0.97	30.83	Pick Lake
UP-172	3.5	0.27	22.65	Pick Lake
UP-165	5.5	1.16	28.92	Pick Lake
UP-164	6	1.06	30.01	Pick Lake
UP-169	3	1.13	27.21	Pick Lake
UP-167	1.2	0.55	31	Pick Lake
UP-179	4.3	0.99	32.9	Pick Lake
UP-181	4.5	1.65	31.69	Pick Lake
UP-182	2.4	1.6	28.54	Pick Lake
UP-176	3.2	0.18	7.64	Pick Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
UP-14	0.5	0.23	18.14	Pick Lake
UP-143	0.3	0.67	19.54	Pick Lake
UP-145	2	1.33	16.58	Pick Lake
UP-146	0.7	0.56	13.97	Pick Lake
UP-155	0.6	0.93	19.58	Pick Lake
UP-184	1	0.28	26.4	Pick Lake
UP-185	2.2	0.7	28.9	Pick Lake
UP-162	1	0.62	18.07	Pick Lake
UP-160	0.3	0.38	10.54	Pick Lake
UP-174	5.5	0.94	24.32	Pick Lake
UP-175	3.3	1.6	30.73	Pick Lake
UP-161	6	1.77	27.6	Pick Lake
UP-149	10.5	1.33	24.8	Pick Lake
UP-173	9	1	29.48	Pick Lake
UP-151	0.8	1.71	22.26	Pick Lake
UP-178	4.3	1.25	36.35	Pick Lake
UP-152	1.5	0.36	11.32	Pick Lake
UP-177	3.5	0.25	9.25	Pick Lake
UP-119	0.03	0.16	10.56	Pick Lake
UP-120	0.01	0	0	Pick Lake
UP-159	03	0.88	13.4	Pick Lake
UP-158	1.2	1 58	30.43	Pick Lake
UP-147	33.2	2.26	18 77	Pick Lake
UP-156	0.7	0	0	Pick Lake
UIP_15/	15.8	1 4 4	30.47	Pick Lake
UP-1/18	15.8	1.44	30.47	Pick Lake
UID 125	15.0	0.25	7 5 4	Pick Lake
UID 125	0.01	0.25	7.54	Pick Lake
UP-133	0.01	0	0	Pick Lake
UP 126	0.02	0.25	26.46	Pick Lake
UP-157	0.3	0.55	20.40	Pick Lake
UP 124	0.1	0	0	Pick Lake
UP-134	0.3	1.2	20.44	Pick Lake
UP-135	1.7	0.62	25.44	Pick Lake
UP-120	1	0.03	20.55	Pick Lake
UP-105	0.05	0	0	Minston Lako
0-1307	2	0	0	Winston Lake
0-1300	2	0	0	Winston Lake
0-1364	2	0	0	Winston Lake
0-1449	2	0	0	Winston Lake
0-1370	2	0	0	Winston Lake
0-1445	2	1.06	24.47	Winston Lake
0-1379	3	1.06	34.47	Winston Lake
0-1445	2	0	0	Winston Lake
0-1441	2	0	0	Winston Lake
0-1437	2	0.26	8.12	Winston Lake
0-1434	2	0.12	1.72	Winston Lake
0-1439	2	0.04	0.43	Winston Lake
U-1433	2	0.09	2.31	Winston Lake
U-1438	2	0.04	0.03	Winston Lake
U-1435	2	1.13	15.02	Winston Lake
U-1432	2	0.49	6.51	Winston Lake
U-1435	2	1.13	15.02	winston Lake
U-1185	2	0.44	10.67	Winston Lake
U-1032	2	0	0	Winston Lake
U-1436	2	0.02	2.98	Winston Lake
U-1391	2	0.06	0.65	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1395	2	0.09	1.32	Winston Lake
U-1427	2	0.66	18.02	Winston Lake
U-1446	2	1.05	2.97	Winston Lake
U-1394	2	0.05	0.55	Winston Lake
U-1390	2	0.08	3.03	Winston Lake
U-1418	2	0.17	6.13	Winston Lake
U-1247	2	0.42	2.96	Winston Lake
U-1031	2.5	0.32	7.09	Winston Lake
U-1188	2	0.12	1.7	Winston Lake
U-1197	2	0.06	1.77	Winston Lake
U-1196	2	0.03	0.07	Winston Lake
U-1194	2	0.23	2.57	Winston Lake
U-1193	2	0.11	0.89	Winston Lake
U-1201	2.9	0.84	9.22	Winston Lake
U-1200	2	0.05	0.33	Winston Lake
U-1026	2.4	0.62	14.8	Winston Lake
U-1010	2	0.69	2.21	Winston Lake
U-1195	2	0.35	0.71	Winston Lake
U-1028	2.5	0.54	17.13	Winston Lake
U-1187	2	0.05	0.62	Winston Lake
U-1239	2	0.29	0.36	Winston Lake
U-1199	2	0.13	0.08	Winston Lake
U-1198	2	0	0	Winston Lake
U-1192	2	0.41	0.85	Winston Lake
U-1027	2	0.56	0.5	Winston Lake
U-1025	2	0	0	Winston Lake
U-1030	2	0	0	Winston Lake
U-1414	2	0.52	4.5	Winston Lake
U-1184	2	0.07	3.2	Winston Lake
U-1417	2	0.02	0.41	Winston Lake
U-1388	2	0.08	1.15	Winston Lake
U-1249	2	0.47	4.81	Winston Lake
U-1389	2	0.31	11.95	Winston Lake
U-1231	9	1.17	18.52	Winston Lake
U-1230	9.2	1.43	12.87	Winston Lake
U-1392	7.7	1.01	11.2	Winston Lake
U-110	5.4	1.23	11.5	Winston Lake
U-1393	2	0.15	2.01	Winston Lake
U-1224	2	0.01	0.31	Winston Lake
U-1396	2	0.02	0.38	Winston Lake
U-1220	2	1.36	17.81	Winston Lake
U-1397	2	1.22	8.16	Winston Lake
U-1260	2.6	0.97	10.54	Winston Lake
U-1259	2	1.41	7.71	Winston Lake
U-1399	2	0.41	7.95	Winston Lake
U-1398	2	0.43	10.01	Winston Lake
U-1268	2	0.67	10.26	Winston Lake
U-1406	2.2	1.77	22.47	Winston Lake
U-1258	2	0.96	7.35	Winston Lake
U-1276	2	1.42	2.75	Winston Lake
U-1253	11.8	1.19	13.78	Winston Lake
U-1280	2	0.61	5.21	Winston Lake
U-1257	6	1.45	30.37	Winston Lake
U-1367	2	0.87	14.78	Winston Lake
U-1364	2	0.66	17.82	Winston Lake
U-1267	2	0.34	15.71	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1368	2	0.18	3.71	Winston Lake
U-1256	2	0.03	0.28	Winston Lake
U-1365	2	0.32	0.82	Winston Lake
U-1369	2	0.39	4.77	Winston Lake
U-1366	2	0.6	8.72	Winston Lake
U-1370	2	0.08	4.3	Winston Lake
U-1371	2	0	0.1	Winston Lake
U-1334	2	0.09	2.1	Winston Lake
U-1331	2	0.07	0.16	Winston Lake
U-1431	2	1.37	13.75	Winston Lake
U-1428	2	1.38	2.82	Winston Lake
U-1430	2	0.15	0.29	Winston Lake
U-1381	2	0.37	3.92	Winston Lake
U-1440	3	1 47	36.79	Winston Lake
U-1380	2.8	2.47	28.29	Winston Lake
U-1444	2.0	0.08	6.37	Winston Lake
11-1/29	2	1.45	0.57	Winston Lake
U_1202	2	1.45	18.67	Winston Lake
U 1447	2	1.15	21.02	Winston Lake
0-1447	2	1.44	16 50	Winston Lake
0-1408	3	1.82	16.59	Winston Lake
0-1378	2	0.96	10.55	Winston Lake
0-1407	2.4	1.76	12.18	Winston Lake
0-1448	3.5	1.24	18.45	Winston Lake
0-1377	2.6	1.52	24.79	Winston Lake
0-1373	3.5	0.84	24.52	Winston Lake
0-1375	2	0.41	16./1	Winston Lake
0-1383	2	0.02	0.18	Winston Lake
U-1244A	7.3	0.96	9.44	Winston Lake
U-1238	12	1.01	11.41	Winston Lake
U-1246	9.8	0.23	1.56	Winston Lake
U-1237	7.2	0.59	8.11	Winston Lake
U-996	10.5	1.04	9.34	Winston Lake
U-1223	5.4	1.1	12.6	Winston Lake
U-1244	2	1.33	3.79	Winston Lake
U-1243	2	0.66	0.88	Winston Lake
U-1006	2	0.59	1.5	Winston Lake
U-1183	2	0.23	0.07	Winston Lake
U-1248	2.6	1.4	17.15	Winston Lake
U-1235	2	0.01	0.42	Winston Lake
U-1000	2	0.39	16.57	Winston Lake
U-1228	2	0.09	2.83	Winston Lake
U-1226	3.8	1.11	16.38	Winston Lake
U-1190	6	1.77	18.82	Winston Lake
U-1189	3.3	1.4	17.06	Winston Lake
U-1175	3.9	1.17	24.16	Winston Lake
U-1272	2	1.37	21.07	Winston Lake
U-1174	2.6	1.08	28.42	Winston Lake
U-1167	3.7	0.7	31.59	Winston Lake
U-121	9.1	0.68	8.46	Winston Lake
U-1166	6.5	0.69	13.11	Winston Lake
U-1219	3.8	1.24	16.74	Winston Lake
U-1250	2	1.51	29.15	Winston Lake
U-1251	2	1.07	5.43	Winston Lake
U-1274	2	0.45	9.29	Winston Lake
U-1275	2	0.17	1.85	Winston Lake
U-1279	2	0.8	7.2	Winston Lake
J	-	0.0	··-	Line Lance

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1284	7.8	2.02	21.25	Winston Lake
U-1252	9.8	0.21	5.35	Winston Lake
U1338	6.4	0.84	16.08	Winston Lake
U-1164	5.8	1.64	27.69	Winston Lake
U-1266	2	0.29	5.25	Winston Lake
U-1266	2	0.06	0.69	Winston Lake
U-1332	2	0.35	7.14	Winston Lake
U-1261	2	0.03	2.2	Winston Lake
U-1333	2	0.08	4.5	Winston Lake
U-1330	2	0.07	0.12	Winston Lake
U-1321	2	0	0	Winston Lake
U-1261	2	0.03	2.2	Winston Lake
U-1217	2	0.29	12.74	Winston Lake
U-1325	2	0.4	17.9	Winston Lake
U-1215	2	0.02	0.49	Winston Lake
11-792	2	0.02	0.45	Winston Lake
U-1213	2	0.02	0.11	Winston Lake
U-1326	2	0.52	5 55	Winston Lake
11-1327	2	0.04	0.37	Winston Lake
U_1211	30	0.64	18.65	Winston Lake
11-780	3.5	0.04	0.29	Winston Lake
11-1328	2	0.04	0.23	Winston Lake
0-1328	2	0.09	22 71	Winston Lake
0-1208	2.0	0.39	35.71	Winston Lake
0-1204	2	0.49	2.00	Winston Lake
0-1206	2	1.43	9.03	Winston Lake
0-784	2	0.55	1.1	Winston Lake
0-1322	2	0.21	0.03	Winston Lake
0-1323	2	0.38	0.34	Winston Lake
0-1324	2	0.17	3.22	Winston Lake
0-794	2	0.57	1.83	Winston Lake
0-791	2	0.05	0.56	Winston Lake
0-790	2	0.01	0.01	Winston Lake
0-785	2	0.01	0.01	Winston Lake
20-23	-	-	-	Winston Lake
0-1363	2	0.48	2.75	Winston Lake
0-1359	2	0.01	0.57	Winston Lake
0-1362	2	0.37	4.58	Winston Lake
0-1357	2	0.04	1.25	Winston Lake
0-1423	2	0.01	1.1	Winston Lake
0-1355	2	0.03	9.82	Winston Lake
0-799	2	0.38	21.31	Winston Lake
0-1356	2	0.03	0.03	Winston Lake
U-1360	2	0.01	5.83	Winston Lake
U-797	2	0.03	0.02	Winston Lake
U-1424	2	0.04	0.07	Winston Lake
U-801	2	0	0	Winston Lake
U-1421	2	0	0	Winston Lake
U-787	2	0.43	0.08	Winston Lake
U-1094	2	0.04	1.14	Winston Lake
U-1093	2	0.01	0.17	Winston Lake
U-1422	4.4	1	34.96	Winston Lake
U-1352	2	0.35	0.09	Winston Lake
U-800	2	0.69	0.48	Winston Lake
U-1354	2	0.74	13.1	Winston Lake
U-1345	5.3	1.11	14.79	Winston Lake
U-1346	6.8	1.9	35.43	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-798	2	1.31	6.5	Winston Lake
U-1350	4.7	0.82	39.59	Winston Lake
U-1351	6.6	0.97	18.53	Winston Lake
U-796	2	1.38	2.77	Winston Lake
U-1361	2	0.26	10.18	Winston Lake
U-793	2	0.65	3.22	Winston Lake
U-1358	2	0.01	1.13	Winston Lake
U-1312	2	0.5	2.98	Winston Lake
U-1339	2	0.04	0.6	Winston Lake
U-1341	2	0.13	1.15	Winston Lake
U-1342	2	1.07	3.92	Winston Lake
U-1349	2	1.26	21.13	Winston Lake
U-1348	2	0.05	0.33	Winston Lake
U-1337	2	0.23	1 35	Winston Lake
U-1340	2	0.05	2.00	Winston Lake
U-1353	82	1.03	13 93	Winston Lake
U-006	2	0.37	8 27	Winston Lake
11-948	2	0.51	4 73	Winston Lake
11-13/13	2	0.08	3 38	Winston Lake
11-955	2	0.00	2.98	Winston Lake
U_021	2	0.51	2.98	Winston Lake
11-13/7	2	0.5	3.63	Winston Lake
0-1347	2	0.73	1.60	Winston Lake
U-1544	2	0.09	1.09	Winston Lake
0-1032	2	0.49	0.52	Winston Lake
0-1077	2	0.05	5.25	Winston Lake
0-1091	2	0.83	10.02	Winston Lake
0-1085	3.3	0.82	18.48	Winston Lake
0-780	2.0	1.58	9.01	Winston Lake
0-1082	0	0.56	10.03	Winston Lake
0-003	2.1	0.72	9.14	Winston Lake
0-1081	2	0.46	19.31	Winston Lake
0-1088	3	1.15	18.13	Winston Lake
0-1080	2.2	0.87	26.84	Winston Lake
0-016	2	0.87	8.77	Winston Lake
0-1075	2.3	1.11	10.2	Winston Lake
0-1074	3.5	0.82	24.37	Winston Lake
0-1072	2	0.03	0.67	Winston Lake
0-10/1	2	0.02	0.38	Winston Lake
0-1051	2	0.02	0.18	Winston Lake
0-025	2	0.36	0.52	Winston Lake
0-1048	2	0.27	9.26	Winston Lake
0-1070	2	0.02	0.13	Winston Lake
0-1050	2	0.06	0.51	Winston Lake
U-1047	2	0.91	9.19	Winston Lake
U-1046	2	0.05	4.83	Winston Lake
U-029	2	0.52	3.97	Winston Lake
U-1040	2	0.79	10.28	Winston Lake
U-1039	2	0.08	0.3	Winston Lake
U-1042	2	0.07	1.66	Winston Lake
U-1044	2	0.01	0.07	Winston Lake
U-1043	2	0.11	2.25	Winston Lake
U-1036	6	1.23	23.3	Winston Lake
U-1134	2	0.05	0.17	Winston Lake
U-061	2	0.06	0.04	Winston Lake
U-1038	2	0.03	1.3	Winston Lake
U-1035	2.8	1.76	23.32	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1133	2	0.01	1.99	Winston Lake
U-1132	2	0.35	0.6	Winston Lake
U-1141	2	0	0	Winston Lake
U-1140	2	0	0	Winston Lake
U-1137	2	0	0	Winston Lake
U-1139	2	0.01	3.19	Winston Lake
U-1136	2	0	0	Winston Lake
U-066	2	0.24	0.21	Winston Lake
U-1147	2	0	0	Winston Lake
U-1144	2	0.11	1.02	Winston Lake
U-1146	2	0.59	1.24	Winston Lake
U-1143	2	1	3.92	Winston Lake
U-1142	5.8	1.99	24.41	Winston Lake
U-1145	2	1.71	14.13	Winston Lake
U-087	1.4	0.37	3.1	Winston Lake
U-842	2	0.62	0.41	Winston Lake
U-836	8.6	1.52	19.45	Winston Lake
U-839	4.5	1.19	23.74	Winston Lake
U-067	5	1.03	8.34	Winston Lake
U-833	2	0.4	1.56	Winston Lake
U-835	10	1.46	20.73	Winston Lake
U-838	9.8	1.09	29.93	Winston Lake
U-841	11	0.79	21.46	Winston Lake
U-845	2	0.35	1.93	Winston Lake
U-849	2	0	0	Winston Lake
U-854	2	0.44	3.74	Winston Lake
U-850	2	0.01	0.68	Winston Lake
U-848	2	0.02	4.2	Winston Lake
U-083	2	0.15	1.3	Winston Lake
U-855	2	0	0	Winston Lake
U-853	2	0.03	0.7	Winston Lake
U-858	2	0	0	Winston Lake
U-856	2	0	0	Winston Lake
U-852	2	0.14	8.5	Winston Lake
U-851	2	0	0	Winston Lake
U-846	4.8	0.17	48.28	Winston Lake
U-847	10	0.34	40.06	Winston Lake
U-844	11.2	0.59	39	Winston Lake
U-843	6	2.2	47.09	Winston Lake
U-837	11	2.9	25.79	Winston Lake
U-088	5.8	2.56	32.49	Winston Lake
U-840	7	1.54	26.09	Winston Lake
U-8334	4.6	1.95	24.34	Winston Lake
U-084	4 7	4 52	37.21	Winston Lake
U-857	2	0	0	Winston Lake
U-1316	2	0	0	Winston Lake
U-859	2	0	0	Winston Lake
U-045	3.4	0.76	7 91	Winston Lake
U-1034	2	0.73	29.86	Winston Lake
U-1131	3.2	0.59	11.87	Winston Lake
U-1045	2	0.12	2.3	Winston Lake
[]-979	2	0.01	1.65	Winston Lake
U-1041	2	0.12	0.73	Winston Lake
U-1037	2	0.14	0.78	Winston Lake
U-976	2	0.01	1.83	Winston Lake
11-972	2	1 27	8.47	Winston Lake
0 372	4	1.47	0.72	

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-024	2	0.49	11.52	Winston Lake
U-968	2	0.02	0.34	Winston Lake
U-967	2	0.05	0.07	Winston Lake
U-971	2	0.23	1.24	Winston Lake
U-981	3.5	1.36	12.7	Winston Lake
U-1087	5.7	1.22	15	Winston Lake
U-1079	2	0.81	14.81	Winston Lake
U-1073	4.8	1.03	20.36	Winston Lake
U-1086	2	0.26	15.07	Winston Lake
U-1078	2.6	1.04	4.84	Winston Lake
U-013	2	0.81	25.04	Winston Lake
U-969	3	0.73	20.31	Winston Lake
U-1069	2	0.25	4.53	Winston Lake
U-1049	2	0.11	8.96	Winston Lake
U-1084	2	0.25	0.56	Winston Lake
U-1076	2	1.07	4.75	Winston Lake
U-1090	2	0.25	0.95	Winston Lake
U-1083	2	0.02	1.38	Winston Lake
U-007	2	0.07	4.85	Winston Lake
U-1089	2	0.17	3.12	Winston Lake
U-795	2	0.22	6.7	Winston Lake
U-1179	2	0.15	3.07	Winston Lake
U-949	2	0.04	1.14	Winston Lake
U-863	2	0.52	0.73	Winston Lake
U-947	4.2	1 33	17.83	Winston Lake
U-102	2	1.00	23.6	Winston Lake
U-946	8	1.20	17 75	Winston Lake
U-1178	2	0.09	14.43	Winston Lake
U-033	83	0.69	14 78	Winston Lake
U-1180	2	1 11	19.78	Winston Lake
U-954	2	0.27	4.85	Winston Lake
U-954	2	0.69	0.61	Winston Lake
U-1020	2	0.36	5 38	Winston Lake
U-1022	2	1 11	13.99	Winston Lake
11-945	84	12	19.07	Winston Lake
U-1018	2.5	1 1	20.89	Winston Lake
U-1019	6.94	1.98	20.05	Winston Lake
U-1021	37	1.50	21.05	Winston Lake
11-/133	2.8	0.28	1/ 97	Winston Lake
11-433	3	2.62	1/1.9	Winston Lake
U-1023	2	0.28	43.46	Winston Lake
U-019	59	1.04	14 88	Winston Lake
U-019	8	1.04	17.66	Winston Lake
U-1016	25	1.34	16.81	Winston Lake
U-1010	2.5	0.98	15.02	Winston Lake
11-940	2	1.89	20.32	Winston Lake
U-940	2.4	0.13	3 1	Winston Lake
11_/122	, 8	0.13	13.68	Winston Lake
11_/22	25	1.02	5/12	Winston Lake
11_027	2.5	0.61	10 02	Winston Lake
U_021	23.5	0.01	1/ 72	Winston Lako
11-031	10	1 02	16.17	Winston Lake
	13	1.02	0.14	Winston Laka
0-1202	2	0.59	0.71	Winston Lake
11 067	2	0.71	-+./3 2.25	Winston Laka
	2	1.05	2.20	Winston Lake
0-8/1	۷	1.05	3.11	winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-866	2	0.41	1.99	Winston Lake
U-862	2	0.24	3.37	Winston Lake
U-964	2	0.24	3.37	Winston Lake
U-963	5	0.17	1.23	Winston Lake
U-965	17.2	0.75	5.18	Winston Lake
U-929	13.6	0.78	10.04	Winston Lake
U-861	16	0.68	7.53	Winston Lake
U-865	3	1.05	7.91	Winston Lake
U-927	12.7	1.42	22.57	Winston Lake
U-974	2	0.72	6.43	Winston Lake
U-002	7	0.72	8.75	Winston Lake
U-974	2	0.72	6.43	Winston Lake
U-440	2	0.73	1.73	Winston Lake
U-973	2	0.34	4.33	Winston Lake
U-440	2	0.73	1.73	Winston Lake
U-465	2	0.63	6.67	Winston Lake
U-457	2	0.11	0.56	Winston Lake
U-464	4.6	1.14	7.03	Winston Lake
U-456	2	1 19	4 45	Winston Lake
U-439	86	0.93	11 32	Winston Lake
11-448	2	1 26	20.4	Winston Lake
11-438	6	1.20	94	Winston Lake
U-1236	2	0.1	0.06	Winston Lake
U-1230	2	0.1	0.00	Winston Lake
11-000	2	0.52	28.3	Winston Lake
11-1227	2.2	0.02	20.3	Winston Lake
11 005	2	0.5	20.24	Winston Lake
11 1225	2	0.55	2.4	Winston Lake
0-1225	50	1.02	6.2	Winston Lake
U 1222	3.2 2	0	0.5	Winston Lake
U-1221	2	0.51	0.79	Winston Lake
U 1005	2	0.31	12 22	Winston Lake
0-1005	2.0	0.84	1 09	Winston Lake
0-1242	2	0.73	1.08	Winston Lake
0-1241	2 05	0.12	1 52	Winston Lake
0-1009	2.95	0.85	7.20	Winston Lake
0-1191	2	0.58	7.29	Winston Lake
0-1182	2	0.39	5.17	Winston Lake
0-1004	2	0.43	0.92	Winston Lake
0-1255	2	0.02	0.77	Winston Lake
0-1252	2	0.10	1.40	Winston Lake
0-998	2	0.03	0.54	Winston Lake
0-993	2	0.13	1.52	Winston Lake
0-994	2	0.22	5.10	Winston Lake
0-111	2	0.44	1.4	Winston Lake
0-984	2	0.27	3.55	Winston Lake
0-983	2	0.11	0.35	Winston Lake
0-916	2	0.25	0.25	Winston Lake
0-917	2	0.09	0.34	Winston Lake
0-992	2	0.17	1./	Winston Lake
0-997	5.8	1.05	10.94	Winston Lake
0-911	2	0.41	4.13	Winston Lake
0-991	2	0.53	4.36	Winston Lake
U-921	2	0.48	8.42	Winston Lake
U-1003	2	0.37	0.29	Winston Lake
U-1002	2	0	-	Winston Lake
U-1001	2	0	0	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1008	2	0.01	0.66	Winston Lake
U-1024	2	0.08	0.13	Winston Lake
U-1029	2	0	0	Winston Lake
U-1007	2	0	0	Winston Lake
U-920	2	0.49	0.1	Winston Lake
U-909	2	0.21	0.59	Winston Lake
U-910	2.6	0.61	11.63	Winston Lake
U-990	3.4	0.66	6.94	Winston Lake
U-112	8.9	0.85	12.78	Winston Lake
U-912	4	0.32	5.16	Winston Lake
U-914	2	0.41	18.61	Winston Lake
U-915	2.8	0.29	9.26	Winston Lake
U-925	9	0.95	16.16	Winston Lake
U-982	6.4	0.56	16.8	Winston Lake
U-122	7	0.8	11.87	Winston Lake
U-1066	2	0.21	1.42	Winston Lake
U-924	5.4	0.56	39.68	Winston Lake
U-895	12.3	2.05	30.16	Winston Lake
U-885	8.2	1.47	51.61	Winston Lake
U-117	13.7	2.18	34.31	Winston Lake
U-894	12.8	1.74	24.9	Winston Lake
U-884	11.2	1.53	33.61	Winston Lake
U-893	10.6	1.61	26.66	Winston Lake
U-819	8	0.67	16.36	Winston Lake
U-926	11.8	1.37	25.48	Winston Lake
U-923	10.6	0.51	14.17	Winston Lake
U-123	2.1	0.48	6.57	Winston Lake
U-818	2	0.41	8.39	Winston Lake
U-817	2.7	0.2	4.51	Winston Lake
U-815	2	0.21	2.12	Winston Lake
U-816	2	0.44	4.01	Winston Lake
U-814	3.5	0.54	7.58	Winston Lake
U-813	2	0.18	5.28	Winston Lake
U-812	3.8	0.37	8.41	Winston Lake
U-913	2	0	0	Winston Lake
U-918	2	0.06	5.95	Winston Lake
U-919	2	0.12	1.13	Winston Lake
U-908	2	0.16	3.94	Winston Lake
U-1218	2.2	1.55	10.01	Winston Lake
U-1063	2.6	1.22	26.63	Winston Lake
U-1061	6.1	0.94	21.74	Winston Lake
U-1058	3.2	0.8	21.85	Winston Lake
U-1059	7.2	0.44	7.12	Winston Lake
U-1052	7.2	1.81	35.32	Winston Lake
U-1053	6.3	0.26	2.2	Winston Lake
U-1176	5.2	1.26	29.93	Winston Lake
U-096	3.6	0.45	4.6	Winston Lake
U-1181	4.1	1.55	30.02	Winston Lake
U-1254	11.5	0.99	12.15	Winston Lake
U-1177	6.3	1.57	23.75	Winston Lake
U-1163	7.2	0.62	6.74	Winston Lake
U-1165	4	1.85	14.45	Winston Lake
U-115	8.4	1.34	9.72	Winston Lake
U-1173	6.8	2.44	29.93	Winston Lake
U-1170	3.3	1.09	25.06	Winston Lake
U-1169	2	0.9	25.64	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-091	4.8	1.6	15.21	Winston Lake
U-1155	2	0.18	9.93	Winston Lake
U-1320	2	0.42	7.23	Winston Lake
U-1160	2	0.38	7.74	Winston Lake
U-1216	2	0.42	4.86	Winston Lake
U-1159	11.6	0.94	15.54	Winston Lake
U-076	13.7	0.98	14.24	Winston Lake
U-1168	6.5	1.93	22.91	Winston Lake
U-958	6.6	1.9	26.16	Winston Lake
U-1172	8.8	1.65	33.9	Winston Lake
U-1171	11.4	1.84	21.42	Winston Lake
U-962	7.9	1.26	21.52	Winston Lake
U-1161	8.7	1.06	19.55	Winston Lake
U-092	8.4	1 49	16 49	Winston Lake
11-957	12.8	1.13	16.78	Winston Lake
U-956	5.8	0.75	20.08	Winston Lake
U-101	9.7	1 92	27.44	Winston Lake
U-880	15	1.32	18.97	Winston Lake
U-1153	11 /	1.20	21.85	Winston Lake
U_1154	9.2	1.34	21.05	Winston Lake
11-905	9.2	0.91	18.93	Winston Lake
U_11/0	10	0.91	16.55	Winston Lake
U 1149	4.5	2	16.16	Winston Lake
0-1140	4.5	2	26.24	Winston Lake
0-055	3.5	1.76	17.05	Winston Lake
0-079	2.9	1.76	17.95	Winston Lake
0-1157	2	0.90	22.55	Winston Lake
0-875	3.5	1.44	10.24	Winston Lake
0-1202	2	0.78	19.34	Winston Lake
0-049	2.4	1.26	23.52	Winston Lake
0-1203	2	1.05	9.35	Winston Lake
0-1207	2	1.17	10.54	Winston Lake
0-788	4	2.09	23.84	Winston Lake
0-1210	2	1.13	17.88	Winston Lake
0-1209	2.2	1.42	26.7	Winston Lake
0-1311	2	0.67	12.65	Winston Lake
0-1212	2	0.43	11.77	Winston Lake
0-1214	2	0.87	8.33	Winston Lake
0-070	2	1.03	12.66	Winston Lake
0-1150	2	0.08	10.98	Winston Lake
0-1151	3.2	1.49	26.52	Winston Lake
0-892	17.3	0.78	11.55	Winston Lake
0-1152	11.8	0.52	21.01	Winston Lake
0-891	16.1	2.01	14.16	Winston Lake
0-1158	5.6	1.66	16.54	Winston Lake
0-878	9.3	0.77	20.2	Winston Lake
0-8//	11.6	1.47	18.99	Winston Lake
U-903	2	0.79	10.82	Winston Lake
U-1156	4.6	0.56	16.98	Winston Lake
0-902	9.6	1.05	12.13	Winston Lake
U-050	10.2	0.86	10.2	Winston Lake
U-874	8.8	0.64	10.65	Winston Lake
U-870	9.1	1.02	10.63	Winston Lake
U-869	13.4	0.96	17.51	Winston Lake
U-873	10.8	1.02	23.6	Winston Lake
U-901	12.8	1.29	19.29	Winston Lake
U-056	16.3	1.38	22.8	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-134	15.1	1.12	17.4	Winston Lake
U-135	9.4	1	13.27	Winston Lake
U-071	8.6	1.24	23.32	Winston Lake
U-904	11.6	0.76	28.3	Winston Lake
U-137	5.7	1.05	25.01	Winston Lake
U-136	6.1	1.14	24.94	Winston Lake
U-077	6.8	1.52	23.63	Winston Lake
U-953	3	1.11	14.43	Winston Lake
U-883	5.3	1.52	23.01	Winston Lake
U-906-	5.6	0.27	10.09	Winston Lake
U-889	2	0.62	22.99	Winston Lake
U-1062	4.8	0.53	20.45	Winston Lake
U-959	2	0.45	5.16	Winston Lake
U-960	2	0.25	7.49	Winston Lake
U-1054	2	0.19	7.93	Winston Lake
U-1064	2.6	0.97	8.63	Winston Lake
U-1060	7.8	0.67	17.37	Winston Lake
U-1065	3.3	1.24	9.46	Winston Lake
U-890	17	0.81	11.54	Winston Lake
U-138	10.6	1.93	18.42	Winston Lake
U-726	9.4	1.43	21.76	Winston Lake
U-730	5.4	1.03	22.97	Winston Lake
U-735	2	0.28	3 19	Winston Lake
U-882	2	0.58	3 11	Winston Lake
U-881	13.1	1.67	22.8	Winston Lake
U-907	19	1.07	11 34	Winston Lake
11-888	13.8	0.68	15.2	Winston Lake
11-097	7.6	0.00	7 58	Winston Lake
11-944	10.9	0.7	37.38	Winston Lake
11-898	9.2	1 19	26.18	Winston Lake
11-887	15	0.82	15.24	Winston Lake
11-886	6.35	1.02	24.29	Winston Lake
11-897	11.9	1.02	13.1	Winston Lake
11-093	15.5	1.08	24.04	Winston Lake
U-734	15.5	1.33	24.04	Winston Lake
11-729	75	2.34	20.51	Winston Lake
U-725	7.5	2.34	20.5	Winston Lake
U 721	14.2	1.04	20.04	Winston Lake
U 702	14.3	2.12	20.70	Winston Lake
U 710	12.5	1 25	20.55	Winston Lake
0-719	14.2	1.55	12.69	Winston Lake
0-870	14.2	0.86	12.08	Winston Lake
0-900	15.7	0.80	15.19	Winston Lake
0-107	10.4	1.85	21.34	Winston Lake
0-868	11.4	1.33	19.7	Winston Lake
0-622	11.4	1.03	15.10	Winston Lake
0-621	12	0.65	9.37	Winston Lake
0-051	12./	0.09	9.5	Winston Lake
U-8/2	16	0.78	0.13	Winston Lake
U-712	111	1.00	12.58	Winston Lake
U-715	11.1	0.57	13.01	Winston Lake
U-/11	2.6	0.57	9.94	Winston Lake
0-057	/.8	0.76	22.7	Winston Lake
U-116	2	0.6	12.32	Winston Lake
U-1162	2	0.55	17.29	Winston Lake
U-952	2	0.69	19.1	Winston Lake
U-1068	2	0.72	8.32	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-986	8.6	0.87	24.94	Winston Lake
U-985	2	0.16	1.31	Winston Lake
U-985	2	0.13	0.73	Winston Lake
U-1067	10	0.13	2.08	Winston Lake
U-896	2	0.23	43.97	Winston Lake
U-1057	6.2	0.52	44.54	Winston Lake
U-951	5.4	0.68	23.79	Winston Lake
U-988	6.3	0.57	29.85	Winston Lake
U-1055	5.6	0.56	39.43	Winston Lake
U-1056	2	0.54	21.18	Winston Lake
U-987	3	0.54	29.72	Winston Lake
U-987	3	0.54	29.72	Winston Lake
U-950	5.2	1.29	22.49	Winston Lake
U-950	5.3	0.44	21.28	Winston Lake
U-989	2	0.42	14.01	Winston Lake
U-752		-	-	Winston Lake
U-754	-	-	-	Winston Lake
U-753	-	-	_	Winston Lake
U-125	2	0.17	0.98	Winston Lake
U-292	2	0.02	0.64	Winston Lake
U-267	2	0.31	5.99	Winston Lake
U-330	2.4	0.21	7 36	Winston Lake
U-114	2.4	0.37	5 51	Winston Lake
U-275	2	0.04	0.34	Winston Lake
U-113	25	0.22	3 11	Winston Lake
U-124	2	0.22	4 49	Winston Lake
11-297	2	0.22	1.45	Winston Lake
U-296	2	0.13	9.95	Winston Lake
U-295	3.9	0.83	30.3	Winston Lake
11-274	2	1.04	17.8	Winston Lake
U-287	2	0.33	13.8	Winston Lake
11-329	2	0.35	6.69	Winston Lake
U-300	2	0.95	11.4	Winston Lake
11-294	5.4	1.07	19 33	Winston Lake
U-301	3	13	17.4	Winston Lake
11-293	7	0.65	38.25	Winston Lake
U-241	3.4	0.64	21.07	Winston Lake
11-269	5.4	0.04	18	Winston Lake
U-270	5.4	1 04	9 54	Winston Lake
U-270	10.8	0.82	25.78	Winston Lake
U-119	5.6	1 13	20.32	Winston Lake
U-272	6.8	1.09	24.7	Winston Lake
U-273	4	0.91	35.24	Winston Lake
U-266	9	0.92	34.68	Winston Lake
U-260	53	0.92	32 35	Winston Lake
U-310	4	2.6	25.29	Winston Lake
U-311	22	0.52	34,01	Winston Lake
U-259	27	0.52	16	Winston Lake
U-265	10	0.67	36.06	Winston Lake
U-264	9	0.86	35.05	Winston Lake
U-263	2	0.19	0 14	Winston Lake
U-100	4.6	0.15	25.9	Winston Lake
U-313	73	0.47	23.5	Winston Lake
U-314	6	0.47	27.1	Winston Lake
11-257	2	0.93	11 20	Winston Lake
11_252	51	1 0/	Q 5/	Winston Lake
0-233	5.4	1.04	5.54	WINSLOIT LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-554	2	0.24	6.04	Winston Lake
U-551	2	0.18	5.87	Winston Lake
U-238	2.1	0.68	16.6	Winston Lake
U-547	2	0.16	4.19	Winston Lake
U-133	2	0.23	4.44	Winston Lake
U-242	7.6	0.42	13.95	Winston Lake
U-243	9.2	0.39	9.35	Winston Lake
U-247	11.3	0.36	21.52	Winston Lake
U-248	12.4	0.57	40.07	Winston Lake
U-126	18.8	0.42	40.45	Winston Lake
U-251	11.1	0.84	19.71	Winston Lake
U-075	12.9	1.74	35.29	Winston Lake
U-252	19.1	1.4	45.3	Winston Lake
U-367	8	1.81	35.79	Winston Lake
U-080	10.2	0.58	45.01	Winston Lake
U-374	7	2.02	40.96	Winston Lake
U-109	4.8	2	36.47	Winston Lake
U-240	10.9	0.52	13.03	Winston Lake
U-239	8.2	0.65	14.84	Winston Lake
U-244	13.8	0.54	22.53	Winston Lake
U-268	2	0.27	3.94	Winston Lake
U-262	2	0.06	2.56	Winston Lake
U-261	2	0.28	4.59	Winston Lake
U-258	6.5	0.48	29.3	Winston Lake
U-312	8.8	0.44	32.45	Winston Lake
U-312	9.6	0.55	42.74	Winston Lake
U-325	16.5	3.08	41.61	Winston Lake
U-326	8.8	1.51	37.14	Winston Lake
U-341	7	3.05	33.55	Winston Lake
U-342	6.5	2.39	50.43	Winston Lake
U-366	4.5	1.81	34.46	Winston Lake
U-365	3.2	1.08	27.89	Winston Lake
U-128	9	0.59	23.26	Winston Lake
U-364	7.8	0.59	47.94	Winston Lake
U-520	8	1.16	30.61	Winston Lake
U-521	2	2.5	14.09	Winston Lake
U-340	5.8	0.62	19.1	Winston Lake
U-327	4	2.6	25.29	Winston Lake
U-519	8	0.47	28.15	Winston Lake
U-371	3.7	0.24	48.08	Winston Lake
U-390	12	0.88	27.88	Winston Lake
U-391	7	0.51	10.67	Winston Lake
U-372	8.1	0.55	13.77	Winston Lake
U-392	2.5	0.6	30.39	Winston Lake
U-373	5	0.69	48.78	Winston Lake
U-250	9.7	0.57	6.39	Winston Lake
U-236	13	1.04	21.06	Winston Lake
U-098	6.5	1.17	24.71	Winston Lake
U-829	13	0.87	13.22	Winston Lake
U-826	9.6	2.02	24.43	Winston Lake
U-822	9.6	1.58	41.79	Winston Lake
U-118	7.2	0.94	42.08	Winston Lake
U-825	15.8	2.31	26.95	Winston Lake
U-828	12	1.04	16.28	Winston Lake
U-831	20.4	1.19	19.38	Winston Lake
U-738	13.6	1.37	23.87	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-739	14.4	1.21	20.82	Winston Lake
U-733	9.7	0.94	18.27	Winston Lake
U-078	9.4	2.11	24.89	Winston Lake
U-724	16.6	2.1	26.69	Winston Lake
U-718	9.7	0.9	14	Winston Lake
U-714	2	0.47	17.59	Winston Lake
U-710	2	0.49	18.45	Winston Lake
U-108	4	1.02	12.28	Winston Lake
U-620	4.8	0.23	3.56	Winston Lake
U-040	2.1	1.18	21.7	Winston Lake
U-616	12	0.23	9.64	Winston Lake
U-864	15.8	0.86	20.91	Winston Lake
U-615	2	0.86	12.45	Winston Lake
U-614	3	0.84	22.39	Winston Lake
u-041	3.6	0.71	30.64	Winston Lake
U-617	2	0.56	12.32	Winston Lake
U-543	2	0.3	4.93	Winston Lake
U-618	3.2	0.59	9.46	Winston Lake
U-619	3.6	0.74	7.68	Winston Lake
U-709	4	0.67	17.89	Winston Lake
U-713	6.2	0.74	18.74	Winston Lake
U-717	2.7	0.54	15.53	Winston Lake
U-073	2	0.64	17.57	Winston Lake
U-720	15.5	0.58	16.41	Winston Lake
U-723	7.6	1.15	23.11	Winston Lake
U-728	13	0.62	7.24	Winston Lake
U-732	11.4	1	17.26	Winston Lake
U-737	18.9	1.3	23.13	Winston Lake
U-071	9.7	1.21	24.65	Winston Lake
U-094	14.6	2.28	20.61	Winston Lake
U-727	11	1.05	17.49	Winston Lake
U-722	5.6	0.59	18.48	Winston Lake
U-750	10.2	0.81	16.76	Winston Lake
U-074	3.8	1.08	26.33	Winston Lake
U-405	7.4	0.88	18.43	Winston Lake
U-749	6.5	1.06	8.38	Winston Lake
U-058	2	0.61	11.62	Winston Lake
U-410	3.1	1.29	12.69	Winston Lake
U-417	2	0.37	9.2	Winston Lake
U-708	2	0.88	16.07	Winston Lake
U-716	6.2	0.85	15.69	Winston Lake
U-751	10	1.37	16.86	Winston Lake
U-079	2	4.26	13.6	Winston Lake
U-671	7.3	1.64	19.57	Winston Lake
U-736	12.9	0.74	15.82	Winston Lake
U-673	11.5	1.31	23.52	Winston Lake
U-670	5.8	1.11	18.4	Winston Lake
U-672	9	1.74	27.8	Winston Lake
U-674	8.9	1.79	23.18	Winston Lake
U-830	15	1.12	23.15	Winston Lake
U-827	15	2.56	22.38	Winston Lake
U-099	11.3	1.65	24.56	Winston Lake
U-824	14.4	2.32	25.94	Winston Lake
U-823	10.6	0.67	14.24	Winston Lake
U-821	11.7	0.81	32.14	Winston Lake
U-820	10.2	1.2	28.99	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-246	8.5	0.71	20.01	Winston Lake
U-245	2	0.44	5.99	Winston Lake
U-541	2	0.22	2.83	Winston Lake
U-542	2	0.01	0.89	Winston Lake
U-545	2	0.25	2.78	Winston Lake
U-544	2	0.23	3.31	Winston Lake
U-546	2	0.25	2.4	Winston Lake
U-539	2	0.04	0.53	Winston Lake
U-538	2	0.11	5.13	Winston Lake
U-537	6	0.32	21.67	Winston Lake
U-234	5.3	1.18	26.6	Winston Lake
U-540	2	0.21	1.52	Winston Lake
U-1419	2	0.18	3.56	Winston Lake
U-1416	2	0.1	5.03	Winston Lake
U-706	2	-	-	Winston Lake
U-1412	3.6	0.48	14.25	Winston Lake
U-1413	2	0.33	6.4	Winston Lake
U-502	2	0.1	1.24	Winston Lake
U-1309	2	0.13	3.42	Winston Lake
U-210	2	0.2	3.6	Winston Lake
U-1415	2	0.09	2.02	Winston Lake
U-707	2.7	0.8	10.36	Winston Lake
U-1411	2	0.73	14.03	Winston Lake
U-492	6.5	0.86	10.73	Winston Lake
U-481	3	1.06	8.18	Winston Lake
U-561	6	0.51	16.3	Winston Lake
U-560	4.5	0.77	14.64	Winston Lake
U-559	5.5	1.33	8.9	Winston Lake
U-500	5.5	0.55	6.28	Winston Lake
U-501	7.4	0.81	12.67	Winston Lake
U-497	2.6	0.91	11.67	Winston Lake
U-498	2.5	0.29	3.07	Winston Lake
U-211	2	0.36	5.5	Winston Lake
U-495	2	0.1	1.37	Winston Lake
U-499	2	0.32	3.57	Winston Lake
U-478	3	0.98	5.26	Winston Lake
U-479	3	1.06	8.87	Winston Lake
U-480	2.5	0.79	10.3	Winston Lake
U-489	6	1.67	6.89	Winston Lake
U-490	6.5	1.14	10.49	Winston Lake
U-491	6	1.23	9.69	Winston Lake
U-475	6	1.33	16.02	Winston Lake
U-476	7	0.99	15.27	Winston Lake
U-485	7	1.03	15.5	Winston Lake
U-486	3	0.68	12.98	Winston Lake
U-493	2	0.84	7.25	Winston Lake
U-692	6.9	0.75	18.85	Winston Lake
U-536	8.5	1.08	15.62	Winston Lake
U-249	9.3	0.73	18.95	Winston Lake
U-693	9.4	0.9	16	Winston Lake
U-237	12.5	1.07	20.03	Winston Lake
U-482	16	0.85	27.86	Winston Lake
U-483	16.5	1.19	18.86	Winston Lake
U-484	10	1.13	20.23	Winston Lake
U-232	12.8	0.63	30.11	Winston Lake
U-473	14.5	1.12	18.22	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-474	11	1.3	12.73	Winston Lake
U-487	10.5	1.05	15.54	Winston Lake
U-488	8	1.01	7.43	Winston Lake
U-477	10	1.26	10.32	Winston Lake
U-224	7.9	1.46	9.78	Winston Lake
U-228	8.4	1.48	12.62	Winston Lake
U-231	9.4	0.83	32.71	Winston Lake
U-235	13.6	1.19	38.86	Winston Lake
U-230	3.8	0.56	23.38	Winston Lake
U-229	2	0.52	8.98	Winston Lake
U-059	2	0.58	13.33	Winston Lake
U-233	21	0.98	17.98	Winston Lake
U-407	2	0.02	0.99	Winston Lake
U-412	2.5	0.5	4.2	Winston Lake
U-413	2.0	0.6	11 14	Winston Lake
U-420	3.2	0.89	19.84	Winston Lake
11-419	3.6	0.65	21.85	Winston Lake
U-418	2	0.03	0.52	Winston Lake
11-132	3	0.52	11.5	Winston Lake
U_411	2	0.52	1 33	Winston Lake
U-411	2 /	0.07	11.61	Winston Lake
0-400	3.4 2	0.24	7.09	Winston Lake
0-548	2	0.23	7.03	Winston Lake
	2	0.15	0.74	Winston Lake
0-555	2	0.5	2.47	Winston Lake
0-550	2	0.12	0.59	Winston Lake
0-553	2	0.2	0.84	Winston Lake
0-549	2	0.18	5.14	Winston Lake
0-550	2	0.01	0.08	Winston Lake
0-1304	2	0.03	0.47	Winston Lake
0-1307	2	0.12	2.02	Winston Lake
0-1255	2	0.73	5.49	Winston Lake
0-705	2	-	-	Winston Lake
0-704	2	-	-	Winston Lake
0-1296	2	0.02	0.32	Winston Lake
0-1297	2	0.13	0.85	Winston Lake
0-1283	2	0.51	6.33	Winston Lake
0-1306	2	0.09	2.18	Winston Lake
0-703	-	-	-	Winston Lake
0-1301	3.8	0.72	13.39	Winston Lake
0-506	2	0.25	1.89	Winston Lake
0-507	2	0.2	3.25	Winston Lake
0-511	5	1	7.3	Winston Lake
0-512	5	0.74	11.18	Winston Lake
0-1294	8.5	0.89	10.09	Winston Lake
0-194	14	1.29	8.4	Winston Lake
0-523	13	1.3	9.44	Winston Lake
0-509	/	1.11	16.09	Winston Lake
U-510	10	1.37	11.92	Winston Lake
U-505	14	1.5	6.51	Winston Lake
U-208	2	0.79	3.03	Winston Lake
U-202	6.5	0.69	11.59	Winston Lake
U-203	6.2	1.11	13.92	Winston Lake
U-212	10	1.2	13.86	Winston Lake
U-213	8	0.95	8.83	Winston Lake
U-216	12.4	1.25	9.65	Winston Lake
U-219	10.8	1.19	15.51	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-222	10	1.67	9.86	Winston Lake
U-225	2.8	0.71	16.06	Winston Lake
U-226	2	0.77	9.91	Winston Lake
U-0	2	0.58	3.86	Winston Lake
U-227	3.8	0.56	23.38	Winston Lake
U-0.43	11.5	1.8	10.69	Winston Lake
U-223	10	1.49	9.86	Winston Lake
U-220	10.7	1.56	10.7	Winston Lake
U-557	8.5	1.49	9.63	Winston Lake
U-558	7.5	1.24	11.29	Winston Lake
U-221	3.4	1.5	7.45	Winston Lake
U-496	7	1.47	7.15	Winston Lake
U-217	12.4	1.33	12.62	Winston Lake
U-494	4	0.92	12.32	Winston Lake
U-200A	5.8	1.09	11.67	Winston Lake
U-207	10	0.74	9,99	Winston Lake
U-204	6.5	1.06	11.97	Winston Lake
U-205	2.4	1.29	7.59	Winston Lake
U-214	3.5	1.3	10.67	Winston Lake
U-215	8.1	1 12	13.07	Winston Lake
U-321	3.5	1.39	13.95	Winston Lake
U-037	2	1 72	3 46	Winston Lake
U-218	53	1	12.43	Winston Lake
U-196	4 7	1 34	9.95	Winston Lake
U-023	2.5	1 22	18 59	Winston Lake
U-011	4	1.22	15.55	Winston Lake
U-400	2.8	1.10	1/ 18	Winston Lake
U-195	2.0	1.55	14.10	Winston Lake
111859	2	0.9	4.69	Winston Lake
U-190	2	0.9	17.24	Winston Lake
U-187	2	0.62	1 59	Winston Lake
U-188-	2	0.02	0.66	Winston Lake
U-185	6	0.89	12.8	Winston Lake
U-185	2	0.85	1 48	Winston Lake
U-129	2	0.49	4 99	Winston Lake
U-191	2	1.54	13.09	Winston Lake
U-191	64	1.24	12.01	Winston Lake
11-197	6.7	1.20	14.44	Winston Lake
U-198	9.7	1.45	7.03	Winston Lake
U-193	89	1.75	7.6	Winston Lake
U-522	8	1 58	8 16	Winston Lake
U-508	10	1.03	9.62	Winston Lake
U-201	87	1 16	13 11	Winston Lake
11-139	4	1 38	13.2	Winston Lake
U-119	2.8	1.30	12.69	Winston Lake
U-1120	7.4	1.27	16.06	Winston Lake
U-1120	2	0.57	10.00	Winston Lake
-1122	2	0.07	0.77	Winston Lake
11-1122	2	0.05	3 61	Winston Lake
11-112/	2	0.10	1.68	Winston Lake
11-1125	2	0.05	0.49	Winston Lake
11-128	2	0.07	1 20	Winston Lake
1_1701	2	0.00	2 //	Winston Lako
11-126	2	0.11	J.44 / 21	Winston Lake
1_1203	2	0.14	5 17	Winston Lako
11 1203	2	0.77	1 25	Winston Laka
0-1282	Ζ	0.03	1.25	willston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1295	2	0.07	0.91	Winston Lake
U-206	2.2	0.91	9.63	Winston Lake
U-404	2.5	0.77	15.14	Winston Lake
U-397	2	0.13	1.3	Winston Lake
U-005	20	0.8	12.85	Winston Lake
U-401	2	1.01	7.59	Winston Lake
U-402	8	1.25	14.68	Winston Lake
U-344	2	0.91	7.3	Winston Lake
U-022	2	0.8	8.72	Winston Lake
U-381	2	0.71	8.85	Winston Lake
U-403	2.5	1.3	13.15	Winston Lake
U-380	2	0.23	6.15	Winston Lake
U-308	2	0.56	13.72	Winston Lake
U-307	2	0.76	6.43	Winston Lake
U-322	2	0.36	1.9	Winston Lake
U-323	2.6	0.97	15.3	Winston Lake
U-042	2.2	0.86	7.26	Winston Lake
U-053	4.8	1.23	21.14	Winston Lake
U-422	2.6	0.97	7.86	Winston Lake
U-421	3	0.56	21.15	Winston Lake
U-415	2	0.62	1.62	Winston Lake
U-424	6	0.81	13.54	Winston Lake
U-324	2.4	1.45	16.94	Winston Lake
U-0.36	8.1	0.84	8.64	Winston Lake
U-382	2.8	0.74	17	Winston Lake
U-602	3.4	0.95	26.57	Winston Lake
U-603	9.2	0.86	22.28	Winston Lake
U-020	5	1.24	20.1	Winston Lake
U-604	3.3	0.64	21.55	Winston Lake
u-608	3.5	0.73	22.1	Winston Lake
U-309	4.5	1.13	16.4	Winston Lake
U-416	5.8	0.8	12.26	Winston Lake
U-345	2.8	1.21	17.63	Winston Lake
U-010	9.9	0.72	12.53	Winston Lake
U-346	3.5	1.03	14.29	Winston Lake
U-592	5	1	21.45	Winston Lake
U-591	5.2	1.29	23.76	Winston Lake
U-460	6.2	1.48	15.83	Winston Lake
U-451	6.5	1.36	18.26	Winston Lake
U-459	5.6	0.93	14.82	Winston Lake
U-450	7.5	1.19	16.78	Winston Lake
U-458	7.4	0.66	12.49	Winston Lake
U-408	6	1.14	18.38	Winston Lake
U-349	5	1.32	15.36	Winston Lake
U-399	19.8	1.06	14.92	Winston Lake
U-398	16	0.9	23.89	Winston Lake
U-004	2.2	0.62	9.17	Winston Lake
U-589	2	0.68	1.45	Winston Lake
U-409	12.8	1.51	21.41	Winston Lake
U-466	2	0.7	22.2	Winston Lake
U-015	2	0.31	4.5	Winston Lake
U-587	0.3	2	1.32	Winston Lake
U-588	2	0.92	14.71	Winston Lake
U-389	5.5	1.34	17.94	Winston Lake
U-386	9	1.24	20.09	Winston Lake
U-388	2	1.07	13.63	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-385	6.5	1.3	20.49	Winston Lake
U-028	2	1.37	20.4	Winston Lake
U-3884	6	1.63	12.72	Winston Lake
U-383	3.5	1.18	16.64	Winston Lake
U-177	2	0.67	0.7	Winston Lake
U-387	2	0.96	13.27	Winston Lake
U-181	2	0.52	24.04	Winston Lake
U-377	2	0.76	9.62	Winston Lake
U-378	3.6	0.94	21.11	Winston Lake
U-393	3	1.65	19.54	Winston Lake
U-376	2	0.23	4.53	Winston Lake
U-396	11	1.09	12.71	Winston Lake
U-395	8.5	1.43	11.86	Winston Lake
U-017	2.2	1.28	11.61	Winston Lake
U-394	3	0.8	19.2	Winston Lake
U-130	15.5	1.09	18.05	Winston Lake
U-348	20.5	1.48	15.46	Winston Lake
U-347	16.6	1.43	10.72	Winston Lake
U-18	6.8	0.91	27.02	Winston Lake
U-375	2.2	0.72	15.71	Winston Lake
U-039	7	1.16	8.2	Winston Lake
U-860	9.2	1.22	19.59	Winston Lake
U-613	10	0.91	16.47	Winston Lake
U-612	9	0.82	7.31	Winston Lake
U-611	6	1.09	22.18	Winston Lake
U-606	9	0.86	29.52	Winston Lake
U-607	10.2	0.9	25.39	Winston Lake
U-034	15.4	1.66	16.87	Winston Lake
U-922	12.4	1.28	19.87	Winston Lake
U-928	20	0.98	14.24	Winston Lake
U-930	20.8	1.05	13.17	Winston Lake
U-597	29	1.3	12.51	Winston Lake
U-936	22	0.93	9.54	Winston Lake
U-939	9.4	0.98	14.61	Winston Lake
U-939	2	0.54	12.35	Winston Lake
U-431	8	1.14	11.74	Winston Lake
U-938	16.8	1.13	18.38	Winston Lake
U-103	18	0.96	13.79	Winston Lake
U-935	20.5	1.03	14.26	Winston Lake
U-932	19.4	1.11	14.02	Winston Lake
U-008	6.5	1.34	12.56	Winston Lake
U-430	8.6	1.08	32.22	Winston Lake
U-593	19	0.86	14.34	Winston Lake
U-598	17.2	1.17	19.63	Winston Lake
U-018	8.5	0.53	6.56	Winston Lake
U-594	10	0.9	11.02	Winston Lake
U-429	9.4	2.15	19.41	Winston Lake
U-428	6.2	0.92	20.02	Winston Lake
U-590	5.4	1.23	16.25	Winston Lake
U-595	7.1	2.1	18.02	Winston Lake
U-596	2.5	1.44	20.19	Winston Lake
U-600	2.4	1.74	19.71	Winston Lake
U-599	10.4	1.21	21.7	Winston Lake
U-605	5.8	1.04	16.99	Winston Lake
U-610	5.2	0.71	21.13	Winston Lake
U-609	3.2	1.45	18,91	Winston Lake
0.000	0.2		-0.01	

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-035	2	1.39	18.05	Winston Lake
U-601	3.6	1.06	17.73	Winston Lake
U-009	3.9	1.51	19.91	Winston Lake
U-461	6.6	1.34	21.88	Winston Lake
U-453	6.8	0.81	18.33	Winston Lake
U-452	4	0.84	16.85	Winston Lake
U-463	2.2	0.48	5.79	Winston Lake
U-437	2	1.02	4.69	Winston Lake
U-001	6	0.87	12.37	Winston Lake
U-455	6.2	1.72	18.5	Winston Lake
U-463	5.8	1.07	15.85	Winston Lake
U-462	5.6	1.33	20.29	Winston Lake
U-454	5	1.35	18.8	Winston Lake
U-435	2.4	0.57	15.9	Winston Lake
U-444	2.2	0.74	17.91	Winston Lake
U-014	2	0.67	14.86	Winston Lake
U-468	2	0.4	1.18	Winston Lake
U-467	2	0.67	3.11	Winston Lake
U-443	2	0.68	9.63	Winston Lake
U-442	2	0.58	2.89	Winston Lake
U-434	3.2	0.97	16.13	Winston Lake
U-052	2.7	1.11	9.27	Winston Lake
U-447	9.2	1.11	15.04	Winston Lake
U-012	8.5	1.25	12.89	Winston Lake
U-970	2	0.92	9.88	Winston Lake
U-980	2	0.44	11.77	Winston Lake
U-578	65	1 36	13.63	Winston Lake
11-582	3.5	1 52	18 73	Winston Lake
U-471	8.8	1.13	17.91	Winston Lake
U-470	4.2	1.27	19	Winston Lake
U-446	3.6	0.9	20.47	Winston Lake
U-445	2	0.23	3.88	Winston Lake
U-469	2	0.05	1.08	Winston Lake
U-583	3.8	1.13	19.65	Winston Lake
U-026	7.2	1.17	19.18	Winston Lake
U-579	5.2	1.02	14 77	Winston Lake
U-584	3.6	1.03	19.26	Winston Lake
U-104	2.6	1 26	15.76	Winston Lake
U-1130	3.2	1.05	13.33	Winston Lake
U-1033	2	1.24	16.8	Winston Lake
U-975	2	1.63	23.51	Winston Lake
U-030	2	0.65	1.21	Winston Lake
U-977	2	0.61	6.19	Winston Lake
U-978	3.5	1.09	12.6	Winston Lake
U-742	2	0.74	10.68	Winston Lake
U-759	3.5	1.4	26.63	Winston Lake
U-062	2.8	1.17	9.61	Winston Lake
U-1138	2	0.62	6.45	Winston Lake
U-1135	2	0.06	0.07	Winston Lake
U-758	2	0.34	1.02	Winston Lake
U-120	2	0.67	<u>7</u> Δ1	Winston Lake
U-776	2	0.74	6.25	Winston Lake
U-762	22	1 45	14 51	Winston Lake
#NAMF?	18	1 71	13.86	Winston Lake
11-748	16.2	1 97	12.00	Winston Lake
11_7/7	22	1.52	2 20	Winston Lake
0-747		1.7	0.05	WINSLOIT LAKE

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-046	21.9	1.19	13.02	Winston Lake
U-741	8.8	1.06	9.29	Winston Lake
U-569	3.2	1.27	14.43	Winston Lake
U-570	10.6	0.75	13.12	Winston Lake
U-106	7.4	1.19	9.4	Winston Lake
U-573	18.5	1.2	12.75	Winston Lake
U-574	7.3	1.24	13.24	Winston Lake
U-575	7.2	1.37	16.13	Winston Lake
U-571	15.5	1.55	23.21	Winston Lake
U-576	11	0.77	10.81	Winston Lake
U-580	5.6	1.05	17.87	Winston Lake
U-585	3.5	1.17	15.74	Winston Lake
U-027	5	1.63	15.78	Winston Lake
U-581	4.8	1.09	17.01	Winston Lake
U-586	2	1.04	1.43	Winston Lake
U-577	13	0.83	7.68	Winston Lake
U-031	15.6	1.41	12.69	Winston Lake
U-740	14.1	1.31	31.41	Winston Lake
U-640	20	2.23	14.41	Winston Lake
U-105	17	2.07	24.21	Winston Lake
U-743	14.2	1.92	24.76	Winston Lake
U-746	34.4	2.49	18.48	Winston Lake
U-765	39.4	2.06	12.23	Winston Lake
U-767	37	1.91	15.77	Winston Lake
U-764	35.8	1 59	13 21	Winston Lake
U-761	45.6	1.17	14.07	Winston Lake
U-775	30	0.26	4 53	Winston Lake
U-757	2	0.3	7 87	Winston Lake
U-756	2.8	1.49	16.55	Winston Lake
U-639	19.8	1.19	38.31	Winston Lake
U-572	14.1	0.28	3.04	Winston Lake
U-414	8.8	1.13	14.93	Winston Lake
U-359	9	0.77	13.13	Winston Lake
U-638	18.3	0.62	4.89	Winston Lake
U-637	20.8	0.6	9.53	Winston Lake
U-363	17.4	0.72	14.7	Winston Lake
UU-032	11	0.92	17.24	Winston Lake
U-358	9	1.25	18.62	Winston Lake
U-362	6.5	1.03	23.77	Winston Lake
U-370	12.6	1.3	21.48	Winston Lake
U-048	12.3	1.08	21.12	Winston Lake
U-354	3.1	1.11	13.35	Winston Lake
U-352	7.4	1.81	15.98	Winston Lake
U-065	3	1.32	14.24	Winston Lake
U-680	5.2	1.74	18.26	Winston Lake
U-646	19	2.25	20.64	Winston Lake
U-643	17.8	1.61	33.53	Winston Lake
U-353	12.6	1.7	23.14	Winston Lake
U-641	18.5	1.32	12.58	Winston Lake
U-644	21.6	2.02	24.6	Winston Lake
U-744	22.5	1.97	16.44	Winston Lake
U-642	19.4	2.82	13.46	Winston Lake
U-768	21.4	2.61	19.5	Winston Lake
U-047	20.1	1.13	28.97	Winston Lake
U-745	31.6	2.24	17.84	Winston Lake
U-832	2	0.65	9,07	Winston Lake
0.002	-	2.00		

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-686	2.18	7.5	10.04	Winston Lake
U-774	35	1.32	16.42	Winston Lake
U-063	30.7	0.94	10.7	Winston Lake
U-645	26.7	1.7	17.23	Winston Lake
U-763	32.8	1.69	15.35	Winston Lake
U-682	18.5	1.28	13	Winston Lake
U-760	38	1.65	14.39	Winston Lake
U-773	37.8	1.69	21.36	Winston Lake
U-772	29.6	1.29	12.6	Winston Lake
U-755	33	2.33	12.8	Winston Lake
U-685	14.7	1.52	14.96	Winston Lake
U-068	8.3	1.47	20.48	Winston Lake
U-064	27.2	1.29	12.56	Winston Lake
U-681	35.8	1.84	19.84	Winston Lake
U-357	10.5	1.25	15.99	Winston Lake
U-044	7.7	1.76	14.39	Winston Lake
U-172	2.1	0.92	22.3	Winston Lake
U-360	2	1	21.6	Winston Lake
U-361	4	1.08	20.63	Winston Lake
U-369	2	0.45	28.26	Winston Lake
U-368	2.3	1.08	7.19	Winston Lake
U-060	5.5	1	25.98	Winston Lake
U-356	2	0.85	23.67	Winston Lake
U-355	2	0.6	5.19	Winston Lake
U-351	2	0.05	3.39	Winston Lake
U-350	2	0.11	9.33	Winston Lake
U-337	7.2	0.9	18.72	Winston Lake
U-338	4.6	1.12	29.7	Winston Lake
U-339	4	1.1	19.71	Winston Lake
U-684	2	2.21	21.68	Winston Lake
U-336	2.4	2.06	29.62	Winston Lake
U-335	3.8	0.74	40.39	Winston Lake
U-069	8.9	0.52	19.51	Winston Lake
U-334	9.5	0.59	20.34	Winston Lake
U-333	2	0.65	18.83	Winston Lake
U-081	3.5	0.57	18.9	Winston Lake
U-3	2	0.16	5.86	Winston Lake
U-153	2	0.59	15.74	Winston Lake
U-157	2	0.74	9.28	Winston Lake
U-158	2.8	0.37	22.03	Winston Lake
U-163	2	0.69	20.05	Winston Lake
U-166	2	0.62	4.03	Winston Lake
U-170	9.9	0.79	14.32	Winston Lake
U-173	4.8	1	21.91	Winston Lake
U-178	2	0.37	7.57	Winston Lake
U-182	6.9	0.55	10.56	Winston Lake
U-284	8.5	3.06	42.02	Winston Lake
U-281	10	1.11	44.44	Winston Lake
U-306	11	0.89	11.45	Winston Lake
U-683	9.1	1.25	19.86	Winston Lake
U-328	9.4	0.95	26.19	Winston Lake
U-331	4.6	1.56	13.75	Winston Lake
U-305	5.9	1.17	15.62	Winston Lake
U-304	8.7	0.3	46.71	Winston Lake
U-089	10.5	0.77	25.03	Winston Lake
U-291	2	0.52	4,21	Winston Lake
0 201	ı –	0.02		

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-280	9.7	0.85	35.94	Winston Lake
U-085	11.1	1.82	46.4	Winston Lake
U-277	9	2.21	41.11	Winston Lake
U-276	2	0.25	1.19	Winston Lake
U-286	8.5	0.75	47.46	Winston Lake
U-283	4.5	1.32	47.93	Winston Lake
U-3	3.4	0.54	28.43	Winston Lake
U-299	4.2	1.28	14.76	Winston Lake
U-127	2	0.19	4.84	Winston Lake
U-1314	2	0.02	4.12	Winston Lake
U-285	2	0.13	0.23	Winston Lake
U-086	2	0.37	14.52	Winston Lake
U-282	2	1	2.19	Winston Lake
U-316	2	0.45	32.91	Winston Lake
U-279	2.2	0.87	0.64	Winston Lake
U-320	2	0.81	2.22	Winston Lake
U-303	3	0.46	7.49	Winston Lake
U-302	2	0.43	18.68	Winston Lake
U-149	2.3	0.8	28.44	Winston Lake
U-090	2.2	0.47	33.68	Winston Lake
U-144	2	0.23	2.25	Winston Lake
U-140	2	0.72	3.35	Winston Lake
U-315	2	0.6	24.95	Winston Lake
U-278	2.4	0.56	43	Winston Lake
U-298	5.7	1.88	13.86	Winston Lake
U-319	2	0.31	13.49	Winston Lake
U-318	2	0.59	14.53	Winston Lake
U-289	2	0.47	45.6	Winston Lake
U-288	2.8	0.54	37.25	Winston Lake
U-290	6	0.37	8.94	Winston Lake
U-1315	2	0	0	Winston Lake
U-669	2	0.04	0.05	Winston Lake
U-679	2	0.01	0.01	Winston Lake
U-678	2	0.01	0.01	Winston Lake
U-808	2	0.15	0.04	Winston Lake
U-807	2	0	0	Winston Lake
U-676	2	0.21	17.35	Winston Lake
U-677	2	0.01	0.01	Winston Lake
U-668	2	0.11	0.11	Winston Lake
U-667	2	0.07	0.08	Winston Lake
U-666	2	0.66	2.59	Winston Lake
U-661	2	1.15	0.36	Winston Lake
U-660	2	0.12	2.37	Winston Lake
U-662	2	0.53	0.04	Winston Lake
U-663	2	0.12	0.3	Winston Lake
U-664	2	0.04	4.13	Winston Lake
U-141	2	0.4	5.68	Winston Lake
U-656	2	0.38	2.41	Winston Lake
U-146	2	0.54	6.14	Winston Lake
U-651	2	0.58	4.46	Winston Lake
U-145	3.8	0.43	23.72	Winston Lake
U-147	2.4	0.64	18.55	Winston Lake
U-150	2.1	1.24	26	Winston Lake
U-151	2	0.22	2.51	Winston Lake
U-152	2	0.42	0.57	Winston Lake
U-148	23	1.06	16 54	Winston Lake
0 140	2.5	1.00	10.34	

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-632	2	1.03	5.44	Winston Lake
U-1554	2	0.19	1.47	Winston Lake
U-159	2	0.16	4.6	Winston Lake
U-256	4.37	0.98	22.75	Winston Lake
U-164	2	0.69	2.88	Winston Lake
U-165	2	0.71	1.57	Winston Lake
U-160	2.4	0.94	25.94	Winston Lake
U-162	3.5	0.96	24.2	Winston Lake
U-532	2	0.59	3.62	Winston Lake
U-533	2	0.87	10.53	Winston Lake
U-161	2.6	0.98	18.7	Winston Lake
U-624	3.6	1.3	2.87	Winston Lake
U-623	2	0.18	1.29	Winston Lake
U-155	2	0.45	1.13	Winston Lake
U-627	2	0.31	3.24	Winston Lake
U-633	2	0.71	3.27	Winston Lake
U-647	2	0.4	1.21	Winston Lake
U-652	10.2	0.52	13.07	Winston Lake
U-142	2	0.89	8.02	Winston Lake
U-657	2	0.45	4 37	Winston Lake
U-658	24	0.54	5.86	Winston Lake
U-653	8.4	0.73	8.76	Winston Lake
U-648	2	03	7.26	Winston Lake
U-649	47	0.46	14.82	Winston Lake
U-654	10.8	0.40	13.21	Winston Lake
U-655	4.8	0.99	4 53	Winston Lake
U-650	7.4	0.62	19.32	Winston Lake
U-634	2.5	1 /	14.36	Winston Lake
U-628	2.5	0.52	7 32	Winston Lake
U-625	3.2	0.52	14 31	Winston Lake
U-254	2	0.81	7 14	Winston Lake
U-179	2	0.72	20.19	Winston Lake
U-180	2	0.51	0.86	Winston Lake
U-696	2	0.14	0.28	Winston Lake
U-695	4	1	11 45	Winston Lake
U-699	2	0.12	0.21	Winston Lake
U-698	2	0.12	0.17	Winston Lake
U-525	2	1 58	13.2	Winston Lake
U-524	2	0.84	5.64	Winston Lake
U-255	2 85	0.92	24.8	Winston Lake
U-174	5.4	0.92	20.52	Winston Lake
U-171	2	0.68	15 13	Winston Lake
U-167	2	0.52	1 12	Winston Lake
U-564	23	0.41	20.9	Winston Lake
U-527	2.5	0.73	16.99	Winston Lake
U-176	8.2	0.64	27.69	Winston Lake
U-528	6	0.96	23.26	Winston Lake
U-168	2	0.30	<u> 1</u> 2 <u>0</u>	Winston Lake
U-565	25	0.45	10.88	Winston Lake
U-530	10	0.83	23.46	Winston Lake
11-529	5	0.05	69	Winston Lake
_175	2	0.0	12 27	Winston Lake
U_1117	57	1 72	10 51	Winston Lake
U-1116	69	1.25	13.00	Winston Lake
11-69/	0.5 Q	1.05	12.05	Winston Lake
11-1115	51	0.67	7.91	Winston Lake
0-1113	דיר	0.07	1.01	WINSLOIT Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-118	2.5	1.06	6.72	Winston Lake
U-183	3.4	1.09	10.94	Winston Lake
U-1112	4.4	1.28	8.99	Winston Lake
U-1108	7.4	1.05	11.17	Winston Lake
U-1109	8.2	0.82	14.27	Winston Lake
U-1110	5.8	1.02	16.28	Winston Lake
U-563	9	0.88	12.22	Winston Lake
U-562	10	0.82	18.06	Winston Lake
U-531	10	1.06	16.64	Winston Lake
U-169	3.2	1.25	11.11	Winston Lake
U-1098	2	0.92	6.73	Winston Lake
U-534	2	0.42	1.3	Winston Lake
U-535	2	0.42	1.55	Winston Lake
U-566	0.74	2	6.71	Winston Lake
U-626	2.4	0.64	20.47	Winston Lake
U-631	3.6	0.41	12	Winston Lake
U-567	2	0.85	2.89	Winston Lake
U-1264	2	0.29	2.5	Winston Lake
U-1262	2.5	1.01	10.88	Winston Lake
U-1095	3.5	1.18	15.71	Winston Lake
U-1096	2	0.6	5.93	Winston Lake
U-1099	3.4	1.64	7.1	Winston Lake
U-568	7.2	1.59	8.79	Winston Lake
U-1104	6.15	1.28	14.69	Winston Lake
U-1107	4.4	1.13	23.67	Winston Lake
U-1103	6.9	1.01	7.44	Winston Lake
U-1111	2	0.24	4.03	Winston Lake
U-1106	2	0.27	3.93	Winston Lake
U-1113	2	1.09	9.03	Winston Lake
U-1126	2	0.12	2.76	Winston Lake
U-1127	2	0.1	0.27	Winston Lake
U-1128	2	0.39	3.84	Winston Lake
U-1129	2	0.25	3.87	Winston Lake
U-688	2	0.83	6.99	Winston Lake
U-1114	2	0.19	1.24	Winston Lake
U-1105	2	0.23	2.51	Winston Lake
U-1102	6.1	1	6.85	Winston Lake
U-687	1	0.99	2.93	Winston Lake
u-1101	3.2	1.02	4.75	Winston Lake
U-1100	2	0.14	1.84	Winston Lake
U-780	3	0.74	6.71	Winston Lake
U-1097	2	1.21	8.64	Winston Lake
U-689	2	0.34	3.49	Winston Lake
U-1278	2	0.61	2.1	Winston Lake
U-777	-	-	-	Winston Lake
U-778	-	-	-	Winston Lake
U-779	-	-	-	Winston Lake
U-779	-	-	-	Winston Lake
U-1270	2	0.33	5.93	Winston Lake
U-783	2	0.42	20.51	Winston Lake
U-1310	2	0.11	2.21	Winston Lake
U-1313	2	0.67	18.01	Winston Lake
U-143	2	0.69	8.89	Winston Lake
U-1269	2	0.04	1.45	Winston Lake
U-1271	2	0.22	1.23	Winston Lake
U-1265	2	0.22	5.1	Winston Lake

BHID	INTERVAL	Cu%	Zn%	PROJECT AREA
U-1273	2	0.07	2.2	Winston Lake
U-781	3	0.96	8.55	Winston Lake
U-782	2	0.65	2.22	Winston Lake
U-1277	2	0.02	0.59	Winston Lake
U-700	2	0.08	1.76	Winston Lake
U-1263	2	0.1	2.09	Winston Lake
U-665	2	0.34	2.95	Winston Lake
U-659	2	0.15	0.7	Winston Lake
U-635	2	1.08	6.28	Winston Lake
U-636	2	0.64	1.97	Winston Lake
U-630	2	0.21	5.5	Winston Lake
U-629	2.1	0.65	5.85	Winston Lake
U-675	2	0.05	1.98	Winston Lake
U-806	2	0.1	0.84	Winston Lake
U-805	2	0	0	Winston Lake
U-804	2	0	0	Winston Lake
U-803	2	0	0	Winston Lake
U-802	2	0	0	Winston Lake
U-1308	2	0	0	Winston Lake
U-1305	2	0	0	Winston Lake
ZO-1	-	-	-	Winston Lake
ZO-3	-	-	-	Winston Lake
U-1442	2	0	0	Winston Lake
U-1385	2	0	0	Winston Lake
U-1317	2	0.02	0.1	Winston Lake
ZO-68	-	-	-	Winston Lake
ZO-2	-	-	-	Winston Lake
ZO-28	-	-	-	Winston Lake
U-899	11.5	1.11	21.63	Winston Lake
U-987	3	0.54	29.72	Winston Lake
U-426	4.4	1.09	15.61	Winston Lake
U-939	18.5	1.09	13.6	Winston Lake
U-933	22.6	1.16	23.19	Winston Lake