ASX ANNOUNCEMENT

SULPHIDE BRECCIA WITH HIGH-GRADE ZINC AND LEAD INTERSECTED AT PYTHON ON UBEONG PROJECT IN KOREA

- Drill-hole UBD0005 testing the Python lead (Pb)-zinc (Zn) soil anomaly/skarn target intersected
 multiple zones of massive, breccia and disseminated sulphides including a 9m zone from 54m
 with hand-held XRF readings of up to 22.5% Pb and 21.4% Zn, averaging ~1% Zn-Pb
- A second diamond drill-hole (UBD0006), below UBD0005, will test the intersection of the sulphide mineralised structures with the skarn-limestone target unit at depth

Peninsula Mines Ltd (ASX:PSM) has intersected a zone of massive, breccia and disseminated sulphides, including sphalerite (Zn) and galena (Pb), in its latest diamond drill-hole, UBD0005^{D1} (see photo Figure 1), testing the Python Lead-Zinc Target on the Ubeong Zinc Project in South Korea (see Figure 2 for location).

UBD0005 was drilled from south to north at -45° and completed at 150.26m, after intersecting a 27m zone from 42m downhole of variably developed massive-layered, breccia and disseminated sulphide mineralisation, including a 9m zone from 54m that averaged >1% Pb-Zn in hand-held XRF readings and includes a sulphide breccia with semi-massive sphalerite and galena that recorded XRF readings of 22.5% Pb and 21.4% Zn, shown in the photograph, Figure 1, below (see Table 1 for sulphide zone descriptions and Appendices 1 and 2 for drill-hole details and spot XRF readings).

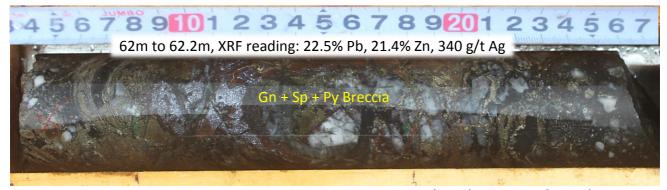


Figure 1: UBD0005, 62m to 62.2m, sulphide breccia including galena (silver), sphalerite (brown) and pyrite

UBD0005 tested the projected position of the magnetic limestone-skarn horizon below the lead-zinc soil anomaly at Python^{D5}, based on interpretation of detailed ground magnetics imagery^{D1} (Figure 3). The drill-hole intersected several massive, fault-breccia and disseminated sulphide zones in a psammitic and pelitic sequence, potentially overlying the targeted skarn-horizon.

A deeper hole, UBD0006 (see Figure 3), is planned to test below UBD0005, targeting massive to breccia Zn-Pb-Ag sulphide mineralisation where the mineralised faults are projected to intersect the favourable skarn horizon at depth.

"This intersection of extensive zinc-lead sulphide mineralisation indicates that we have the potential for a large new, high-grade zinc and lead discovery at Python. What excites me most is that this high-grade sulphide mineralisation occurs in psammo-pelitic rocks, potentially overlying the targeted skarn massive sulphide mineralisation at depth below the Pb-Zn soil anomaly", said Peninsula Mines Managing Director Jon Dugdale.

21 May 2018

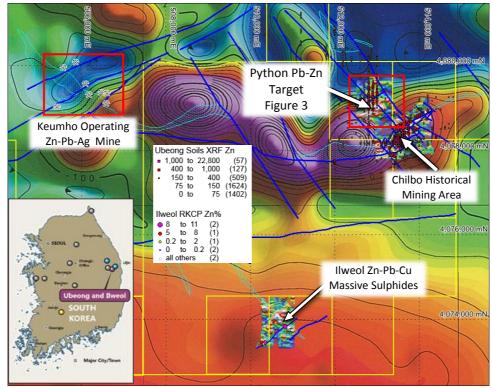


Figure 2: Ubeong Project, TMI ground magnetics on TMI airborne magnetics image^{D6,D7}, with soil and rock chip sample results (Zn), granted tenements and tenement applications

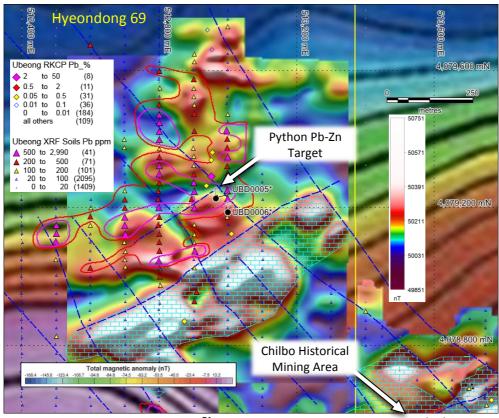


Figure 3: Python Prospect, TMI ground magnetics D1 with soil and rock chip sample results (Pb) and drill hole locations

Table 1: UBD005, geological summary highlighting intervals with significant visible base metal sulphides

HoleID	From	То	Interval	Lithology/sulphides	
UBD0005	0	3.6	3.6	River Alluvium	
UBD0005	3.6	15.1	11.5	Psammite and Pelite	
UBD0005	15.1	16.36	1.26	Pegmatite Dyke	
UBD0005	16.36	24.72	8.36	Psammite and Pelite	
UBD0005	24.72	25.6	0.88	Pegmatite Dyke	
UBD0005	25.6	26.15	0.55	Quartz vein	
UBD0005	26.15	26.88	0.73	Pegmatite Dyke	
UBD0005	26.88	28.02	1.14	Psammite	
UBD0005	28.02	28.86	0.84	Pegmatite Dyke	
UBD0005	28.86	28.96	0.1	Brecciated Fault Zone with strong sphalerite and pyrite mineralisation (>20% sulphide)	
UBD0005	28.96	30.17	1.21	Brecciated Fault Zone with weak sphalerite and pyrite mineralisation	
UBD0005	30.17	35.16	4.99	Pelite and Psammite	
UBD0005	35.16	42.55	7.39	Psammite and Pelite	
UBD0005	42.55	42.95	0.4	Psammite with significant semi massive/ stringer sphalerite and pyrite mineralisation (>10%)	
UBD0005	42.95	43.65	0.7	Psammite with minor sphalerite and pyrite veins	
UBD0005	43.65	54.14	10.49	Psammite	
UBD0005	54.14	55.1	0.96	Fault Zone with strong massive sulphide (>50%) mineralisation including pyrite and sphalerite	
UBD0005	55.1	57.92	2.82	Pelite	
UBD0005	57.92	58.6	0.68	Fault Zone	
UBD0005	58.6	60.72	2.12	Psammite	
UBD0005	60.72	61	0.28	Psammite – strong semi massive sulphide (>30%), pyrite and sphalerite mineralisation	
UBD0005	61	61.38	0.38	Psammite	
UBD0005	61.38	62.41	1.03	Fault Zone – strong sulphide (>40%) breccia including sphalerite, galena, pyrite, pyrrhotite	
UBD0005	62.41	63.45	1.04	Massive Sulphides - pyrrhotite, pyrite & sphalerite	
UBD0005	63.45	69.32	5.87	Psammite with strong skarn alteration	
UBD0005	69.32	69.76	0.44	Psammite with strong skarn alteration and minor sphalerite and pyrite veins	
UBD0005	69.76	75.2	5.44	Psammite with strong skarn alteration	
UBD0005	75.2	75.38	0.18	Lost Core	
UBD0005	75.38	81.96	6.58	Psammite, minor Peilite, with strong skarn alteration	
UBD0005	81.96	82.06	0.1	Small band of massive sphalerite and pyrite	
UBD0005	82.06	87.83	5.77	Psammite with strong skarn alteration	
UBD0005	87.83	88.13	0.3	Breccia fault	
UBD0005	88.13	88.4	0.27	Psammite with strong skarn alteration	
UBD0005	88.4	88.85	0.45	Porphyry Dyke	
UBD0005	88.85	95.66	6.81	Psammite with strong skarn alteration	
UBD0005	95.66	96.1	0.44	Porphyry Dyke	
UBD0005	96.1	101.36	5.26	Psammite with strong skarn alteration	
UBD0005	101.36	101.5	0.14	Breccia fault	
UBD0005	101.5	102.5	1	Psammite with strong skarn alteration	

UBD0005	102.5	102.95	0.45	Breccia fault
UBD0005	102.95	104.65	1.7	Psammite with strong skarn alteration
UBD0005	104.65	105.96	1.31	Mafic Dyke
UBD0005	105.96	135.36	29.4	Psammite with weak skarn alteration
UBD0005	135.36	138.46	3.1	Mafic Dyke
UBD0005	138.46	142.5	4.04	Pelite with weak skarn alteration
UBD0005	142.5	150.26	7.76	Psammite with weak skarn alteration

For further information contact:

Jon Dugdale

Managing Director, Peninsula Mines Ltd (ASX:PSM) S2, L2, 20 Kings Park Rd. West Perth, WA, 6005

E: jdugdale@peninsulamines.com.au Ph: +61 8 6143 1840 M: +61 402 298 026

About Peninsula Mines:

Peninsula Mines Ltd ("Peninsula" or "the Company") is an Australian listed, exploration/development company focused on developing the outstanding opportunities for mineral discovery and development within South Korea. Peninsula's strategy is to focus on mineral commodities that have a positive price outlook and offer potential for off-take and/or strategic partnerships in-country.

The Company is primarily focused on advancing a series of flake-graphite projects that offer potential for development to supply down-stream flake graphite products to the high-technology, Lithium-Ion battery manufacturing market and/or large-flake graphite applications in South Korea. In addition, the Company is drilling a series of highly prospective zinc-lead-copper targets at Ubeong in eastern South Korea.

Summary list of all previous Peninsula ASX releases referenced in this announcement:

- D1 High-Grade Zinc Intersections Identified at Ilweol on the Ubeong Project in South Korea, 15 May 2018
- D2 Ilweol Trend High-Grade Zn-Pb-Cu Results, 28 November 2017
- D3 High Grade Zinc-Silver Results, 13 September 2016.
- D4 Drilling Restarted Testing Key Ubeong Zinc and Copper Targets, 6 March 2018
- D5 Encouraging Zinc-Silver Drilling Results, Identification of Large New Lead-Zinc Target, 5 February 2018
- D6 Koo, S,B., Park, Y.S., Lim, M.T., Rim, H.R., Lee, H.I., Sung, N.H., Choi, J,H. and Koo., J.H., 2008, KIGAM 1:100,000 Socheon Aeromagnetic Contour Image.
- D7 Kim, O.J., Hong, M.S., Park, H.I. and Kim, K.T., 1963, KIGAM 1:50,000 Samgeunri Geology Sheet and Dogyedong Geology Sheet.
- D8 High-grade silver-gold-zinc rockchip results, Ubeong Project, South Korea, 26 April 2017
- D9 Three key tenements granted, Ubeong Zinc Project, 28 March 2017

For full versions of the Company's releases see Peninsula's website www.peninsulamines.com.au

Forward Looking Statements

This report contains certain forward-looking statements. These forward-looking statements are not historical facts but rather are based on Peninsula Mines Ltd's current expectations, estimates and projections about the industry in which Peninsula Mines Ltd operates, and beliefs and assumptions regarding Peninsula Mines Ltd's future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates" "potential" and similar expressions are intended to identify forward-looking statements. These statements are not guarantees of future performance and are subject to known and unknown risks, uncertainties and other factors, some of which are beyond the control of Peninsula Mines Ltd, are difficult to predict and could cause actual results to differ materially from those expressed or forecasted in the forward-looking statements. Peninsula Mines Ltd cautions shareholders and prospective shareholders not to place undue reliance on these forward-looking statements, which reflect the view of Peninsula Mines Ltd only as of the date of this report. The forward-looking statements made in this report relate only to events as of the date on which the statements are made. Peninsula Mines Ltd does not undertake any obligation to report publicly any revisions or updates to these forward-looking statements to reflect events, circumstances or unanticipated events occurring after the date of this report except as required by law or by any appropriate regulatory authority.

Competent Persons Statements

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Daniel Noonan, a Member of the Australian Institute of Mining and Metallurgy. Mr Noonan is an Executive Director of the Company.

Mr Noonan has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Noonan consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information in this release that relates to Geophysical Results and Interpretations is based on information compiled by Karen Gilgallon, Principal Geophysicist at Southern Geoscience Consultants. Karen Gilgallon is a Member of the Australasian Institute of Geoscientists (AIG) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Karen Gilgallon has previously consented to the inclusion in the release of the matters based on this information in the form and context in which it appears.

JORC Code, 2012 Edition: Table 1 Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Cuitoui-		Commontonia
Criteria	JORC – Code of Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The Company's hand-held Niton Gold XRF unit was used to take spot XRF readings of a selected suite of elements at 10cm intervals along the drill core from UBD0005. The reading points were marked up with a crayon and then read for 60 seconds. The reading number and matching interval were noted in a notebook and later transcribed into an excel spreadsheet and matched with the downloaded data from the XRF unit. The XRF data was collected to aid in the selection of intervals for detailed laboratory analysis. The XRF data is not intended for use in any future resource estimation. The XRF readings are tabulated in Appendix 1 and selected intervals are reported in the text of this release. Selected intervals from UBD0005 will be half-core sampled for detailed laboratory analysis, including for elements that are unreliable in hand-held XRF readings including gold (Au). All commentary on sulphide type and percentage are based on visual observations and hand-held XRF analyses of the sulphide species present.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	No drill core assaying has been undertaken on the core from recently completed hole UBD0005 and the decision to assay any core will be taken following the detailed core logging and review of the XRF data.
	Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The recently completed hole UBD0005 was drilled using a track mounted core rig fitted with an Q3 (50mm diameter) drill string. Apart from the hand-held XRF readings, no laboratory analyses have been undertaken on the drill core and all comments on grades are based on the hand-held, spot, XRF readings and visual estimates of sulphide type and content.

Criteria	JORC – Code of Explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Hole UBD0005 was drilled with a standard Q3 core string.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	The core recovery from hole UBD0005 was very good with some core loss due to core grinding mainly associated with bit failures or failures of the core lifter.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	None of the core has been assayed at a laboratory as yet and a decision to assay the core will be taken following the review of the XRF data.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	To date hole UBD0005 has not been logged in detail with sulphide mineralisation visually examined and described in detail. A decision on the intervals to be submitted for laboratory analyses will be taken post the completion of the core logging and XRF data review.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	
	The total length and percentage of the relevant intersections logged.	
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	None of the core from hole UBD0005 has been sampled and submitted for laboratory analyses at this time. A review of handheld XRF data from the hole is underway.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	No sampling has been undertaken as yet on core from hole UBD0005. The drill core will be cut in half with a diamond saw except in the case of repeat sampling when quarter core samples will be analysed.

Criteria	JORC – Code of Explanation	Commentary
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	No sampling has been undertaken as yet on core from hole UBD0005.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No sampling has been undertaken as yet on core from hole UBD0005. The selected spot hand held XRF analyses at 10cm intervals has been undertaken to help guide in the selection of intervals for core cutting and full assay in Perth.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field	No sampling has been undertaken as yet on core from hole UBD0005. By taking measurements at the same point on the core and at
	duplicate/second-half sampling.	10cm intervals regardless of where the best mineralisation may be visible in the core helps to minimise any sampling bias during the XRF analysis process.
		It is intended that all zones with elevated base metal XRF results will be sawn in half with the base of hole core piece kept as a permanent record to preserve the core orientation line and the other half sent to ALS Perth for assay.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	No sampling has been undertaken as yet on core from hole UBD0005.
	J .	The XRF data is non-destructive point analysis at regular intervals down the drill core. The XRF unit only analyses a small window <1cm in diameter.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used	No sampling has been undertaken as yet on core from hole UBD0005.
laboratory	and whether the technique is considered partial or total.	The XRF analyses are purely point readings to help in the selection of intervals for assay. The XRF data should only be considered as providing an indication of the potential grade of the drill interval sampled. At best it is a partial analysis.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters	The release includes a portion of the Socheon 1:100,000 Total Magnetic Airborne Magnetic Imagery ^{D4} .
	used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivations, etc.	The Company purchased this image along with other images produced by the Korea Institute of Geoscience and Mineral Resources (KIGAM) as part of the country wide aeromagnetic atlas (Published Dec 2008). The Company has received permission from KIGAM management permitting the use of the KIGAM magnetic images in its ASX announcements, shareholder communications and corporate presentations.

Criteria	JORC – Code of Explanation	Commentary
		The magnetic survey was undertaken by KIGAM using a Geometrics G-813 Proton Magnetometer. The flight lines were flown East-West at a 1 km line spacing with North-South tie lines flown at a 5 km spacing. The flight altitude for the survey was 100-200m above ground level. The data processing involved setting the data level at 300m above mean sea level by upward/downward continuation. The International Geomagnetic Reference Field (IGRF) was used to assist with the removal of total magnetic anomaly. The KIGAM colour total magnetic contour maps are printed at 1:100,000 scale and referenced using the Bessel ellipsoid and the Tokyo datum with latitude and longitude coordinate marked. The Python ground magnetics survey was completed using a Geometrics G857 Proton Magnetometer on north-south orientated survey lines spaced 100m apart, with 5m station intervals along the survey lines. Station positions were recorded using a hand-held Garmin GPS (+/- 5m accuracy).
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	No blanks or CRM samples were analysed during the spot XRF readings undertaken on hole UBD0005. No sampling has been undertaken as yet on core from hole UBD0005. The Company intends to include standards, blanks and undertake regular repeat sampling during the laboratory analyses of the drill core. Ground magnetic data and GPS locations have been transferred electronically to independent geophysical consultants Southern Geoscience Consultants for QA/QC and processing.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	No sampling has been undertaken as yet on core from hole UBD0005. No intersections have been reported apart from commentary on spot XRF readings within selected intervals. None of the results reported or commented upon in this release have been independently checked by non-Company personnel. This is not considered material at this early reconnaissance stage of the project's evaluation.
	The use of twinned holes.	This is the company's first phase of drilling at the Ubeong Project and at this stage no holes have been twinned.

Criteria	JORC – Code of Explanation	Commentary
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	The company's drill holes are logged into an excel base drill log with the data routinely transferred to Perth for entry into the main company database. The Company's XRF data is stored in an excel database and
		routinely transferred to the Perth Head Office.
	Discuss any adjustment to assay data.	The data presented in the Appendices is drill hole location data and a tabulation of the spot XRF readings.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill holes will all be down hole surveyed. The collar locations and starting azimuth will be confirmed using a DGPS unit provided by an independent contract surveyor. The collar of hole 5 UBD0005 has been surveyed with a DGPS unit but the additional planned hole UBD0006 only has a provisional location based on surveying the collar location with a hand-held Garmin GPS unit.
	Specification of the grid system used.	Ground Magnetic Survey data are recorded in WGS84, UTM zone 52N coordinate system.
		Similarly, all the company's drill data and surface geological and sample data is compiled in the WGS84, UTM zone 52N coordinate system.
	Quality and adequacy of topographic control.	The National Geographic Information Institute (NGII) has 1:5,000 scale digital contour data for the entire country.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The Company's drilling and data compilation has been undertaken to a standard that would allow for it to be used in any future Mineral Resource estimate but at the point in time it is impossible to say whether any of the hole data would be used in the estimation of a Mineral Resource.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The Company's drilling and data compilation has been undertaken to a standard that would allow for it to be used in any future Mineral Resource estimate but at the point in time it is impossible to say whether any of the hole data would be used in the estimation of a Mineral Resource.
	Whether sample compositing has been applied.	None of the XRF results have been composited.

Criteria	JORC – Code of Explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The holes were drilled in an effort to minimise any sampling bias. The Company's drilling and data compilation has been undertaken to a standard that would allow for it to be used in any future Mineral Resource estimate but at the point in time it is impossible to say whether any of the hole data would be used in the estimation of a Mineral Resource. The structural orientation data being generated from this first phase of drilling will be used to help design future drill holes at the Python prospect.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	At this early stage of the drill hole data evaluation it looks like the main mineralised zone dips steeply to the south-east and that the initial drill hole and follow-up hole have been designed to intersect this structure at a high angle. I places mineralisation is also developed along the local bedding foliation. In the initial planning of the Python Prospect drilling hole UBD0005 was sited based on trends seen in both the ground magnetics and in the soil anomaly contouring (Figure 3).
Sample security	The measures taken to ensure sample security.	The XRF data is downloaded directly from the instrument to a text file and then matched in an excel spreadsheet with the measured depths via the recorded reading number. This excel data is then transferred electronically to the Perth office. The core from the Python drilling programme is reviewed and orientated at the drill site then transferred to the Company's Ubeong office for detailed logging before then being trucked to the secure Sotae core shed for cutting and storage.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken of the XRF procedure at this stage. No sampling has been undertaken as yet on core from hole UBD0005. It is intended that all zones with elevated base metal XRF results will be sawn in half with the base of hole core piece kept as a permanent record and the other half sent to ALS Perth for assay.

(Criteria in this section apply to all succeeding sections.)

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC – Code of Explanation	Commentary
Tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	On 27 th April 2017, MDS covering the historic Chilbo mine workings blocks Hyeondong 59, 60 and 69 were accepted and the Company was formally granted the exploration rights for up to 7 years over these three titles ^{D8} . In addition, in mid-June 2017, the MDS field survey was completed over blocks Hyeondong 70 and 78 and MDS reports have been filed with the Ministry of Trade, Industry and Energy (MOTIE) for the grant of these blocks. On the 25 th August 2017, the company was formally granted title for exploration over these 2 blocks ^{D9} . On the 1 st May 2018 a field inspection was completed by the Ministry staff of the adjoining Hyeondong 68 title and formal notification of grant of tenure over this block is expected in early June 2018. Exploration rights are granted by commodity for tenement blocks defined by the GRS080 grid system over 1x1 minute graticule blocks. The Ministry of Trade, Industry and Energy (MOTIE) reviews the Mineral Deposit survey (MDS) report and if satisfied, will issue an exploration right.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Company has been granted tenure for blocks Hyeondong 59, 60, 69, 70 and 78 for up to 7 years, including an initial 3-year period. Following the successful filing of the MDS, the applicant is required to file a Prospecting Application (PA). The PA report details the planned exploration activities to be completed over the tenement during the initial 3-year prospecting period. This includes the completion of a minimum quantum of geophysical surveys, geochemical surveys or drilling as defined under the Mines Act. Provided that at least 50% of the statutory requirement is completed within the initial 3-year prospecting period, the tenement holder is entitled to apply for an additional 3-year extension to facilitate the completion of the specified exploration programme. A Prospecting Report must then be submitted to the Ministry at the completion of the exploration programme. An additional element was added to the process in early 2017 when the Ministry decreed that a tenement holder must include details of the defined Mineral Resource with any application for extension to an Exploration Right or for the grant of a full Mining Right. There are minimum Resources requirements that must now be met at each stage of the application process. The tenement holder must then submit a Mine Planning Application (MPA) to the local Government Authority who will, if the MPA is approved, grant tenure for mining for a period of 20 years subject to statutory

Criteria	JORC – Code of Explanation	Commentary
		requirements as set out under the terms of the MPA approval. The applicant holding a Mining Right can apply for extensions provided all statutory requirements have been met over the life of the mine.
Exploration done by other parties	Acknowledgement and appraisal of exploration by other parties.	KIGAM has completed high level reconnaissance surveys across the country and specifically across the Socheon 1:50,000 sheet that includes both the Chilbo and Ilweol prospects. These surveys included airborne geophysics ^{D6} , regional scale stream sediment surveys and large scale regional geological mapping ^{D7} .
		The Company has no records of the past production from any of the historic mines in the district.
Geology	Deposit type, geological setting and style of mineralisation.	The geological target is skarn associated zinc, lead, copper, gold and silver mineralisation.
		The limited rock chip assay results and soil sampling results reported previously by the company indicate that there is potential in the area for zinc, lead, copper, gold and silver ^{D3,D5} .
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill	A tabulation of location details for the drill holes completed to date is included as Appendix 1. This tabulation also includes location details of the next hole planned in the current drill programme.
	holes: • easting and northing of the drill hole collar	Location details for the Company's 2 Python Prospect drill holes are summarised in Appendix 1.
	 elevation or RL (Reduce Level) – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length 	The XRF analyses are purely point readings to help in the selection of intervals for assay. The XRF data should only be considered as providing an indication of the potential grade of the drill interval sampled. The XRF data is tabulated in Appendix 2.
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	The Company's drilling at Python is ongoing with no assaying undertaken at this point in time. The XRF data commented upon in this release is spot data generated to aid in the identification of drill intercepts for assay.

Criteria	JORC – Code of Explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	The images in this release relate to rock chip and soil samples collected by Company personnel as part of a broader follow-up of earlier stream sediment surveys over the Ubeong Project area. The results of the sampling work have been discussed in detail in numerous prior releases D3, D5. No weightings or averaging has been applied to the XRF data. All the data presented in this release is raw data. The photographic images in this release relate to drill core from UBD0005.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No sampling has been undertaken as yet on core from hole UBD0005 apart from averaging of XRF readings taken as spot readings that do not represent anything but an approximate representation of the grade of a drilling intersection.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent vales have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	The broad zone of sulphide mineralisation from 43m to 68m, including the 9m zone from 54m, is characterised by disseminated sulphide blebs, sulphide veinlets, layered sulphides and breccia matrix fill sulphides (see Figure 1) the layering of which is at a high angle to the drill core, thus the intersection widths are a reasonable approximation of true width. However, detailed logging and assessment of structural orientation data has not yet been completed and the true width of this interval has not been fully ascertained at this point in time. This zone has not been systematically assayed at a laboratory.
		Spot XRF readings have been taken at 10cm intervals.
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The drill hole UBD0005 has intersected the sulphidic zones at a relatively high angle to the mineralisation and thus the intersection widths are an approximation of true width.

Criteria	JORC – Code of Explanation	Commentary
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The true width as discussed above was calculated using all available geological data but is limited in accuracy due to the absence of down hole surveys and detailed logging of the drill core and a full assessment of the core orientation data obtained during the drill programme and should only be considered an approximation.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figure 3 shows the approximate locations of the drill holes based all the data the Company has available to it. The drill holes are shown on the recently acquired ground magnetics data image with the surface trend of the skarn limestone horizon interpreted and superimposed over the magnetics. Figure 2 also shows all of the granted blocks and applications at the Ubeong Project, including Hyeondong 69, that contains the Python prospect as well as magnetics imagery, soil and rockchip sampling data and tenement locations. The photographic image (Figure 1) is an example of the breccia-matrix sulphide mineralisation observed in hole UBD0005. A cross section view has not yet been compiled as the detailed logging of UBD0005 has not yet been completed and the hole has not yet been down hole surveyed.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The detailed hole collar location for UBD0005 and the planned location for hole UBD0006, and designed dip and azimuth details is summarised in Appendix 1. A table of XRF data from the spot drill-core readings is included as Appendix 2. Hole UBD0005 has not been logged in detail as yet and only summary details of the geology for the hole are included in the main body of this release.

Criteria	JORC – Code of Explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The reader is directed to the Company's early releases which included rockchip samples from the Python prospect, collected from workings and outcrops to the north and south of the UBD0005 collar ^{D3} . To date the company has completed reconnaissance stream sediment survey in the area, limited follow-up rock chip sampling and a detailed soil sampling survey on north – south oriented, 100m spaced lines at 25m sample points along each north-south line, with XRF readings of samples previously reported ^{D5} . A ground magnetics survey has covered the central core area of the Python prospect (see imagery Figure 3).
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	The Company plans to complete detailed geological mapping on the Python tenement.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Figure 2 also shows all of the granted blocks and applications at the Ubeong Project, including Hyeondong 69, that contains the Python prospect as well as magnetics imagery, soil and rockchip sampling data and tenement locations. The limestone – skarn units and the fault structures intersecting those units have been interpreted and highlight the northwest trending corridor of interpreted mineralised structures at Chilbo and Python.
		Figure 3 shows the approximate locations of the drill holes based all the data the Company has available to it. The drill holes are shown on the recently acquired ground magnetics data image with the surface trend of the skarn limestone horizon interpreted and superimposed over the magnetics. Soil sampling results (Pb) have been contoured and demonstrate the northeast – southwest trend of the potential mineralisation and immediate extensions to be targeted.
		A cross section view has not yet been compiled as the detailed logging of UBD0005 has not yet been completed and the hole has not yet been surveyed.

Appendix 1: Details of Python Diamond Drilling

HoleID	Easting	Northing	mRL	Hole Depth	Dip°	Azimuth°
UBD0005	512966mE	4079225mN	595.7	150.26m	-45	359
UBD0006*	513000mE	4079164mN	597	0m to date	-45	359

^{*}Collar coordinates for hole UBD0006 have been surveyed using a hand-held Garmin GPS unit. Down hole survey have not yet been completed and the dip and azimuth details are based on design only.

Appendix 2: UBD0005 hand-held XRF readings (Niton), parts per million (PPM)

< – below limits of detection

Depth	Мо	Pb	As	Zn	W	Cu	Fe	Mn	Ca	S	Ва	Sb	Sn	Ag	Pd	Bi	Mg
27.9	<	55	21	293	<	<	23693	2484	1951	799	436	28	77	<	<	<	<
28.0	<	587	<	12019	<	<	56173	9394	13091	6100	636	76	177	15	<	<	<
28.1	<	962	<	1714	<	<	5717	774	436	1054	117	<	126	<	<	<	<
28.2	<	12	<	487	<	47	5501	1041	1507	3095	401	45	87	<	<	<	<
28.3	<	<	<	94	<	<	17339	767	1413	8459	288	24	46	<	<	<	<
28.4	<	<	<	52	<	34	6972	2733	2191	208	322	22	68	<	<	<	<
28.5	<	70	<	31	<	<	5318	1227	2159	222	485	33	50	<	<	<	<
28.6	<	<	<	30	<	33	19854	3727	2489	3401	345	29	41	<	<	<	<
28.7	<	37	<	110	<	~	17750	3352	4059	1126	430	47	68	12	<	<	<
28.8	<	40	<	87	<	<	29401	3744	4138	18456	350	31	79	<	<	<	12499
28.9	<	13618	<	65792	<	283	204034	24364	8279	109468	198	107	117	101	<	<	<
29.0	<	2753	<	3724	<	37	31665	19754	1298	11881	293	26	76	29	<	<	<
29.1	8	1969	89	2457	<	54	44060	5823	4050	44199	695	38	79	13	<	<	<
29.2	<	224	165	249	67	28	22248	1478	660	8170	635	27	150	<	<	<	<
29.3	<	<	110	37	59	<	27689	6897	956	1565	509	26	96	<	<	21	<
29.4	<	<	41	19	81	29	25077	5193	5826	9361	496	28	58	<	<	<	<
29.5	<	50	18	98	<	35	42125	11405	1266	7320	746	24	86	<	<	23	<
29.6	<	<	170	262	<	68	40960	13378	1410	5009	819	35	63	<	<	<	<
29.7	<	53	23	124	<	<	40743	4130	1222	920	1079	43	75	<	<	<	<
29.8	<	1593	76	13173	<	133	102902	42569	2925	21406	371	<	<	<	<	<	<
29.9	<	37	12	179	<	33	29756	3067	2359	3515	1060	24	47	<	<	27	<
30.0	<	<	96	163	<	<	91993	13735	2991	5241	1044	30	71	<	<	<	<
30.1	<	<	53	860	<	36	66096	23298	2197	5270	611	31	78	<	<	<	<
30.2	<	17	23	83	<	41	47187	6194	2351	2333	1066	25	61	<	<	<	<
30.3	<	20	53	100	<	<	29279	2326	2844	6955	1258	49	74	<	<	22	<
30.4	<	83	<	167	<	<	22753	1223	4378	9876	919	41	47	<	<	18	<
30.5	<	39	<	44	<	<	82774	11173	3659	2532	815	32	38	<	<	<	12744
30.6	<	34	40	637	<	57	77084	7096	1860	16882	734	<	57	<	<	17	<
30.7	<	36	37	619	<	39	84348	12896	2511	27496	875	25	46	9	<	<	<
30.8	<	22	12	56	<	33	79820	7554	3315	2244	1022	<	50	<	<	<	13426
30.9	<	20	<	247	<	<	102654	12285	6470	4837	781	<	<	<	<	<	<
31.0	<	<	<	154	<	<	31231	3166	2311	3518	920	24	58	<	<	26	<
31.1	<	24	<	2340	<	74	54358	10113	1601	16764	618	38	32	<	<	<	<
31.2	<	62	13	177	<	35	24279	2706	1198	1172	555	29	29	<	<	<	<
31.3	<	<	<	252	<	<	33835	4366	1136	3444	455	28	36	<	<	<	<
31.4	<	<	13	1299	70	35	32705	6072	1260	1653	558	32	41	<	<	<	10011
31.5	<	<	9	904	<	<	21352	1945	646	709	454	30	34	<	<	<	<
32.0	<	<	<	557	64	51	34463	5433	1076	665	464	34	66	<	<	<	<
32.1	<	<	<	2713	<	<	73191	6426	566	2028	486	<	<	<	<	<	<
42.0	<	<	23	98	148	69	65552	28790	2234	2855	921	<	88	<	<	<	<
42.1	<	67	<	332	125	174	99845	30617	4059	26661	748	<	60	<	<	<	<
42.2	<	21	<	180	<	<	43543	22669	1282	1125	970	36	87	<	<	<	<

Danath	14-	Dla	۸۰	7	147	C	- -	NA	C-	C	D-	Ch	C	۸-	P.4	n:	N4-
Depth	Мо	Pb	As	Zn	W	Cu	Fe	Mn	Ca	S	Ba	Sb	Sn	Ag	Pd	Bi	Mg
42.3	<	32	19	42	<	<	18382	526	1363	12143	894	47	154	<	<	23	<
42.4	<	2639	<	2075	222	33	13758	1515	1148	3452	288	<	106	12	<	<	<
42.5	<	2583	<	385	<	27	17675	1263	1634	17517	64	<	35	<	<	<	<
42.6	<	6749	<	4025	<	<	10837	1482	749	7929	142	<	1003	15	<	<	<
42.7	17	143	274	2827	<	<	47317	579	2283	50652	<	<	<	11	<	<	<
42.8	<	46	47	214	70	27	31103	2623	6334	26456	336	35	178	<	<	<	<
42.9	6	1201	<	4502	<	<	62730	4582	1806	25417	286	<	182	13	<	<	17233
43.0	<	148	391	352	<	96	238050	12999	14626	210425	238	<	87	<	<	<	<
43.1	<	<	<	116	80	<	62545	32644	3450	1596	470	63	147	<	<	<	25425
43.2	<	247	<	271	<	44	59110	24212	3869	2180	466	<	167	<	<	<	<
43.3	<	29	<	292	<	37	50161	13243	1715	818	558	33	127	<	<	22	<
43.4	<	258	<	469	69	65	62801	3430	4245	20696	264	<	125	<	<	<	<
43.5	8	77	52	1026	<	181	84004	392	1526	140514	<	<	98	18	<	<	<
43.6	<	631	<	306	<	37	37095	2904	2643	17833	253	33	135	<	<	<	<
43.7	<	30	<	317	<	<	28259	2335	1205	24233	333	39	78	<	<	<	<
43.8	<	46	<	113	<	43	17187	3267	839	391	360	35	72	<	<	<	<
43.9	9	34	33	275	77	<	21482	2764	800	27799	312	27	64	<	<	<	<
44.0	<	67	<	44	<	<	24150	6466	1421	855	310	<	87	<	<	<	<
44.1	<	<	8	81	<	<	13841	3116	829	1064	355	28	65	<	<	<	<
44.2	<	32	<	120	<	<	14419	1588	823	281	406	23	47	10	<	<	<
44.3	<	<	<	25	<	<	13227	3033	1325	1182	442	31	61	<	<	<	<
44.4	<	<	12	585	<	33	18331	5263	1097	1043	462	30	62	<	<	<	<
44.5	<	18	10	91	<	<	16834	3872	949	1052	447	22	62	<	<	<	<
44.6	<	51	<	24	<	<	15253	2150	1312	1597	387	25	44	<	<	<	<
44.7	<	<	11	54	<	<	12310	1801	860	624	319	35	57	<	<	<	<
44.8	<	<	11	33	<	<	15742	2997	919	1525	312	28	68	<	<	14	<
44.9	<	<	<	38	<	<	17392	3667	1013	1340	339	39	64	<	<	<	<
45.0	<	31	18	88	<	<	20238	1605	1165	3103	412	28	50	<	<	<	<
45.1	<	116	<	26	57	<	21797	2376	1167	823	413	37	60	<	<	<	<
45.2	<	288	<	1740	<	<	15188	4642	669	2414	125	<	<	7	<	<	<
45.3	5	62	<	27	<	<	11670	1126	692	801	311	26	60	<	<	<	<
45.4	<	84	<	21	<	<	20535	2446	794	529	439	34	74	<	<	<	<
45.5	<	46	<	22	<	<	11267	1050	489	368	428	23	66	<	<	13	<
45.6	<	24	<	21	<	<	12631	1425	616	275	287	<	39	<	<	<	<
45.7	<	22	<	59	<	<	14560	5130	1548	1340	306	<	40	<	<	<	<
45.8	<	323	<	20	<	<	17104	3482	712	730	222	22	57	<	<	<	<
45.9	<	114	<	47	<	<	33672	4928	1365	1568	369	32	60	<	<	<	<
46.0	<	<	<	33	<	<	12861	2846	880	432	170	<	25	<	<	<	<
46.1	<	11	13	43	<	<	18601	2523	1531	1340	295	27	40	<	<	<	<
46.2	<	16	10	34	<	<	25187	2808	923	499	457	34	55	<	<	<	<
46.3	<	<	<	43	74	<	36213	4473	1144	668	517	30	47	<	<	<	8738
47.3	<	<	<	66	<	<	18142	3983	945	4058	336	32	40	<	<	<	<
47.4	<	17	<	41	<	32	18889	4022	717	1390	408	22	65	<	<	18	<
47.4	<	<	23	33	<	<	47047	19315	35136	249	488	53	117	<	<	<	<
-																	
47.6	<	12	7	154 22	<	<	25820 29411	11232 10471	1095	682	325	30	56 81	<	<	<	<
47.7 47.8	7	<			<	22			973	188	407	23	81	<	<	<	<
-	7	< 110	10	41	< 100	32	37854	17331	1681	2004	475	23	66	<	<	<	<
47.9	<	118	25	41	100	<	22984	3677	680	1246	952	34	78	<	<	18	<
48.0	6	118	<	161	58	<	36195	4443	12742	20423	368	<	64	<	<	<	<
48.1	8	23	<	156	<	<	21885	4918	1143	1636	285	<	120	<	<	18	<
48.2	<	19	<	152	<	34	11281	1198	991	788	322	28	103	<	<	<	<
48.3	<	104	<	1720	<	27	28527	10359	884	3135	311	29	58	<	<	<	<
48.4	<	27	<	276	132	<	21510	4817	672	644	648	30	80	<	<	17	<

Donth	140	Dh	۸۵	70	W	C	Го	NAn	Co	c	Do	Ch	Cn	۸ «	DΨ	n:	Ma
Depth 48.5	Mo	Pb	As	Zn		Cu	Fe	Mn	Ca	S	Ba	Sb	Sn 90	Ag	Pd	Bi	Mg
	<	19	18	82	68	< 27	27359 27220	6786	1008	584	547 513	32		<	<	<	<
48.6		32	11	35				3116	797	164		32	79				
48.7	<	32	17	59	48	< 27	23406	4914	1278	6484	350	<	86	<	<	<	< 0.470
48.8	<	65	<	129	<	27	23164	3385	748	3472	320	<	65	<	<	<	8479
49.0	<	351	<	848	<	40	25655	4735	825	5903	311	<	70	<	<	<	<
49.1	<	170	<	177	64	29	34043	7103	2280	11375	234	<	54	<	<	<	<
49.2	<	127	<	22	55	<	16750	2868	793	442	347	22	54	<	<	<	<
49.3	<	192	<	49	<	<	19545	3943	635	2821	362	34	79	<	<	<	<
49.4	<	591	<	654	<	56	29221	6248	834	3633	253	<	80	<	<	<	<
49.5	<	25	12	59	<	<	28011	2688	2106	3608	2090	49	113	15	<	29	<
49.6	<	410	<	205	<	74	20044	2822	769	7460	<	<	<	7	<	<	<
49.7	<	<	<	20	<	<	16619	2014	687	756	303	30	45	<	<	<	<
49.8	<	25	<	35	<	<	22418	4829	1094	2647	366	20	76	<	<	<	11473
49.9	<	11	<	31	55	<	14272	3178	949	255	366	<	62	<	<	<	<
50.0	<	<	<	44	<	<	16923	4572	910	3160	405	32	55	<	<	<	<
50.1	<	29	<	732	<	27	27731	7203	1486	6552	363	36	63	<	<	<	<
50.2	<	<	<	134	<	<	25959	7694	1090	1759	383	30	58	<	<	<	<
50.3	<	<	23	44	<	34	37451	5120	1519	4200	1212	31	84	<	<	<	<
50.4	<	<	11	30	<	<	23125	6950	1428	728	552	32	48	<	<	<	<
50.5	<	16	34	96	<	44	41878	3537	1333	572	1280	40	53	<	<	20	12290
50.6	<	<	<	78	77	<	21827	1525	907	1208	804	30	51	<	<	14	<
50.7	<	24	<	176	<	49	35129	3080	1394	2809	915	29	54	<	<	19	<
50.8	<	<	13	123	<	<	34449	3414	1307	1137	918	26	49	<	<	14	<
50.9	<	<	22	429	<	38	50091	4974	1212	2849	909	28	63	<	<	<	13028
51.0	<	<	41	63	61	31	50207	4418	1603	244	1174	42	59	<	<	<	11894
51.1	<	<	12	2083	<	60	7169	954	333	5883	286	23	29	<	<	57	<
51.2	<	<	28	65	<	35	38630	2944	1457	496	1098	33	52	<	<	16	11144
51.3	<	<	51	74	<	<	46512	6866	1593	952	1368	24	55	<	<	31	<
51.4	<	202	<	118	<	<	33554	6088	1301	466	209	<	21	<	<	<	10389
51.5	<	<	18	36	<	30	34971	3928	1166	248	528	30	44	<	<	<	10812
51.6	<	<	12	28	<	<	20462	3406	853	138	252	<	<	<	<	13	<
51.7	<	<	<	36	<	28	15401	1557	584	130	536	<	20	<	<	<	<
51.8	<	14	15	66	<	<	39053	6037	1532	2886	1247	<	32	<	<	18	<
51.9	<	27	<	48	<	<	38423	3716	548	258	265	<	<	<	<	<	17954
52.0	<	<	<	37	51	<	31437	3357	689	165	274	28	29	<	<	13	9161
52.0	<	<	9	66	<	42	50845	8048	940	<	354	<	37	<	<	<	15180
52.2	<	257	<	34	<	<	24950	2894	709	222	328	29	59	<	<	<	9836
52.3	<	<	39	52	<	<	44789	5561	1605	264	1143	42	67	<	<	<	<
52.4	<	16	274	45	58	<	23136	1854	1456	691	965	21	44	<	<	<	<
52.5	<	86	78	88	<	48	82506	10083	1526	735	1096	33	40	<	<	<	<
52.6	7	<	26	76	<	<	51352	5976	1433	1356	1085	<	32	<	<	<	<
52.7	<	284	30	93	<	<	41975	2780	512	258	522	21	56	15	<	<	<
52.8	<	51	37	51	<	31	48287	4101	1071	513	1489	24	49	<	<	35	13989
52.9	<	50	167	79	135	30	47303	4464	1714	233	2023	43	46	<	<	<	13100
53.0	<	428	<	164	<	<	22027	1958	6108	1052	507	35	54	<	<	<	10067
53.1	<	<	<	32	<	28	17016	1816	1842	131	435	24	<	<	<	<	8883
53.2	<	15	<	38	<	<	11472	2077	8238	126	575	<	34	<	<	<	12793
53.3	7	64	266	114	<	<	28536	2205	1400	1313	724	29	45	<	<	20	17683
53.4	9	<	247	68	<	<	27945	1730	1243	910	1334	54	63	<	<	23	13534
53.5	6	248	151	78	<	36	43023	3911	886	521	1423	46	53	<	<	22	15474
53.6	7	13	157	37	<	<	32510	2273	706	566	1192	38	57	<	<	24	<
53.7	11	15	214	36	<	32	46475	3127	707	715	1094	39	52	<	<	48	13830
53.8	7	100	269	47	<	41	72606	6823	2107	1534	933	72	42	<	<	<	12001
1																	

Donth	140	Dh	۸۵	70	۱۸/	C	Го	NAn	Co	c	Do.	Ch	C n	۸ «	D4	D:	Ma
Depth	Mo	Pb	As	Zn	W	Cu	Fe	Mn	Ca	S 267	Ba	Sb	Sn	Ag	Pd	Bi	Mg
53.9	6	28	181	26	<	<	31529	2346	940	267	1034	42	52	<	<	19	< < <
54.0	<	33	<	299	<	<	144590	16947	5227	1606	280	<	149	<	<	<	66274
54.1	<	502	<	112	<	171	124048	117247	7786	26174	259	175	109	<	<	<	<
54.2	<	1574	<	20991	<	606	99509	22878	1797	28526	204	<	129	22	<	<	<
54.5	<	15278	<	16402	<	503	364437	4880	6282	527582	371	209	975	139	<	<	<
54.6	<	2066	<	4990	<	449	174442	5181	2664	209859	141	<	344	26	<	<	<
54.7	<	432	<	2249	<	282	123185	203360	8748	51936	265	<	149	13	<	<	30433
54.8	<	932	<	5389	<	684	295733	130004	3943	46898	210	<	274	24	<	<	49528
54.9	<	2204	<	4037	<	97	185588	65658	3406	68296	350	47	238	25	<	<	<
55.0	<	227	<	1136	<	120	69135	40234	2226	50827	106	<	<	<	<	<	<
55.1	10	100	<	885	<	53	23494	6329	927	5353	1079	26	60	<	<	17	10155
55.2	5	17	52	20	69	55	29460	11230	1481	5616	1181	25	67	<	<	20	<
55.3	9	27	68	1040	95	28	39816	7262	1724	3340	928	44	52	<	<	14	<
55.4	<	<	75	50	<	30	39270	5865	1723	<	918	71	55	<	<	<	9986
55.5	9	<	91	90	<	42	76697	16826	3330	15535	1039	91	68	<	<	<	<
55.6	9	12	59	38	<	38	30253	2514	1408	1049	960	36	49	<	15	22	<
55.7	5	<	17	35	<	36	21906	1846	974	776	850	45	43	<	<	21	10023
55.8	<	<	14	45	<	<	34499	3074	1188	569	938	57	50	<	<	26	<
55.9	<	<	9	50	<	<	39546	3139	1669	7940	1173	141	51	<	<	24	<
56.0	<	<	<	59	57	33	38353	2788	2017	619	922	28	40	<	<	<	15298
56.1	<	17	90	59	<	<	133505	290	4220	180306	382	118	<	10	<	<	<
56.2	<	<	<	54	<	<	27207	1813	1686	2147	422	30	35	<	<	<	12783
56.3	<	<	<	73	'	51	50771	3532	3518	667	1089	33	57	<	<	23	15774
56.4	<	<	12	66	<	54	60505	5515	4378	1084	1023	<	30	<	<	<	<
56.5	8	265	<	142	<	79	35072	2504	1560	1448	1010	30	61	<	<	<	<
56.6	15	60	33	401	<	162	40599	3418	1816	3797	764	74	70	<	<	<	13058
56.7	<	539	<	812	<	71	24439	3312	2619	7123	360	30	65	<	<	<	<
56.8	<	31	<	233	<	32	18593	1641	1218	1655	402	35	37	<	<	<	<
56.9	10	<	<	17	<	<	27478	2509	2252	6209	722	37	66	<	<	18	<
57.0	13	<	14	68	<	52	27623	2500	1759	1762	982	36	49	<	<	17	9541
57.1	10	<	20	38	59	30	24746	2029	1250	4557	941	62	50	<	<	18	<
57.2	14	142	25	88	59	<	36883	5117	44052	8653	602	57	92	<	<	<	12732
57.3	7	27	<	20	<	<	22520	2733	3297	1584	935	40	67	<	<	18	<
57.4	7	105	24	43	<	73	22634	2388	2833	10358	784	51	62	<	<	26	<
57.5	11	17	23	36	<	59	20563	1873	2089	6193	988	46	39	<	<	26	<
57.6	8	12	24	36	<	30	29793	3809	1641	643	945	35	44	<	<	<	14027
57.7	21	<	14	140	<	69	58169	7586	3147	3323	929	33	120	<	<	<	17593
57.8	<	<	17	29	<	37	28817	4124	3359	1817	624	32	59	<	<	<	8455
57.9	<	<	13	112	<	34	6992	714	1460	7744	250	<	37	<	<	<	<
58.1	<	429	<	85	72	<	18211	998	4295	12978	765	<	66	<	<	<	<
58.2	<	111	64	1415	<	44	35225	6874	14974	24058	249	<	43	<	<	<	<
58.3	<	40	29	162	86	49	60209	4174	3724	49772	761	35	94	<	<	<	<
58.4	<	13	28	323	<	53	36498	6358	4506	6774	667	50	81	<	<	<	<
58.9	6	60	13	126	<	<	33177	12318	1365	2167	1071	60	70	<	<	<	<
59.0	<	2259	<	2895	<	119	90306	10955	2222	18819	610	34	167	<	<	<	<
	<	316	<	610	<	82	20475	1937	1436	4828	488	50	87	<	<	18	8550
59.1 59.2	<		<	10045	<										<	10	< <
-		237				162	63950	8994	2070	13609	632	45	119	18			
59.3	<	20	<	100	<	31	50140	8657	3253	544	819	42	62	<	<	20	<
59.4	<	112	<	109	<	<	19575	1527	975	1417	514	52	78	< 42	<	<	<
59.5	<	254	<	120	58	35	19624	2762	757	832	397	50	40	13	<	<	<
59.6	<	444	<	508	<	34	41969	5770	936	1271	924	43	39	<	<	<	18148
59.7	<	<	13	292	<	33	35653	7038	1203	790	888	67	43	<	<	<	<
59.8	11	44	32	52	<	36	49492	8014	1442	293	1035	80	68	<	<	16	<

5		51		_			_			-		C.I.				5.	
Depth	Мо	Pb	As	Zn	W	Cu	Fe	Mn	Ca	S	Ва	Sb	Sn	Ag	Pd	Bi	Mg
59.9	<	63	16	133	<	69	53991	18720	1127	985	1059	35	133	<	<	19	11942
60.0	<	58	12	111	<	51	14616	558	1606	1427	1146	38	100	<	<	22	<
60.1	6	578	<	2440	<	59	32923	1791	1510	6881	405	34	77	<	<	<	<
60.2	<	198	<	1407	60	30	32118	974	1783	5918	203	38	62	<	<	<	<
60.3	11	32	22	746	<	<	15483	361	1088	12567	1285	48	113	<	<	30	<
60.4	<	195	<	1624	<	57	34108	2715	1196	5540	410	51	121	<	<	<	<
60.5	<	21	<	453	<	<	17008	1210	750	3814	366	32	61	<	<	17	<
60.6	<	678	<	618	<	31	26374	1480	965	3993	356	38	65	<	<	<	<
60.7	<	40	12	180	<	<	14468	1254	641	3233	401	41	73	<	<	<	<
60.8	6	51	<	47	<	28	3591	287	3206	4336	394	32	77	<	<	<	<
60.9	<	382	<	1711	<	<	4534	2102	80034	8823	345	37	113	<	<	<	<
61.0	<	112	73	1801	<	<	25103	316	2213	30471	341	27	89	<	<	<	<
61.1	<	69	24	243	<	30	5842	100	600	12865	360	35	53	<	<	<	<
61.2	<	77	<	270	<	<	5684	304	727	1002	267	<	75	<	<	<	<
61.3	<	238	22	306	<	<	14675	415	2136	3933	441	48	93	<	<	<	<
61.4	<	43	30	299	<	36	6903	299	2398	7168	398	36	98	<	<	<	<
61.5	<	2052	72	49715	<	88	22141	498	981	37370	150	<	150	<	<	<	<
61.6	<	584	<	1002	<	<	4896	175	5105	7868	437	39	121	<	<	<	<
61.7	7	147	23	1569	<	40	33632	202	12202	42686	289	48	53	7	<	<	<
61.8	10	950	55	2488	<	52	5513	760	49077	6615	342	<	76	<	<	<	10593
61.9	<	1378	<	39935	'	198	37559	6241	215687	35237	633	77	189	24	<	<	<
62.0	<	957	144	1024	63	31	29678	297	6765	47449	488	21	184	<	<	<	<
62.1	116	225257	14693	213771	'	567	61912	3079	13328	230865	<	400	3497	340	59	<	122153
62.2	9	4259	<	32121	<	103	27409	335	1408	57900	<	<	599	14	<	<	<
62.3	11	896	99	4178	<	43	16063	1933	99791	12869	244	53	87	<	<	<	<
62.4	<	21125	475	36765	<	441	204581	4053	44923	222880	414	564	556	51	<	<	<
62.5	33	858	531	23836	<	190	97219	2868	2206	67717	271	40	344	<	<	<	<
62.6	11	1963	<	3151	213	<	88713	160	810	147304	164	50	126	10	<	<	<
62.7	<	8534	<	7207	<	158	177856	1595	786	215626	251	<	336	28	<	<	<
62.8	<	1858	<	5396	<	169	263925	918	<	301232	285	47	166	21	<	<	<
62.9	<	6000	<	7240	<	164	184036	4281	402	151928	204	<	57	27	<	<	<
63.0	<	798	<	7859	<	<	91707	1325	2042	122800	<	<	53	<	<	<	<
63.1	28	182	27	8569	<	83	109350	1398	2709	141238	<	<	81	<	<	<	<
63.2	<	774	65	30470	608	108	157534	3023	681	213545	218	63	106	11	<	<	<
63.3	<	113	<	3158	<	100	64830	5830	899	43247	164	<	40	<	<	<	<
63.4	<	3525	<	3773	<	68	105386	3811	2453	146420	240	102	64	<	<	<	33141
63.5	10	347	<	1624	<	<	16790	2034	8352	5974	3275	38	115	<	<	33	<
63.6	16	489	54	992	<	53	60600	539	2438	68030	527	47	86	<	<	<	<
63.7	6	69	<	266	<	<	27922	2470	1220	6380	289	<	62	<	<	<	<
63.8	6	<	<	27	<	<	13500	1186	1115	3553	387	34	44	<	<	20	<
63.9	<	34	<	297	<	<	15062	2556	1024	1530	403	27	34	<	<	<	<
64.0	5	251	<	356	<	38	22004	4035	1350	1395	375	<	23	<	<	27	<
64.1	<	496	<	526	<	<	28350	5423	1531	5602	391	34	36	<	<	<	<
64.2	10	94	<	107	<	113	14769	2177	3135	3018	405	24	41	<	<	<	<
64.3	<	622	<	265	<	<	20002	659	720	18830	335	75	44	<	<	<	10551
64.4	<	503	<	270	<	28	25693	562	6328	48969	278	28	43	<	<	<	<
64.5	<	20	<	136	<	<	3648	510	681	2173	396	39	52	<	<	<	<
64.6	<	<	9	25	<	<	18657	3728	1353	299	437	32	32	<	<	22	<
64.7	5	17	13	41	<	<	27109	4792	2983	861	388	<	24	<	<	<	<
64.8	5	<	12	15	50	25	12554	2419	4498	532	419	36	34	<	<	<	<
64.9	<	341	26	344	<	<	16485	2323	2502	614	392	36	41	<	<	23	<
65.0	<	16	<	85	<	<	18318	1953	676	554	392	33	44	<	<	17	<
65.1	<	115	<	54	<	<	17074	2739	11459	246	456	37	32	<	<	14	<
03.1	_ `	113	`	J4		`	1/0/4	2/33	11433	240	430	31	34		_ `	14	`

	Danth	14-	DI	۸-	7	14/	C	r-	NA	C-	C	D-	Ch	C	۸-	P.4	n:	NA-
65.5	Depth	Мо	Pb	As	Zn	W	Cu	Fe	Mn	Ca	S	Ba	Sb	Sn	Ag	Pd	Bi	Mg
	-																	
	-																	
66.0 C C C C C C C C C	-																	
66.1																		
	-																	
66.3		<	<				<											
66.6	-																	
66.5	-																	
66.6 C		<	<	17	34	<	<	11665	1647	6444	119	481	40	27	<	<	13	<
66.7 90 19 64 < 13972 2346 3326 277 400 38 40 c 16		<	<	<	34	<	<	20887	2299	18535	<	399	30	38	<	<	<	<
66.8 c c 16 41 c c 27574 2609 1148 2.75 450 23 30 c c c c 66.9 5 105 31 93 c 34 22581 326 1158 84710 799 49 52 c c 1.12 c 1.21 c 1 488 462 218 615 c c c 2.1 c 2.21 c c 1.18 6.7 3119 c c 3232 606 610 1078 354 30 60 10 c d c 1164 20 c c 48 2579 c 172 c c c c c c <td>66.6</td> <td><</td> <td>15</td> <td>14</td> <td>61</td> <td><</td> <td><</td> <td>13035</td> <td>1528</td> <td>3175</td> <td>336</td> <td>497</td> <td>38</td> <td>43</td> <td><</td> <td><</td> <td>12</td> <td><</td>	66.6	<	15	14	61	<	<	13035	1528	3175	336	497	38	43	<	<	12	<
66.9 5 105 0.31 93 c 34 22511 326 1158 34710 799 49 52 c c 14 c 11 c 1188 c 31 14811 4622 340 1164 015 c c c 21 c 45 15700 4219 40 104 015 c c 19 c 17 c 45 15700 4219 300 13 c c 19 c 17 5500 1030 208 354 354 36 10 63 c c c c c 67 6 33 15663 2637 2039 791 400 45 48 c c c c c 4 40 19 484 299 31 1033 44 40 49 42 48 4 c c 4 4 <td< td=""><td>-</td><td></td><td>90</td><td></td><td></td><td></td><td><</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>16</td><td></td></td<>	-		90				<										16	
67.2 163 <	-					<			2609	1148	275				<	<	<	<
67.3 10 229 c 271 c 45 15780 4219 3097 1648 430 30 63 c c 19 c c 67.4 c 1156 c 11278 c c 3323 666 610 1078 354 39 69 10 c		5	105	31	93	<	34	22581	326	1158	34710	799	49	52	<	<	14	<
67.4 <	67.2	<		<	138	<	31	14381	4642	940	164	615	<	67	<	<	21	<
67.5 <	-	10					45		4219									
67.6 21 89 <		<		<	1278	<	<		666		1078	354	39	69	10	<	<	<
67.7 <	67.5	<	2493	<	3119	<	117	55405	10369	2028	39723	365	40	63	<	<	<	<
67.8 < 20 58 54 11638 1423 1033 159 481 29 33 < 17 67.9 475 945 143 13144 1740 3443 665 316 26 40 68.0 475 4941 1131 820 429 452 39 54 68.1 115 4941 1131 820 2210 322 28 53	67.6	21	89	<	264	<	46	16834	2799	5787	1788	295	26	34	<	<	<	<
67.9 <	67.7	<	104	<	576	<	35	15868	2637	2039	791	400	45	48	<	<	<	<
68.0 30 <	67.8	<	20	<	58	54	<	11638	1423	1033	159	481	29	33	<	<	17	<
68.1 C C 4941 1131 8454 2110 325 28 53 C C C C 68.2 C C 11 25 C C 9453 2252 4720 731 229 C	67.9	<	475	<	945	143	<	13144	1740	3443	665	316	26	40	<	<	<	<
68.2 11 25 <	68.0	<	30	<	819	59	31	10433	1034	820	429	452	39	54	<	<	<	<
68.3 <	68.1	<	<	<	125	<	<	4941	1131	8454	2110	325	28	53	<	<	<	<
68.4 6 C 284 C 10952 1482 4902 1266 484 32 66 C	68.2	<	<	11	25	<	<	9453	2252	4720	731	229	<	<	<	<	<	<
68.5 7 19 <	68.3	<	51	<	116	<	<	11830	2351	4714	405	344	38	43	<	<	<	<
68.6 <	68.4	6	<	<	284	<	<	10952	1482	4902	1266	484	32	66	<	<	<	<
68.7 9 14 <	68.5	7	19	<	80	58	39	11992	1858	2608	1011	454	28	41	<	<	<	<
68.8 8 155 <	68.6	<	67	<	75	<	39	14285	2682	4801	354	424	27	55	<	<	<	<
68.9 8 <	68.7	9	14	<	35	<	<	14531	2160	3099	284	551	37	48	<	<	18	<
69.0 6 14 <	68.8	8	155	<	714	<	31	17186	3314	12142	934	416	39	53	<	<	29	<
65.3 <	68.9	8	<	8	20	<	<	7042	1624	6516	126	458	29	52	10	<	14	<
65.4 20 <	69.0	6	14	<	24	<	<	11722	2224	12992	244	438	29	35	<	<	26	<
65.5 <		<	<	10	25	50	<	12483	1708	6376	<	415	35	35	<	<	17	<
65.6 43 25 3458 751 24004 611 546 26 33 <		<	20	<	43	<	38	11157	1532	6418	151	369	30	35	<	<	<	<
65.7 6 <		<	<	11		53	<	17089	2147	3212	148	573	52	50	<	<	<	<
65.8 <		<	<	<	43	<	25	3458	751	24004	611	546	26	33	<	<	<	<
65.9 7 <	65.7	6	<	24	187	<	<	4773	1050	7047	729	417	35	27	<	<	<	<
66.0 <	65.8	<	<	9	22	<	<	11383	1698	7228	139	424	38	35	<	<	13	<
66.1 <	65.9	7	<	16	27	<	<	11158	1365	8847	<	375	31	26	<	<	<	<
66.2 <	66.0	<	<	9	101	<	33	10354	1274	4930	159	398	36	40	<	<	11	<
66.3 <	66.1	<	<	15	22	57	<	15284	1198	7703	111	416	40	27	<	<	12	<
66.4 17 34 <	66.2	<	<	10	35	<	<	18871	1392	13196	418	386	39	32	<	<	14	10679
66.5 <	66.3	<	<	10	22	<	25	16777	1025	6940	112	385	25	31	<	<	<	8383
66.6 <	66.4	<	<	17	34	<	<	11665	1647	6444	119	481	40	27	<	<	13	<
66.7 < 90 19 64 < 13972 2346 3305 277 400 39 40 < < 16 <	66.5	<	<	<	34	<	<	20887	2299	18535	<	399	30	38	<	<	<	<
	66.6	<	15	14	61	<	<	13035	1528	3175	336	497	38	43	<	<	12	<
66.8 < 16 41 < 27574 2609 1148 275 450 23 30 < < < <	66.7	<	90	19	64	<	<	13972	2346	3305	277	400	39	40	<	<	16	<
<u> </u>	66.8	<	<	16	41	<	<	27574	2609	1148	275	450	23	30	<	<	<	<

Depth	Mo	Pb	As	Zn	W	Cu	Fe	Mn	Ca	S	Ва	Sb	Sn	Ag	Pd	Bi	Mg
66.9	5	105	31	93	<	34	22581	326	1158	34710	799	49	52	<	<	14	<
67.2	<	163	<	138	<	31	14381	4642	940	164	615	<	67	<	<	21	<
67.3	10	229	<	271	<	45	16780	4219	3097	1648	430	30	63	<	<	19	<
67.4	<	156	<	1278	<	<	3323	666	610	1078	354	39	69	10	<	<	<
67.5	<	2493	<	3119	<	117	55405	10369	2028	39723	365	40	63	<	<	<	<
67.6	21	89	<	264	<	46	16834	2799	5787	1788	295	26	34	<	<	<	<
67.7	<	104	<	576	<	35	15868	2637	2039	791	400	45	48	<	<	<	<
67.8	<	20	<	58	54	<	11638	1423	1033	159	481	29	33	<	<	17	<
67.9	<	475	<	945	143	<	13144	1740	3443	665	316	26	40	<	<	<	<
68.0	<	30	<	819	59	31	10433	1034	820	429	452	39	54	<	<	<	<
68.1	<	<	<	125	<	<	4941	1131	8454	2110	325	28	53	<	<	<	<
68.2	<	<	11	25	<	<	9453	2252	4720	731	229	<	<	<	<	<	<
68.3	<	51	<	116	<	<	11830	2351	4714	405	344	38	43	<	<	<	<
68.4	6	<	<	284	<	<	10952	1482	4902	1266	484	32	66	<	<	<	<
68.5	7	19	<	80	58	39	11992	1858	2608	1011	454	28	41	<	<	<	<
68.6	<	67	<	75	<	39	14285	2682	4801	354	424	27	55	<	<	<	<
68.7	9	14	<	35	<	<	14531	2160	3099	284	551	37	48	<	<	18	<
68.8	8	155	<	714	<	31	17186	3314	12142	934	416	39	53	<	<	29	<
68.9	8	<	8	20	<	<	7042	1624	6516	126	458	29	52	10	<	14	<
69.0	6	14	<	24	<	<	11722	2224	12992	244	438	29	35	<	<	26	<
67.4	<	156	<	1278	<	<	3323	666	610	1078	354	39	69	10	<	<	<
67.5	<	2493	<	3119	<	117	55405	10369	2028	39723	365	40	63	<	<	<	<
67.6	21	89	<	264	<	46	16834	2799	5787	1788	295	26	34	<	<	<	<
67.7	<	104	<	576	<	35	15868	2637	2039	791	400	45	48	<	<	<	<
67.8	<	20	<	58	54	<	11638	1423	1033	159	481	29	33	<	<	17	<
67.9	<	475	<	945	143	<	13144	1740	3443	665	316	26	40	<	<	<	<
68.0	<	30	<	819	59	31	10433	1034	820	429	452	39	54	<	<	<	<
68.1	<	<	<	125	<	<	4941	1131	8454	2110	325	28	53	<	<	<	<
68.2	<	<	11	25	<	<	9453	2252	4720	731	229	<	<	<	<	<	<
68.3	<	51	<	116	<	<	11830	2351	4714	405	344	38	43	<	<	<	<
68.4	6	<	<	284	<	<	10952	1482	4902	1266	484	32	66	<	<	<	<
68.5	7	19	<	80	58	39	11992	1858	2608	1011	454	28	41	<	<	<	<
68.6	<	67	<	75	<	39	14285	2682	4801	354	424	27	55	<	<	<	<
68.7	9	14	<	35	<	<	14531	2160	3099	284	551	37	48	<	<	18	<
68.8	8	155	<	714	<	31	17186	3314	12142	934	416	39	53	<	<	29	<
68.9	8	<	8	20	<	<	7042	1624	6516	126	458	29	52	10	<	14	<
69.0	6	14	<	24	<	<	11722	2224	12992	244	438	29	35	<	<	26	<