10 May 2018 # High Grade Vanadium Mineralisation Identified at the Koitelainen V Prospect, Finland # **Highlights** - Nine drill holes from the Koitelainen V prospect on Koitelainen Project in northern Finland, produced magnetite concentrates with vanadium values ranging from 2.0-3.7% V₂O₅ including: - 8m @ 3.1% V₂O₅ in hole M374177R329 from 77.15m - 10m @ 2.7% V₂O₅ in hole M374177R331 from 16.85m - 10m @ 2.4% V₂O₅ in hole M374177R335 from 10.85m - 13m @ 2.03% V₂O₅ in hole M374177R336 from 72.25m - With an average grade of 2.3% V₂O₅ the magnetite concentrates produced from these nine holes at the Koitelainen V prospect, place the vanadium mineralisation at Koitelainen V in the upper echelon of vanadium mineralisation globally, as magnetite concentrates from vanadium projects containing greater than 1.5% V₂O₅ are usually considered high grade - Only the Maracas Mine in Brazil (3% V_2O_5 in magnetite concentrate) and the Rhovan mine in South Africa (2.3% V_2O_5 in magnetite concentrate) produce magnetite concentrates with vanadium levels consistently above 2.2% $V_2O_5^1$ - The vanadium mineralisation in the nine high grade drill holes occur in the southern section of the Koitelainen V prospect and are open to the north, south and east, with the high-grade vanadium mineralisation coming to surface - The high-grade vanadium mineralisation at Koitelainen V is associated with three sub-parallel trends of magnetic anomalies which collectively extend for a further 2-2.5km away from the areas drilled by the nine high grade drill holes - The Koitelainen V Prospect contains a historical mineral estimate of 15Mt @ 0.4 $V_2O_5\%^2$ - Pursuit is continuing to compile the historical data from 27 drill holes to design a drill program to test extensions to the high-grade vanadium mineralisation at the Koitelainen V prospect ¹ Ocean Equities Vanadium Sector Review July 2011, Company Announcements #### **Pursuit Minerals Limited** ACN 128 806 977 +61 447 379 744 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 ² See ASX Announcement 12 April 2018. The Company is not aware of any new information or data that materially affects the information contained in that announcement. Pursuit Minerals Limited (ASX: PUR) (**Pursuit** or the **Company**) is pleased to announce that through compilation of historical drilling and assay data, nine drill holes have been identified at the Koitelainen V prospect on the Koitelainen Project in northern Finland which produced magnetite concentrates with exceptional grades of V_2O_5 . The magnetite concentrates from these nine holes have vanadium values ranging from 2.0-3.7% V_2O_5 and average 2.3% V_2O_5 . Twenty-seven drill holes have been drilled at the Koitelainen V prospect. Globally, magnetite concentrates containing V_2O_5 in excess of 1.5% are considered high grade and only the Maracas Mine in Brazil (3% V_2O_5 in magnetite concentrate) and the Rhovan mine in South Africa (2.3% V_2O_5 in magnetite concentrate) produce magnetite concentrates with vanadium levels consistently above 2.2% V_2O_5 . Tando Resources recently announced that the SPD Vanadium Project in South Africa produces magnetite concentrates averaging 2.0% V_2O_5 (see ASX Announcement by Tando Resources, 27 March 2018), while Australian Vanadium's Gabanintha Project produces magnetite concentrates averaging 1.43% V_2O_5 (see ASX Announcement by Australian Vanadium, 24 April 2018). Pursuit Minerals Managing Director Jeremy Read said that the V_2O_5 grades of the magnetite concentrates produced from the nine high-grade vanadium holes in the southern section of Koitelainen V prospect were exceptional and indicate the highly prospective nature of the Koitelainen V prospect. "The magnetite concentrates produced by these nine high-grade vanadium holes at Koitelainen V place this prospect in the upper echelon of vanadium prospects globally," Mr Read said. "The nine holes are associated with three sub-parallel magnetic trends which extend 2-2.5km beyond the areas drilled with the nine high-grade holes." "The vanadium mineralisation in the Eastern and Central magnetic trends are open both north-south and to the east, while the Western Magnetic trend is open to the south and east, so there is a lot of potential to extend the known high-grade vanadium mineralisation through further exploration work." "Furthermore, the high-grade vanadium mineralisation comes to surface and the overall package of vanadium mineralisation is consistently 30-40m thick." Mr Read said. Pursuit is continuing to compile the historical data from the Koitelainen Project to design a drill program to test extensions to the high-grade vanadium mineralisation at the Koitelainen V prospect. It is anticipated that data compilation will be completed in late June and the drill program will be undertaken during the next winter field season from November 2018 until April 2019. ### **Koitelainen V Prospect - Koitelainen Project (Finland)** Pursuit has secured two Mineral Reservations of 130km² covering the Koitelainen large igneous intrusion in northern Finland (Figure One). Koitelainen is the largest of the 2.45 Ga mafic to ultramafic layered intrusions that occur near the Archaean-Proterozoic boundary in the northern #### **Pursuit Minerals Limited** ACN 128 806 977 +61 447 379 744 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 Fennoscandian shield in northern Finland. The Koitelainen intrusion is 26km x 29km in extent and approximately 3km in thickness. Figure One - Koitelainen Project Location #### **Pursuit Minerals Limited** ACN 128 806 977 +61 447 379 744 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 The vanadium mineralisation in the Koitelainen intrusion is stratiform in nature and associated with two PGE enriched chromite reefs, Koitelainen Upper Chromite (UC) and Koitelainen Lower Chromite (LC) and a vanadium enriched gabbro (Koitelainen V prospect), which is up to 40m thick with the vanadium mineralisation coming to surface. Mutanen (1997) estimated an historical mineral estimate of 15Mt @ 0.4% V₂O₅ for Koitelainen V prospect (see Pursuit Minerals ASX Announcement of 12 April 2018. The Company is not aware of any new information or data that materially affects the information contained in that announcement). Pursuit has compiled geochemical assay data from 27 drill holes, for a total of 3,784m, at the Koitelainen V prospect. This assay data was generated by the Geological Survey of Finland (GTK) during the 1970's. The GTK, from each section of vanadium mineralisation hosted in magnetite, produced a magnetite concentrate using a Dings Davis Machine. The resulting magnetite concentrate was then assayed for vanadium. Nine drill holes in the southern section of the Koitelainen V prospect produced magnetite concentrates containing >2% V_2O_5 (Table One, Figures Two, Three). Assay data from all 27 drill holes at the Koitelainen V Prospect is given in Appendix One. The nine high-grade vanadium drill holes are associated with three sub-parallel magnetic trends which extend 2-2.5km beyond the areas drilled with the nine high-grade holes. The vanadium mineralisation in the Eastern and Central magnetic trends are open both north-south and to the east, while the Western Magnetic trend is open to the south and east (Figure Three). Pursuit will design a drill program to determine the full extent of the high-grade vanadium mineralisation on the three magnetic trends at the Koitelainen V prospect. Representative geological cross sections though the Southern (high grade vanadium) and Northern (lower grade vanadium) sections of the Koitelainen V prospect are given in Figures Four and Five. By late June Pursuit will complete its compilation of all historical exploration work undertaken on the Koitelainen intrusion. The focus of the follow up work will be to locate areas of vanadium mineralisation within the Koitelainen UC reef and Koitelainen V area, and where this mineralisation increases in thickness to widths that are potentially suitable to open pit extraction. Drilling will then be completed during the next winter field season from November 2018 to April 2019, to test areas of thickness vanadium mineralisation. #### **Pursuit Minerals Limited** ACN 128 806 977 +61 447 379 744 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 Table One – High Grade Vanadium Intersections Koitelainen V Prospect | Drill Hole | Northing
(Finland
Zone 3) | Easting
(Finland
Zone 3) | Int
(m) | From
(m)
(Down
hole
depth) | To (m)
(Down
hole
depth) | V2O5 (%) in
magnetite
concentrate | |-------------|---------------------------------|--------------------------------|------------|--|-----------------------------------|---| | M374177R329 | 7526580 | 351451 | 6 | 49.50 | 55.55 | 2.32 | | M374177R329 | | | 7 | 65.9 | 73 | 2.19 | | M374177R329 | | | 8 | 77.15 | 84.9 | 3.07 | | M374177R330 | 7526100 | 3513691 | 16 | 1.5 | 17.3 | 2.20 | | M374177R330 | | | 25 | 17.95 | 43.2 | 1.98 | | M374177R330 | | | 8 | 67.5 | 75.45 | 2.29 | | M374177R331 | 7526100 | 3513770 | 10 | 16.85 | 26.55 | 2.73 | | M374177R331 | | | 8 | 51.15 | 58.8 | 2.60 | | M374177R331 | | | 2 | 72.6 | 74.8 | 3.72 | | M374177R332 | 7525999 | 3513751 | 8.3 | 20.3 | 28.6 | 2.06 | | M374177R332 | | | 6 | 61.8 | 67.6 | 2.06 | | M374177R332 | | | 4 | 79.2 | 83.2 | 3.46 | | M374177R333 | 7525900 | 3514771 | 7 | 15.6 | 22.9 | 0.93 | | M374177R333 | | | 9 | 23.25 | 32 | 2.14 | | M374177R333 | | | 7 | 33.6 | 40.9 | 2.62 | | M374177R333 | | | 3 | 42.25 | 45.35 | 3.17 | | M374177R334 | 7526100 | 3514671 | 11 | 12.55 | 23.85 | 1.98 | | M374177R335 | 7526100 | 3514821 | 10 | 10.85 | 20.6 | 2.36 | | M374177R335 | | | 11 | 76.2 | 86.75 | 2.04 | | M374177R336 | 7526300 |
3514731 | 4 | 4 | 8.3 | 2.11 | | M374177R336 | | | 9 | 12.15 | 20.75 | 2.40 | | M374177R336 | | | 13 | 72.25 | 85.05 | 2.03 | | M374178R339 | 7526300 | 3515251 | 3 | 116 | 118.5 | 2.26 | | M374178R339 | | | 41 | 119.9 | 160.8 | 0.27 | ACN 128 806 977 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 Figure Two - Drill Hole Locations Koitelainen V Prospect ACN 128 806 977 +61 447 379 744 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 Figure Three - Location of High Grade Vanadium Drill Holes Koitelainen V Prospect ACN 128 806 977 +61 447 379 744 🙎 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 Figure Four - Geological Cross Section Southern Section of the Koitelainen V Prospect Figure Five - Geological Cross Section Northern Section of the Koitelainen V Prospect ACN 128 806 977 +61 447 379 744 🙎 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 #### **About Pursuit Minerals** Following completion of acquisition of the Bluebush, Paperbark and Coober Pedy Projects from Teck Australia Pty Ltd in 2017, Pursuit Minerals Limited (ASX:PUR) has become a mineral exploration and project development company advancing copper and zinc projects in world-class Australian metals provinces. Having acquired zinc and copper projects in the heart of the Mt Isa Province, Pursuit Minerals is uniquely placed to deliver value as it seeks to discover world class deposits adjacent to existing regional infrastructure and extract value from its existing mineral resources. In 2018, Pursuit is expanding its project portfolio by applying for high quality vanadium projects, on open ground, in both Sweden and Finland. Sweden has a long history with vanadium, being the country where vanadium was first confirmed as a metal. Finland, has in the past produced up to 10% of the worlds vanadium from the Mustavarra mine in central Finland and is currently rated the number one jurisdiction globally for developing mineral projects. Led by a team with a wealth of experience from all sides of minerals transactions, Pursuit Minerals understands how to generate and capture the full value of minerals projects. From local issues to global dynamics, Pursuit Minerals knows how to navigate development and deliver returns to shareholders and stakeholders. For more information about Pursuit Minerals and its projects, visit: www.pursuitminerals.com.au #### **Competent Person's Statement** Statements contained in this announcement relating to historical exploration results, historical estimates of mineralisation and Exploration targets are based on, and fairly represents, information and supporting documentation prepared by Mr. Jeremy Read, who is a member of the Australian Institute of Mining & Metallurgy (AusIMM), Member No 224610. The historical mineral estimate for Koitelainen magnetite-ilmenite-vanadium mineralisation, is an historical estimate and is not reported in accordance with the JORC Code. The Competent Person has not done sufficient work to classify the historical estimate as a Mineral Resource in accordance with the JORC Code, due to the unavailability of sufficient data. The historical mineral estimate for the Koitelainen magnetiteilmenite-vanadium mineralisation have been widely reported in the geological literature and hence are easily accessible by members of the public. However, it is uncertain that following evaluation and/or further valuation work if the historical estimate will be able to be reported as a Mineral Resource in accordance with the JORC code. Mr Read is a full-time employee of the Company and has sufficient relevant experience in relation to the mineralisation styles being reported on to qualify as a Competent Person as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Read consents to the use of this information in this announcement in the form and context in which it appears. #### **Pursuit Minerals Limited** ACN 128 806 977 +61 447 379 744 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 # **Appendix One** Historical Geochemical Assay Results For Magnetite Concentrates Produced from Vanadium Mineralisation at the Koitelainen V Prospect, Finland (after the Geological Survey of Finland) #### **Pursuit Minerals Limited** ACN 128 806 977 Suite 3, Level 7, 100 Edward Street, Brisbane QLD 4000 PO Box 5807, Brisbane QLD 4000 @ info@pursuitminerals.com.au pursuitminerals.com.au | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|------------------|------------|--|--------------|----------|---|----------------|---------------|--------------|--------------|------------|----------------| | 252382 | M374176R304 | 2.8 | 3.45 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 113000 | | | 0 | | 3204 | | | 200 | 12700 | | 252383
252384 | M374176R304
M374176R304 | 3.45 | 4.1 | 76
76 | 304
304 | 7526580
7526580 | 3513101
3513101 | 263
263 | 100
100 | 105000
104000 | | | 0 | | 2848
3026 | | | 400
200 | 12100
11600 | | 252385 | M374176R304 | 4.1
6 | 4.85
7.85 | 76
76 | 304 | 7526580 | 3513101 | 263 | 100 | 107000 | | | 0 | + | 3026 | | | 200 | 11900 | | 252386 | M374176R304 | 7.85 | 9.95 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 106000 | † | | 0 | | 2848 | | | 200 | 10600 | | 252387 | M374176R304 | 9.95 | 11.7 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 98300 | | | 0 | | 3026 | | † | 300 | 10400 | | 252388 | M374176R304 | 11.7 | 13.15 | 76
76 | 304 | 7526580 | 3513101 | 263 | 100 | 88700 | I | | 0 | T | 3204 | T | I | 400 | 10200 | | 252389 | M374176R304 | 13.15 | 14.3 | | 304 | 7526580 | 3513101 | 263 | 100 | 101000 | | | 200 | | 3738 | | ļ | 300 | 11800 | | 252390 | M374176R304 | 14.3 | 15 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 120000 | | | 0 | ↓ | 4272 | | | 200 | 12300 | | 252391
252392 | M374176R304
M374176R304 | 15
17 | 17 | 76
76 | 304
304 | 7526580
7526580 | 3513101
3513101 | 263
263 | 100
100 | 114000
124000 | | | 0 | | 4094
4450 | | | 200
200 | 11800
12400 | | 252392 | M374176R304 | 17.5 | 17.5
18 | 76
76 | 304
304 | 7526580 | 3513101 | 263 | 100 | 132000 | | | 0 | | 5162 | | | 300 | 13900 | | 252394 | M374176R304 | 18 | 18.5 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 136000 | | | 0 | | 5340 | | | 200 | 14900 | | 252395 | M374176R304 | 18.5
20.5 | 20.5 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 107000 | | | 0 | | 3560 | | † | 200 | 11100 | | 252396 | M374176R304 | 20.5 | 21.5 | 76 | 304 | 7526580 | 3513101 | 263
263 | 100 | 71700 | | | 0 | I | 890 | I | I | 200 | 3300 | | 251392 | M374176R304 | 21.5 | 22.5 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 63900 | | | 0 | | 890 | <u> </u> | ļ | 200 | 3800 | | 252397 | M374176R304 | 22.5 | 24.5 | 76 | 304 | 7526580 | 3513101 | 263
263 | 100 | 56300 | | | 0 | | 1068 | | | 300 | 3900 | | 252398 | M374176R304 | 24.5 | 26.5 | 76 | 304 | 7526580 | 3513101 | | 100 | 52700 | ֈ | | 0 | ļ | 890 | ļ | ļ | 300 | 3500 | | 252399
252400 | M374176R304
M374176R304 | 26.5
28.5 | 28.5
30.5 | 76
76 | 304
304 | 7526580
7526580 | 3513101
3513101 | 263
263 | 100
100 | 47800
42700 | | | 0 | | 712
890 | | | 300
200 | 3200
3200 | | 252400 | M374176R304 | 28.5
30.5 | 30.5
32.5 | 76
76 | 304 | 7526580 | 3513101 | 263
263 | 100 | 48300 | ···· | | 0 | | 890
890 | | t | 300 | 3000 | | 252402 | M374176R304 | 30.5
32.5 | 34.5 | 76
76 | 304 | 7526580 | 3513101 | 263 | 100 | 52700 | † | | <u>ö</u> | | 890 | | | 100 | 3000 | | 252403 | M374176R304 | 34.5 | 36.5 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 51600 | | | 0 | | 890 | | † | 200 | 3100 | | 252404 | M374176R304 | 36.5 | 38.5 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 57400 | | | 0 | | 890 | | | 200 | 2900 | | 252405 | M374176R304 | 38.5 | 40.5 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 59000 | | | 0 | | 1068 | | | 200 | 3300 | | 252406 | M374176R304 | 40.5 | 42.5 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 56700 | | | 0 | | 890 | | | 300 | 3000 | | 252407 | M374176R304
M374176R304 | 42.5 | 44.5 | 76 | 304 | 7526580 | 3513101 | 263 | 100 | 59400 | ļ | | 0 | | 1068 | | ļ | 300 | 3600 | | 252408
252409 | M374176R304
M374176R304 | 44.5
46.5 | 46.5
47.5 | 76
76 | 304
304 | 7526580
7526580 | 3513101
3513101 | 263
263 | 100
100 | 61900
60100 | ļ | | 0 | + | 1602
1424 | | + | 200
200 | 4700
4000 | | 253661 | M374176R305 | | | | 305 | 7526580 | 3513221 | 268 | 100 | 263000 | | | - | | 1246 | | | 200 | 4700 | | 252411 | M374176R305 | 3.3
4.3 | 4.3
5.3 | 76
76 | 305 | 7526580 | 3513221 | 268 | 100 | 388000 | † | | | | 1246 | | | | 4700 | | 252412 | M374176R305 | 5.3 | 7.5 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | 366000 | | | ***************************************
| | 1068 | | † | | 4600 | | 252413 | M374176R305 | 7.5 | 9.3 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | 265000 | | | | Ī | 2670 | Ī | | | 10400 | | 252414 | M374176R305 | 9.3 | 11 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | 348000 | | | | | 2492 | | | 600 | 8500 | | 252415 | M374176R305 | 11 | 12 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | 501000 | ļ | | | ļ | 2492 | ļ | ļ | | 9100 | | 252416 | M374176R305
M374176R305 | 12 | 14 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | 406000 | ļ | | | | 2314 | | | | 9800
9800 | | 252417
252418 | M374176R305 | 14
16 | 16
17.3 | 76
76 | 305
305 | 7526580
7526580 | 3513221
3513221 | 268
268 | 100
100 | 341000
311000 | ļ | | | + | 2670
2848 | + | | | 10100 | | 252419 | M374176R305 | 17.3 | 18.5 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | 504000 | † | | | | 3026 | | | 700 | 12000 | | 252420 | M374176R305 | 18.5 | 21.5 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | 439000 | | ~~~~~ | ************ | † ~~~~~ | 2848 | | † | | 11200 | | 252421 | M374176R305 | 18.5
21.5 | 23.5 | 76
76 | 305 | 7526580 | 3513221 | 268 | 100 | 292000 | | | | | 2314 | T | | | 7300 | | 252422 | M374176R305 | 23.5 | 25.5 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | 283000 | | | | | 3382 | | | | 11100 | | 252423 | M374176R305 | 34.55 | 36.55 | 76 | 305 | 7526580 | 3513221 | 268
268 | 100 | 281000 | | | | | 2670 | | 1 | | 6900 | | 252424 | M374176R305 | 36.55 | 38.55 | 76 | 305 | 7526580 | 3513221 | | 100 | 400000 | | | | ļ | 2848 | | | 400 | 8600 | | 252425
252426 | M374176R305
M374176R305 | 57.4
68.9 | 59.5
69.8 | 76
76 | 305
305 | 7526580
7526580 | 3513221
3513221 | 268
268 | 25
45 | | | | | | 356
462.8 | | | | | | 252426
252427 | M374176R305 | 73.45 | 74.55 | 76
76 | 305 | 7526580
7526580 | 3513221
3513221 | 268
268 | 45
60 | | | | | | 462.8 | | | | | | 252429 | M374176R305 | 90.25 | 90.85 | 76 | 305 | 7526580 | 3513221 | 268 | 100 | ······ | † | | | | 427.2 | ····· | · | ····· | † | | 252430 | M374176R305 | 90.25
98 | 98.65 | 76 | 305 | 7526580 | 3513221 | 268 | 25 | <u> </u> | İ | | | 1 | 373.8 | T | 1 | [| 1 | | 252431 | M374176R305 | 107.2 | 108.15 | 76 | 305 | 7526580 | 3513221 | 268 | 12 | | I | | | I | 409.4 | | | | | | 252432 | M374176R305 | 114.1
126.1 | 114.55 | 76 | 305 | 7526580 | 3513221 | 268 | 60
25 | | ļ | | | ↓ | 284.8 | | ļ | | | | 252433 | M374176R305 | | 126.8 | 76 | 305 | 7526580 | 3513221 | 268 | | | ļ | | | ļ | 445 | | ļ | | ļ | | 252434
252435 | M374176R305
M374176R305 | 136.6
141.4 | 137.2
142 | 76
76 | 305
305 | 7526580
7526580 | 3513221
3513221 | 268
268 | 25
50 | | | | | | 373.8 | | | | | | 252435
252436 | M374176R305
M374176R306 | | 3.85 | | 305 | 7526580
7526175 | 3513221
3513631 | 268 | 0 | 424000 | - | | | | 373.8
2492 | | - | | 9700 | | 252436
252437 | M374176R306 | 2.55
3.85 | 3.85
4.95 | 76
76 | 306 | 7526175
7526175 | 3513631 | 272 | 100 | 424000 | | | | | 1780 | | | 500 | 7400 | | 252437 | M374176R306 | 4.95 | 6.35 | 76
76 | 306 | 7526175 | 3513631 | 272 | 0 | 270000 | † | | | | 2136 | ····· | ····· | | 8900 | | 252439 | M374176R306 | 6.35 | 7.05 | 76 | 306 | 7526175 | 3513631 | 272 | 100 | 404000 | † | | •••••• | † | 3382 | † | † | | 12700 | | 252440 | M374176R306 | 7.4 | 8.5 | 76 | 306 | 7526175 | 3513631 | 272 | 100 | 289000 | | | | I | 3382 | | | | 13600 | | 252441 | M374176R306 | 8.5 | 10.5 | 76 | 306 | 7526175 | 3513631 | 272 | 0 | 365000 |] | | | | 2848 | | | 500 | 10700 | | 252442 | M374176R306 | 10.5 | 11.3 | 76 | 306 | 7526175 | 3513631 | 272 | 100 | 373000 | ļ | | | | 2492 | ļ | | 700 | 8800 | | 252443 | M374176R306 | 11.3 | 13.7 | 76 | 306 | 7526175 | 3513631 | 272 | 0 | 273000 | | | | | 2314 | | | 600 | 8600 | | 252444 | M374176R306 | 13.7 | 15.1 | 76 | 306 | 7526175 | 3513631 | 272 | 100 | 413000 | L | ll | L | 1 | 3560 | L | L | 600 | 12700 | | Section 1974 1980 | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |---|------------|--|---|---|--------------------------|------------|---|---|------------------|----------|-------------------|---|----------|--------------|--------------|--------------|---|----------|---|----------------| | Accordance Acc | 252445 | M374176R306 | | 16.4 | 76 | 306 | 7526175 | 3513631 | 272 | 100 | 335000 | | | | | 2314 | | | | 9000 | | Accordance Acc | | | 16.4 | | 76 | | | | | | | | | | | | | ļ | | 13300 | | 19-10-10-10-10-10-10-10-10-10-10-10-10-10- | ****** | hariananimini | | ~~~~~~ | | | | | | | | | | | | +~~~~~~~~~ | | | | 8500 | | 19-10-10-10-10-10-10-10-10-10-10-10-10-10- | | | | | | | | | 272 | | | ļ | | | | | | | U | 8600
6900 | | 1975 | | | | | 76 | | | | | | | | | | | | | ···· | | 8200 | | 1922
1922 | | M374176R306 | | | | | | | | 0 | | | | | † | 2314 | | | 300 | 6600 | | 1944 | 252452 | M374176R306 | 32.9 | 34 | 76 | 306 | 7526175 | 3513631 | 272 | 100 | 345000 | | | | | 2492 | | | 600 | 7200 | | \$\frac{2}{2}\frac{2}\frac{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\fr | | | 34 | 35 | 76 | 306 | | | 272 | | | | | | | 2492 | | | 300 | 6600 | | \$\frac{2}{2}\frac{2}\frac{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\fr | 6700 | | \$\frac{2}{2}\frac{2}\frac{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\frac{2}{2}\fr | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | ~~~~~~~~ | | | | | | | | | | | | | ~~~~~~~ | 8800
6800 | | 1.525.00
1.525.00 | | | | | 76 | | | | | | | | | ····· | | | | ····· | | 6700 | | 232456 MOTATION 1 | | | لسسسسنسسا | | | | | | | | | | | | | | | | | 8700 | | \$25,000 \$43,747,000 \$1.5 \$1.5 \$1.5 \$7. | | M374176R307 | 11 | 12.5 | 76 | | | | | | | | | 1 | | [| • | | 500 | 7600 | | 1.52464 1.504174600 1.5 | | | | | | | | | | | ~~~~~~~~~~ | | | | | | | | 500 | 7500 | | 1.52460 MS74179600 16.5 18 | | | | | | | | | | | | | | | | tararararara | | | | 6900 | | 192464 M674178600 18 19.5 76 307 7524175 511791 266 100 34700 34700 3916 | | | 15 | 16.5 | 76 | | + | | 266 | | | | | | | + | | | | 9200 | | 222465 MS7479607 33 308 76 307 7526174 266 60 3916 3916 222665 MS7479607 449 40 76 307 7526175 351791 266 40 5518 | | | | | | | | | | | | | | | | | | | | 11400
8700 | | 253468 MFA1769307 43.9 44.9 78 307 7256175 531791 266 50 | 253409 MATATORNIAN A. A. A. A. A. A. A. | | hairmaniain | | | | | + | | procession and | | | | | | | | | | | ļ | | ## Pack P | 252466 | M374176R307 | 44.9 | 46.3 | 76 | 307 | 7526175 | 3513791 | 266 | 40 | | | | | | 5518 | | | | | | 252008 M3741768108 5.4 8 76 308 73,00040 331301 270 760 112 2492 25200 252009 M3741768108 13.2 11.6 76 308 73,00040 331301 270 110 28 3382 | | harainn ann an | | | | | | | | | | | | | | | | | | [| | 25393 M374176800 19.4 19.8 76 208 7529040 3313101 270 1100 28 3382 | | | | 82.8 | | | | | | | | | | | | | | | | <u>'</u> | | 251903 M3741768000 19.4 19.8 76 308 7529040 3513101 270 1100 28 3382 252008 M3741768002 22 24 37.6 308 7529040 3513101 270 210 10 4004 252001 M3741768002 28.8 30.8 76 308 7529040 3513101 270 55 19 1388.4 252008 M3741768003 24.2 42.8 76 308 7529040 3513101 270 55 19 1388.4 252009 M3741768003 42.4 42.8 76 308 7529040 3513101 270 431000 22 22 22 22 22 22 22 | | | 5.4 | 8 | 76 | | | | | 760 | | 12 | | | | | | | | ! | | 252000 M3741764030 74 | | | | | | | . | | | | | | | | | + | | | | { <i>-</i> | | 1,500 M9741766300 28.8 30.8 76. 308 73,26940 3513301 270 100 21 2670 351301 270 100 351301 270 100 351301 270 100 351301 270 | | | | | | | | | | | | | | | | | | · | | f | | 252003 M3741768108 38.5 39.4 76 308 77.26940 3513301 270 54 450000 28 4272 252004 M3741768108 42.2 42.8 76 308 77.26940 3513301 270 54 450000 28 6230 6 | | | 28.8 | | 76 | | | | . | | | | | | | | | ···· | • | } | | 152004 MSTAITERINS 42.85 43.25 76 308 7526940 3513301 270 45 410000 36 52000 525005 MSTAITERINS 44.25 46.25 76 308 7526940 3513301 270 45 410000 36 52000 525005 MSTAITERINS 44.25 46.25 76 308 7526940 3513301 270 50 287000 27 3204 525007 525007 MSTAITERINS 48.45 49.05 76 308 7526940 3513301 270 54 27000 67 3382 48.45 49.05 76 308 7526940 3513301 270 54 27000 67 3382 48.45 49.05 50.6 76 308 7526940 3513301 270 54 27000 67 3382 48.45 49.05 50.6 76 308 7526940 3513301 270 54 27000 67 3382 48.45 49.05 50.6 76 308 7526940 3513301 270 54 27000 67 3382 48.45 49.05
49.05 49.05 49.05 49.05 49.05 49.05 49.05 49.05 | | | 38.5 | 39.4 | 76 | 308 | | | 270 | | | 21 | | | 1 | | | | | | | 1.53394 M9741768108 43.25 44.25 76 308 7526940 3513301 270 45 410000 36 36 3006 352095 M9741768108 46.25 48.45 76 308 7526940 3513301 270 50 287000 27 3204 3204 3205 | | | harananananananan | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | decence construction of | | +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | harramananan | daaraaraaraaraa | ~~~~ | ~~~~~~~~~~ | | | | | toooooooo | | | | 15000 | | 252095 M3741767808 44.25 46.25 76 308 75,6940 3513301 270 50 287000 27 3204 3205 3208 32094 322095 3214767808 48.45 76 308 75,6940 3513301 270 89 373000 25 3382 3382 322097 M3741767808 48.45 49.05 76 308 75,6940 3513301 270 54 42700 67 3916 52099 M3741767808 50.6 76 308 75,6940 351301 270 54 42700 67 3916 52099 M3741767808 50.6 51.9 76 308 75,6940 3513301 270 54 388000 36 3382 52100 M3741767818 5.5 2.8 76 318 75,6940 351301 270 54 388000 36 3382 52100 M3741767818 5.5 2.8 76 318 75,6940 3513466 278 660 20 35600 3560 | | | | | | | | | | | | | | | ↓ | | | | | 31900 | | 252096 M9741766309 46.25 48.45 76 308 75,26940 351301 270 44 355000 25 3738 252098 M9741766309 49.05 50.6 76 308 75,26940 351301 270 54 477000 67 3918 3918 252099 M9741766309 69.6 50.6 76 308 75,26940 351301 270 54 477000 67 3918 3918 252099 M9741766309 68.4 69.4 76 308 75,26940 351301 270 54 388000 36 3882 388 | | | | | | | | | | | ~~~~~~~~~~ | | | | | | | | | 12600
13000 | | 252,077 M3741768308 48.45 49.05 76 308 75,26940 3513301 270 54 427000 67 18.05 18. | | | | | | | | | | | | kaanaanaanaan | ····· | | | | | | | 12800 | | 252098 M3741766138 49.05 50.6 76 308 7526940 3513301 270 54 447700 67 3916 3916 525099 M3741766138 50.6 51.9 76 308 7526940 3513301 270 45 388000 36 33332 525100 M3741766138 5.5 2.8 76 318 7526940 3513301 270 45 388000 36 325000 | | | | | | ~~~~~~~~ | | | | | ~~~~~~~~~~ | | | | | | | | | 12200 | | 252100 M374176R318 1.5 2.8 76 318 7526940 3513486 278 660 20 3500 22 2848 252101 M374176R318 2.8 3.5 76 318 7526940 3513486 278 620 165000 22 2848 252103 M374176R318 3.5 5.5 76 318 7526940 3513486 278 620 165000 22 22 22 24 28 28 28 28 | | | 49.05 | 50.6 | 76 | 308 | | | | 54 | | 67 | | 1 | | 3916 | • | | | 13500 | | S25101 M374176R318 1.5 2.8 76 318 7526940 3513486 278 660 20 20 22 248 3550 25102 248 35103 248 351044
351044 35 | 252099 | M374176R308 | 50.6 | 51.9 | | | | | | 54 | 388000 | 36 | | | | 3382 | | | | 12000 | | 252102 M3741768318 2.8 3.5 76 318 7526940 3513486 278 395000 22 2848 2284 252104 252104 M3741768318 3.5 5.5 7.5 7.6 318 7526940 3513486 278 430 161000 23144 252105 M3741768318 7.5 10.2 7.6 318 7526940 3513486 278 470 159000 278 | L' | | 252104 M374176R318 5.5 7.5 7.6 318 7526940 3513486 278 470 159000 178 | | | 1.5 | | | | | | | 660 | | • | | | | | | | | ļ | | 252104 M374176R318 7.5 7.5 7.6 318 7526940 3513486 278 470 159000 178 | | | 2.8 | 3.5 | /6
76 | | | | | 620 | | 22 | | | ∔ | | | | | 14100
17900 | | 252106 M3741768318 10.2 12.2 76 318 7526940 3513486 278 470 155000 2136 | | | 5.5 | 7.5 | 76 | | | | . | | | · - · · · · · · · · · · · · · · · · · · | | ····· | | | | ···· | | 13200 | | 252106 M374176R318 10.2 12.2 76 318 7526940 3513486 278 470 353000 2136 2136 252108 M374176R318 14.3 16.3 76 318 7526940 3513486 278 470 155000 2136 252108 M374176R318 14.3 16.3 76 318 7526940 3513486 278 470 361000 278 470 278 | | | 7.5 | | 76 | | | | | | | | | | | | | · | | 10100 | | 252108 M374176R318 14.3 16.3 76 31.8 7526940 3513486 27.8 450 320000 1424 14.4 14.4 15.5 15.5 76 31.8 7526940 3513486 27.8 400 361000 14.2 14.4 14.4 15.5 15 | 252106 | M374176R318 | | | | | 7526940 | | | 470 | 323000 | | | | 1 | 1602 | | | | 8600 | | 252109 M374176R318 16.3 17.5 76 318 7526940 3513486 278 400 361000 1424 252110 M374176R318 19 76 318 7526940 3513486 278 470 369000 1602 1602 252111 M374176R318 19 21 76 318 7526940 3513486 278 470 369000 1602 1244 1244 1244 1244 1244 1244 1244 1244 1252112 M374176R318 21 23 76 318 7526940 3513486 278 450 342000 1246 1246 1246 1246 1244 | ~~~~~~~~~~ | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 14.3 | | ~~~~~~~ | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | 470 | ~~~~~~~ | | | | | 2136 | | | | 12600 | | 252110 M3741768318 17.5 19 76 318 7526940 3513486 278 470 369000 1602 252111 M3741768318 19 21 76 318 7526940 3513486 278 410 328000 1424 252113 252112 M3741768318 21 23 76 318 7526940 3513486 278 450 320000 1246 252113 252 76 318 7526940 3513486 278 370 420000 1780 252114 252114 M3741768318 25 27 76 318 7526940 3513486 278 310 352000 1780 252114 252115 M3741768318 27 29 76 318 7526940 3513486 278 310 352000 1780 252115 252115 M3741768318 29 30.5 76 318 7526940 3513486 278 350 281000 2136 252116 252116 | | | | | | | | | | | | | | | | | | | | 7700 | | 252111 M374176R318 19 21 76 318 7526940 3513486 278 410 328000 1424 252112 M374176R318 21 23 76 318 7526940 3513486 278 450 342000 1246 22 25213 M374176R318 23 25 76 318 7526940 3513486 278 370 420000 1780 1780 22 252114 M374176R318 25 27 76 318 7526940 3513486 278 230 352000 1780 1880 1780 1880 1880 1880 1880 1880 1880 1880 1880 1880 1880 | | | 16.3 | | 76 | | | | 278 | | | | | | | | | ļ | | 7500
7400 | | 252112 M374176R318 21 23 76 318 7526940 3513486 278 450 342000 1246 1246 252113 M374176R318 23 25 76 318 7526940 3513486 278 370 420000 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780 1780
1780 1890 1898 1898 1898 1898 1898 1898 1898 1898 1898 1898 1898 1898 1898< | | | | | | | . | | | | | | | | | | | | | 7400 | | 252113 M374176R318 23 25 76 318 7526940 3513486 278 370 420000 1780 | | | | | | | | | | | | | | | | | | | | 5900 | | 252114 M374176R318 25 27 76 318 7526940 3513486 278 230 352000 1780 232298 M374176R318 27 29 76 318 7526940 3513486 278 310 352000 1424 352215 352215 3527415 352215 352215 352215 352215 352215 352215 352215 35222 76 318 7526940 3513486 278 350 38000 2136 252115 352215 3434176R318 32.2 34.5 76 318 7526940 3513486 278 250 338000 2136 252115 352717 352417 352417 352417 352418 3522 34.5 76 318 7526940 3513486 278 250 338000 252418 252418 3524740 3513486 278 250 338000 252400 252400 252400 252400 252400 252400 252400 252400 252400 | | | 23 | 25 | 76 | | | | | 370 | | ····· | l | 1 | | | | l | | 8000 | | 232299 M374176R318 29 30.5 76 318 7526940 3513486 278 390 339000 1958 2136 252115 M374176R318 30.5 32.2 76 318 7526940 3513486 278 350 281000 22136 2136 2136 252116 M374176R318 32.2 34.5 76 318 7526940 3513486 278 250 38000 1602 252118 M374176R318 34.5 36.2 76 318 7526940 3513486 278 200 324000 1246 24 252118 M374176R318 36.2 38.3 76 318 7526940 3513486 278 150 325000 1424 252119 M374176R318 38.3 38.85 76 318 7526940 3513486 278 150 325000 19 1958 25210 M374176R318 41.2 41.8 76 318 7526940 3513486 278 160 11 996.8 996.8 | 252114 | M374176R318 | | 27 | | 318 | 7526940 | 3513486 | | 230 | 352000 | | | | I | 1780 | | | | 7600 | | 252115 M374176R318 30.5 32.2 76 318 7526940 3513486 278 350 281000 2136 2136 252116 M374176R318 32.2 34.5 76 318 7526940 3513486 278 250 338000 1602 252117 M374176R318 34.5 36.2 76 318 7526940 3513486 278 200 324000 1246 252118 M374176R318 36.2 38.3 76 318 7526940 3513486 278 150 325000 1424 2724 252119 M374176R318 38.3 38.8 76 318 7526940 3513486 278 130 19 1958 252120 M374176R318 41.2 41.8 76 318 7526940 3513486 278 130 19 1958 | | h | harananananananan | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | decence construction of | ********** | | harramananan | daaraaraaraaraa | | ~~~~~~~~~~ | | ļ | ļ | ļ | taaaaaaaaaa | | ļ | | 6200 | | 252116 M374176R318 32.2 34.5 76 318 7526940 3513486 278 250 338000 1602 1602 252117 M374176R318 34.5 36.2 76 318 7526940 3513486 278 200 324000 1246 252118 M374176R318 36.2 38.3 76 318 7526940 3513486 278 150 325000 1424 142 252119 M374176R318 38.3 38.85 76 318 7526940 3513486 278 130 19 1958 252120 M374176R318 41.2 41.8 76 318 7526940 3513486 278 160 11 996.8 996.8 | | | 29 | | | | | | | | | | | | | | | | | 8400 | | 252117 M374176R318 34.5 36.2 76 318 7526940 3513486 278 200 324000 1246 246 252118 M374176R318 36.2 38.3 76 318 7526940 3513486 278 150 325000 1424 1424 252119 M374176R318 38.3 38.85 76 318 7526940 3513486 278 130 19 1958 252110 M374176R318 41.2 41.8 76 318 7526940 3513486 278 160 11 996.8 996.8 | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | | | | | سسنستسس | | | | | | | | | 10500 | | 252118 M374176R318 36.2 38.3 76 318 7526940 3513486 278 150 325000 19 1424 150 252119 M374176R318 38.3 38.85 76 318 7526940 3513486 278 130 19 1958 1958 252120 M374176R318 41.2 41.8 76 318 7526940 3513486 278 160 11 996.8 996.8 | | | | | 76
76 | | | | | | | | | | | | | | | 8100
5700 | | 252119 M374176R318 38.3 38.85 76 318 7526940 3513486 278 130 19 1958 252120 M374176R318 41.2 41.8 76 318 7526940 3513486 278 160 11 996.8 | | | | | | ~~~~~~~~ | | | | | ~~~~~~~~~~ | | | | | | | | | 6800 | | 252120 M374176R318 41.2 41.8 76 318 7526940 3513486 278 160 11 996.8 | | | 38.3 | | 76 | | | | 278 | | | 19 | | 1 | | 1958 | | ····· | h | } . | | 252121 M374176R318 45.65 46 76 318 7526940 3513486 278 150 21 1958 | | | | | | 318 | 7526940 | | | 160 | | | | | L | 996.8 | | | | ļ | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 252121 | M374176R318 | 45.65 | 46 | 76 | 318 | 7526940 | 3513486 | 278 | 150 | | 21 | l | L | . | 1958 | L | L | L | 1 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|-------------------|-------------|---|----------|--------------|---|--------------|--------------|--------------|-------------------|---|----------------| | 252122 | M374176R318 | 48.5 | 49.7 | 76 | 318 | 7526940 | 3513486 | 278 | 120 | | 12 | | | | 1174.8 | | | | | | 252123
251395 | M374176R318
M374176R318 | 50.7 | 51.4 | 76
76 | 318 | 7526940
7526940 | 3513486
3513486 | 278
278 | 170
170 | | 12 | | | | 1246
623 | | ļ | | <u> </u> | | 252124 | M374176R318 | 53.5
56.1 | 55
57.1 | 76
76 | 318
318 | 7526940 | 3513486 | 278 | 370 | 404000 | 14
26 | | | | 1780 | | | | 8000 | | 251396 | M374176R318 | 56.1
57.1 | 58.95 | 76 | 318 | 7526940 | 3513486 | 278 | 500 | 322000 | 23 | | | | 1602 | | | | 6800 | | 251397 | M374176R318 | 59.3 | 61.65 | 76 | 318 | 7526940 | 3513486 | 278 | 440 | 338000 | 33 | | | ļ | 2314 | | | | 7600 | | 252125
252126 | M374176R318
M374176R318 | 61.65
63.4 | 63.4
64.7 | 76
76 | 318
318 | 7526940
7526940 | 3513486
3513486 | 278
278 | 64
62 | 296000
324000 | 21
30 | | | ļ | 2136
1068 | | ļ | ļ | 8000
4000 | | 252127 | M374176R318 | 63.4
64.7
67 | 67 | 76
76 | 318 | 7526940 | 3513486 | 278
278 | 39 | 388000 | 30
40 | | | | 1068 | | ····· | | 3400 | | 252128 | M374176R318 | 67 | 69 | 76 | 318 | 7526940 | 3513486 | 278 | 43 | 385000 | 39 | | | | 1068 | | | | 4300 | | 252129
252130 | M374176R318 | 69 | 71
73 | 76
76 | 318 | 7526940
7526940 | 3513486
3513486 | 278
278 | 48 | 396000 | 42 | | | | 1068
1246 | | ļ | | 5400
4800 | | 252130 | M374176R318
M374176R318 | 71
73
74 | 73
74 | 76
76 | 318
318 | 7526940
7526940 | 3513486
3513486 | 278 | 50 | 412000
412000 | 43
37 | | | + | 1780 | | | | 4800
5800 | | 252132 | M374176R318 | 74 | 76 | 76
76 | 318 | 7526940 | 3513486 | 278 | 58 | 330000 | 37
25 | | | | 1602 | | ····· | | 5900 | | 252133 | M374176R318 | 76 | 78.6 | 76 | 318 | 7526940 | 3513486 | 278 | 57 | 311000 | 33 | | | | 2670 | | | | 7800 | | 251398 | M374176R318 | 78.6 | 79.05 | 76 | 318 | 7526940 | 3513486 | 278 | | 247000 | 100 | | | | 2670 | | | | 9200 | | 252274
252275 | M374176R319
M374176R319 | 2.8
7.8 | 3.6
7.8 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 1300
350 | | 11
10 | | | | 1602
3204 | | | | | | 252276 | M374176R319 | 8.55 | 9.4 | 76 | 319 | 7526940 | 3513531 | 282 | 700 | | 16 | | | | 3204 | | † | | | | 252277 | M374176R319 | 10.3 | 10.7 | 76
76 | 319 | 7526940 | 3513531 | 282 | 880 | | 22 | | | | 2492 | | | |] | | 252278 | M374176R319 | 14.2 | 14.6 | | 319 | 7526940 | 3513531 | 282 | 350 | *************************************** | 26 | | | | 1780 | | | | ļ <u></u> | | 252279
252280 | M374176R319
M374176R319 | 17.25
19.25 | 19.25
21.25 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 480
240 | 418000
388000 | 37
38 | | | ļ | 1602
1602 | | ļ | | 77900
68500 | | 251399 | M374176R319 | 21.25 | 23.25 | 76 | 319 | 7526940 | 3513531 | 282 | 350 | 365000 | 46 | | | | 1424 | | | | 700 | | 232254 | M374176R319 | 23.25 | 25.25 | 76 | 319 | 7526940 | 3513531 | 282 | 310 | 339000 | 43 | | | | 1424 | | ********** | *************************************** | 55200 | | 232255 | M374176R319 | 25.25 | 27.25 | 76 | 319 | 7526940 | 3513531 | 282 | 310 | 307000 | 23 | | | | 2136 | | | | 57800 | | 232256
252281 | M374176R319
M374176R319 | 27.25 | 29.3 | 76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282 | 300
220 | 433000
412000 | 23
25 | | | | 2492
1958 | ļ | | ļ | 71400
63900 | | 252282 | M374176R319 | 29.3
31.3 | 31.3
33.3 | 76
76 | 319 | 7526940 | 3513531 | 282
282 | 160 | 456000 | 29 | | | | 2136 | | · | ····· | 70300 | | 252283 | M374176R319 | 33.3 | 34.5 | 76 | 319 | 7526940 | 3513531 | 282 | 150 | 461000 | 26 | | •••••• | † | 1958 | | † | | 74000 | | 252284 | M374176R319 | 34.5 | 36.5 | 76 | 319 | 7526940 | 3513531 | 282 | 160 | 428000 | 20 | | | | 1602 | | | | 65300 | | 252285
252286 | M374176R319
M374176R319 | 36.5
38.5 | 38.5
39.4 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 190
190 |
 | 15
19 |
 | | 4 | 890
890 |
 | | | . ! | | 252280 | M374176R319 | 39.4 | 42.5 | 76
76 | 319 | 7526940 | 3513531 | 282 | 140 | 389000 | 19 | | | | 1246 | | | | 40000 | | 252288 | M374176R319 | 42.5 | 45 | 76 | 319 | 7526940 | 3513531 | 282 | 130 | 570000 | 19 | | | | 1068 | | | | 26900 | | 252289 | M374176R319 | 42.5
45 |
48.1
50.8 | 76
76
76 | 319 | 7526940 | 3513531 | 282
282
282 | 150 | 432000 | 17 | | | | 1068 | | | | 31100 | | 252290 | M374176R319 | 48.1 | 50.8 | | 319 | 7526940 | 3513531 | 282 | 160 | 109000 | 17 | | | | 890 | | | | 7700 | | 252291
252292 | M374176R319
M374176R319 | 50.8
53.55 | 53.55
55.4
56.1 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 240
400 | 283000
308000 | 22
30 | | | | 1068
1958 | | | | 31400
49600 | | 252293 | M374176R319 | 53.55
55.4 | 56.1 | 76
76 | 319 | 7526940 | 3513531 | 282 | 310 | 400000 | 30 | | | | 2492 | | · | ····· | 61800 | | 252294 | M374176R319 | 56.1 | 58.85 | 76 | 319 | 7526940 | 3513531 | 282 | 220 | 254000 | 28 | | | | 1958 | | | | 35400 | | 252295 | M374176R319 | 59.1 | 61.1 | 76 | 319 | 7526940 | 3513531 | 282 | 390 | 472000 | 33 | | | | 2670 | | | | 63900 | | 252296
252297 | M374176R319
M374176R319 | 61.1
62.15 | 62.15
64 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 60
41 | 326000
456000 | 32
30 | | | | 1780
2136 | | | | 51000
65900 | | 252298 | M374176R319 | 64 | 66 | 76 | 319 | 7526940 | 3513531 | | 30 | 468000 | | ····· | | † | 2314 | † | † | † | 69300 | | 252299 | M374176R319 | 64
66
67.1 | 67.1 | 76 | 319 | 7526940 | 3513531 | 282
282 | 20 | 474000 | 43
38 | | | | 2136 | | 1 | 1 | 67800 | | 252300 | M374176R319 | 67.1 | 68.8 | 76 | 319 | 7526940 | 3513531 | 282 | 80 | 475000 | 30 | | | ļ | 2492 | | ļ | ļ | 68100 | | 252138
252139 | M374176R319
M374176R319 | 68.8 | 69.6
70.1 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 18
41 | 339000
393000 | 34 | | | | 3204
2670 | | | | 59800
63400 | | 252301 | M374176R319 | 69.6
70.1 | 73.1 | 76 | 319
319 | 7526940 | 3513531 | 282 | 41
22 | 197000 | 38
29 | | | | 2136 | | | | 25000 | | 252302 | M374176R319 | 73.1 | 75.15 | 76 | 319 | 7526940 | 3513531 | 282 | 30 | 282000 | 38 | | | | 2314 | | <u></u> | | 47400 | | 232257 | M374176R319 | 75.15
77.3 | 77.3 | 76 | 319 | 7526940 | 3513531 | 282
282 | 33 | 252000 | 33 | | | ļ | 2670 | | | | 36800 | | 232258
232259 | M374176R319
M374176R319 | 77.3
80.1 | 80.1
82.15 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 82
46 | 297000
282000 | 30
28 | | | ļ | 2492
1602 | | ļ | | 45800
40300 | | 252303 | M374176R319 | 82.15 | 83.65 | 76
76 | 319 | 7526940 | 3513531 | 282 | 49 | 233000 | 28 | | | | 1602 | | | | 32200 | | 252304 | M374176R319 | 83.65 | 84.7 | 76 | 319 | 7526940 | 3513531 | 282 | 50 | 343000 | 32 | | | † | 2136 | | <u> </u> | <u> </u> | 51800 | | 232260 | M374176R319 | 84.7 | 87.95 | 76 | 319 | 7526940 | 3513531 | 282 | 33 | 268000 | 35 | | | | 2670 | | | | 43000 | | 232261 | M374176R319 | 87.95 | 90 | 76 | 319 | 7526940 | 3513531 | 282 | 33 | 262000 | 37 | | ļ | ļ | 1424 | | | ļ | 31600 | | 252305
252306 | M374176R319
M374176R319 | 90
92 | 92
94 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 33
64 | 248000
295000 | 38
39 | | ļ | | 1602
1780 | | | | 33500
37300 | | 252307 | M374176R319 | 92
94 | 94
95 | 76
76 | 319
319 | 7526940 | 3513531 | 282
282 | 64
52 | 260000 | 39
39 | | • | † | 1602 | | †···· | <u> </u> | 32500 | | 252308 | M374176R319 | 95 | 96.05 | 76 | 319 | 7526940 | 3513531 | 282 | 49 | 290000 | 33 | | ************* | | 3204 | | | | 45000 | | 252309 | M374176R319 | 96.05 | 96.85 | 76 | 319 | 7526940 | 3513531 | 282 | 10 | 162000 | 23 | <u> </u> | L | 1 | 2136 | <u> </u> | 1 | L | 13100 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|------------------|------------|-------------------|-------------|----------|-------------|---|--------------|--------------|--------------|----------|----------------| | 252310 | M374176R319 | 96.85 | 97.85 | 76 | 319 | 7526940 | 3513531 | 282 | 41 | 171000 | 24 | | | | 1424 | | | | 12700 | | 252311 | M374176R319 | 97.85 | 98.85 | 76
76 | 319 | 7526940 | 3513531 | 282 | 40
60 | 139000 | 16
15 | | | | 712 | | ļ | | 8700 | | 252312
252313 | M374176R319
M374176R319 | 98.85
99.85 | 99.85
101.3 | 76
76 | 319
319 | 7526940
7526940 | 3513531
3513531 | 282
282 | 60
55 | 380000
88900 | 15
19 | | | | 890
890 | | | | 21100
5300 | | | M374176R320 | 1.5 | 2 | 76 | 320 | 7526940 | 3513626 | 279 | 280 | 357000 | 19 | | | | 1958 | | | | 60300 | | 252316 | M374176R320 | 7 | | 76 | 320 | 7526940 | 3513626 | 279 | 600 | | | | | | 1780 | | | | ····· | | 252314 | M374176R320 | 11.3 | 7.4
12 | 76 | 320 | 7526940 | 3513626 | 279 | 840 | | | | | | 2314 | | | | | | | M374176R320 | 14.4 | 16.1 | 76 | 320 | 7526940 | 3513626 | 279 | 650 | | | | | | 2136 | | | | | | manananand | M374176R320
M374176R320 | 20.1 | 22.1 | 76 | 320 | 7526940 | 3513626
3513626 | 279 | 270 | 370000
341000 | | | ~~~~~ | | 2848
3382 | | | | 84800 | | 252318
252319 | M374176R320
M374176R320 | 22.55
24 | 24
26 | 76
76 | 320
320 | 7526940
7526940 | 3513626
3513626 | 279
279 | 340 | 445000 | | | | | 3382
2136 | | | | 65800
70200 | | 252320 | M374176R320 | 26 | 27.5 | 76 | 320 | 7526940 | 3513626 | 279 | 240 | 453000 | | | | | 1602 | | | | 65500 | | 252321 | M374176R320 | 27.5 | 28.65 | 76 | 320 | 7526940 | 3513626 | 279 | 180 | 440000 | *********** | | *********** | | 2314 | | | | 62200 | | | M374176R320 | 28.65
30.4 | 30.4
31.4 | 76
76 | 320
320 | 7526940 | 3513626 | 279
279 | 120
120 | 459000 | | | | | 1602 | | | | 67500 | | 252323 | M374176R320 | | | | | 7526940 | 3513626 | | | 437000 | | | | | 1780 | | | | 69400 | | 252324
252325 | M374176R320
M374176R320 | 31.4 | 32.3
34.1 | 76
76 | 320
320 | 7526940
7526940 | 3513626
3513626 | 279
279 | 130
112 | 439000 | | | | | 3026
2136 | | | | 71200 | | | M374176R320
M374176R320 | 32.3
36 | 34.1
36.5 | 76
76 | 320
320 | 7526940
7526940 | 3513626
3513626 | 279
279 | 140 | 437000 | | ···· | | | 890 | | | | ····· | | | M374176R320 | 36.5 | 39.5 | 76 | 320 | 7526940 | 3513626 | 279 | 117 | 387000 | | | | † | 1068 | † | | | 39800 | | 252328 | M374176R320 | 39.5 | 42
44 | 76
76 | 320 | 7526940 | 3513626 | 279 | 105 | 364000 | | | | | 1246 | | <u> </u> | | 26800 | | 252329 | M374176R320 | 42 | | 76 | 320 | 7526940 | 3513626 | 279 | 120 | 445000 | | | | | 1068 | | | | 21200 | | | M374176R320 | 47.5 | 48 | 76 | 320 | 7526940 | 3513626 | 279 | 47 | | | | | | 534 | | | | | | | M374176R320 | 50.7 | 51.85 | 76 | 320 | 7526940 | 3513626
3513626 | 279
279 | 50
26 | 490000 | | | | | 1780 | | | | 70400 | | 251403
252332 | M374176R320
M374176R320 | 51.85
53.1 | 53.1
53.55 | 76
76 | 320
320 | 7526940
7526940 | 3513626
3513626 | 279
279 | 40 | 328000
232000 | | | | | 2136
1958 | | | | 50100
23300 | | | M374176R320 | 54.85 | 56.85 | 76 | 320 | 7526940 | 3513626 | 279 | 34 | 325000 | | | | | 1602 | | ····· | | 47800 | | | M374176R320 | 56.85 | | 76 | 320 | 7526940 | 3513626 | 279 | 33 | 378000 | | | | *************************************** | 1780 | | ************ | | 55500 | | 252335 | M374176R320 | 58.45 | 58.45
60.8 | 76 | 320 | 7526940 | 3513626 | 279 | 26 | 294000 | | | | Ī | 2492 | Ī | [| | 51500 | | | M374176R320 | 60.8 | 62.85 | 76 | 320 | 7526940 | 3513626 | 279 | 27 | 333000 | | | | | 2136 | | | | 56900 | | ~~~~~~~~~~ | M374176R320 | 62.85 | 64.85 | 76 | 320 | 7526940 | 3513626 | 279 | 42 | 505000 | | | | | 2314 | | ļ | | 82100 | | 252338
252339 | M374176R320
M374176R320 | 64.85
65.8 | 65.8
67.8 | 76
76 | 320
320 | 7526940
7526940 | 3513626
3513626 | 279
279 | 42
47 | 473000
401000 | | | | | 1780
2136 | | ļ | | 71100
63800 | | | M374176R320 | 67.8 | 70.9 | 76 | 320 | 7526940 | 3513626 | 279 | 34 | 170000 | | | | | 1958 | | ····· | | 11200 | | 252341 | M374176R320 | 70.9 | 72.5 | 76 | 320 | 7526940 | 3513626 | 279 | 95 | 207000 | ~~~~~~ | | | | 2670 | ····· | · | | 21900 | | 252342 | M374176R320 | 73 | 72.5
73.5 | 76 | 320 | 7526940 | 3513626 | 279 | 130 | | | | | | 4272 | | | | | | | M374176R320 | 73
75
75.6 | 75.6
76.3 | 76
76 | 320 | 7526940 | 3513626 | 279
279 | 15 | | | | | | 3204 | |
 |
 |
 | | 252344 | M374176R320
M374176R320 | 75.6 | 76.3 | | 320 | 7526940 | 3513626 | 279 | 22 | | | | | ļ | 3204 | | | | | | | M374176R320
M374176R320 | 78
78 7 | 78.7
79.7
80.7 | 76
76 | 320
320 | 7526940
7526940 | 3513626
3513626 | 279
279 | 210
160 | | | | | | 3560
4450 | | | | | | 252347 | M374176R320 | 78.7
79.7 | 80.7 | 76
76 | 320 | 7526940 | 3513626 | 279 | 74 | | | | | | 3204 | | ····· | | · | | | M374176R320 | 80.7
| 81.4 | 76 | 320 | 7526940 | 3513626 | 279 | 35 | | | | | | 3738 | | | | | | 252349 | M374176R320 | 81.4 | 83.5 | 76 | 320 | 7526940 | 3513626 | 279 | 30 | | | | | | 3738 | | | | | | | M374176R320 | 83.5 | 84.8 | 76 | 320 | 7526940 | 3513626 | 279 | 25 | | | | | | 2848 | | | | | | | M374176R320
M374176R320 | 84.8
86.1 | 86.1 | 76 | 320 | 7526940
7526940 | 3513626
3513626 | 279 | 30 | | | | | | 3560
3738 | | | | | | | M374176R320
M374176R320 | 86.1
87.4 | 87.4
89.4 | 76
76 | 320
320 | 7526940
7526940 | 3513626
3513626 | 279
279 | 64 | 355000 | ····· | | | | 3738
2670 | | | | 56900 | | | M374176R320 | 89.4 | 90.4 | 76 | 320 | 7526940 | 3513626 | 279 | | 378000 | | | | † | 2670 | | | | 59300 | | | M374176R320 | 90.4 | 91.8 | 76 | 320 | 7526940 | 3513626 | 279 | | 231000 | | | | <u> </u> | 2314 | <u> </u> | <u> </u> | <u> </u> | 27500 | | | M374176R320 | 91.8 | 93.5 | 76 | 320 | 7526940 | 3513626 | 279 | | 146000 | | | | | 712 | | <u> </u> | | 9100 | | 252357 | M374176R320 | 99.8 | 100.4 | 76 | 320 | 7526940 | 3513626 | 279 | 55
38 | | | | | ļ | 534 | ļ | ļ | ļ | ļ | | 252358 | M374176R320 | 102 | 102.6 | 76 | 320 | 7526940 | 3513626 | 279 | | | ļ | ļ | | | 534 | | ļ | ļ | ļ | | 252359
252360 | M374176R320
M374176R320 | 106
109.4 | 107
110 | 76
76 | 320
320 | 7526940
7526940 | 3513626
3513626 | 279
279 | 26
60 | | | | | | 712
1246 | } | | | | | 252360 | M374176R320
M374176R321 | 2 | | | | 7526940 | 3513626 | | | 521000 | | | | | 1958 | | | | 77100 | | 252362 | M374176R321 | 4.1 | 4.1
7.2 | 76
76 | 321
321 | 7526940 | 3513751 | 273
273 | 270
210 | 501000 | | | | | 2670 | | | | 71000 | | 252363 | M374176R321 | 4.1
7.2 | 8.65 | 76 | 321 | 7526940 | 3513751 | 273 | 90 | 493000 | | | | L | 3204 | <u> </u> | | | 71200 | | 252364 | M374176R321 | 9.2
13.4 | 10.8 | 76 | 321 | 7526940 | 3513751 | 273 | 50 | 502000 | | | | | 2492 | [|] | | 63000 | | | M374176R321 | 13.4 | 15 | 76 | 321 | 7526940 | 3513751 | 273 | 50 | 507000 | | | | ļ | 2136 | ļ | ļ | | 60500 | | 252366 | M374176R321 | 20.3
36.85 | 20.7
37.5 | 76
76 | 321 | 7526940 | 3513751 | 273
273 | 80
78 | 137000 | | | | [| 1602
3560 | | | | 15000 | | 252367
252368 | M374176R321
M374176R321 | | 37.5
38.45 | | 321 | 7526940
7526940 | 3513751
3513751 | | | 137000
163000 | | | | | 3560
4272 | | | ļ | 15000
17300 | | | M374176R321 | 37.5
38.45 | 39.45
39.45 | 76
76 | 321
321 | 7526940 | 3513751 | 273
273 | 58
50 | 158000 | | ····· | | | 3382 | † | | | 19200 | | | M374176R321 | 39.45 | 41.5 | 76 | 321 | 7526940 | 3513751 | 273 | 42 | 511000 | | | | [| 3026 | | ····· | ····· | 62300 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|-------------------|------------|-------------------|----------|----------|--------------|--|--------------|----------|--------------|---------|----------------| | 252371 | M374176R321 | 41.5 | 42.5 | 76 | 321 | 7526940 | 3513751 | 273 | 53 | 478000 | | | | | 3204 | | | | 62300 | | 252372 | M374176R321 | 42.5 | 44.5 | 76 | 321 | 7526940 | 3513751 | 273 | 42 | 505000 | | | | | 2848 | | | | 71800 | | 252373 | M374176R321 | 44.5 | 46.2 | 76 | 321 | 7526940 | 3513751 | 273 | 50 | 276000 | | | | | 2670 | | | | 13900 | | 252374
252375 | M374176R321
M374176R321 | 50.2
55.1 | 53.3
55.5 | 76
76 | 321
321 | 7526940
7526940 | 3513751
3513751 | 273
273 | 47
50 | 376000 | | | | | 2848
3204 | | | | 36900 | | 252376 | M374176R321 | 58.6 | 59.6 | 76
76 | 321 | 7526940 | 3513751 | 273 | 60 | | | | | | 4272 | | ···· | | | | 252377 | M374176R321 | 65.4 | 65.8 | 76 | 321 | 7526940 | 3513751 | 273 | 70 | | | | | | 4984 | | | | ļ | | 252378 | M374176R321 | 87.4
98.9
105.5 | 88 | 76 | 321 | 7526940
7526940 | 3513751
3513751 | 273 | 52
30 | | | | | | 534 | | | | [| | 252379 | M374176R321 | 98.9 | 99.3 | 76
76
76 | 321 | | | 273
273
273 | 30 | | | | | . | 356 | | | | 4 J | | 252380 | M374176R321 | | 106 | | 321 | 7526940 | 3513751 | | 45 | | | | | | 356 | | | | ļ! | | 252381
252236 | M374176R321
M374176R322 | 110.65 | 111.4
4.9 | 76
76 | 321
322 | 7526940
7526940 | 3513751
3513831 | 273
272 | 55
460 | | | | | | 534
4094 | | | | \vdash | | 252237 | M374176R322 | 3.8
8.7 | 9.1 | 76
76 | 322 | 7526940 | 3513831 | 272 | 350 | | | | ····· | | 3026 | •••••• | | | h | | 252238 | M374176R322 | 10.5 | 11.2 | | 322 | 7526940 | 3513831 | 272 | 90 | | | | | | 1780 | | | | } | | 252239 | M374176R322 | 13.1 | 14.3 | 76
76 | 322 | 7526940 | 3513831 | 272 | 80 | | | | | | 1032.4 | | | | (| | 252240 | M374176R322 | 15.7 | 16.2 | 76 | 322 | 7526940 | 3513831 | 272 | 55 | | | | | | 1744.4 | | | | | | 252241 | M374176R322 | 21 | 21.65 | 76 | 322 | 7526940 | 3513831 | 272 | 20 | | | | | | 1246 | | | | ļ | | 252242 | M374176R322 | 25.2 | 26.2 | 76 | 322 | 7526940 | 3513831
3513831 | 272 | 45 | | | | | | 3382 | | | | | | 252243
252244 | M374176R322
M374176R322 | 26.2
28.3 | 27.9
28.8 | 76
76 | 322
322 | 7526940
7526940 | 3513831
3513831 | 272
272 | 55
50 | | | | | | 3204
3382 | | | | j | | 252245 | M374176R322 | 30.1 | 31.4 | 76 | 322 | 7526940 | 3513831 | 272 | 30 | | | | | | 3916 | | ····· | | } | | 252246 | M374176R322 | 31.4 | 32.4 | 76 | 322 | 7526940 | 3513831 | 272 | 25 | | | | | ······································ | 2848 | | | | ļ | | 252247 | M374176R322 | 32.4 | 33.6 | 76 | 322 | 7526940 | 3513831 | 272 | 35 | | | | | | 3204 | | | | | | 252248 | M374176R322 | 34.8 | 35.3 | 76 | 322 | 7526940 | 3513831 | 272 | 75 | | | | | | 4450 | | | | ļl | | 252249 | M374176R322 | 35.9 | 37.9 | 76 | 322 | 7526940 | 3513831 | 272 | 55 | | | | ļ | | 3382 | | ļ | | إا | | 252250
252251 | M374176R322
M374176R322 | 40.3 | 40.8
42.6 | 76
76 | 322
322 | 7526940
7526940 | 3513831
3513831 | 272 | 40 | | | | | | 3916
3382 | | | | <u> </u> | | 252252 | M374176R322 | 42.2
43.8 | 44 3 | 76
76 | 322 | 7526940 | 3513831 | 272
272 | 32
44 | | | | | | 3916 | | | | | | 252253 | M374176R322 | 49.1 | 50.4 | 76 | 322 | 7526940 | 3513831 | 272 | 20 | | | | | | 3916 | | | | اا | | 252254 | M374176R322 | 51.1 | 51.4 | 76 | 322 | 7526940 | 3513831 | 272 | 20 | | | | | | 961.2 | | | | | | 252255
252256 | M374176R322 | 57.3 | 57.7 | 76 | 322
322 | 7526940 | 3513831 | 272
272
272 | 33 | | | | | | 587.4 | | | | | | 252256 | M374176R322 | 60.2 | 60.6
62.8 | 76
76 | 322
322 | 7526940 | 3513831 | 272 | 37
56 | | | | | | 961.2 | | | | ļ! | | 252257
252258 | M374176R322
M374176R322 | 61.8
67 | 62.8
67.4 | | | 7526940
7526940 | 3513831
3513831 | 272 | 70 | | | | | | 694.2
712 | | | | ļ | | 252258 | M374176R322 | 71.6 | 72 | 76
76 | 322
322 | 7526940 | 3513831 | 272 | 44 | | | | | | 712 | | } | | ∤ | | 252260 | M374176R322 | 75.9 | 76.9 | 76 | 322 | 7526940 | 3513831 | 272 | 80 | | | | | | 427.2 | | | | | | 252261 | M374176R322 | 75.9
79 | 80 | 76
76 | 322 | 7526940 | 3513831 | 272 | 50 | | | | 1 | | 516.2 | | | | (| | 252519 | M374176R323 | 2.3 | 3.6 | 76 | 323 | 7526940 | 3513676 | 276 | | 338000 | | | | | 2670 | | | | 58300 | | 252520 | M374176R323 | 3.6 | 4.5 | 76 | 323 | 7526940 | 3513676 | 276 | | 249000 | | | | | 1958 | | | | 36800 | | 252521 | M374176R323
M374176R323 | 4.5 | 6.55 | 76
76 | 323
323 | 7526940
7526940 | 3513676 | 276 | | 297000
207000 | | | | | 2136
1068 | | | | 50500
29900 | | 252522
252523 | M374176R323
M374176R323 | 23.6
30 | 26.7
32.3 | 76
76 | 323
323 | 7526940
7526940 | 3513676
3513676 | 276
276 | | 328000 | | | | | 2492 | | | | 70200 | | 252524 | M374176R323 | 34.3 | 36.15 | | 323 | 7526940 | 3513676 | 276 | | 362000 | | | | | 2670 | | | | 55300 | | 252525 | M374176R323 | 37.15 | 38.1 | 76
76 | 323 | 7526940 | 3513676 | 276 | | 216000 | | | | | 2670 | | | | 34600 | | 252526 | M374176R323 | 39.45 | 41.25 | 76 | 323 | 7526940 | 3513676 | 276 | | 374000 | | | | | 3382 | | | | 68900 | | 252533 | M374176R323 | 61.9 | 63.1 | 76 | 323 | 7526940 | 3513676 | 276 | | | | | | | | | | | ļ | | 252527 | M374176R323 | 69.2 | 72.5 | 76 | 323 | 7526940 | 3513676 | 276 | | 178000 | | | | | 890 | | | | 8000 | | 252528 | M374176R323
M374176R323 | 72.5 | 75.5 | 76 | 323
323 | 7526940 | 3513676 | 276 | | 126000
154000 | | | | | 712 | | | | 6400 | | 252529
252534 | M374176R323 | 75.5
79.2 | 78.4
79.9 | 76
76 | 323
323 | 7526940
7526940 | 3513676
3513676 | 276
276 | | | | | | | 712
3916 | | | | 9800 | | 252535 | M374176R323 | 79.9 | 81.3 | 76
76 | 323 | 7526940 | 3513676 | 276
276 | | | | l | † | t | 3916 | | t | | | | 252530 | M374176R323 | 89.6 | 92.4 | 76 | 323 | 7526940 | 3513676 | 276 | | 219000
 | | | | 890 | | | | 48200 | | 252531 | M374176R323 | 92.4 | 93.95 | 76 | 323 | 7526940 | 3513676 | 276 | | 227000 | | | | | 712 | | | | 46100 | | 252532 | M374176R323 | 96.1 | 96.9 | 76 | 323 | 7526940 | 3513676 | 276 | 252 | 198000 | | | | | 712 | | | | 37200 | | 252536 | M374176R324 | 1.2 | 4.2 | 76 | 324 | 7526940 | 3513576 | 281 | 360 | 449000 | | | | | 2136 | | | | 63100 | | 252537
252538 | M374176R324
M374176R324 | 4.2
5.9 | 5.9
7.9 | 76
76 | 324
324 | 7526940
7526940 | 3513576
3513576 | 281
281 | 500
320 | 470000
397000 | | ļ | } | | 2848
1780 | | | | 72500
61900 | | 252563 | M374176R324 | 7.9 | 9.9 | 76 | 324 | 7526940 | 3513576 | 281 | 370 | 498000 | | ļ | | | 1602 | | | | 68000 | | 252554 | M374176R324 | 9.9 | 11.2 | 76 | 324 | 7526940 | 3513576 | 281 | 360 | 461000 | | ····· | † | † ~~~~~ | 2314 | | | h | 70800 | | 252555 | M374176R324 | 11.2 | 13.6 | 76
76 | 324 | 7526940 | 3513576 | 281 | 440 | 477000 | | | <u> </u> | | 2136 | | <u> </u> | | 81400 | | 252539 | M374176R324 | 13.6 | 17.6 | | 324 | 7526940 | 3513576 | 281 | 390 | 477000 | | | | | 2314 | | | | 76300 | | 252540 | M374176R324 | 17.6 | 19.6 | 76 | 324 | 7526940 | 3513576 | 281 | 390 | 486000 | | | ļ | ļ | 2314 | | ļ | | 82800 | | 252541 | M374176R324 | 19.6 | 20.9 | 76 | 324 | 7526940 | 3513576 | 281 | 430 | 468000 | | L | L | L | 1602 | L | L | l | 78900 | | 252543
252556
252557
252557
252559
252559
252560
252561
252562
252544
252544
252564
252564
252564
252564 | M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324 | 20.9
22.1
25.1
27.1
28
30.2
32.2
33.5
34.6
35.5
36.7
38.4 | 22.1
25.1
27.1
28
30.2
32.2
33.5
34.6 | 76
76
76
76
76
76
76 | 324
324
324
324
324
324 | 7526940
7526940
7526940
7526940 | 3513576
3513576
3513576 | 281 | 450 | 509000 | | | *************************************** | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |--|---|--|--|--|--|--|-------------------------------|-------------------|------------|------------------|---------|---------|---|----------|--------------|---|--------------|---|--| | 252556
252557
252558
252558
2525560
252560
252561
252562
252544
252545
252544
252546
252546
252546 | M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324 | 25.1
27.1
28
30.2
32.2
33.5
34.6 | 27.1
28
30.2
32.2
33.5
34.6 | 76
76
76
76 | 324
324
324 | 7526940
7526940 | | | | | | | | | 2314 | | | | 83800 | | 252557
252558
252559
252560
252561
252562
252562
252544
252544
252564
252564
252546
252546 | M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324 | 27.1
28
30.2
32.2
33.5
34.6 | 28
30.2
32.2
33.5
34.6 | 76
76
76
76 | 324
324 | 7526940 | | 281 | 520 | 484000 | | | | | 3204 | | ļ | | 85800 | | 252558
252559
252560
252561
252562
252562
252544
252545
252564
252546
252546 | M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324 | 30.2
32.2
33.5
34.6 | 30.2
32.2
33.5
34.6 | 76
76
76 | 324 | | 3513576
3513576 | 281
281 | 260
290 | 505000
488000 | | | | | 2848
3382 | | | | 80000
77400 | | 252559 252560 252561 252562 252544 252564 252546 252547 | M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324 | 30.2
32.2
33.5
34.6 | 32.2
33.5
34.6 | 76
76 | | 7526940 | 3513576 | 281 | 285 | 470000 | | | | | 2670 | | | | 72500 | | 252561 252562 252544 252545 252564 252546 252547 | M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324
M374176R324 | 33.5
34.6 | 34.6 | | 324 | 7526940 | 3513576 | 281 | 310 | 451000 | | | | | 2670 | | | | 66600 | | 252562
252544
252545
252564
252546
252547 | M374176R324
M374176R324
M374176R324
M374176R324
M374176R324 | 34.6 | 34.6 | | 324 | 7526940 | 3513576 | 281 | 360 | 465000 | | | | | 2492 | | | | 63600 | | 252544 252545 252564 252546 252547 | M374176R324
M374176R324
M374176R324
M374176R324 | 34.6
35.5
36.7 | | 76 | 324 | 7526940 | 3513576 | 281
281 | 270
120 | 468000 | | | | | 2492 | | | | 62000 | | 252545
252564
252546
252547 | M374176R324
M374176R324
M374176R324 | 36.7 | 35.5
36.7 | 76
76 | 324
324 | 7526940
7526940 | 3513576
3513576 | 281
281 | 135 | 459000
471000 | | | | | 3204
3382 | | | | 65200
52900 | | 252564
252546
252547 | M374176R324
M374176R324 | | 38.4 | 76
76 | 324 | 7526940 | 3513576 | 281 | 155 | 508000 | | | | | 3738 | | | | 55400 | | 252547 I | · • · • · · · · · · · • · · · · · · · · | 38.4 | 38.4
39.2 | 76 | 324 | 7526940 | 3513576 | 281 | 155 | 552000 | | | | | 3560 | | | | 60000 | | | | 52.15 | 53 | 76 | 324 | 7526940 | 3513576 | 281 | 150 | 441000 | | | | | 1246 | | | | 54300 | | | M374176R324 | 57.8 | 59.6 | 76 | 324 | 7526940 | 3513576 | 281 | 340 | 480000 | | | | | 2848 | | | | 72400 | | | M374176R324
M374176R324 | 61.05
63
65
67 | 63
65 | 76
76 | 324
324 | 7526940
7526940 | 3513576
3513576 | 281
281 | 350
470 | 454000
476000 | | | | | 2136
1424 | | | | 60500
48000 | | | M374176R324 | 65 | 65
67 | 76
76 | 324
324 | 7526940 | 3513576 | 281 | 510 | 468000 | | | | | 3738 | | · | | 67700 | | 252549 I | M374176R324 | 67 | 69.5 | 76 | 324 | 7526940 | 3513576 | 281 | 350 | 456000 | | | | | 3738 | | | | 66400 | | | M374176R324 | 69.5 | 72 | 76
76 | 324 | 7526940 | 3513576 | 281 | 38 | 498000 | | | | | 4094 | | | | 77000 | | | M374176R324 | 72 | 74.15 | 76 | 324 | 7526940 | 3513576 | 281 | 140 | 509000 | | | | | 4272 | | | | 79000 | | | M374176R324 | 78.5 | 80 | 76 | 324 | 7526940 | 3513576 | 281 | 52 | 479000
483000 | | | | | 3204 | | | | 70000 | | | M374176R324
M374176R324 | 93.55
97.4 | 94.65
97.9 | 76
76 | 324
324 | 7526940
7526940 | 3513576
3513576 | 281
281 | 52
62 | 473000 | | | | | 4628
3738 | • | | | 63000
75000 | | | M374176R325 | | 3.8 | 76 | 325 | 7526940 | 3513376 | 273 | 420 | 383000 | | | | | 2136 | | | | 1600 | | | M374176R325 | 2.4
3.8 | 5.3 | 76 | 325 | 7526940 | 3513376 | 273 | 580 | 370000 | | | | | 1958 | | | *************************************** | 1700 | | | M374176R325 | 5.3 | 7.7 | 76 | 325 | 7526940 | 3513376 | 273 | 580 | 554000 | | | | | 2670 | | | | 3200 | | | M374176R325 | 7.7
9.3 | 9.3 | 76
76 | 325
325 | 7526940 | 3513376 | 273
273 | 700 | 523000 | | | | | 3204 | | | | 3600 | | | M374176R325 | 9.3 | 10.5 | 76 | 325 | 7526940 | 3513376 | | | 535000 | | | | | 3204 | | | | 55000 | | | M374176R325
M374176R325 | 10.5
12.35 | 12.35
14.6 | 76
76 | 325
325 | 7526940
7526940 | 3513376
3513376 | 273
273 | 640
550 | 534000
326000 | | | | | 2670
2136 | | | | 3300
2400 | | | M374176R325 | | 20.2 | 76 | 325 | 7526940 | 3513376 | | 1200 | 320000 | | | | | 2314 | | | | , | | 252568 | M374176R325 | 18.55
24.5 | 25 | 76 | 325 | 7526940 | 3513376 | 273
273 | 710 | | | | | | 2848 | • | | | i | | ···· | M374176R325 | 30.8 | 31.2 | 76 | 325 | 7526940 | 3513376 | 273 | 1500 | | | | | | 2670 | | | | l | | | M374176R325 | 32.75 | 33.2 | 76
76 | 325 | 7526940 | 3513376 | 273 | 630 | | | | | | 3560 | | | | /ا | | | M374176R325
M374176R325 | 33.2 | 34.9
37.4 | 76 | 325
325 | 7526940
7526940 | 3513376
3513376 | 273
273
273 | 240
300 | 527000 | | | | | 3026 | | | | 73000 | | | M374176R325 | 36.8
38 | 38.65 | 76
76 | 325 | 7526940 | 3513376 | 273 | 740 | 531000 | | | | | 3382
3026 | • | ····· | | 66000 | | | M374176R325 | 40 | 40.6 | 76
76 | 325 | 7526940 | 3513376 | 273 | 120 | | | | | | 3026 | | | | [| | 252572 | M374176R325 | 43.3 | 44.1 | 76 | 325 | 7526940 | 3513376 | 273 | 170 | | | | | | 3026 | | | | | | 252573 I | M374176R325 | 48 | 48.5 | 76
76 | 325 | 7526940 | 3513376 | 273 | 58 | | | | | | 890 | | | | | | | M374176R325 | 55.65 | 56.7 | 76 | 325 | 7526940 | 3513376 | 273 | 120 | | | | | | 3204 | | | | j | | | M374176R325
M374176R325 | 59.5
60.5 | 60.5
62 | 76
76 | 325
325 | 7526940
7526940 | 3513376
3513376 | 273
273 | 52
52 | 548000 | | | | | 2848
3738 | | | | 4600 | | | M374176R325 | 62 | 64.4 |
76
76 | 325
325 | 7526940 | 3513376
3513376 | 273 | 43 | 475000 | | | | | 3204 | | | | 41200 | | | M374176R325 | 64.4 | 65.45 | 76 | 325 | 7526940 | 3513376 | 273
273 | 82 | 535000 | | | | | 4984 | | | | 52000 | | 252590 I | M374176R325 | 65.45 | 67.1 | 76 | 325
325 | 7526940 | 3513376 | 273 | 41 | 540000 | | | | | 3560 | | [| | 45000 | | | M374176R325 | 65.45
67.1
68.7 | 68.75
71.5 | 76
76 | 325 | 7526940 | 3513376 | 273 | 43 | 501000 | | | | | 4272 | | | | 61000 | | | M374176R325
M374176R325 | 68.7
71.5 | 71.5
73.5 | | 325 | 7526940
7526940 | 3513376
3513376 | 273
273 | 48 | 479000 | | | | | 2848
3382 | | | | 3300 | | | M374176R325 | 71.5 | 73.5
75.8 | 76
76 | 325
325 | 7526940
7526940 | 3513376
3513376 | 273 | 50
62 | 513000
510000 | | | | | 3382
3560 | | | | 5500
4400 | | | M374170R325 | | 6.6 | | 326 | 7526750 | 3513576 | 271 | 02 | 656000 | | | | | 3382 | | | | 49200 | | | M374177R326 | 2
8.25 | 10.35 | 77
77 | 326 | 7526750 | 3513536 | 271 | | 635000 | | | | | 3738 | | | | 60000 | | | M374177R326 | 12.4 | 14.95 | 77 | 326 | 7526750 | 3513536 | 271 | | 651000 | | | | | 2670 | | | | 55000 | | 252597 I
252598 I | M374177R326
M374177R326 | 15.8
16.55 | 16.55
19.25 | 77
77 | 326
326 | 7526750
7526750 | 3513536
3513536 | 271
271 | | 631000 | | | | | 2670 | | ļ | | 61800
52200 | | | M374177R326
M374177R326 | 16.55
20.15 | 19.25
21.45 | 77
77 | 326
326 | 7526750
7526750 | 3513536
3513536 | 271
271 | | 645000 | | ļ | | | 2492
2492 | | | | 52200
12200 | | | M374177R326 | 20.15 | 24.45 | 77 | 326
326 | 7526750 | 3513536 | 271 | | 634000 | | | | | 2314 | | | | 57200 | | | M374177R326 | 24.45 | 27.45 | 77 | 326 | 7526750 | 3513536 | 271 | | 669000 | | | | [| 2136 | | | | 62400 | | 252602 | M374177R326 | 27.45
31.3 | 31.3
31.95 | 77
77
77 | 326 | 7526750 | 3513536 | 271
271 | | 661000 | | | | | 2848 | | | | 62000 | | 252603 I | M374177R326 | | | | 326 | 7526750 | 3513536 | | | 641000 | | | | | 3738 | | | | 44800 | | | M374177R326 | 31.95
35.5 | 33.25 | 77
77 | 326
326 | 7526750 | 3513536 | 271
271 | | | | | | | 3560 | | | | 14700 | | | M374177R326
M374177R326 | 35.5
37.65 | 37.65
39.8 | 77
77 | 326
326 | 7526750
7526750 | 3513536
3513536 | 271
271 | ļ | 102000
95800 | | | | | 3204
3026 | | | ļ | 13800
13500 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION (m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|-------------------|-------------------------------|------------------------------|-------------------|----------|-------------------|----------|----------|---|------------|----------------|---|----------|---------|---| | 253621 | M374177R326 | 39.95 | 43.4 | 77 | 326 | 7526750 | 3513536 | 271 | | 625000 | | | | | 2492 | | | | 50900 | | 253622 | M374177R326 | 60.7 | 62.4 | 77
77 | 326 | 7526750 | 3513536 | 271 | | 644000 | | | | | 2848 | | | | 57200 | | 252609 | M374177R326 | 62.4 | 65.4 | 77
77 | 326 | 7526750 | 3513536 | 271 | | 628000 | | | | | 2314 | | | | 66100 | | | M374177R326
M374177R326 | 65.4
68.4 | 68.4
71.4 | 77 | 326
326 | 7526750
7526750 | 3513536
3513536 | 271
271 | | 657000
652000 | | | | | 2314
2492 | | | | 67400
64300 | | 252612 | M374177R326 | 71.4 | 74.4 | 77 | 326 | 7526750 | 3513536 | 271 | | 647000 | | | | | 2314 | | | | 65200 | | 252613 | M374177R326 | 74.4 | 76.4 | 77 | 326 | 7526750 | 3513536 | 271 | | 657000 | | | | | 2848 | | | | 51600 | | 252614 | M374177R326 | 76.4 | 78.4 | | 326 | 7526750 | 3513536 | | | 628000 | | | | | 3026 | | | | 58300 | | 252615 | M374177R326 | 78.4 | 81 | 77
77
77 | 326 | 7526750 | 3513536 | 271
271 | | 652000 | | | | | 1602 | | | | 55300 | | | M374177R326 | 81 | 83 | 77 | 326 | 7526750 | 3513536 | 271 | | 607000 | | | | | 1780 | | | | 56200 | | | M374177R326 | 83
85
87 | 85
87 | 77
77 | 326 | 7526750 | 3513536 | 271 | | 645000 | | | | | 1780 | | | | 54000 | | 252618
252619 | M374177R326
M374177R326 | 85 | 87
89 | 77 | 326
326 | 7526750
7526750 | 3513536
3513536 | 271
271 | | 654000
650000 | | | | . | 2136
3026 | | | | 48300
44200 | | 252619 | M374177R326
M374177R326 | 89
89 | 91 | 77 | 326
326 | 7526750
7526750 | 3513536
3513536 | 271 | | 657000 | | | | | 3026 | •••••• | | | 44200
45900 | | | M374177R326 | | 93 | | | | 3513536 | | | 653000 | | | | | 3382 | | | | | | 252622 | M374177R326 | 91
93 | 95 | 77
77 | 326
326
326 | 7526750
7526750 | 3513536 | 271
271
271 | | 675000 | | | •••• | | 3560 | • | | | 38800
39100 | | | M374177R326 | 95
97 | 97 | 77 | 326 | 7526750 | 3513536 | 271 | | 661000 | | | | | 2670 | • | | | 40900 | | | M374177R326 | 97 | 98.85 | 77 | 326 | 7526750 | 3513536 | 271 | | 638000 | | | | <u> </u> | 3026 | • • • • • • • • • • • • • • • • • • • | | | 62000 | | | M374177R326 | 98.85 | 99.75 | 77 | 326 | 7526750 | 3513536 | 271 | | | | | | | 3382 | | | | 10700 | | | M374177R326 | 99.75 | 101.6 | 77 | 326 | 7526750 | 3513536 | 271 | | | | | | | 2136 | | | | 6600 | | 252627 | M374177R327 | 00 | 2.5 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | | 2670 | | | | | | 252628 | M374177R327 | 2.5 | 6.3 | 77 | 327 | 7526750 | 3513601 | 273 | | 624666 | | | | | 2314 | | | | | | | M374177R327 | 8 | 10.9 | 77 | 327 | 7526750 | 3513601 | 273 | | 634000 | | | | | 2492 | | | | 51600 | | 252633
252634 | M374177R327
M374177R327 | 14.55
17.6 | 17.6
21.4 | 77 | 327
327 | 7526750
7526750 | 3513601
3513601 | 273
273 | | | | | | | 2136
2848 | | | | | | | M374177R327 | 21.4 | 24.95 | 77
77 | 327 | 7526750 | 3513601 | 273 | | | | | | | 1495.2 | ••••• | | | } | | | M374177R327 | | 29 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | | 3560 | | | | | | | M374177R327 | 24.95
29 | 32.6 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | † | 3916 | | | | | | | M374177R327 | 32.6 | 32.6
37.1 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | | 3204 | | | | } - · · · · · · · · · · · · · · · · · · | | | M374177R327 | 37.1 | 41 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | | 3382 | | | | | | 252645 | M374177R327 | 41
45 | 45
47.5 | 77
77 | 327 | 7526750 | 3513601 | 273
273 | | | | | | | 2314 | | | | | | 252647 | M374177R327 | 45 | | | 327 | 7526750 | 3513601 | 273 | | | | | | | 996.8 | | | | | | 252648 | M374177R327 | 47.5 | 51.1 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | | 1548.6 | | | | | | 252649 | M374177R327 | 51.1 | 55.2
59 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | | 1032.4 | | | | | | | M374177R327 | 55.2
59 | 59 | 77 | 327 | 7526750 | 3513601 | 273
273
273 | | | | | | . | 623 | | | | | | 252651
252652 | M374177R327
M374177R327 | 61.4 | 61.4
64.2 | 77
77 | 327
327 | 7526750
7526750 | 3513601
3513601 | 2/3 | | | | | | | 462.8
2670 | • | | | } | | | M374177R327 | 64.2 | 67 | 77 | | 7526750 | 3513601 | 273 | | | | | | | 3204 | | | | | | | M374177R327 | 64.2
69
72
75 | 72 | 77
77 | 327
327 | 7526750 | 3513601 | 273
273 | | 139000 | | | •••• | | 3204 | • | | | | | 252659 | M374177R327 | 72 | 72
75 | 77 | 327 | 7526750 | 3513601 | 273 | | 138000 | | | | | 4806 | | | | 18300 | | 252661 | M374177R327 | 75 | 76.75 | 77 | 327 | 7526750 | 3513601 | 273 | | 108000 | | | | | 3026 | | | | | | 252662 | M374177R327 | 76.75 | 77.75 | 77 | 327 | 7526750 | 3513601 | 273 | | 634000 | | | | | 2314 | | | | 69400 | | | M374177R327 | 77.75 | 78.9 | 77 | 327 | 7526750 | 3513601 | 273 | | 625000 | | | | ļ | 2136 | •••••• | ļ | | 58800 | | | M374177R327 | 79.35
82 | 82 | 77 | 327 | 7526750 | 3513601 | 273 | | 632000 | | | | | 2314 | | | | 67400 | | | M374177R327 | 82 | 84 | 77
77
77 | 327
327 | 7526750 | 3513601 | 273
273 | | 648000 | | | | | 2492 | | . | | 61200 | | | M374177R327
M374177R327 | 84
88.2
91 | 86.25
91 | 77
77 | 327
327 | 7526750
7526750 | 3513601
3513601 | 273
273 | | 613000
625000 | | | | | 2492
1780 | | | | 62400
70400 | | | M374177R327 | 91 | 93.2 | 77 | 327 | 7526750 | 3513601 | 273 | | 605000 | | · | | [······ | 2136 | | } | | 58600 | | | M374177R327 | 93.5 | 93.5
96.5 | | 327 | 7526750 | 3513601 | 273 | | 616000 | | ~~~~~ | *************************************** | | 2314 | *********** | | | 65000 | | 252675 | M374177R327 | 93.5
96.5 | 98.55 | 77
77 | 327 | 7526750 | 3513601 | 273 | | 638000 | | | | † | 3026 | | | | 64600 | | 252677 | M374177R327 | 98.55 | 100 | 77 | 327 | 7526750 | 3513601 | 273 | | 107000 | | | | | | | | | | | 252679 | M374177R327 | 100 | 101 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | | 3204 | ••••• | | | | | 252681 | M374177R327 | 101 | 102 | 77 | 327 | 7526750 | 3513601 | 273 |
 |
 | [| | | | 3738 | | |
 | ļ | | | M374177R327 | 102 | 103 | 77 | 327 | 7526750 | 3513601 | 273 | ļ | | | | | ļ | 1958 | | ļ | ļ | ļ
| | 252684 | M374177R327 | 103 | 103.6 | 77 | 327 | 7526750 | 3513601 | 273 | | | | | | ļ | 2314 | | | | | | 252685 | M374177R327 | 103.6 | 105 | 77
77 | 327 | 7526750 | 3513601 | 273 | ļ | | | ļ | | | 569.6 | | | ļ | } | | 252686
252687 | M374177R327
M374177R327 | 105
106.6 | 106.6
110 | 77
77 | 327
327 | 7526750
7526750 | 3513601
3513601 | 273
273 | | | | | | | 516.2
587.4 | | | | | | 252688 | M374177R327
M374177R327 | 110 | 110 | 77 | 327 | 7526750 | 3513601 | 273 | ļ | ļ | ļ | | | | 587.4
640.8 | | | | ļ | | 252689 | M374177R328 | 4.35 | 4.8 | 77 | 328 | 7526750 | 3513601 | 273 | | 655000 | | | | | 2136 | | | | 43000 | | 252690 | M374177R328 | | 4.6
8.5 | | | 7526750 | 3513601 | | ļ | 631000 | | <u> </u> | | | 2136 | | | ļ | 51200 | | | M374177R328 | 7
8.5 | 9.5 | 77
77 | 328
328 | 7526750 | 3513601 | 273
273 | | 634000 | | | | † | 2136 | • | | | 53000 | | | M374177R328 | 10.2 | 12.3 | 77 | 328 | 7526750 | 3513601 | 273 | | 647000 | | | | [| 2314 | | | | 57800 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|-------------------|------------|-------------------|--|--|----------|----------------|----------------|------------|---------------|---|----------------| | 252693 | M374177R328 | 15.2 | 17 | 77 | 328 | 7526750 | 3513601 | 273 | | | | | | | 2314 | | | | 11300 | | 252694 | M374177R328 | 18.7
21.9 | 21.9
24 | 77
77 | 328 | 7526750 | 3513601 | 273
273 | | 656000 | | | | | 1958 | | ļ | | 60400 | | 252695
252696 | M374177R328
M374177R328 | 21.9
24.65 | 24
26.3 | 77 | 328
328 | 7526750
7526750 | 3513601
3513601 | 273
273 | | 647000 | | | | | 1958
1958 | | | | 58800
61200 | | 252697 | M374177R328 | 26.3 | 29.7 | 77 | 328 | 7526750 | 3513601 | 273 | | 634000 | | } | | + | 2848 | | | | 13800 | | 252698 | M374177R328 | 29.8 | 32.2 | 77 | 328 | 7526750 | 3513601 | 273 | | 650000 | | | | | 3204 | | | | 49000 | | 252699 | M374177R328 | 34.55 | 36.2 | 77 | 328 | 7526750 | 3513601 | 273 | | 666000 | | | | 1 | 2670 | | | | 43800 | | 252700 | M374177R328 | 36.2
39.75 | 39.75 | 77
77
77 | 328
328 | 7526750 | 3513601 | 273
273 | | 634000 | | | | | 2314 | | | | 58600 | | 252701 | M374177R328 | 39.75 | 40.95 | 77 | 328 | 7526750 | 3513601 | 273 | | 643000 | | | | | 2314 | | | | 68800 | | 252702 | M374177R328 | 57.7 | 60.45 | 77 | 328 | 7526750 | 3513601 | 273 | | 651000 | | | | _ | 1780 | | | | 61200 | | 252703
252704 | M374177R328
M374177R328 | 60.45
63.4 | 63.4
65.6 | 77
77 | 328
328 | 7526750
7526750 | 3513601
3513601 | 273
273 | | 621000
643000 | | | | | 2314
1780 | | | | 63800
65600 | | 252704 | M374177R328 | 65.6 | 67.8 | 77 | 328 | 7526750 | 3513601 | 273 | | 651000 | | <u> </u> | | + | 2848 | | | | 58400 | | 252706 | M374177R328 | 67.8 | 70.9 | 77 | 328 | 7526750 | 3513601 | 273 | | 644000 | | | | | 3916 | | | | 57800 | | 252707 | M374177R329 | 2.1 | 5.45 | 77 | 329 | 7526580 | 3513451 | 273 | | 623000 | | | | | 1424 | | | | 57000 | | 252708 | M374177R329 | 6.4 | 8 | 77 | 329 | 7526580 | 3513451 | 273 | | 654000 | | | | | 1780 | | | | 55200 | | 252709 | M374177R329 | 8 | 9.7 | 77 | 329 | 7526580 | 3513451 | 273 | | 643000 | | ļ | | ļ | 2314 | | | | 57800 | | 252710 | M374177R329 | 10.85 | 11.4 | 77
77 | 329 | 7526580 | 3513451 | 273 | | 632000 | ļ | ļ | ļ | ļ | 2314 | ļ | ļ | ļ | 46000 | | | M374177R329 | 12.15 | 13.05 | 77
77 | 329 | 7526580 | 3513451 | 273 | | 639000 | | | | ↓ | 2314 | | | | 54400 | | 252712
252713 | M374177R329
M374177R329 | 14.9
18 | 17
21 | 77 | 329
329 | 7526580
7526580 | 3513451
3513451 | 273
273 | | 639000
642000 | | | | | 1780
1958 | | ļ | | 44800
52000 | | 252713 | M374177R329 | 21 | 22.2 | 77 | 329 | 7526580 | 3513451
3513451 | 273 | | 645000 | | | | | 2848 | | | | 48000 | | 252715 | M374177R329 | 23.9 | 25 | 77 | 329 | 7526580 | 3513451 | 273 | | 630000 | | | | | 4628 | | | | 56000 | | 252716 | M374177R329 | 31.85 | 32.5 | 77 | 329 | 7526580 | 3513451 | 273 | | 594000 | | | | † | 3204 | | ************* | | 62000 | | 252717 | M374177R329 | 49.5 | 50.35 | 77 | 329 | 7526580 | 3513451 | 273 | | 496000 | | | | | 19224 | | | | 39800 | | | M374177R329 | 50.35 | 52.6 | 77 | 329 | 7526580 | 3513451 | 273 | | 646000 | | | | | 25098 | | | | 58400 | | 252719 | M374177R329 | 52.6 | 53.15 | 77
77 | 329 | 7526580 | 3513451 | 273 | | 592000 | | ļ | | | 21538 | | | | 54500 | | | M374177R329 | 53.9 | 55.55 | 77 | 329 | 7526580 | 3513451 | 273 | | 635000 | | | | | 22962 | | | | 53000 | | | M374177R329
M374177R329 | 61.35
65.9 | 63
68.5 | 77 | 329
329 | 7526580
7526580 | 3513451
3513451 | 273
273 | | 665000
641000 | | | | | 25632
24386 | | | | 53500
55100 | | 252723 | M374177R329 | | 70.7 | | 329 | 7526580 | 3513451 | | | 639000 | | | | | 27234 | | | | 47200 | | 252724 | M374177R329 | 68.5
70.7 | 72 | 77
77 | 329 | 7526580 | 3513451 | 273
273 | | 641000 | | | | | 23140 | | | | 48300 | | 252725 | M374177R329 | 72 | 73 | 77 | 329 | 7526580 | 3513451 | 273 | | | | <u> </u> | | † | 2136 | † | | | 11000 | | 252726 | M374177R329 | 77.15 | 80 | 77 | 329 | 7526580 | 3513451 | 273 | | 623000 | | | | | 27768 | | | | 33500 | | | M374177R329 | 80 | 82 | 77 | 329 | 7526580 | 3513451 | 273 | | 631000 | | | | | 27946 | | | | 44700 | | | M374177R329 | 82 | 84.9 | 77
77 | 329 | 7526580 | 3513451 | 273
273
273 | | 655000 | | | | | 35422 | | | | 43500 | | 253692 | M374177R329
M374177R329 | 245 | 245.08 | 77
77 | 329 | 7526580 | 3513451 | 273 | 100 | | 200 | ļ | | 13700 | 2136 | 500 | | | ļ | | | M374177R329
M374177R329 | 245.08
245.37 | 245.37
246.04 | 77 | 329
329 | 7526580
7526580 | 3513451
3513451 | 273
273 | 100
100 | | 600
700 | | | 16600
22400 | 4984
5518 | 800
800 | | | | | 253695 | M374177R329 | 245.57 | 246.04 | 77 | 329 | 7526580 | 3513451 | 273 | 100 | | 300 | | | 27100 | 9790 | 1600 | ···· | | | | 252729 | M374177R330 | | 3.8 | 77 | 330 | 7526100 | 3513691 | 268 | | 579000 | | | | | 25810 | | | | 65200 | | | M374177R330 | 1.5
3.8 | 5.8 | 77 | 330 | 7526100 | 3513691 | 268 | | 594000 | | ···· | ····· | † | 24742 | | | | 55300 | | | M374177R330 | 5.8
7.8 | 7.8 | 77 | 330 | 7526100 | 3513691 | 268 | | 554000 | | | <u> </u> | T | 24564 | [| <u> </u> | <u> </u> | 54800 | | | M374177R330 | | 11.3 | 77 | 330 | 7526100 | 3513691 | 268 | | 583000 | | ļ | ļ | | 26166 | | ļ | ļ | 56700 | | 252733 | M374177R330 | 11.3 | 12.35 | 77 | 330 | 7526100 | 3513691 | 268 | | 590000 | | ļ | | ļ | 25276 | | ļ | | 56500 | | 252734
252735 | M374177R330
M374177R330 | 12.35 | 13.1
14.1 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | | 560000 | | ļ | | | 24030
4094 | ļ | | ļ | 58900
20000 | | 252735
252736 | M374177R330
M374177R330 | 13.1
14.1 | 14.1
15.4 | | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | | 86200 | | | | | 4094
1780 | | | | 9000 | | 252737 | M374177R330 | 15.4 | 17.3 | 77
77 | 330 | 7526100 | 3513691 | 268 | | 603000 | ····· | ····· | | | 24386 | | ····· | }····· | 58000 | | | M374177R330 | 15.4
17.3 | 17.95 | 77 | 330 | 7526100 | 3513691 | 268 | 59 | | 23 | 15 | | † | † | 23 | † | | , | | 252738 | M374177R330 | 17.95 | 19.6 | 77 | 330 | 7526100 | 3513691 | 268 | | 586000 | <u> </u> | <u> </u> | | 1 | 19936 | | l | [| 55100 | | 252739 | M374177R330 | 19.6 | 20.05 | 77 | 330 | 7526100 | 3513691 | 268 | | | | l | | | 1958 | | | [| 11000 | | 252740 | M374177R330 | 20.05 | 20.8 | 77 | 330 | 7526100 | 3513691 | 268 | | 538000 | | | | | 22428 | | | | 54000 | | 252741
252742 | M374177R330 | 20.8 | 21.35 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | | | | | | | 3026 | | | | 15000 | | | M374177R330 | 21.35 | 21.9 | | 330 | 7526100 | 3513691 | | | 537000 | | | | 4 | 21360 | | | | 52900 | | 252743
252744 | M374177R330
M374177R330 | 21.9 | 24
27 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | | 447000
487000 | | | | | 18334
20114 | | | | 45400
51800 | | | M374177R330
M374177R330 | 24
27 | 27
30 | 77 | 330 | 7526100 | 3513691 | 268
268 | | 591000 | | | | | 24920 | | ····· | ····· | 55600 | | 252746 | M374177R330 | 30 | 33.55 | 77 | 330 | 7526100 | 3513691 | 268 | | 557000 | | | } | † | 23496 | †
| | | 49900 | | 252747 | M374177R330 | 30
33.55 | 33.55
34.4 | 77
77 | 330 | 7526100 | 3513691 | 268
268 | | | † • · · · • · · · · · · · · · · · · · · | <u> </u> | | | 23496
2848 | | ······ | ····· | 17000 | | ~~~~~~ | M374177R330 | 34.4 | 35.35 | 77 | | 7526100 | 3513691 | | | 624000 | | | | † | 18868 | | | | 67600 | | 252749 | M374177R330 | 34.4
35.35 | 36.25 | 77 | 330
330 | 7526100 | 3513691 | 268
268 | | 660000 | | | | | 33464 | Ī | | | 44100 | | 252750 | M374177R330 | 36.25 | 38.75 | 77 | 330 | 7526100 | 3513691 | 268 | | 643000 | I | 1 | l | | 23318 | | [| [· · · · · · · · · · · · · · · · · · · | 52800 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|------------------|-----------|-------------------|---|----------|---------|--------------|--------------|----------------|--------------|---|--------------| | | M374177R330 | 38.75 | 39.2 | 77 | 330 | 7526100 | 3513691 | 268 | | | | | | | 2848 | | | | 12000 | | 252752 | M374177R330 | 39.2
40.7 | 40.7 | 77
77 | 330 | 7526100 | 3513691 | 268 | | 612000 | | | | | 22072 | | | | 52200 | | | M374177R330 | | 42.05 | haaraan aan aan aan ah | 330 | 7526100 | 3513691 | 268 | | 608000 | | | | | 23496 | | | | 57000 | | 252048
253783 | M374177R330
M374177R330 | 42.05
43.2 | 43.2
43.7 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 30 | 350000 | 26 | 16 | | | 4628 | 26 | | | 8500 | | 253783 | M374177R330 | 43.7 | 44.2 | 77
77 | 330 | 7526100 | 3513691 | 268 | 65 | | 26
24 | 15 | | | | 26
22 | | | · | | 253785 | M374177R330 | 44.2 | 44.7 | 77 | 330 | 7526100 | 3513691 | 268 | 45 | | 30 | 19 | | | | 25 | | † | | | 253786 | M374177R330 | 44.7 | 45.2 | 77 | 330 | 7526100 | 3513691 | 268 | 61 | | 23 | 15 | | | | 18 | | | | | 253786
253787 | M374177R330 | 45.2
45.7 | 45.2
45.7 | 77
77
77 | 330
330 | 7526100 | 3513691
3513691 | 268 | 112 | | 21
20 | 18 | | 1 | | 18 | | T | | | 253788 | M374177R330 | 45.7 | 46.2 | | 330 | 7526100 | 3513691 | 268 | 112
31 | | | 18 | | | | 19 | | | | | | M374177R330 | 46.2 | 46.7 | 77 | 330 | 7526100 | 3513691 | 268 | 30 | | 17 | 16 | | | | 16 | | | ļ | | | M374177R330 | 46.7 | 47.2 | 77 | 330 | 7526100 | 3513691 | 268 | 48 | | 18 | 14 | | | | 13 | | ł | ļ | | 253791
253792 | M374177R330
M374177R330 | 47.2
47.7 | 47.7
48.2 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 360
79 | | 32
21 | 24
17 | | | | 25
16 | | ····· | | | ~~~~~ | M374177R330 | | 48.7 | | | 7526100 | 3513691 | | ~~~~~~~ | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 13 | | | | | | | | | | M374177R330 | 48.2
48.7 | 49.2 | 77
77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 43
67 | | 17
26 | 22 | | † | | 13
25
17 | | † | † | | | M374177R330 | 49.2 | 49.7 | 77 | 330 | 7526100 | 3513691 | 268 | 67 | | 26
22 | 18 | | | | 17 | | | ······ | | | M374177R330 | 49.7 | 50.2 | 77 | 330 | 7526100 | 3513691 | 268 | 48 | | 15 | 14 | | I | | 13 | | <u> </u> | <u> </u> | | 253797 | M374177R330 | 50.2
50.7 | 50.7 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 18 | 13 | | | | 17 | | ļ | ļ | | 253798 | M374177R330 | 50.7 | 51.2 | 77 | 330 | 7526100 | 3513691 | 268 | 30 | | 16 | 19 | | | | 15 | | | | | 253799 | M374177R330 | 51.2 | 51.7 | 77 | 330 | 7526100 | 3513691 | 268 | 22 | | 15 | 11 | | | | 11 | | ļ | ļ | | 253800
253801 | M374177R330 | 51.7
52.2 | 52.2
52.7 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268 | 16 | | 16 | 13 | | | | 13
17 | ļ | | | | | M374177R330
M374177R330 | 52.7
52.7 | 52.7 | | 330 | 7526100 | 3513691 | 268
268 | 16
11 | | 21
16 | 14
13 | | | | 13 | | ł | | | 253802 | M374177R330 | 53.2 | 53.2
53.7 | 77
77 | 330 | 7526100 | 3513691 | 268 | 27 | | 16
14 | 12 | | | | 14 | | • · · · · · · · · · · · · · · · · · · · | · | | 253804 | M374177R330 | 53.7 | 54.2 | 77 | 330 | 7526100 | 3513691 | 268 | 20 | | 14 | 9 | ~~~~~ | † | | 10 | | † ~~~~~~ | | | | M374177R330 | 54.2 | 54.7 | 77 | 330 | 7526100 | 3513691 | 268 | 40 | | 14 | 10 | | † | | 11 | | 1 | 1 | | 253806 | M374177R330 | 54.7 | 55.2 | 77 | 330 | 7526100 | 3513691 | 268 | 54 | | 18 | 10 | | | | 9 | | | | | 253807 | M374177R330 | 55.2 | 55.7 | 77 | 330 | 7526100 | 3513691 | 268 | 32 | | 18 | 10 | | | | 13 | | | | | 253808 | M374177R330 | 55.7
56.2 | 56.2 | 77 | 330 | 7526100 | 3513691 | 268 | 23 | | 37 | 17 | | | | 21 | | | ļ | | | M374177R330 | | 56.7 | 77 | 330 | 7526100 | 3513691 | 268 | 24 | | 33 | 16 | | ļ | | 19 | | | ļ | | 253810
253811 | M374177R330
M374177R330 | 56.7 | 57.2
57.7 | 77 | 330
330 | 7526100
7526100 | 3513691 | 268 | 13
20 | | 32
26 | 17
13 | | | | 20
18 | | | | | | M374177R330 | 57.2
57.7 | 58.2 | 77
77 | 330 | 7526100 | 3513691
3513691 | 268
268 | 49 | | 26 | 17 | | | | 18 | } | ····· | · | | | M374177R330 | 58.2 | 58.7 | 77 | 330 | 7526100 | 3513691 | 268 | 41 | | 21 | 9 | | | | 14 | | | | | | M374177R330 | 58.7 | 59.2 | 77 | 330 | 7526100 | 3513691 | 268 | 29 | | 29 | 16 | | | | 21 | | † | ····· | | | M374177R330 | 59.2
59.7 | 59.7 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 57
33 | | 28 | 16 | | | | 21
15 | | 1 | <u> </u> | | 253816 | M374177R330 | 59.7 | 60.2 | 77 | 330 | 7526100 | 3513691 | 268 | 33 | | 21 | 11 | | | I | 15 | | | | | | M374177R330 | 60.2 | 60.7 | 77 | 330 | 7526100 | 3513691 | 268 | 53 | | 19 | 10 | | ļ | | 14 | | | | | 253818 | M374177R330 | 60.7 | 61.2 | 77 | 330 | 7526100 | 3513691 | 268 | 29 | | 18 | 8 | | 4 | | 13 | | ļ | ļ | | | M374177R330 | 61.2 | 61.7 | 77 | 330 | 7526100 | 3513691 | 268 | 33 | | 19 | 9 | | | | 14 | ļ | | | | 253820
253821 | M374177R330
M374177R330 | 61.7 | 62.2
62.7 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268 | 17
46 | | 23 | 11
11 | | | | 16
15 | | | | | | M374177R330 | 62.2
62.7 | 63.2 | 77
77 | 330 | 7526100 | 3513691 | 268
268 | 46
41 | | 29
38 | 17 | | | | 15
20 | | <u> </u> | ł | | | M374177R330 | 63.2 | 63.7 | 77 | 330 | 7526100 | 3513691 | 268 | 119 | | 52 | 19 | | | | 22 | | † | † | | 253824 | M374177R330 | 63.7 | 64.2 | 77 | 330 | 7526100 | 3513691 | 268 | 35 | | 69 | 24 | | | | 33 | <u> </u> | İ | <u> </u> | | 253825 | M374177R330 | 64.2 | 64.7 | 77 | 330 | 7526100 | 3513691 | 268 | 61 | | 48 | 18 | | <u> </u> | | 32 | [| | | | 169622 | M374177R330 | 64.7 | 65.2 | 77
77 | 330 | 7526100 | 3513691 | 268 | 43 | | 26.3 | 14 | | <u> </u> | ļ | 17 | ļ | ļ | ļ | | 253826 | M374177R330 | 65.2 | 65.7 | 77 | 330 | 7526100 | 3513691 | 268 | 54 | | 34 | 14 | | | | 17 | | | ļ | | | M374177R330 | 65.7 | 66.2 | 77 | 330 | 7526100 | 3513691 | 268 | 557 | | 29.4 | 16 | | | | 19 | | | | | 253827
169624 | M374177R330
M374177R330 | 66.2
66.7 | 66.7
67.2 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 85
146 | | 39
30 | 18
15 | | | | 21
17 | | | | | | M374177R330 | 67.2 | 67.5 | 77 | 330 | 7526100 | 3513691 | 268 | 76 | | 39 | 17 | | | | 18 | | † | | | 252759 | M374177R330 | 67.5 | 68.9 | 77 | 330 | 7526100 | 3513691 | 268 | i | 583000 | | ·····ā | ····· | † | 25632 | ······· | | † | 44400 | | | M374177R330 | 67.5
68.9 | 70.7 | 77 | 330 | 7526100 | 3513691 | 268 | | 591000 | | | | 1 | 29014 | | l | 1 | 41500 | | 252761 | M374177R330 | 70.7
73 | 73 | 77
77 | 330 | 7526100 | 3513691 | 268 | | 567000 | | | | | 21894 | | | | 39300 | | 252762 | M374177R330 | | 73.95 | | 330 | 7526100 | 3513691 | 268 | | 559000 | | | | | 25632 | | | | 45500 | | 252763 | M374177R330 | 73.95
74.95 | 74.95
75.45 | 77
77 | 330 | 7526100 | 3513691 | 268 | | 617000 | | | | | 18156 | | ļ | | 57400 | | 252764 | M374177R330 | 74.95
75.9 | | 77
77 | 330 | 7526100 | 3513691 | 268 | | | | | | | 2314 | | | ļ | 10000 | | | M374177R330 | | 76.4 | | 330 | 7526100 | 3513691 | 268 | 48 | | 26 | 14 | ļ | ļ | ļ | 14 | ļ | ļ | ļ | | | M374177R330
M374177R330 | 76.4
76.9 | 76.9
77.4 | 77
77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268 | 64 | | 28 | 14 | | | | 16 | | | ֈ | | 253832 | | 70.9 | 11.4 | 11 | 330 | /320100 | 2212021 | 268 | 88 | | 33 | 18 | 1 | 1 | | 18 | 1 | 1 | 1 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone
3) | ELEVATION (m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|---------------|------------|-------------------|----------------------|----------|---------|------------|------------|----------|----------|---|----------| | 253834 | M374177R330 | 77.9 | 78.4 | 77 | 330 | 7526100 | 3513691 | 268 | 46 | | 42 | 20 | | | | 22 | | | | | 253835 | M374177R330 | 78.4 | 78.9
79.4 | 77
77 | 330
330 | 7526100 | 3513691 | 268 | 54 | | 39
26 | 17 | | | | 19 | | | | | 253836
253837 | M374177R330
M374177R330 | 78.9 | 79.4
79.9 | | 330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 43 | | harana anima ana ani | 11
16 | | | | 8 | | | ļ | | 253837 | M374177R330 | 79.4
79.9 | 80.4 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | 33
56 | | 31
34 | 17 | | | | 13
14 | | | ····· | | 253839 | M374177R330 | 80.4 | 80.9 | 77 | 330 | 7526100 | 3513691 | 268 | 30 | | 34 | 15 | | | | 13 | | | | | 253840 | M374177R330 | 80.9 | 81.4 | 77 | 330 | 7526100 | 3513691 | 268 | 181 | | 64 | 36 | | | | 41 | | | | | 253841
253842 | M374177R330 | 81.4 | 81.9
82.4 | 77
77
77 | 330
330 | 7526100 | 3513691
3513691 | 268
268 | 29
25 | | 39
29
34 | 15 | | | | 15 | | | | | 253842
253843 | M374177R330
M374177R330 | 81.9
82.4 | 82.4
82.9 | - // | 330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 25
48 | | 29 | 14
28 | | | | 14
29 | | | ļ | | 253844 | M374177R330 | 82.9 | 83.4 | 77 | 330 | 7526100 | 3513691 | 268 | | | 59 | 109 | | | | 84 | | | | | 253845 | M374177R330 | 83.4 | 83.9 | 77 | 330 | 7526100 | 3513691 | 268 | 78
26 | | 59
26 | 12 | | | | 84
13 | | | | | 253846 | M374177R330 | 83.9 | 84.4 | 77
77 | 330 | 7526100 | 3513691 | 268 | 21 | | 48 | 23 | | | | 27 | | | | | 253847 | M374177R330 | 84.4 | 84.9 | | 330 | 7526100 | 3513691 | 268 | 54 | | 36 | 13 | | | | 16 | | | | | 253848
253849 | M374177R330
M374177R330 | 84.9
85.4
86.2 | 85.4
86.2 | 77
77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 36
38 | | 26
39 | 11 | | | | 13 | | | ļ | | | M374177R330 | 86.2 | 87.05 | 77 | 330 | 7526100 | 3513691 | 268 | 30 | 111000 | 39 | 14 | | | 3560 | 18 | | • | 12000 | | 253850 | M374177R330 | 87.05 | 87.55 | 77 | 330 | 7526100 | 3513691 | 268 | 36 | | 41 | 12 | | | | 15 | | | | | 169625 | M374177R330 | 87.55 | 88.05 | 77 | 330 | 7526100 | 3513691 | 268 | 56 | | 44.4 | 15 | | | | 15
15 | | | | | 253851 | M374177R330 | 88.05 | 88.55 | 77 | 330 | 7526100 | 3513691 | 268 | 85 | | 48 | 15 | | | | 15 | | | | | 253852 | M374177R330 | 88.55 | 89.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 97 | | 64 | 18 | | | | 21 | | | | | 253853
253854 | M374177R330
M374177R330 | 89.05
89.55 | 89.55
90.05 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 138
117 | | 116
128 | 34
34 | | | | 52
54 | | | ļ | | 253855 | M374177R330 | 90.05 | 90.55 | 77 | 330 | 7526100 | 3513691 | 268 | 40 | | 53 | 19 | | | | 54
21 | | | | | 253856 | M374177R330 | 90.55 | 91.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 51 | | 40 | 14 | | | | 15 | | | | | 253857 | M374177R330 | 91.05 | 91.55 | 77 | 330 | 7526100 | 3513691 | 268 | 17 | | 27 | 10 | | | | 15 | | | | | 253858 | M374177R330 | 91.55 | 92.05 | 77 | 330 | 7526100 | 3513691 | 268 | 55 | | 25 | 10 | | | | 16 | | | ļ | | 253859
253860 | M374177R330
M374177R330 | 92.05 | 92.55 | 77 | 330 | 7526100
7526100 | 3513691 | 268 | 34 | | 22 | 10 | | | | 13 | | | ļ | | 253860 | M374177R330 | 92.55
93.05 | 93.05
93.55 | 77
77 | 330
330 | 7526100 | 3513691
3513691 | 268
268 | 40
66 | | 34 | 18
20 | | | | 17
15 | | | ļ | | 253862 | M374177R330 | 93.55 | 94.05 | 77 | 330 | 7526100 | 3513691 | 268 | 171 | | 39
49 | 22 | | | | 18 | | | ····· | | 253863 | M374177R330 | 94.05 | 94.55 | 77 | 330 | 7526100 | 3513691 | 268 | 68 | | 49 | 21 | | | | 21 | | | | | 253864 | M374177R330 | 94.55 | 95.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 2390 | | 50 | 15 | | | | 36 | | | | | 253865 | M374177R330 | 95.05 | 95.55 | | 330 | 7526100 | 3513691 | 268 | 52 | | 31 | 11 | | | | 13 | | | | | 253866
253867 | M374177R330
M374177R330 | 95.55
96.05 | 96.05
96.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 58
274 | | 39
64 | 13
26 | | | | 14
27 | | | ļ | | 253868 | M374177R330 | 96.55 | 97.05 | | | 7526100 | 3513691 | | ~~~~~~~~ | | | | | | | | | | | | 253869 | M374177R330 | 97.05 | 97.55 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 61
27 | | 32
52 | 12
19 | | | | 13
24 | | | | | 253870 | M374177R330 | 97.55 | 98.05 | 77 | 330 | 7526100 | 3513691 | 268 | 76 | | 31 | 9 | | | | 12 | | | | | 253871 | M374177R330 | 98.05 | 98.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 26 | | 38
27 | 15 | | | | 21 | | | | | 253872
253873 | M374177R330
M374177R330 | 98.55
99.05 | 99.05
99.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 38
19 | | 22 | 12
10 | | | | 16
13 | | | ļ | | 253873 | M374177R330 | 99.55 | 100.05 | | 330 | 7526100 | 3513691 | 268 | 32 | | 23 | 9 | | | | | | | ····· | | 253875 | M374177R330 | 100.05 | 100.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 37 | | 20 | 11 | | | | 14
13 | | | 1 | | 253876 | M374177R330 | 100.55 | 101.05 | 77 | 330 | 7526100 | 3513691 | 268 | 36 | | 23 | 10 | | | | 14 | | | | | 169626 | M374177R330 | 101.05 | 101.55 | 77 | 330 | 7526100 | 3513691 | 268 | 34 | | 19.5 | 9 | | | | 16 | | | ļ | | 253877
253878 | M374177R330
M374177R330 | 101.55
102.05 | 102.05
102.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 32
35 | | 20 | 8 | | | | 13 | | | ļ | | 253878 | M374177R330 | 102.05 | 102.55 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | 33 | | 22
24 | 10 | | | | 16
17 | | | <u> </u> | | 253880 | M374177R330 | 103.05 | 103.55 | 77 | 330 | 7526100 | 3513691 | 268 | 32 | | 23 | 7 | | | | 16 | | | <u> </u> | | 253881 | M374177R330 | 103.55 | 104.05 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 30
42 | | 23
24 | 8
12 | •••• | | | 14
13 | | | | | 253882 | M374177R330 | 104.05 | 104.55 | | | 7526100 | 3513691 | | | | | ~~~~~~~~ | | | | | ļ | | ļ | | 253883 | M374177R330 | 104.55
105.05 | 105.05
105.55 | 77 | 330 | 7526100 | 3513691 | 268 | 47 | | 24 | 9 | | | | 15
13 | | | ļ | | 253884
253885 | M374177R330
M374177R330 | 105.05
105.55 | 105.55
106.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 33
29 | | 23
23 | 9
13 | | | | 13
17 | | | | | 253886 | M374177R330 | 106.05 | 106.55 | 77 | 330 | 7526100 | 3513691 | 268 | 57 | | | 13
9 | | | | 14 | | | ł | | 253887 | M374177R330 | 106.55 | 107.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 36 | | 22
25 | 8 | •••••• | | ••••• | 12 | | | | | 253888 | M374177R330 | 107.05
107.55 | 107.55 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 48
50 | | 40
27 | 20 | | | | 28 | | | | | 253889 | M374177R330 | | 108.05 | 77 | | 7526100 | 3513691 | | | | | 11 | | | | 16 | | | | | 253890 | M374177R330 | 108.05 | 108.55 | 77 | 330 | 7526100 | 3513691 | 268 | 31 | | 24 | 9 | | | | 13 | | | ļ | | 253891
253892 | M374177R330
M374177R330 | 108.55 | 109.05
109.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 36
37 | | 26
24 | 10
8 | | | | 12
16 | | | ļ | | 233692 | IVID/41//K33U | 109.05
109.55 | 110.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691 | 268
268 | 37
35 | | 24
25 | 8 | | | | 16
17 | | | | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION (m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|---------------|----------------|-------------------|----------------|---------------|---|---|--------------|-----------------|--------------|---------|--------------| | 253894 | M374177R330 | 110.05 | 110.55 | 77 | 330 | 7526100 | 3513691 | 268 | 49 | | 35 | 14 | | | | 23 | | | | | 253895 | M374177R330 | 110.55 | 111.05 | 77 | 330 | 7526100 | 3513691 | 268 | 159 | | 29
27 | 14 | | | | 20 | | | ., | | 253896
253897 | M374177R330
M374177R330 | 111.05
111.55 | 111.55
112.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 99
21 | | | 14
12 | | | | 28 | | | <u> </u> | | 253898 | M374177R330 | 112.05 | 112.55 | 77 | 330 | 7526100 | 3513691 | 268 | 31 | | 28
28 | 10 | | | | 28
17 | | | | | 253899 | M374177R330 | 112.55 | 113.05 | 77 | 330 | 7526100 | 3513691 | 268 | 45 | | 29 | 24 | | | | 20 | | | | | 253900 | M374177R330 | 113.05 | 113.55 | 77 | 330 | 7526100 | 3513691 | 268 | 31 | | 23 | 13 | | | | 13 | | | | | 253901 | M374177R330 | 113.55 | 114.05 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 39
37 | | 25
22 | 11 | | | | 18
14 | | | | | 253902 |
M374177R330
M374177R330 | 114.05
114.55 | 114.55 | 77
77 | | 7526100 | 3513691 | | | | 22 | 9 | | | | 14 | | | <u> </u> | | | M374177R330
M374177R330 | 114.55 | 115.05
115.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 38
45 | | 21
24 | 10
10 | | | | 18
15 | • | | | | | M374177R330 | 115.55 | 116.05 | 77 | 330 | 7526100 | 3513691 | 268 | 32 | | 24
25 | 11 | | | | 22 | | | · | | 253906 | M374177R330 | 116.05 | 116.55 | 77
77
77 | 330 | 7526100 | 3513691 | 268
268 | 33
32 | | 27
23 | 13 | | | 1 | 20 | | |] | | 253907 | M374177R330 | 116.55 | 117.05 | | 330 | 7526100 | 3513691 | | | | | 11 | | | | 13 | | | | | 253908 | M374177R330 | 117.05
117.55 | 117.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 30
38
47 | | 25
25
30 | 8 | | | | 14
15 | | | | | | M374177R330
M374177R330 | 117.55 | 118.05
118.55 | 77 | 330 | 7526100 | 3513691 | 268 | 38
47 | | 30 | 11
19 | | | | 15
16 | | | · | | | M374177R330 | 118.55 | 119.05 | 77 | 330 | 7526100 | 3513691 | 268 | | | 37 | 16 | | • | | 23 | † | | | | | M374177R330 | 119.05 | 119.55 | 77 | 330 | 7526100 | 3513691 | 268 | 52
36 | | 26 | 11 | | | † | 23
15 | 1 | | 1 | | | M374177R330 | 119.55 | 120.05 | 77 | 330 | 7526100 | 3513691 | 268 | 38 | | 33 | 17 | | | ļ | 19 | | | | | | M374177R330 | 120.05 | 120.55 | 77 | 330 | 7526100 | 3513691 | 268 | 143 | | 29 | 14 | | | | 21 | | | | | 253915
253916 | M374177R330
M374177R330 | 120.55
121.05 | 121.05
121.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 62
31 | | 25
21 | 12
11 | | | | 18
13 | | | | | | M374177R330 | 121.55 | 122.05 | 77 | 330 | 7526100 | 3513691 | 268 | 32 | | 22 | 16 | | | | | | | | | | M374177R330 | 122.05 | 122.55 | 77
77
77
77 | 330 | 7526100 | 3513691 | 268 | 59 | | 26 | 13 | | | | 14
17 | | | · | | | M374177R330 | 122.55 | 123.05 | 77 | 330 | 7526100 | 3513691 | 268 | 59
30 | | 20 | 10 | *************************************** | *************************************** | | 12 | · | | | | | M374177R330 | 123.05 | 123.55 | | 330 | 7526100 | 3513691 | 268 | 29 | | 21 | 12 | | | | 14 | | | | | 253921 | M374177R330 | 123.55 | 124.05 | 77 | 330 | 7526100 | 3513691 | 268 | 31 | | 19 | 15 | | | ļ | 12 | | | | | 253922
253923 | M374177R330
M374177R330 | 124.05
124.55 | 124.55
125.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 35
33 | | 20
18 | 9 | | | | 14
13 | | | | | 253923 | M374177R330 | 125.05 | 125.55 | 77 | 330 | 7526100 | 3513691 | 268 | 32 | | 20 | 8
11 | | | | 14 | | | } | | 253925 | M374177R330 | 125.55 | 126.05 | 77 | 330 | 7526100 | 3513691 | 268 | 35 | | 22 | 10 | | | | 14 | | | | | 253926 | M374177R330 | 126.05 | 126.55 | 77 | 330 | 7526100 | 3513691 | 268 | 33 | | 19 | 14 | | | | 13 | | | | | 253927 | M374177R330 | 126.55 | 127.05 | 77 | 330 | 7526100 | 3513691 | 268 | 40 | | 19 | 17 | | | | 13 | | | ļ | | 253928 | M374177R330
M374177R330 | 127.05 | 127.55
128.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 38
32 | | 18
20 | 5 | | | ļ | 12
13 | | | | | 253929
253930 | M374177R330 | 127.55
128.05 | 128.55 | | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | | | | 6
7 | | | | | | | ł | | | M374177R330 | 128.55 | 129.05 | 77
77 | 330 | 7526100 | 3513691 | 268
268 | 35
34 | | 22
22 | 10 | ••••• | •••••• | † | 13
13 | | | ····· | | 253932 | M374177R330 | 129.05 | 129.55 | 77 | 330 | 7526100 | 3513691 | 268 | 153 | | 26 | 11 | | | † | 17 | | | | | 253933 | M374177R330 | 129.55 | 130.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 97
118 | | 36
47 | 20 | | | | 16
22 | | | | | 253934 | M374177R330 | 130.05 | 130.55 | | 330 | 7526100 | 3513691 | 268 | | | | 16 | | | | 22 | | | ., | | 253935 | M374177R330
M374177R330 | 130.55 | 131.05
131.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 43 | | 27
21 | 11
7 | | | | 15 | | | | | 253936
253937 | M374177R330 | 131.05
131.55 | 132.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 34
35 | | | 8 | | | | 15
17 | | | | | 253938 | M374177R330 | 132.05 | 132.55 | 77 | 330 | 7526100 | 3513691 | 268 | 35 | | 23
27 | 8 | | | | 17 | | | | | 253939 | M374177R330 | 132.55 | 133.05 | 77 | 330 | 7526100 | 3513691 | 268 | 73 | | 24 | 8 | *************************************** | | | 16 | | | | | 253940 | M374177R330 | 133.05 | 133.55 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | 73
35 | | 24
23
21 | 6 | | | | 14 | | | | | | M374177R330 | 133.55 | 134.05 | 77 | 330 | 7526100 | 3513691 | 268 | 44 | | 21 | 7 | | | | 11 | | | ļ | | 253942
253943 | M374177R330
M374177R330 | 134.05
134.55 | 134.55
135.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 117
41 | | 25
23 | 6
7 | | | | 16
16 | | | <u> </u> | | 253943 | M374177R330 | 135.05 | 135.55 | 77 | 330 | 7526100 | 3513691 | | 34 | | | 8 | | | † | 15 | | ļ | <u> </u> | | 253945 | M374177R330 | 135.55 | 136.05 | 77 | 330 | 7526100 | 3513691 | 268
268 | 32 | | 24
20 | 5 | | | | 16 | 1 | | 1 | | 253946 | M374177R330 | 136.05 | 136.55 | 77 | 330 | 7526100 | 3513691 | 268 | 30 | | 17 | 6 | ****************************** | | | 17 | | | | | 253947 | M374177R330 | 136.55 | 137.05 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | 54 | | 18 | 8 | | | ļ | 19
17
19 | ļ | | ļ | | 253948
253949 | M374177R330
M374177R330 | 137.05
137.55 | 137.55
138.05 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 31
37 | | 18
19 | 7
6 | | | | 17 | ļ | ļ | ∤ | | 253949
253950 | M374177R330
M374177R330 | 137.55
138.05 | 138.05
138.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 37
34 | | 19
17 | 6 | | | | 19
16 | | | ∤ | | 253950 | M374177R330 | 138 55 | 139.05 | | 330 | 7526100 | 3513691 | 268 | 37 | ļ | 19 | 7 | L | | | 18 | | | | | 253952 | M374177R330 | 139.05 | 139.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 35
33 | | 18 | <u>′</u>
8 | | | | 17 | 1 | h | | | 253953 | M374177R330 | 139.55 | 140.05 | 77 | 330 | 7526100 | 3513691 | 268 | | | 17 | 4 | | | | 18 | | | <u> </u> | | 253954 | M374177R330 | 140.05 | 140.55 | 77 | 330 | 7526100 | 3513691 | 268 | 34
52 | | 19 | 9 | | | ļ | 19 | ļ | | ļ | | | M374177R330 | 140.55 | 141.05 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | | | 17 | 4 | | | | 16
32 | | | ļ | | 253956 | M374177R330 | 141.05 | 141.55 | l | 330 | 7526100 | 3513691 | 268 | 746 | l | 25 | 19 | | L | J | l ³² | | L | Ll | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION (m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|---------------|----------|-------------------|----------|----------|---------|--------------|--------------|----------------------|----------|----------|--------------| | 253957 | M374177R330 | 141.55 | 142.05 | 77 | 330 | 7526100 | 3513691 | 268 | 38 | | 20 | 9 | | | | 16 | | | | | 253958 | M374177R330 | 142.05 | 142.55 | 77 | 330 | 7526100 | 3513691 | 268 | 36 | | 20 | 11 | | | | 18 | | | ļ I | | 253959
253960 | M374177R330
M374177R330 | 142.55
143.05 | 143.05
143.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268 | 40
47 | | 21 | 11 | | | | 17 | | | ļ | | 253960 | M374177R330 | 143.55 | 144.05 | 77
77
77 | 330 | 7526100 | 3513691 | 268
268 | 37 | | 21
19 | 12
11 | | | | 20
18 | | | { | | 253962 | M374177R330 | 144.05 | 144.55 | 77 | 330 | 7526100 | 3513691 | 268 | 38 | | 21 | 10 | | | | 18 | | | ····· | | 253963 | M374177R330 | 144.55 | 145.05 | 77 | 330 | 7526100 | 3513691 | 268 | 40 | | 19 | 10 | | | | 19 | | | | | 253964
253965 | M374177R330 | 145.05
145.55 | 145.55 | 77
77 | 330 | 7526100 | 3513691 | 268
268 | 38
37 | | 20 | 11
10 | | | | 16
16 | | | | | 253965
253966 | M374177R330
M374177R330 | 145.55
146.05 | 146.05
146.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 37
37 | | 18
19 | 10 | | | | 16
17 | | | | | 253967 | M374177R330 | 146.55 | 147.05 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 16 | 13 | | | | 15 | | | h | | 253968 | M374177R330 | 147.05 | 147.55 | 77 | 330 | 7526100 | 3513691 | 268 | 34 | | 18 | 10 | | | | 15 | | | | | 253969 | M374177R330 | 147.55 | 148.05 | 77
77 | 330 | 7526100 | 3513691 | 268
268 | 37
33 | | 18
19 | 8 | | | | 16
17 | | | | | 253970
253971 | M374177R330
M374177R330 | 148.05 | 148.55 | | 330 | 7526100
7526100 | 3513691
3513691 | | | | | 11 | | | | | | | ļ | | 253971 | M374177R330 | 148.55
149.05 | 149.05
149.55 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 35
33 | | 19
18 | 9
9 | | | | 15
18 | | | [······ | | 253973 | M374177R330 |
149.55 | 150.05 | 77 | 330 | 7526100 | 3513691 | 268 | 34 | | 18 | 10 | | | | | | | <u> </u> | | 253974 | M374177R330 | 150.05 | 150.55 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 19 | 7 | | Ţ | Ţ | 16
17 | | | [] | | 253975 | M374177R330 | 150.55 | 151.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 43 | | 18 | 8 | | | | 18 | | | | | 253976
253977 | M374177R330
M374177R330 | 151.05
151.55 | 151.55
152.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 41
36 | | 18
18 | 8
6 | | | | 16
14 | | | | | 253978 | M374177R330 | | 152.55 | | 330 | 7526100 | 3513691 | 268 | 30 | | 19 | 8 | | | | | | | [] | | 253979 | M374177R330 | 152.05
152.55 | 153.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 32 | | 20 | 7 | | | | 15 | | |] | | 253980 | M374177R330 | 153.05 | 153.55 | 77 | 330 | 7526100 | 3513691 | 268 | 40 | | 20 | 10 | | | | 17
15
13
15 | | | ļ I | | 253981
253982 | M374177R330
M374177R330 | 153.55 | 154.05
154.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 38 | | 20
23 | 8 | | | | 15
17 | | | { | | 253982 | M374177R330 | 154.05
154.55 | 155.05 | 77 | 330 | 7526100 | 3513691 | 268 | 37
43 | | 22 | 11 | | | | 18 | | | { | | 253984 | M374177R330 | 155.05 | 155.55 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 21 | 11 | | | | 15 | | | h | | 253985 | M374177R330 | 155.55 | 156.05 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 21 | 9 | | | | 17 | | | | | 253986 | M374177R330 | 156.05 | 156.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 38 | | 22 | 8 | | | | 17 | | | | | 253987
253988 | M374177R330
M374177R330 | 156.55
157.05 | 157.05
157.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 42
29 | | 22
23 | 12 | | | | 17
20 | | | { / | | 253989 | M374177R330 | 157.55 | 158.05 | 77 | 330 | 7526100 | 3513691 | 268 | 41 | | 19 | 7 | | | | 17 | | | } | | 253990 | M374177R330 | 158.05 | 158.55 | 77 | 330 | 7526100 | 3513691 | 268 | 43 | | 22 | 9 | | | | 18 | | | j | | 253991 | M374177R330 | 158.55 | 159.05 | 77 | 330 | 7526100 | 3513691 | 268 | 43 | | 19 | 8 | | | | 17 | | | | | 253992
253993 | M374177R330
M374177R330 | 159.05 | 159.55 | 77 | 330 | 7526100
7526100 | 3513691
3513691 | 268 | 40 | | 21 | 9 | | | ļ | 17 | | | ∤ / | | 253993 | M374177R330 | 159.55
160.05 | 160.05
160.55 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 42
36 | | 19
19 | 10
9 | | | | 13
15 | | | [] | | 253995 | M374177R330 | 160.55 | 161.05 | 77 | 330 | 7526100 | 3513691 | 268 | 39 | | 19 | 10 | | | | 18 | | | [| | 253996 | M374177R330 | 161.05 | 161.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 47 | | 22 | 11 | | | | 21 | | | | | 253997 | M374177R330 | 161.55 | 162.05 | | 330 | 7526100 | 3513691 | 268 | 42 | | 19 | 10 | | | | 21 | | | | | 253998
253999 | M374177R330
M374177R330 | 162.05
162.55 | 162.55
163.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 41
46 | | 19
21 | 12
11 | | | | 20
20 | | | { | | 254000 | M374177R330 | 163.05 | 163.55 | 77 | 330 | 7526100 | 3513691 | 268 | 35 | | 22 | 13 | | t | † | 20 | | | | | 254001 | M374177R330 | 163.55 | 164.05 | 77 | 330 | 7526100 | 3513691 | 268 | 39 | | 20 | 12 | | | | 20 | | | | | 254002 | M374177R330 | 164.05 | 164.55 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | 41 | | 20 | 11 | | ļ | ļ | 19 | | | ļ | | 254003
254004 | M374177R330
M374177R330 | 164.55
165.05 | 165.05
165.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 35
43 | | 19
19 | 11
11 | | ļ | ļ | 19
19 | | ļ | } | | 254005 | M374177R330 | 165.55 | 166.05 | 77 | 330 | 7526100 | 3513691 | 268 | 43 | | 23 | 12 | | † | † | 21 | | | [······ | | 254006 | M374177R330 | 166.05 | 166.55 | 77 | 330 | 7526100 | 3513691 | 268 | 44 | | 21 | 12 | | | | 20 | | | | | 254007 | M374177R330 | 166.55 | 167.05 | 77 | 330 | 7526100 | 3513691 | 268 | 46 | | 22 | 13 | | | | 25 | | | | | 254008
254009 | M374177R330
M374177R330 | 167.05
167.55 | 167.55
168.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 40
39 | ļ | 20
18 | 11
11 | | | ļ | 21
21 | | | ļ | | 254009
254010 | M374177R330
M374177R330 | 168.05 | 168.55 | 77 | 330 | 7526100
7526100 | 3513691 | 268
268 | 39
37 | | 18 | h | | | | 22 | | | h | | 254011 | M374177R330 | 168.55 | 169.05 | 77 | 330 | 7526100 | 3513691 | 268 | 37
40 | | 18 | 9
8 | | t | t | 22
17
17 | | [| | | 254012 | M374177R330 | 169.05 | 169.55 | 77 | 330 | 7526100 | 3513691 | 268 | | | 18 | 8 | | | | 17 | | | [| | 254013 | M374177R330 | 169.55 | 170.05 | 77 | 330 | 7526100 | 3513691 | 268 | 38 | ļ | 18 | 8 | ļ | ļ | ļ | 17 | ļ | ļ | ļ | | 254014
254015 | M374177R330
M374177R330 | 170.05
170.55 | 170.55
171.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 26
21 | | 17
17 | 6
8 | | | | 12
11 | | | } | | 254015 | M374177R330 | 171.05 | 171.55 | 77 | 330 | 7526100 | 3513691 | 268 | 21 | | 16 | 7 | | | | 12 | | | | | 254017 | M374177R330 | 171.55 | 172.05 | 77 | 330 | 7526100 | 3513691 | 268 | 30 | | 18 | 7 | | | | 13 | | | | | 254018 | M374177R330 | 172.05 | 172.55 | 77 | 330 | 7526100 | 3513691 | 268 | 33 | | 16 | 9 | | | | 20 | | | [| | 254019 | M374177R330 | 172.55 | 173.05 | 77 | 330 | 7526100 | 3513691 | 268 | 19 | L | 13 | l7 | L | J | J | 11 | l | L | لـــــا | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|----------------------------------|------------|-------------------------------|------------------------------|------------------|----------------------|-------------------|----------|---------------|--------------|--------------|--------------|----------------------|----------|---------|---| | 254020 | M374177R330 | 173.05 | 173.55 | 77 | 330 | 7526100 | 3513691 | 268 | 27 | | 16 | 9 | | | | 12 | | | | | 254021 | M374177R330 | 173.55 | 174.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 30
33 | | 17
17 | 6 | | | | 12
12 | | | ļ! | | 254022
254023 | M374177R330
M374177R330 | 174.05
174.55 | 174.55
175.05 | | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 33
36 | | | 8 | | | | 12
14 | | | ļ | | 254024 | M374177R330 | 175.05 | 175.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 36 | | 22
20 | 7 | | | | 16 | | | | | 254025 | M374177R330 | 175.55 | 176.05 | 77 | 330 | 7526100 | 3513691 | 268 | 40 | | 22 | 10 | | | | 14 | | | | | 254026 | M374177R330 | 176.05 | 176.55 | 77 | 330 | 7526100 | 3513691 | 268 | 41 | | 18 | 8 | | | | 13 | | | | | 254027 | M374177R330 | 176.55 | 177.05 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | 41 | | 20 | 8 | | | | 13 | | | ļ | | 254028
254029 | M374177R330
M374177R330 | 177.05
177.55 | 177.55
178.05 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 45
53 | | 24
21 | 13 | | | | 12
9 | | | | | 254023 | M374177R330 | 178.05 | 178.55 | | 330 | 7526100 | 3513691 | 268 | | | | 12 | | ······ | | ٥ | | | ļ | | 254031 | M374177R330 | 178.55 | 179.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 25
42 | | 21
20 | 9 | | | | 12 | | | | | 254032 | M374177R330 | 179.05 | 179.55 | 77 | 330 | 7526100 | 3513691 | 268 | 31 | | 24 | 15 | | | | 15 | | | , | | 254033 | M374177R330 | 179.55 | 180.05 | 77
 | 330 | 7526100 | 3513691 | 268 | 32 | | 21 | 12 | | | | 11 | | | ļ! | | 254034
254035 | M374177R330
M374177R330 | 180.05
180.55 | 180.55
181.05 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 36
41 | | 19
19 | 10
9 | | | | 11 | | | ļ | | 254036 | M374177R330 | 181.05 | 181.55 | 77 | 330 | 7526100 | 3513691 | 268 | 49 | | 20 | 10 | | | | 12
12
13
10 | | | } | | 254037 | M374177R330 | 181.55 | 182.05 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 19 | 10 | | | | 13 | | | 1 | | 254038 | M374177R330 | 182.05 | 182.55 | 77
77
77
77
77
77 | 330 | 7526100 | 3513691 | 268 | 49
37
35
39 | | 19
18 | 10 | | | | 10 | | | ļ [†] | | 254039 | M374177R330 | 182.55 | 183.05 | daaaaaaaaaaaaaaad | 330 | 7526100 | 3513691 | 268 | | | 21 | 9 | | | | 10 | | | ļ! | | 254040 | M374177R330 | 183.05 | 183.55 | 77 | 330 | 7526100 | 3513691 | 268 | 34 | | 21 | 11 | | | | 12 | | | ļ | | 254041
254042 | M374177R330
M374177R330 | 183.55
184.05 | 184.05
184.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 46
3 <i>4</i> | | 24
26 | 10
12 | | | | 15
18 | | | ∤ / | | 254043 | M374177R330 | 184.55 | 184.55
185.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 34
67 | | 20 | 13 | | | | 13 | | | | | 254045 | M374177R330 | 185.55 | 186.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 20 | | 20 | 10 | | | | 11 | | | | | 254046 | M374177R330 | 186.05 | 186.55 | 77
77 |
330 | 7526100 | 3513691 | 268 | 38 | | 21 | 11 | ************ | | | 12
11 | | | | | 254047 | M374177R330 | 186.55 | 187.05 | 77 | 330 | 7526100 | 3513691 | 268 | 21 | | 21 | 11 | | | | 11 | | | | | 254048 | M374177R330 | 187.05 | 187.55 | 77 | 330 | 7526100 | 3513691 | 268 | 29 | | 22 | 13 | | | | 12 | | | ļ | | 254049
254050 | M374177R330
M374177R330 | 187.55
188.05 | 188.05
188.55 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 34 | | 25
24 | 14
11 | | | | 15
14 | | | | | 254051 | M374177R330 | 188.55 | 189.05 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | 34
33
32 | | 20 | 14 | | | | 14 | | | } | | 254052 | M374177R330 | 189.05 | 189.55 | 77 | 330 | 7526100 | 3513691 | 268 | 44 | | 17 | 10 | | | | 15 | | | ļ | | 254053 | M374177R330 | 189.55 | 190.05 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 19 | 9 | | | | 14 | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 254054 | M374177R330 | 190.05 | 190.55 | 77 | 330 | 7526100 | 3513691 | 268 | 38
25 | | 21 | 12 | | | | 18 | | | | | 254055 | M374177R330 | 190.55 | 191.05 | 77 | 330 | 7526100 | 3513691 | 268 | | | 15 | 11 | | | | 14 | | | ļ | | 254056
254057 | M374177R330
M374177R330 | 191.05
191.55 | 191.55
192.05 | 77 | 330 | 7526100
7526100 | 3513691
3513691 | 268 | 20
107 | | 14
16 | 7 | | | | 13 | | | | | 254057 | M374177R330 | 192.05 | 192.55 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 31 | | 16
21 | 12
9 | | | | 10
13 | | | <u> </u> | | 254059 | M374177R330 | 192.55 | 193.05 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 19 | 11 | | | | 16 | | | <u> </u> | | 254060 | M374177R330 | 193.05 | 193.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 44
38 | | 20
19 | 11 | ************ | | | 13 | | | | | 254061 | M374177R330 | 193.55 | 194.05 | | 330 | 7526100 | 3513691 | 268 | | | | 9 | | | | 14
16 | | | ļ! | | 254062 | M374177R330 | 194.05 | 194.55 | 77 | 330 | 7526100 | 3513691 | 268 | 41 | | 21 | 11 | | | | | | | ļ | | 254063
254064 | M374177R330
M374177R330 | 194.55
195.05 | 195.05
195.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 32
39 | | 22
21 | 11
11 | | | | 15
17 | | | | | 254065 | M374177R330 | 195.55 | 196.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 56 | | 17 | 8 | | | | 14 | | | ļ | | 254066 | M374177R330 | 196.05 | 196.55 | 77 | 330 | 7526100 | 3513691 | 268 | 41 | | 14 | 8 | | | | 13 | | | ļ | | 254067 | M374177R330 | 196.55 | 197.05 | 77 | 330 | 7526100 | 3513691 | 268 | 30 | | 11
20 | 9 | | | | 13 | | | , | | 254068 | M374177R330 | 197.05 | 197.55 | 77
77
77 | 330 | 7526100 | 3513691 | 268 | 30
55
39 | | 20 | 9 | | ļ | ļ | 16 | | | ļ! | | 254069
254070 | M374177R330
M374177R330 | 197.55
198.05 | 198.05
198.55 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 39
32 | | 21
13 | 20
11 | | | | 13
9 | | | ļ | | 254070 | M374177R330 | | | | | 7526100 | 3513691 | | | ···· | | 10 | | | | | ļ | ļ | | | 254072 | M374177R330 | 198.55
199.05 | 199.05
199.55 | 77
77 | 330
330 | 7526100 | 3513691 | 268
268 | 45
29 | | 17
16 | 10 | | | | 12
11 | | | <u> </u> | | 254073 | M374177R330 | 199.55 | 200.05 | 77 | 330 | 7526100 | 3513691 | 268 | 26 | | 16 | 10 | | | | 13 | | | | | 254074 | M374177R330 | 200.05 | 200.55 | 77 | 330 | 7526100 | 3513691 | 268 | 45 | | 16 | 11 | | ļ | ļ | 11 | | | ļ | | 254075 | M374177R330 | 200.55 | 201.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 44
50 | | 20
20 | 11 | | | | 13
12 | | | ! | | 254076
254077 | M374177R330
M374177R330 | 201.05
201.55 | 201.55
202.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 50
23 | | 20
19 | 12
10 | | | | 12
12 | | | ļ | | 254077 | M374177R330 | | 202.05 | | | | 3513691 | | | | | | L | | | | ļ | | ļ | | 254079 | M374177R330 | 202.05
202.55 | 203.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691 | 268
268 | 29
49 | | 18
19 | 12
11 | | | | 11
10 | | | } | | 254080 | M374177R330 | 203.05 | 203.55 | 77 | 330 | 7526100 | 3513691 | 268 | 19 | | 18 | 10 | | | <u></u> | 11 | | | ļ | | 254081 | M374177R330 | 203.55 | 204.05 | 77 | 330 | 7526100 | 3513691 | 268 | 21 | | 18 | 14 | | | | 16 | | | | | 254082 | M374177R330 | 204.05 | 204.55 | 77 | 330 | 7526100 | 3513691 | 268 | 36 | | 20 | 13 | ļ | ļ | ļ | 13 | | | ļ | | 254083 | M374177R330 | 204.55 | 205.05 | 77 | 330 | 7526100 | 3513691 | 268 | 25 | ll | 17 | 11 | L | l | l | 10 | l | L | | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION (m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|---------------|----------------|-------------------|----------|----------|---------|------------|----------------|----------|----------|---|--------------| | 254084 | M374177R330 | 205.05 | 205.55 | 77 | 330 | 7526100 | 3513691 | 268 | 43 | | 16 | 9 | | | | 12 | | | | | 254085 | M374177R330 | 205.55 | 206.05 | 77
77 | 330 | 7526100 | 3513691 | 268
268 | 33
24 | | 16 | 10
19 | | | | 13 | | | .l/ | | 254086
254087 | M374177R330
M374177R330 | 206.05
206.55 | 206.55
207.05 | | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 37 | | 15
16 | 19
11 | | | | 14
13 | | | { | | 254088 | M374177R330 | 207.05 | 207.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 23 | | 17 | 11 | | | | 11 | | | - | | 254089 | M374177R330 | 207.55 | 208.05 | 77 | 330 | 7526100 | 3513691 | 268 | 36 | | 16 | 12 | | | | 12 | | | , | | 254090 | M374177R330 | 208.05 | 208.55 | 77 | 330 | 7526100 | 3513691 | 268 | 40 | | 17 | 13 | | | | 13 | | | | | 254091 | M374177R330 | 208.55 | 209.05 | 77 | 330 | 7526100 | 3513691 | 268 | 31 | | 17 | 11 | | | | 13 | | | | | 254092
254093 | M374177R330
M374177R330 | 209.05
209.55 | 209.55
210.05 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 49
19 | | 19
16 | 12
11 | | | | 14
12 | | | | | 254094 | M374177R330 | 210.05 | 210.55 | | 330 | 7526100 | 3513691 | 268 | | | | 12 | | | | 12 | | | | | 254095 | M374177R330 | 210.55 | 211.05 | 77
77 | 330 | 7526100 | 3513691 | 268 | 38
40 | | 21
22 | 11 | | | | 11 | | | | | 254096 | M374177R330 | 211.05 | 211.55 | 77
77 | 330 | 7526100 | 3513691 | 268 | 42 | | 21 | 12 | | | | 12 | | | ļ | | 254097
254098 | M374177R330
M374177R330 | 211.55 | 212.05
212.55 | | 330
330 | 7526100 | 3513691 | 268 | 68 | | 23 | 13 | | | ļ | 13 | | | ļ | | 254098
254099 | M374177R330
M374177R330 | 212.05
212.55 | 212.55 | 77
77 | 330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 56
25 | | 21
20 | 13
12 | | | | 10
11 | | | | | 252766 | M374177R330 | 213.1 | 213.85 | 77 | 330 | 7526100 | 3513691 | 268 | | 57900 | | | | | | 11 | | • | h | | 252767 | M374177R330 | 213.85
214.15 | 214.15 | 77 | 330 | 7526100 | 3513691 | 268 | | 137000 | | | | | | | | | 1 | | 252768 | M374177R330 | 214.15 | 214.51 | 77
77
77
77 | 330 | 7526100 | 3513691 | 268 | | 64100 | | | | | | | | | ļ | | 252769 | M374177R330 | 214.51 | 214.96 | | 330 | 7526100 | 3513691 | 268 | | 129000 | | | | | | | | | ļ! | | 252770
252771 | M374177R330
M374177R330 | 214.96
215.46 | 215.46
215.78 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | | 79800
38000 | | | | | | | | | | | 252771 | M374177R330 | 215.78 | 216.3 | 77 | 330 | 7526100 | 3513691 | 268 | | 64600 | | | | | | | | | ∤ | | 252773 | M374177R330 | 216.3 | 216.5 | 77
77 | 330 | 7526100 | 3513691 | 268 | | 76400 | | | | | | | | | | | 254100 | M374177R330 | 220 | 220.5 | | 330 | 7526100 | 3513691 | 268 | 183 | | 35 | 18 | ~~~~~ | | | 13 | | | | | 254101 | M374177R330 | 220.5 | 221 | 77
77 | 330 | 7526100 | 3513691 | 268 | 74 | | 20
25 | 11 | | | ļ | 11
13 | | | . | | 254102
254103 | M374177R330
M374177R330 | 221
221.5 | 221.5
222 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 44
57 | | 25
25 | 12
12 | | | | 13
16 | | | ф | | 254104 | M374177R330 | 222 | 222.5 | | 330 | 7526100 | 3513691 | 268 | | | 27 | | | | | | | | } | | 254105 | M374177R330 | 222.5 | 223 | 77
77 | 330 | 7526100 | 3513691 | 268 | 76
77 | | 25 | 12
12 | | | † | 17
17 | | | | | 254106 | M374177R330 | 223 | 223.5 | 77 | 330 | 7526100 | 3513691 | 268 | 52 | | 21 | 12 | | | | 13 | | | | | 254107 | M374177R330 | 223.5 | 224 | 77 | 330 | 7526100 | 3513691 | 268 | 74 | | 25 | 12 | | | | 17 | | | ļ! | | 254108
254109 | M374177R330
M374177R330 | 224 | 224.5 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 73
91 | | 27 | 20
12 | | | | 16 | | | | | 254110 | M374177R330 | 224.5
225 | 225
225.5 | 77 | 330 | 7526100 | 3513691 | 268 | 24 | | 22
21 | 12 | | | | 12
10 | | | | | 254111 | M374177R330 | 225.5 | 226 | 77 | 330 | 7526100 | 3513691 | 268 | 56 | | 21 | 16 | | | | 12 | | | | | 254112 | M374177R330 | 226 | 226.5
227 | 77
77 | 330 | 7526100 | 3513691 | 268 |
63 | | 21
20 | 13 | | | | 13 | | | | | 254113 | M374177R330 | 226.5 | | | 330 | 7526100 | 3513691 | 268 | 50 | | | 10 | | | | 11 | | | ļ | | 254114
254115 | M374177R330
M374177R330 | 227 | 227.5 | 77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268 | 69 | | 20 | 11 | | | | 11 | | | { | | 254115 | M374177R330 | 227.5
228 | 228
228.5 | 77
77 | 330 | 7526100 | 3513691 | 268
268 | 33
43 | | 20
19 | 15
12 | | | | 12
11 | | | | | 254117 | M374177R330 | 228.5 | 229 | 77 | 330 | 7526100 | 3513691 | 268 | 33 | | 20 | 13 | | | | 14 | | | h | | 254118 | M374177R330 | 229 | 229.5 | 77 | 330 | 7526100 | 3513691 | 268 | 37 | | 21 | 14 | | | | 13 | | | | | 254119 | M374177R330 | 229.5 | 230 | 77
77 | 330 | 7526100 | 3513691 | 268 | 41 | | 19
22 | 13 | | | | 13 | | | ļ | | 254120
254121 | M374177R330
M374177R330 | 230
230.5 | 230.5
231 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 46
43 | | | 17
10 | | | | 14
12 | | | | | 254121 | M374177R330 | 230.5 | 231.5 | 77 | 330 | 7526100
7526100 | 3513691
3513691 | 268 | | | 22
20 | | | | | 13 | | | | | 254123 | M374177R330 | 231.5 | 232 | 77
77 | 330 | 7526100 | 3513691 | 268 | 35
54
32 | | 20
23 | 13
10 | | | <u> </u> | 14 | <u> </u> | | | | 254124 | M374177R330 | 232 | 232.5 | 77 | 330 | 7526100 | 3513691 | 268 | 32 | | 18 | 16 | | | | 20 | | | | | 254125 | M374177R330 | 232.5 | 233 | 77 | 330 | 7526100 | 3513691 | 268 | 49 | | 18 | 14 | ļ | ļ | ļ | 14 | ļ | ļ | ļI | | 254126
254127 | M374177R330
M374177R330 | 233
233.5 | 233.5
234 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 29
75 | | 18
19 | 12
13 | | | | 13
13 | | | | | 254127 | M374177R330 | 233.5 | 234.5 | 77 | 330 | 7526100 | 3513691 | 268 | 36 | | 22 | 14 | L | | | 13 | | | ļ | | 254129 | M374177R330 | 234.5 | 235 | 77 | 330 | 7526100 | 3513691 | 268 | 47 | | 20 | 14 | ····· | ····· | † ~~~~~ | 12 | | h | h | | 254130 | M374177R330 | 235 | 235.5 | 77
77 | 330 | 7526100 | 3513691 | 268 | 34 | | 21 | 14 | | | Ţ | 12
14 | | | | | 254131 | M374177R330 | 235.5 | 236 | | 330 | 7526100 | 3513691 | 268 | 42 | | 18 | 14 | | | ļ | 14 | | | ļ | | 254132 | M374177R330 | 236 | 236.5 | 77 | 330 | 7526100 | 3513691 | 268 | 36 | | 20 | 15 | | ļ | ļ | 15 | | | ļ | | 254133
254134 | M374177R330
M374177R330 | 236.5
237 | 237
237.5 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 43
76 | | 20
24 | 15
17 | | | | 14
16 | | | <u> </u> | | 254134 | M374177R330 | 237.5 | 237.5 | 77 | 330 | 7526100 | 3513691 | 268 | 53 | | 23 | 16 | | ····· | | 17 | | | | | 254136 | M374177R330 | 238 | 238.5 | 77 | 330 | 7526100 | 3513691 | 268 | 82 | | 23 | 18 | | | | 20 | | | | | 254137 | M374177R330 | 238.5 | 239 | 77 | 330 | 7526100 | 3513691 | 268 | 36 | | 18 | 17 | | | | 16 | | | | | 254138 | M374177R330 | 239 | 239.5 | 77 | 330 | 7526100 | 3513691 | 268 | 68 | | 24 | 19 | L | L | l | 16 | L | L | JJ | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|------------------|--------------|---|----------------|----------|--------------|--------------|----------------|----------------|----------|----------|-----------------| | 254139 | M374177R330 | 239.5 | 240 | 77 | 330 | 7526100 | 3513691 | 268 | 45 | | 25 | 19 | | | | 23 | | | | | 254140 | M374177R330 | 240 | 240.5 | 77
77 | 330 | 7526100 | 3513691 | 268 | 41 | | 22 | 16 | | | | 18 | | | اا | | 254141 | M374177R330 | 240.5 | 241 | | 330 | 7526100 | 3513691 | 268 | 22 | | 22 | 20 | | | | 18 | | | <i>إ</i> ـــــا | | 254142
254143 | M374177R330
M374177R330 | 241
241.5 | 241.5
242 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 43
30 | | 17
23 | 14
13 | | | | 13
13 | | | - | | 254144 | M374177R330 | 242 | 242.5 | 77 | 330 | 7526100 | 3513691 | 268 | 33 | • | 20 | 12 | ····· | | | 15 | | ···-· | } | | 254145 | M374177R330 | 242.5 | 243 | 77 | 330 | 7526100 | 3513691 | 268 | 66 | | 21 | 20 | | | † | 25 | | | ļ | | 254146 | M374177R330 | 243 | 243.5 | 77
77
77 | 330
330 | 7526100 | 3513691
3513691 | 268 | 38 | | 19 | 22
13 | | | | 24 | | | [| | 254147 | M374177R330 | 243.5 | 244 | 77 | | 7526100 | | 268 | 46 | | 19
18
23 | | | . | | 24
12
13 | | | 4 J | | 254148 | M374177R330 | 244 | 244.5 | | 330 | 7526100 | 3513691 | 268 | 25 | | | 17 | | | | | | | f | | 254149
254150 | M374177R330
M374177R330 | 244.5
245 | 245
245.5 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 30
17 | | 17
22 | 13
16 | ł | · | | 10
17 | | ···- | ∤ | | 254151 | M374177R330 | 245.5 | 246 | h | 330 | 7526100 | 3513691 | 268 | 11 | | | 19 | † | | | 16 | | | | | 254152 | M374177R330 | 246 | 246.5 | 77
77 | 330 | 7526100 | 3513691 | 268 | 7 | | 27
37 | 19 | 1 | | | 16 | | ····· | اا | | 254153 | M374177R330 | 246.5
247 | 247 | 77 | 330
330 | 7526100 | 3513691 | 268
268 | 9 | | 21 | 16 | | | | 13 | | | | | 254154 | M374177R330 | 247 | 247.5 | 77
77
77 | | 7526100 | 3513691 | | 19
8 | | 18
19 | 11 | | | | 13
12
10 | | | ļ | | 254155 | M374177R330 | 247.5 | 248 | | 330 | 7526100 | 3513691 | 268 | 8 | | | 11 | | | | | | | { | | 254156
254157 | M374177R330
M374177R330 | 248
248.5 | 248.5
249 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 15
29 | | 22
23 | 12
14 | | | | 12
11 | | | | | 254157 | M374177R330 | 249 | 249.5 | 77
77 | 330 | 7526100 | 3513691 | 268 | 36 | | 33 | 14 | ····· | ····· | [····· | 14 | | ····· | } | | 254159 | M374177R330 | 249.5 | 250 | 77 | 330 | 7526100 | 3513691 | 268 | 14 | | 37 | 14 | | ····· | | 16 | | | ļ | | 254160 | M374177R330 | 249.5
250 | 250.5 | 77 | 330 | 7526100 | 3513691 | 268 | 19 | | 35 | 13 | | Ī | 1 | 17 | | | 1 | | 254161 | M374177R330 | 250.5 | 251 | 77 | 330 | 7526100 | 3513691 | 268 | 29 | | 32 | 12 | | | | 19 | | | [] | | 254162 | M374177R330 | 251 | 251.5 | 77 | 330 | 7526100 | 3513691 | 268 | 12 | | 43 | 17 | ļ | | | 17 | | | إا | | 254163
254164 | M374177R330
M374177R330 | 251.5
252 | 252
252.5 | 77
77 | 330
330 | 7526100
7526100 | 3513691
3513691 | 268
268 | 12
26 | | 47
101 | 17
28 | | | | 17
29 | | | ļ | | 254164 | M374177R330 | 252
252.5 | 252.5 | 77 | 330 | 7526100 | 3513691 | 268 | 26
15 | | 61 | 20 | | | | 19 | | | | | 254166 | M374177R330 | 253 | 253.5 | 77 | 330 | 7526100 | 3513691 | 268 | 16 | | 45 | 15 | † | | | 15 | | | } | | 254167 | M374177R330 | 253.5 | 254 | 77 | 330 | 7526100 | 3513691 | 268 | 25 | | 61 | 20 | ····· | | | 19 | | | ļ | | 254168 | M374177R330 | 254 | 254.5 | 77 | 330 | 7526100 | 3513691 | 268 | 28 | | 41 | 11 | | | | 13 | | | [| | 254169 | M374177R330 | 254.5 | 255 | 77 | 330 | 7526100 | 3513691 | 268 | 19 | | 23 | 8 | | | | 9 | | | ļ | | 254170 | M374177R330 | 255 | 255.5 | 77 | 330 | 7526100 | 3513691 | 268 | 17 | 642000 | 37 | 15 | | | 20540 | 12 | | | 55500 | | 252774
252775 | M374177R331
M374177R331 | 5.3
16.95 | 7.3
19.6 | 77
77 | 331
331 | 7526100
7526100 | 3513770
3513770 | 264
264 | | 612000
543000 | | | | | 20648
24208 | | | | 55600
46000 | | 252776 | M374177R331 | 16.85
19.6 | 22.65 | 77
77 | 331 | 7526100 | 3513770 | 264 | | 603000 | | | <u> </u> | | 29014 | | | | 52800 | | 252777 | M374177R331 | 22.65 | 24.15 | 77 | 331 | 7526100 | 3513770 | 264 | | | | | | † | 3204 | | | | 15000 | | 252778 | M374177R331 | 24.15 | 26.55 | 77
77 | 331 | 7526100 | 3513770 | 264 | | 632000 | | | | | 26522 | | | | 56300 | | 252779 | M374177R331 | 51.15 | 54.35 | 77
77 | 331 | 7526100 | 3513770 | 264
264 | | 600000 | | | | | 28658 | | | | 43900 | | 252780 | M374177R331 | 54.35 | 56.95 | 77
77 | 331 | 7526100 | 3513770 | | | 610000 | | | ļ | | 19758 | | | | 57800 | | 252781
252782 | M374177R331
M374177R331 | 56.95
68.2 | 58.8
69.25 | 77 | 331
331 | 7526100
7526100 | 3513770
3513770 | 264 | | 640000 | | | | | 30082
1958 | | | | 53000
6000 | | 252783 | M374177R331 | 72.6 | 74.2 | | 331 | 7526100 | 3513770 | 264
264 | | 611000 | | | | | 34710 | ~~~~~ | | | 52700 | | 252784 | M374177R331 | 74.2 | 74.8 | 77
77 | 331 | 7526100 | 3513770 | 264 | | 618000 | | | | | 43788 | | | | 67300 | | 252785 | M374177R331 | 137 | 137.2 | 77 | 331 | 7526100 | 3513770 | 264 | 30 | | 100 | | | | 4806 | | | | 9000 | | 252786 | M374177R332 | 13.3 | 18.45 | 77 | 332 | 7525999 | 3513751 | 262 | | 477000 | | | | | 4450 | | | | 14500 | | 252787 | M374177R332 | 18.45 | 20.3 | 77 | 332 | 7525999 | 3513751 | 262 | | 544555 | | | ļ | | 338.2 | | ļ | ļ | 8000 | | 252788
252789 | M374177R332
M374177R332 | 20.3 |
28.6
29.6 | 77
77 | 332
332 | 7525999
7525999 | 3513751
3513751 | 262
262 | 7000 | 611000 | 600 | | ֈ | | 20648
213.6 | | | | 46100
4000 | | 252789 | M374177R332 | 28.6
29.6 | 31 | 77 | 332 | 7525999 | 3513751 | 262 | 1000 | | 0 | | ····· | ····· | 2492 | | | ····· | 16000 | | 252791 | M374177R332 | 61.8 | 62.75 | 77 | 332 | 7525999 | 3513751 | | - | 652000 | <u>-</u> | | † | † | 28124 | | | | 39000 | | 252792 | M374177R332 | 62.75 | 64 | 77 | 332 | 7525999 | 3513751 | 262
262 | | | | | T | T | 3026 | | | | 11000 | | 252793 | M374177R332 | 64 | 65.1 | 77 | 332 | 7525999 | 3513751 | 262 | | 651000 | | | ļ | | 25810 | | | | 37100 | | 252794 | M374177R332 | 65.1 | 67.6 | 77 | 332 | 7525999 | 3513751 | 262 | | 631000 | | | ļ | ļ | 24208 | | | | 45300 | | 252795
252796 | M374177R332
M374177R332 | 79.2
82 | 82
83.2 | 77
77 | 332
332 | 7525999
7525999 | 3513751
3513751 | 262
262 | | 603000
662000 | | | | | 33998
35956 | | | | 44900
62600 | | 252796 | M374177R332 | 15.6 | 16.65 | 77 | 333 | 7525999 | 3513751 | 258 | | 302000 | | | | | 2492 | | | | 14000 | | 252798 | M374177R333 | 16.65 | 18.4 | 77 | 333 | 7525900 | 3514771 | 258 | | | | | | | 2492 | | | | 14000 | | 252799 | M374177R333 | 18.4 | 19.9 | 77 | 333 | 7525900 | 3514771 | 258 | | ····· | | | † | | 4450 | | ····· | | 30000 | | 252800 | M374177R333 | 19.9 | 20.75 | 77 | 333 | 7525900 | 3514771 | 258 | | 626000 | | | | | 21716 | | | | 41800 | | 252801 | M374177R333 | 20.75 | 21.25 | 77
77 | 333 | 7525900 | 3514771 | 258 | | | | | ļ | | 2848 | | | | 16000 | | 252802 | M374177R333 | 21.25 | 22.9 | | 333 | 7525900 | 3514771 | 258 | | 563000 | | | ļ | | 21004 | | | | 43000 | | 252803
252804 | M374177R333 | 23.25 | 24.2
25 | 77
77 | 333 | 7525900
7525900 | 3514771 | 258 | | 600000 | | | | | 22784
20826 | | | | 50600 | | Z5Z8U4 | M374177R333 | 24.2 | L25 | // | 333 | /325900 | 3514771 | 258 | L | 648000 | l | L | | L | ZU8Zb | L | L | 1 | 51700 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION
(m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |------------------|----------------------------|----------------------------|--------------------------|--------------------------|------------|-------------------------------|------------------------------|------------------|----------|-------------------|----------|----------|------------|--------------|----------------|--------------|--------------|---|----------------| | 252805 | M374177R333 | 25 | 26.75 | 77 | 333 | 7525900 | 3514771 | 258 | | 628000 | | | | | 19580 | | | | 50500 | | 252806 | M374177R333 | 26.75 | 30 | 77
77 | 333 | 7525900 | 3514771 | 258 | | 660000 | | | | | 24208 | | ļ | | 42200 | | 252807
252808 | M374177R333
M374177R333 | 30 | 31.5
32 | 77
77 | 333
333 | 7525900
7525900 | 3514771
3514771 | 258 | | 573000 | | | | | 23318
2136 | | | | 40300
10000 | | 252809 | M374177R333 | 31.5
33.6 | 36.3 | 77 | 333 | 7525900 | 3514771 | 258
258 | | 646000 | ···· | ···· | | | 27590 | | | | 37900 | | 252810 | M374177R333 | 36.3 | 38.15 | 77 | 333 | 7525900 | 3514771 | 258 | ····· | 650000 | | | | | 24386 | | ····· | | 33800 | | 252811 | M374177R333 | 38.15 | 40.9 | 77 | 333 | 7525900 | 3514771 | 258 | | 662000 | | | | | 25988 | | | | 28200 | | 252812 | M374177R333 | 42.25
43.2 | 43.2 | 77
77
77 | 333
333 | 7525900
7525900 | 3514771
3514771 | 258
258 | | 697000 | | | | | 31328 | | | | 22200 | | 252813
252814 | M374177R333
M374177R333 | 43.2 | 44.2
45 | 77 | | 7525900
7525900 | 3514771 | 258 | | 634000
627000 | ļ | ļ | | | 33286 | | | | 42200 | | 252814 | M374177R333 | 44.2
45 | 45
45.35 | 77 | 333
333 | 7525900 | 3514771
3514771 | 258
258 | | 642000 | | | | | 31328
29192 | | | | 36500
51000 | | 252816 | M374177R333 | 224.35 | 224.6 | 77
77 | 333 | 7525900 | 3514771 | 258 | 20 | | 110 | | | | 2314 | 100 | 2000 | • | 6000 | | 252817 | M374177R333 | 224.6 | 225.05 | 77
77 | 333 | 7525900 | 3514771 | 258 | 290 | | 320 | | | | 4272 | 0 | 2800 | | 7900 | | 252818 | M374177R333 | 225.05 | 225.35 | | 333 | 7525900 | 3514771 | 258 | 21 | | 340 | | | | 5518 | 0 | 2800 | | 8700 | | 252819 | M374177R333 | 225.35
225.64 | 225.64 | 77
77 | 333
333 | 7525900 | 3514771 | 258
258 | 20
59 | | 350 | | | | 5518 | 0 | 2800 | | 9800 | | 252820
252821 | M374177R333
M374177R334 | 12.55 | 225.7
15.6 | 77 | 333 | 7525900
7526100 | 3514771
3514671 | 258 | 59 | 622000 | 420 | | | | 6052
21360 | 200 | 2800 | | 8500
48100 | | 252822 | M374177R334 | | 17.1 | 77 | 334 | 7526100 | 3514671 | 261 | | 631000 | ······ | | ······ | | 21716 | ~~~~~ | ······ | | 48700 | | 252823 | M374177R334 | 15.6
17.1 | 20.55 | 77
77 | 334 | 7526100 | 3514671 | 261 | | 559000 | | | | † | 18156 | | | | 48200 | | 252824 | M374177R334 | 20.55 | 23.85 | 77 | 334 | 7526100 | 3514671 | 261 | | 536000 | | | | | 19046 | | | | 42200 | | 252825 | M374177R334 | 25.85 | 26.4 | 77 | 334 | 7526100 | 3514671 | 261 | | 688000 | | | | ↓ | 25632 | | | | 44600 | | 252826
252827 | M374177R334
M374177R334 | 28.8
31.25 | 29.4
32.1 | 77
77 | 334
334 | 7526100
7526100 | 3514671
3514671 | 261
261 | | 651000
640000 | | | ļ | ļ | 23140
25632 | | ļ | | 48100
56800 | | 252827 | M374177R334 | 42.2 | 43.05 | 77 | 334 | 7526100 | 3514671 | 261 | | 642000 | | | ····· | | 24920 | | | | 31300 | | 252829 | M374177R334 | 44.75 | 45.4 | | 334 | 7526100 | 3514671 | 261 | | 430000 | ····· | ······ | | | 18334 | | | | 25600 | | 252830 | M374177R334 | 45.4 | 47.1 | 77
77 | 334 | 7526100 | 3514671 | 261 | | 485000 | | | | | 22250 | | | | 31600 | | 252831 | M374177R334 | 47.1 | 48.05 | 77 | 334 | 7526100 | 3514671 | 261 | | 573000 | | | | | 23496 | | | | 44300 | | 252832 | M374177R335 | 5.7 | 8.35 | 77 | 335 | 7526100 | 3514821 | 260 | | 115000 | | | | | 2848 | | | | 19000 | | 252833 | M374177R335
M374177R335 | 10.85 | 13 | 77 | 335 | 7526100
7526100 | 3514821
3514821 | 260 | | 112000 | | | ļ . | | 2314 | | ļ | | 20000 | | 252834
252835 | M374177R335 | 15.55
17.1 | 17.1
19 | 77
77 | 335
335 | 7526100 | 3514821 | 260
260 | | 607000
634000 | ļ | ļ | | | 24920
25276 | | | | 64600
55600 | | 252836 | M374177R335 | 19 | 20.6 | 77 | 335 | 7526100 | 3514821 | 260 | | 666000 | | | | † | 23852 | | | | 46600 | | 252837 | M374177R335 | 20.6 | 22.15 | 77 | 335 | 7526100 | 3514821 | 260 | | 629000 | • | | | | 21538 | ************ | | | 51900 | | 252838 | M374177R335 | 22.15 | 24 | 77 | 335 | 7526100 | 3514821 | 260 | | 640000 | | | | | 22428 | | | | 42800 | | 252839
252840 | M374177R335
M374177R335 | 50.9
61.5 | 57.6
62.4 | 77
77 | 335
335 | 7526100
7526100 | 3514821
3514821 | 260
260 | | 612000 | | | | | 3382
21004 | ~~~~~ | | | 20000
57800 | | 252841 | M374177R335 | | 64.45 | | 335 | 7526100 | 3514821 | 260 | | 478000 | | | | | 19580 | | | | 26600 | | 252842 | M374177R335 | 62.4
66.9 | 69 | 77
77 | 335 | 7526100 | 3514821 | 260 | | 671000 | | | | | 24386 | | | | 54700 | | 252843 | M374177R335 | 69 | 70.25 | 77 | 335 | 7526100 | 3514821 | 260 | | 655000 | | | | | 24920 | | | | 62600 | | 253629 | M374177R335 | 71.45 | 72.65 | 77 | 335 | 7526100 | 3514821 | 260 | | 653000 | | | | ļ | 22962 | | | | 53000 | | 252845 | M374177R335 | 76.2 | 78 | 77 | 335 | 7526100 | 3514821 | 260 | | 547000 | ļ | ļ | | | 18868 | | | | 34500 | | 252846
252847 | M374177R335
M374177R335 | 78
80.1 | 80.1
81.55 | 77
77 | 335
335 | 7526100
7526100 | 3514821
3514821 | 260
260 | | 636000
629000 | | | | | 22428
23140 | | | | 55200
23300 | | 252848 | M374177R335 | 81.55 | 84.5 | 77
77 | 335 | 7526100 | 3514821 | 260 | | 483000 | | | | | 20648 | | ····· | | 24800 | | 252849 | M374177R335 | 84.5 | 86.05 | 77 | 335 | 7526100 | 3514821 | 260 | | 613000 | | | | <u> </u> | 24386 | | | | 53500 | | 252850 | M374177R335 | 86.05 | 86.75 | 77 | 335 | 7526100 | 3514821 | 260 | | | | | | | 2136 | | | | 10000 | | 252851 | M374177R336 | 4 | 6.3 | 77 | 336 | 7526300 | 3514731 | 261 | | 670000 | | | | _ | 21004 | | | | 51000 | | 252852
252853 | M374177R336 | 6.3
10.1 | 8.3 | 77 | 336 | 7526300
7526300 | 3514731 | 261 | | 658000 | | | | | 21182 | | | | 38300
41100 | | 252853
252854 | M374177R336
M374177R336 | 10.1 | 12
15.5 | 77
77 | 336
336 | 7526300 | 3514731
3514731 | 261
261 | ····· | 647000
642000 | | | ····· | | 19224
24386 | | } | | 41100 | | 252855 | M374177R336 | 15.5 | 17.55 | 77 | 336 | 7526300 | 3514731 | 261 | | 599000 | <u> </u> | <u> </u> | † | t | 23140 | | † | | 44100 | | 252856 | M374177R336 | 17.55 | 20.75 | 77 | 336 | 7526300 | 3514731 | 261 | | 631000 | <u> </u> | | <u> </u> | | 24208 | | [| | 36400 | | 252857 | M374177R336 | 24.4 | 26.1 | 77
77 | 336 | 7526300 | 3514731 | 261 | | 647000 | | | | ļ | 19402 | | | | 29100 | | 252858 | M374177R336 | 48.1 | 51.8 | | 336 |
7526300 | 3514731 | 261 | ļ | 633000 | ļ | ļ | ļ | ļ | 19224 | | ļ | | 56000 | | 252859
252860 | M374177R336
M374177R336 | 51.8
54.2 | 54.2
58 | 77
77 | 336
336 | 7526300
7526300 | 3514731
3514731 | 261
261 | | | | | | | 2670
3204 | | | | 14000
17000 | | 252861 | M374177R336 | 54.2
58 | 59.9 | 77 | 336 | 7526300 | 3514731 | 261 | | 649000 | <u> </u> | <u> </u> | | | 23496 | | | | 39800 | | 252862 | M374177R336 | 59.9 | 63.5 | 77 | 336 | 7526300 | 3514731 | 261 | | 617000 | † | | | † | 22606 | | | | 41500 | | 252863 | M374177R336 | 63.5 | 66.05 | 77 | 336 | 7526300 | 3514731 | 261 | ······ | 591000 | <u></u> | <u></u> | <u></u> | <u></u> | 17978 | | <u> </u> | | 54900 | | 252864 | M374177R336 | 66.05 | 67.95 | 77
77 | 336 | 7526300 | 3514731 | 261 | | 620000 | | | [| Ţ | 19936 | |] | | 54000 | | 252865 | M374177R336 | 67.95 | 70.85 | | 336 | 7526300 | 3514731 | 261 | ļ | 565000 | ļ | ļ | ļ | ļ | 22784 | ļ | ļ | | 53600 | | 252866 | M374177R336 | 72.25 | 75.3 | 77 | 336 | 7526300 | 3514731 | 261 | | 518000 | | ļ | | | 17088 | | ļ | | 32800 | | 252867 | M374177R336 | 75.3 | 78.45 | 77 | 336 | 7526300 | 3514731 | 261 | L | 579000 | L | L | L | | 23318 | L | 1 | l | 36100 | | SAMPLE_ID | HOLE_ID | DOWNHOLE
DEPTH FROM (m) | DOWNHOLE
DEPTH TO (m) | YEAR HOLE WAS
DRILLED | HOLE_NO | YKJ_NORTH
(Finland Zone 3) | YKJ_EAST
(Finland Zone 3) | ELEVATION (m) | Cu (ppm) | Total Fe
(ppm) | Ni (ppm) | Pb (ppm) | S (ppm) | TiO2 (ppm) | V2O5 (ppm) | Zn (ppm) | Mn (ppm) | P (ppm) | Ti (ppm) | |-----------|-------------|----------------------------|--------------------------|--------------------------|---------|-------------------------------|------------------------------|---------------|----------|-------------------|----------|----------|---------|------------|------------|----------|----------|---------|----------| | 252868 | M374177R336 | 78.45 | 81.05 | 77 | 336 | 7526300 | 3514731 | 261 | | 376000 | | | | | 16198 | | | | 25300 | | 252869 | M374177R336 | 81.8 | 84.05 | 77 | 336 | 7526300 | 3514731 | 261 | | 560000 | | | | | 26522 | | | | 43500 | | 252870 | M374177R336 | 84.05 | 84.45 | 77 | 336 | 7526300 | 3514731 | 261 | | 613000 | | | | | 22250 | | | | 66900 | | 252871 | M374177R336 | 84.45 | 85.05 | 77 | 336 | 7526300 | 3514731 | 261 | | | | | | | 2136 | | | | 9100 | | 253696 | M374177R337 | 104 | 104.05 | 77 | 337 | 7526100 | 3514301 | 266 | 29 | | 72 | | | | | 10000 | | | | | 232277 | M374177R337 | 104.05 | 105.2 | 77 | 337 | 7526100 | 3514301 | 266 | 22 | | 220 | [| | T | T | | 1 | | | | 253697 | M374177R337 | 105.2 | 105.64 | 77 | 337 | 7526100 | 3514301 | 266 | 21 | | 64 |] | | | | | 1 | [| [| | 253688 | M374178R339 | 100.5 | 101 | 78 | 339 | 7526300 | 3515251 | 257 | 320 | | | | | | | | | | I | | 253689 | M374178R339 | 106.15 | 106.65 | 78 | 339 | 7526300 | 3515251 | 257 | 110 | | | [| | T | T | | 1 | | | | 253690 | M374178R339 | 113 | 113.5 | 78 | 339 | 7526300 | 3515251 | 257 | 450 | | | | | | | | 1 | | | | 253630 | M374178R339 | 116 | 118.5 | 78 | 339 | 7526300 | 3515251 | 257 | | 636000 | | | | | 22606 | | | | 40700 | | 253691 | M374178R339 | 116.5 | 118.5 | 78 | 339 | 7526300 | 3515251 | 257 | | | | [| | I | 3026 | | 1 | | 21000 | | 253631 | M374178R339 | 119.9 | 124.9 | 78 | 339 | 7526300 | 3515251 | 257 | | 661000 | | | | | 2314 | | | | 17000 | | 253632 | M374178R339 | 124.9 | 129.9 | 78 | 339 | 7526300 | 3515251 | 257 | | 640000 | | | | | 2492 | | 1 | l | 15000 | | 253633 | M374178R339 | 129.9 | 134.9 | 78 | 339 | 7526300 | 3515251 | 257 | | 662000 | | | | | 2136 | | | | 17000 | | 253634 | M374178R339 | 134.9 | 139.9 | 78 | 339 | 7526300 | 3515251 | 257 | | 677000 | | | | | 2492 | | | | 20000 | | 253635 | M374178R339 | 139.9 | 144.9 | 78 | 339 | 7526300 | 3515251 | 257 | | 677000 | | | | | 2136 | | | | 14000 | | 253636 | M374178R339 | 144.9 | 149 | 78 | 339 | 7526300 | 3515251 | 257 | | 676000 | | | | | 3382 | | | | 19000 | | 253637 | M374178R339 | 149 | 154 | 78 | 339 | 7526300 | 3515251 | 257 | | 681000 | | 1 | | | 3916 | | 1 | [| 17000 | | 253638 | M374178R339 | 154 | 160.8 | 78 | 339 | 7526300 | 3515251 | 257 | | 639000 | | | | | 3026 | | | | 17000 | | 253639 | M374178R339 | 176.35 | 179.1 | 78 | 339 | 7526300 | 3515251 | 257 | | 541000 | | | | T | 3560 | | 1 | [| 20000 | | 253640 | M374178R339 | 180.7 | 181.05 | 78 | 339 | 7526300 | 3515251 | 257 | | 703000 | | | | | 3560 | | | | 25000 | | 253641 | M374178R339 | 181.7 | 182.65 | 78 | 339 | 7526300 | 3515251 | 257 | | 646000 | | | | | 3026 | | | | 18000 | | 253642 | M374178R339 | 185.2 | 188.95 | 78 | 339 | 7526300 | 3515251 | 257 | | 648000 | | | | T | 3204 | | 1 | [| 16000 | | 253643 | M374178R339 | 190.65 | 191.15 | 78 | 339 | 7526300 | 3515251 | 257 | | 701000 | | | | | 2492 | | | | 11000 | | 253644 | M374178R339 | 195 25 | 196.25 | 78 | 339 | 7526300 | 3515251 | 257 | | 565000 | | [| | T | 3204 | | 1 | | 17000 | | 253645 | M374178R339 | 196.7 | 197.45 | 78 | 339 | 7526300 | 3515251 | 257 | | 658000 | | | | | 2848 | | | | 12000 | | 253646 | M374178R339 | 198.95 | 203 | 78 | 339 | 7526300 | 3515251 | 257 | | 697000 | | | | | 3738 | | | | 15000 | | 253686 | M374178R340 | 7.1 | 8.9 | 78 | 340 | 7527200 | 3513331 | 273 | 390 | | | | | | | | | | | | 253687 | M374178R340 | 8.9 | 10.65 | 78 | 340 | 7527200 | 3513331 | 273 | 320 | | | | | | | | T | [| | | 253647 | M374178R340 | 10.65 | 11.2 | 78 | 340 | 7527200 | 3513331 | 273 | | 709000 | | | | | 3026 | | 1 | | 24000 | | 253648 | M374178R340 | 11.7 | 12.8 | 78 | 340 | 7527200 | 3513331 | 273 | | 657000 | | [| | I | 3204 | | 1 | | 24000 | | 253649 | M374178R340 | 14.25 | 15.5 | 78 | 340 | 7527200 | 3513331 | 273 | | 697000 | | | | | 2492 | | 1 | | 17000 | | 253650 | M374178R340 | 16.65 | 20.65 | 78 | 340 | 7527200 | 3513331 | 273 | | 696000 | | 1 | | 1 | 2492 | | | [| 17000 | | 253651 | M374178R340 | 35.7 | 38.6 | 78 | 340 | 7527200 | 3513331 | 273 | | 651000 | | <u> </u> | | T | 3204 | | I | l | 20000 | | 253652 | M374178R340 | 39.3 | 41.6 | 78 | 340 | 7527200 | 3513331 | 273 | | 679000 | | 1 | | 1 | 3560 | [| I | [| 19000 | | 253698 | M374178R340 | 253.8 | 254.5 | 78 | 340 | 7527200 | 3513331 | 273 | 15 | | 240 | [| | 9200 | 5874 | 94 | T | | | | 253699 | M374178R340 | 254.5 | 254.8 | 78 | 340 | 7527200 | 3513331 | 273 | 55 | | 215 |] | | 11200 | 5696 | 38 | T | [| | ## **JORC TABLE** TABLE 1 – Section 1: Sampling Techniques and Data | Criteria | JORC Code explanation | Commentary | |------------------------|---|--| | Sampling
techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | Koitelainen Project 122 historical diamond drill holes for 15,475m have been previously drilled within the Koitelainen igneous intrusion. 5,430 samples have been taken as follows: • 181 samples were sampled between 2 -3 m interval • 70 samples were sampled between 3 - 4 m interval • 10 samples were sampled between 4 - 5 m interval • 12 samples were sampled above 5m interval The sample size, in terms of kilograms of material taken from the drill hole, is not known as the drill holes are
historical. At the Koitelainen V Prospect 27 diamond drill holes were completed in the 1970's for 3,784m. These holes form a sub-set of the 122 diamond holes which have been drilled across the entire project area. | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Koitelainen Project 27 historical diamond drill holes for 3,784m have been previously drilled within the Koitelainen V prospect area. The diamond drilling was NQ in diameter and the core was not orientated. | | Criteria | JORC Code explanation | Commentary | |--------------------------|--|--| | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Koitelainen Project Due to the historical nature of the drilling is not possible to ascertain the core recovery and the measures taken to maximise sample recovery. It is not possible to determine if a relationship exists between sample recovery and grade and whether preferential sampling took place. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Koitelainen Project The geological information available would not currently support a Mineral Resource calculation in accordance with JORC (2012). Redrilling of historical drill holes will be required in order support a Mineral Resource estimation in accordance with JORC (2012). It is not possible to determine the total length and percentage of relevant intersections logged. | | Criteria | JORC Code explanation | Commentary | |---|---|---| | Sub-sampling
techniques and
sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled | Koitelainen Project Due to the historical nature of the diamond drill core it is not known if the core was sampled on a half or quarter core basis. However, it is known that split core was used for sampling, just not whether the core has half or quarter. Quality control procedures are unknown. It is not known if quality control procedures were used and whether field duplicates or second half sampling was used. Drill core has photographed. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Quality of
assay data and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Koitelainen Project For the 27 historical diamond drill holes for 3,784mm previously drilled at the Koitelainen V prospect, the exact laboratory assay technique is not known. Information is not available on quality control procedures, standards, blanks and laboratory checks. The geochemical data was collected by the Finland Geological Survey (GTK) at their own internal laboratory. | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. | Koitelainen Project Due to the historical nature of the drilling there has been no independent checks on the sampling or external verification of significant intersections. | | | The use of twinned holes. | Koitelainen Project Pursuit Minerals has not yet twinned any of the historical drill holes, although it does plan to do so during its initial exploration of the project. | | | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | Koitelainen Project The historical geological logging information was recorded on paper log sheets and then transferred into electronic spreadsheets. The geochemical data was delivered in electronic form from the laboratory. Ultimately both the electronic geological and geochemical data was stored in a data base at the Geological Survey of Finland (GTK) and then made available online. Geochemical data from the Koitelainen V Prospect was downloaded from the GTK as Excel spreadsheets. The GTK has confirmed in writing to Pursuit that the geochemical values are presented in ppm and the values a metal values contained with magnetite concentrates produced by a Davis Machine from magnetite intervals within the Koitelainen layered mafic complex. | | Criteria | JORC Code explanation | Commentary | |-------------------------------------|--
---| | | Discuss any adjustment to assay data. | Koitelainen Project As far as can be ascertained from the historical reports and geochemical data, there were no adjustments made to the assay data. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | Koitelainen Project The location of the 27 historical diamond drill holes at the Koitelainen Prospect was determined by Carrier Phase Differential (RTK) GPS to +/- 1m for easting and northing co-ordinates and 0.1M for elevation. | | | Specification of the grid system used. | Koitelainen Project Datum: Kartastokoordinaattijarjestelma or in English is Finnish National Coordinate System (1966) Grid Co-ordinates: KKJ, using the International 1924 Ellipsoid, Zone 3 | | | Quality and adequacy of topographic control. | Koitelainen Project The altitude and location of the 27 historical diamond drill holes was determined by Carrier Phase Differential (RTK) GPS to+/- 1m for easting and northing and 0.1m for elevation. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. | Koitelainen Project The data spacing for 27 historical diamond drill holes at the Koitelainen Prospect is very variable. Drill sections are generally spaced 200-400m part, but some sections are up to 1,000m apart. Drill holes along the sections are generally spaced 50-100m apart but can be up to 400m apart. | | | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | Koitelainen Project The data spacing for 227 historical diamond drill holes is very variable, but 3,784m of drilling has been completed at the Koitelainen V. Prospect. A historical mineral estimate has been reported for the Koitelainen V prospect, which has not been reported in accordance of JORC (2012). It is the intention of Pursuit to undertake twinning of historical holes, re-sampling and appropriate QA/QC procedures such that Inferred Mineral Resources can be defined at the Koitelainen V prospect. Once these procedures have been competed the data spacing of the historical drilling should be sufficient to allow the definition | | Criteria | JORC Code explanation | Commentary | |--|--|---| | | | of Inferred Mineral Resources. | | | Whether sample compositing has been applied. | As far as can be determined samples were not composited for the drilling completed at the Koitelainen V prospect as geochemical results are reported on a metre and sub-metre basis. | | Orientation of
data in relation
to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | Koitelainen Project The available drilling cross sections indicates that the historical drilling intersected the shallowly dipping igneous stratigraphy at Koitelainen at a high angle and suggests that sampling was unbiased by geological structures. | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Koitelainen Project The available drilling cross sections indicates that the historical drilling intersected the shallowly dipping igneous stratigraphy at Koitelainen at a high angle and suggests that mineralised structures did not introduce a bias to the sampling. | | Sample
security | The measures taken to ensure sample security. | It is not possible to determine from the data available what the chain of custody was for samples taken from the Koitelainen project. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits or reviews of sampling techniques and data were completed. | **TABLE 1 – Section 2: Exploration Results** | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | The Mineral Reservations in Finland for the Koitelainen Project are 100% owned by Pursuit Minerals Limited via its 100% owned Finish subsidiary company NorthernX Finland OY. | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Reservations covering the Koitelainen Project will be valid until 29/3/2020. The Mineral Reservations secured by Pursuit allow the Company to conduct non-ground disturbing activities such as geological | | Criteria | JORC Code explanation | Commentary | |---|---|---| | | | mapping and airborne surveys. In order to conduct ground disturbing activities such as trenching and drilling, the Company has to apply for Ore Prospecting Permits (OPP's). Pursuit is the only company who can apply for OPP's within the boundaries of the Koitelainen Reservations. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Koitelainen Project Drill hole and assay data was obtained from the Geological Survey of Finland website which was downloaded as Excel spreadsheets. Geological and Petrological information was obtained from Bulletin 395 published by the Geological Survey of Finland. Geological and drill hole data was obtained from the Geological Survey of Finland Guide 28 - Koitelainen Intrusion and Keivitsa - Satovaara Complex. Historical mineral estimate was obtained from Geological Survey of Finland Special Paper 53 and also from the Fennoscandian Ore Deposits Data Base (http://gtkdata.gtk.fi/fmd/) | | Geology | Deposit type, geological setting and style of mineralisation. | Koitelainen Project Koitelainen is the largest of the 2.45 Ga mafic to ultramafic layered intrusions that occur near the Archaean-Proterozoic boundary in the northern Fennoscandian shield in northern Finland. The Koitelainen intrusion is a flat, oval shaped brachyanticline structure of 26km x 29km in extent and approximately 3km in thickness. The interior of the intrusions is made up of footwall rocks (Archaean granitoid gniesses, overlying Lapponian supracrustal rocks, pre-Koitelainen gabbroic intrusions and ultramafic dykes. The intrusion was emplaced as part of a large plume related rifting event, associated with the breakup of an Archaean continent. This event at 2.45 Ga was an event of global significance with igneous activity producing several layered intrusions and dyke swarms on several different continents. The vanadium mineralisation in the Koitelainen intrusion is
stratiform in nature and associated with two PGE enriched chromite reefs (Koitelainen Upper Chromite (UC) and Koitelainen Lower Chromite (LC) and a vanadium enriched gabbro (Koitelainen V). The Koitelainen UC reef varies in thickness from 1-3m thick at surface and extends for over 60km of strike. | | Criteria | JORC Code explanation | Commentary | |---------------------------|---|--| | | | The Koitelainen V mineralisation is up to 40m thick within a magnetite gabbro. The main vanadium mineral is chromite usually hosted within a magnetic gabbro. Although known to be of significant extent, the vanadium mineralisation within the Koitelainen intrusion is not well understood due to fairly limited drilling of the mineralisation. As far as can be ascertained, the Koitelainen UC vanadium mineralisation is only defined by 21 drill holes and is open along strike and at depth. A total of 122 diamond drill holes for 15,475m have been previously drilled across the entire Koitelainen intrusion. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. | | | Criteria | JORC Code explanation | Commentary | |---|---|--| | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. | Due to the historical nature of the drilling data this information is not available. | | | Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | Due to the historical nature of the drilling data this information is not available. | | | The assumptions used for any reporting of metal equivalent values should be clearly stated. | No metal equivalent values are reported. | | Relationship
between
mineralisation
widths and
intercept
lengths | If the geometry of the mineralisation with respect to the drill-hole angle is known, its nature should be reported. | Due to the historical nature of the drilling data this information is not available. | | | If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | Down-hole widths were reported. The exact true width is not known, but down hole widths are anticipated to be close to true thicknesses. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | | | Criteria | JORC Code explanation | Commentary | |---|--|--| | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | Due to the historical nature of the drilling data this information is not available. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported) including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Due to the historical nature of the drilling data this information is not available. | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). | Koitelainen Project Exploration plans are currently being finalised for the project and are not yet final. However, Pursuit will complete its compilation of all historical exploration work undertaken on the Koitelainen intrusion. The focus of follow up work will be to locate areas where vanadium mineralisation within Koitelainen V prospect area, increases in thickness to widths suitable to open pit extraction and to determine the strike extend of the high grade vanadium mineralisation identified in the southern section of the Koitelainen V Prospect. Drilling will then be completed during the next winter field season from November 2018 to April 2019, to test areas of thickened vanadium mineralisation. Historical holes will be twinned and assays data collected to allow the calculation of an initial Inferred Mineral Resource under JORC (2012). | | | Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | This information is currently not available as drilling programs have not yet been defined. |