

ASX ANNOUNCEMENT

24 MAY 2018

Liontown on track for maiden lithium Resource at Kathleen Valley as latest assays confirm continuity and strike extensions of high-grade mineralisation

Resource drilling now in full swing, including diamond coring for metallurgical sampling

HIGHLIGHTS

• Mineralization at Kathleen's Corner remains open in all directions with extensions to the north, south and west confirmed by latest results, which include:

0	16m @ 1.6% Li₂O from 71m (KVRC0054), including:
	 2m @ 2.4% Li₂O from 74m; and
	 3m @ 2.0% Li₂O from 78m
0	18m @ 1.5% Li ₂ O from 73m (KVRC0078), including:
	 6m @ 2.3% Li₂O from 80m; and
	 1m @ 2.6% Li₂O from 89m
0	20m @ 1.5% Li ₂ O from 73m (KVRC0078), including:
	 11m @ 2.0% Li₂O from 134m
0	15m @ 1.5% Li ₂ O from 75m (KVRC0080), including:
	 4m @ 2.2% Li₂O from 76m and
	 3m @ 2.0% Li₂O from 86m

(True widths 85-95% of down-hole widths listed above)

• Latest assays include the thickest intersections recorded to date from the Mt Mann prospect and confirm the continuity of high-grade mineralization. Better intersections include:

0	18m @ 1.4% Li_2O from 72m (KVRC0073), including:
	 4m @ 1.9% Li₂O from 75m; and
	 5m @ 1.9% Li₂O from 83m
0	14m @ 1.3% $\rm Li_2O$ from 104m (KVRC0073), including:
	 5m @ 2.0% Li₂O from 104m; and
0	28m @ 1.4% Li ₂ O from 109m (KVRC0077), including:
	 14m @ 2.2% Li₂O from 109m
0	15m @ 1.9% Li ₂ O from 88m (KVRC0081), including:
	 10m @ 2.1% Li₂O from 92m

(True widths 80-90% of down-hole widths listed above)

- 50 x 50m resource definition drilling in progress to define the lithium mineralisation down to an average vertical depth of 100m. Program expected to be completed by end of June.
- Diamond core drilling designed to provide geological, geotechnical and metallurgical data has also recently commenced.

Liontown Resources Limited (ASX: LTR) is pleased to advise that it is continuing to make rapid progress towards establishing it's first-ever JORC lithium Resource at the Kathleen Valley Lithium Project, 680km north-east of Perth in WA (*Figure 1*) with latest drilling results continuing to support the potential for a significant spodumene-related lithium deposit.

Assays have now been received for the final 33 RC holes (KVRC0054-0086), drilled as part of a recent 46-hole, 5,919m program (*see Appendix 1*) designed to define the limits of mineralisation at the Kathleen's Corner prospect and to confirm the continuity of previously defined high-grade mineralisation at the Mt Mann prospect. The results indicate that:

- The Kathleen's Corner mineralisation is continuous over a strike length of at least 800m and remains *open* in all directions (*Figures 1 and 2*); and
- High-grade mineralization at the Mt Mann prospect (*Figures 3 and 4*) is continuous over a strike length of 600m strike and remains open at depth.

Resource definition drilling on a 50m x 50m pattern is now well underway and is expected to be completed by the end of June; however, the program maybe extended depending on the limits of the Kathleen's Corner pegmatite swarm, which have yet to be defined.

Independent mining consultant group, Optiro Pty Ltd, has been engaged to assist Liontown with optimising the resource drill-out with a maiden JORC compliant Mineral Resource estimate to be completed as soon as possible after drilling has been completed.

In addition, Liontown has commenced a 6-8 hole diamond coring (HQ) program to provide geological and geotechnical data as well as samples for metallurgical test work. Early observations confirm coarse spodumene crystals and competent ground conditions (*Figures 5 and 6*).

Liontown's Managing Director, David Richards, said the Company was making excellent progress on multiple fronts at Kathleen Valley, which was continuing to grow in stature as a high-quality lithium discovery in a premier mining jurisdiction.

"Resource drilling is now well underway and should continue for at least the next month or so, paving the way for a maiden Resource estimate next quarter," he said.

"Given its grade, scale and location, Kathleen Valley already has many of the key attributes required to become an exciting development and growth opportunity for Liontown in the lithium industry, and we are focused on unlocking this value as quickly as possible for our shareholders."

DAVID RICHARDS Managing Director

For More Information:

David Richards Managing Director T: +61 8 9322 7431 **Investor Relations:**

Nicholas Read Read Corporate T: +61 8 9388 1474

COMPETENT PERSON STATEMENT

The Information in this report that relates to Exploration Results is based on and fairly represents information and supporting documentation prepared by Mr David Richards, who is a Competent Person and a member of the Australasian Institute of Geoscientists (AIG). Mr Richards is a full-time employee of the company.

Mr Richards has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Richards consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

FORWARD LOOKING STATEMENT

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

SEE OVERLEAF FOR ANNOUNCEMENT FIGURES

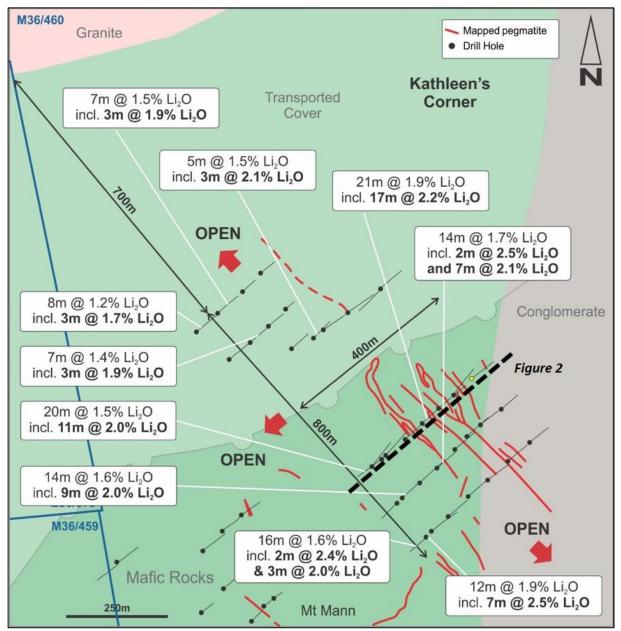


Figure 1: Kathleen's Corner – Drill hole plan showing better intersections

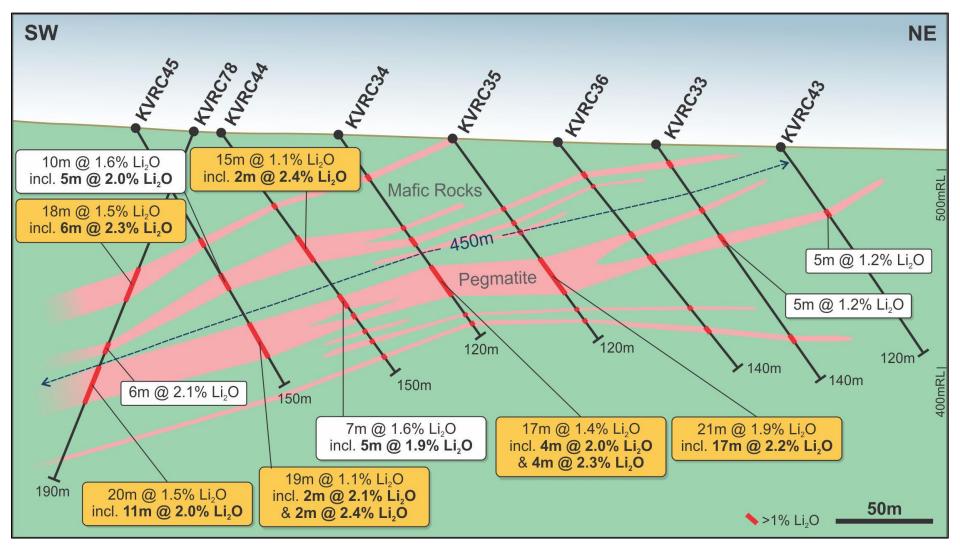


Figure 2: Kathleen's Corner – Drill section (see Figure 1 for location)

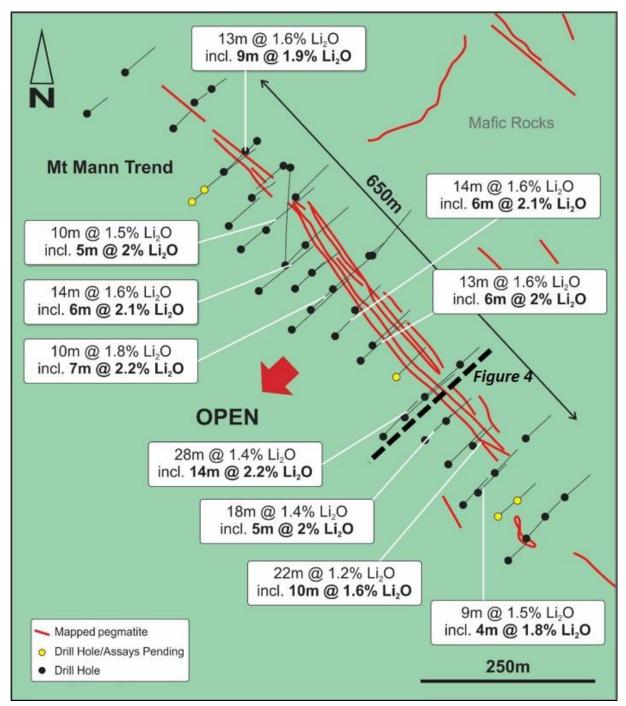


Figure 3: Mt Mann – Drill hole plan showing better intersections

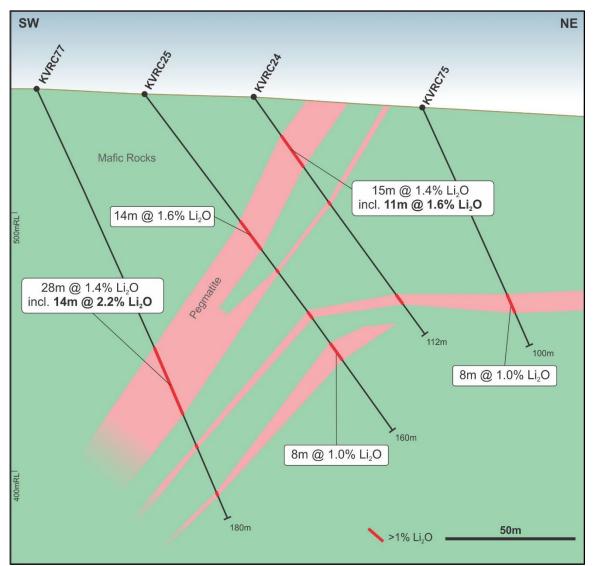


Figure 4: Mt Mann– Drill section (see Figure 3 for location)

Figure 5: Kathleen's Corner– Diamond core hole KVDD0002 showing wide pegmtatite zone (Trays ~ 1m long)

Figure 6: Kathleen Valley– HQ drill core (64mm diameter) showing coarse white spodumene crystals

	Feet	Nanth		Dim	A =:	Danath (ma)	Signifi	cant Li2O	(>0.4%) and	Ta2O5 (>50	ppm) results	Ducaucat
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)	Prospect
							3	6	3	1	122	
KVRC0001	258306	6958744	500	-60	45	65	10	11	1	1.1	85	
							16	17	1	1.1	94	
							0	13	13	1.6	114	
							incl.	9m @ 1.9%	6 Li2O and 10	7ppm Ta20	05 from 2m	
KVRC0002	258379	6958675	500	-60	225	109	26	29	3	1.3	101	
KVNC0002	230373	0550075	500	-00	225	105	35	36	1	1.6	127	
							83	96	13	1.6	111	
							incl.	6m @ 2%	Li2O and 113	ppm Ta2O	5 from 88m	Mt Mann
KVRC0003	258395	6958690	500	-59	225	155	91	105	14	1.7	163	
KVIIC0005	230333	0550050	500	55	225	155	incl.	8m @ 2%	Li2O and 130	ppm Ta2O	5 from 92m	
							36	38	2	1	99	
KVRC0004	258348	6958645	500	-50	45	89	45	56	11	1.2	100	
							incl.	3m @ 1.8%	6 Li2O and 10	6ppm Ta2C	05 from 45m	
KVRC0005	258276	6958707	500	-53	40	89	32	34	2	1.3	112	
NV NCCCCCC	230270	0550/0/	500	55	10	05	39	40	1	1.5	132	
KVRC0006	258433	6958654	500	-50	227.5	80	37	43	6	1.1	153	
							29	35	6	1.4	170	
KVRC0007	258452	6959426	500	-47	45	132	incl. 3	3m @ 1.9%	5 Li2O and 16	6ppm Ta2C	05 from 30m	
	200.02	0000120	500	.,	.0	101	39	40	1	1.1	198	
							124	125	1	2.4	302	
KVRC0008	258512	6959469	500	-50	55	130	81	82	1	1.2	310	Kathleens
	230312	0555105	500	50		150	95	96	1	1	124	Corner
KVRC0009	258590	6959528	500	-50	45	113	57	59	2	0.7	248	conner
	200000	0000020	500		.0		70	71	1	0.6	266	
							83	85	2	1.1	211	
KVRC0010	258593	6959527	500	-50	225	130	91	92	1	1.4	239	
							100	106	6	1.2	284	
KVRC0011	258208	6958788	500	-50	45	89	24	25	1	1	112	
KVRC0012	258154	6958729	500	-55	45	65			No significan	t assavs		
KVRC0013	258205	6958930	500	-50	45	108		•			1	
KVRC0014	258157	6958881	500	-50	45	113	12	17	5	0	240	
							135	193	58	1.2	156	
								-			rom 141m and	
							13m (@ 2.0% Li2	O and 138pp	m Ta2O5 fr	om 67m and	
KVRC0015	258443	6958652	500	-50	180	241	206	230	24	1.3	139	Mt Mann
								-			rom 208m and	
									and 271ppm			
							4m @		and 145ppm		m 226m and	
KVRC0016		6958764	500	-50	45	40	ļ,		No significan	t assays		
KVRC0017	257899	6958809	500	-50	45	119	63	65	2	1.3	212	
KVRC0018	257951	6958853	500	-50	45	101	1	2	1	1.4	93	
KVRC0019	258252	6958969	500	-50	45	89		I	No significan	t assays		

*KVRC0001 – 0019 drilled in February 2017 and results reported March 20th 2017

Appendix 1 (cont.) – k	athleen Valley – Drill hole statistics
------------------------	--

							Signifi	cant Li2O	(>0.4%) and	Ta2O5 (>50	ppm) results	
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)	Prospect
							26	48	22	1.2	170	
KVRC0020	258702	6958251	532	-60	45	80		-	Li2O and 12	••		
							incl. 1	0m @ 1.6%	6 Li2O and 24	4ppm Ta20	D5 from 34m	
							65	75	10	0.9	179	
							incl. 7	′m @ 1.1%	Li2O and 20	5ppm Ta2C	95 from 68m	
KVRC0021	258675	6058222	535	-55	45	140	85	88	3	0.8	305	
KVIIC0021	230073	0936223	555	-55	45	140	incl. 1	lm @ 1.3%	Li2O and 27	7ppm Ta2C	95 from 86m	
							103	106	3	1.5	237	
							incl. 2	m @ 1.8%	Li2O and 246	ippm Ta2O	5 from 103m	
KV/DC0022	250725	6059215	520		45	90	20	30	10	1.3	199	
KVRC0022	258/35	0958215	528	-55	45	80	incl. 6	5m @ 1.7%	Li2O and 20	9ppm Ta2C	5 from 24m	
10.00000	25.0700	6050406	520		45	100	52	58	6	1.5	260	
KVRC0023	258708	6928186	529	-55	45	100	incl. 5	5m @ 1.7%	Li2O and 24	6ppm Ta2C	5 from 53m	
							18	33	15	1.4	139	
10.00000	250665	000000	E 42		45	112	incl. 1	1m @ 1.6%	6 Li2O and 13	2ppm Ta20	D5 from 20m	
KVRC0024	258665	6958285	543	-55	45	112	49	51	2	0.7	141	
							93	98	5	0.8	173	
							61	75	14	1.6	121	
							incl. 1	3m @ 1.7%	6 Li2O and 12	2ppm Ta20	D5 from 61m	
							84	85	1	1.7	106	
KVRC0025	258636	6958260	544	-55	45	160	103	107	4	1.5	187	
							incl. 2	m @ 2.5%	Li2O and 218	ppm Ta2O	5 from 104m	
							119	127	8	1.0	197	
							-		-		5 from 123m	
							32	44	12	1.4	136	
								3m @ 1.8%	Li2O and 14			Mt Mann
							58	61	3	1.2	93	
KVRC0026	258564	6958396	535	-55	45	120	80	82	2	1.5	375	
									Li2O and 39			
							98	100	2	1	291	
							65	78	13	1.6	120	
									Li2O and 112	-	-	
KVRC0027	258535	6958367	534	-55	45	160	93	97	4	1.5	161	
	200000	0000007		00	.0	100	101	105	4	0.7	204	
							129	135	6	0.8	107	
							30	39	9	1.5	133	
									Li2O and 13			
KVRC0028	258504	6958477	525	-55	45	120	51	56	5	1.7	80	
							95	97	2	1.7	350	
							75	85	10	1.4	170	
									Li2O and 154			
							97	106	9	1.2	110	
							-		ع 4 Li2O and 89		_	
								-	8		r	
KV/DC0020	250472	6050440	525		45	106	125	133 2m@2%1	i2O and 300p	1.4	251	
KVRC0029	238472	0928448	525	-55	45	196		-	•	•	5 from 129m	
								-		 I	1	
							176	177	1	1.1	74	
							182	188	6	1.9	128	
										i •	5 from 183m	
							193	196	3	1	118	

Uala ID	Fast	N a white		Dim	A = i	Danath (ma)	Signifi	cant Li2O	(>0.4%) and	Ta2O5 (>50	ppm) results	Ducouset
Hole_ID	East	North	RL	υр	Azimuth	Depth (m)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)	Prospect
							16	25	9	1.6	118	
							incl.	6m @ 2%	Li2O and 124	ppm Ta2O5	from 18m	
							37	44	7	1.1	80	
KVRC0030	258464	6958540	520	-55	45	140	incl. 3	m @ 1.8%	Li2O and 123	3ppm Ta2O	5 from 40m	
							99	103	4	0.9	331	
							113	117	4	1.3	492	
									i2O and 404p		from 115m	Mt Mann
							52	61	9	1.7	126	
									Li2O and 121			
KVRC0031	258435	6958512	521	-55	45	160	85	93	8	1.4	99	-
									Li2O and 11			-
							106	110	4	2	312	-
							116	118	2	1.5	268	
							39	44	5	1.6	124	-
KVRC0032	258426	6959404	511	-55	45	100			Li2O and 150			
							67	68	1	1.3	197	
							6	9	3	0.9	223	
KVRC0033	258802	6959298	513	-55	45	140	52	57	5	1.2	157	
									Li2O and 16			
							114	118	4	1.2	152	
							18	19	1	0.6	112	
							21	24	3	1.5	156	
									Li2O and 18			
							53	55	2	0.9	177	
							60	64	4	1.4	160	
KV/DC0024	250652		F10		45	120			Li2O and 236			
KVRC0034	258653	6959155	518	-55	45	120	68	70	2	1.2	123	
							78	95	17	1.4	161	
									Li2O and 268			-
									Li2O and 162			-
							106 112	108 114	2	0.8 1.4	453 203	Kathleens
									∠ Li2O and 195			Corner
							37	40		1.1	252	
							47	40		1.1	232	
							52	4J 54		1.5	201	-
									Li2O and 28			-
KVRC0035	258694	6959195	516	-55	45	120	71	92	21	1.9	201	
									Li2O and 22			-
							101	103			273	
							101	110		1.3	94	
							100	110		1.1	247	
							23	24		2.2	375	
							54	56		1.6	164	
							-		Li2O and 10			
KVRC0036	258733	6959232	514	-55	45	140	69	-				1
		5555252	511	55		- 10			Li2O and 328			
							76	77				
							101	103	2	0.7	186	1
							115	119		1	223	1
L			1	1	1	1	115			1	-23	

				_ .		-	Signifi	cant Li2O	(>0.4%) and	Ta2O5 (>50	ppm) results	
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)	To(m)	Interval(m)	Li2O (%)	Ta2O5 (ppm)	Prospect
							15	19	4	1.1	303	
							63	77	14	1.7	168	
							incl. 2	m @ 2.5%	Li2O and 10	3ppm Ta2O	5 from 64m	
KVRC0037	258730	6959085	516	-55	45	120			Li2O and 214			
							83	87	4	1.3	107	
							incl.	2m @ 2%	Li2O and 184			
							37	42	5	1	178	
									Li2O and 19			
							58	64	6	0.7	129	
KVRC0038	258774	6959131	514	-55	45	120	76	85	9	1.7	255	-
									Li2O and 29			Kathleens
							100	102	2	0.6	233	Corner
							8	16	8	1.1	131	
							-	-	Li2O and 17			
							45	49	4	1.3	204	
KVRC0039	258803	6959163	513	-55	45	120		-	4 Li2O and 24			
												-
							85 incl. 2	90	5 Li2O and 13	1.9	143	-
								-		· · ·		-
							37 115	39 123	2	0.7	191 176	
KVRC0040	258836	6959192	512	-55	45	140	-	-	∘ Li2O and 157		-	
							126	127	1	1.6	206	
							120	118	11	1.6	120	
									Li2O and 123			-
							149	159	10	0.8	139	
KVRC0041	258398	6958475	524	-60	52	220	-		Li2O and 136			
							183	197	14	1.6	83	
							incl. 6	m @ 2.1%	Li2O and 100)ppm Ta2O	5 from 185m	
									Li2O and 113			Mt Mann
							95	103	8	1.4	121	
							incl. 4	lm @ 1.9%	Li2O and 12	4ppm Ta2O	5 from 98m	
1000000	250272	0000004	F10	60	40	200	120	130	10	1.1	119	
KVRC0042	258373	6958534	519	-60	49	200	incl. 2	m @ 1.6%	Li2O and 161	Lppm Ta2O	5 from 124m	
							172	180	8	1.5	137	
							incl. 4	m @ 1.9%	Li2O and 138	Sppm Ta2O	5 from 173m	
KVRC0043	258815	6959306	512	-55	53	120	34	37	3	1.5	215	
KVNC0045	250015	0555500	512	55	55	120	83	84	1	1.1	906	
							43	47	4	1.5	129	
							incl. 3	m @ 1.8%	Li2O and 15	5ppm Ta2O	5 from 44m	
							65	80	15	1.1	204	
									Li2O and 28			
									Li2O and 25			Kathleens
KVRC0044	258605	6959116	519	-54	40	150	102	109	7	1.6	225	Corner
									Li2O and 238			
							114	116	2	0.9	118	
							122	124	2	1.2	273	
							127	131	4	1	172	
									i2O and 181p			
							138	140	2	1.5	266	1

KVRC0020 – 0040 results reported February 2018

-	-	-	-			ey – Dim			(>0.4%) and	Ta2O5 (>50	ppm) results	
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)		Interval(m)		Ta2O5 (ppm)	Prospect
							65	69	4	1.6	149	
							incl. 3	lm @ 1.9%	Li2O and 17	3ppm Ta2O	5 from 65m	
							84	94	10	1.6	287	
KVRC0045	258571	6959089	521	-59	38	150			Li2O and 31			-
							114	133	19	1.1	131	-
								_	Li2O and 236			-
									Li2O and 98			- 1
KVRC0046	258887	6959230	512	-54	48	93	28 incl_1	31	3	1.7	191	-
							34	36	Li2O and 19	0.9	307	-
							76	85	2	1.5	206	
							-		Li2O and 128	-		-
								-	Li2O and 234			
KVRC0047	258688	6959048	520	-56	46	200	88	90	2	1.3	260	-
							100	102	2	2.5	173	1
							132	136	4	1.2	180	
							incl. 1	lm @ 2% L	i2O and 314p	pm Ta2O5	from 133m	
							45	48	3	1.5	214	
KVRC0048	258645	6959011	522	-55	47	120	85	99	14	1.6	236	
							incl.	9m @ 2%	Li2O and 230	ppm Ta2O	5 from 87m	
							109	113	4	1.4	200	
KVRC0049	258957	6959148	513	-57	47	120	incl. 1	m @ 2.1%	Li2O and 176	ppm Ta2O	5 from 109m	
								n @ 1.7%	Li2O and 183	ppm Ta2O5	from 111m	
							5	7	2	1.1	84	
KVRC0050	258904	6959102	514	-56	49	120	31	34	3	1	135	
	200000	0000101	01.		.5		100	108	8	1	123	
									Li2O and 146			
							13	17	4	0.9	114	- 1
									Li2O and 15			
							21	23	2	1.6	130	Kathleens
10.10.00054			546		- 4	121			Li2O and 179			Corner
KVRC0051	258855	6959056	516	-57	51	121	28	30	2	1.7	161	- 1
							48	52	4	1.6	131	- 1
							108	2.2% 114	Li2O and 14			- 1
									6 Li2O and 238	0.8	153	- 1
							80	86	6	1.5	162	- 1
KVRC0052	258807	6959015	515	-55	48	120			Li2O and 16			- 1
							68	73	5	1.6	183	-
								_	Li2O and 233			-
KVRC0053	258757	6958966	519	-56	49	120	78		2			-
							106	115	9	1.7	126	1
									Li2O and 132			
							27	30	3	0.9	263	
							71	87	16	1.6	185	
	250717	6050000	522		52	100	incl. 2	2m @ 2.4%	Li2O and 24	1ppm Ta2O	5 from 74m	
KVRC0054	258/1/	6958930	522	-57	52	160	and	3m @ 2% I	Li2O and 260	opm Ta2O5	from 78m	
							139	144	5	1	139	
							incl. 1	lm @ 2% l	i2O and 167p	pm Ta2O5	from 142m	
KVRC0055	258374	6959379	510	-55	47	100	52	60	8	0.9	110	
KVRC0056	258318	6959/35	510	-55	49	88	52	58	6	1.3	93	
KVIIC0050	236316	0939433	510	-55	49	00	incl.	2m @ 1.9%	6 Li2O and 93	ppm Ta2O	5 from 53m	
KVRC0057	258360	6959477	511	-56	49	50	28	32	4	0.6	126	
KVRC0058	258274	6959395	509	-56	48	120	70	77	7	1.4	130	
	133274	5555555	555	50	.0	120		_	Li2O and 18			
KVRC0059	258254	6959520	511	-57	47	80	43	50	7	1.4	156	
							incl. 1		Li2O and 30		5 from 47m	
KVRC0060	258298	6959565	510	-56	50	80			No significan			
KVRC0061	258194	6959467	507	-56	47	124	75	82	7	1.5	134	
							incl. 3	sm @ 1.9%	Li2O and 114	4ppm Ta2O	5 from 76m	

							Signifi	cant Li2O	(>0.4%) and	Ta2O5 (>50	oppm) results	
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)				Ta2O5 (ppm)	Prospect
							48	51	3	1	492	
							incl. 1	lm @ 1.7%	Li2O and 33	6ppm Ta2O	5 from 48m	
							94	99	5	1.1	143	
							incl.	2m @ 2%	Li2O and 288	ppm Ta2O	5 from 94m	
KVRC0062	258563	6958526	520	-60	49	180	105	108	3	1.2	142	
							incl. 1	m @ 1.7%	Li2O and 171	ppm Ta2O	5 from 106m	
							118	119	1	1.1	333	
							125	128	3	0.6	83	
							137	146	9	1	135	
KVRC0062A	258555	6958525	520	-60	49	64			Hole aband	loned	•	
KVRC0063	258833	6958178	523	-61	46	105						
KVRC0064	258805	6958151	521	-60	44	100			No cignifican	taccave		
KVRC0065	258780	6958123	524	-60	43	100		I	No significan	l assays		
KVRC0066	258754	6958091	524	-65	46	101						
							117	121	4	0.8	152	
							123	129	6	1.2	184	
							incl. 2	m @ 1.6%	Li2O and 133	ppm Ta2O	5 from 127m	
							144	157	13	1.3	125	
							incl. 4	4m @ 2% L	i2O and 137	opm Ta2O5	from 147m	
KVRC0067	258449	6958419	524	-61	47	238	and 1	lm @ 2% L	i2O and 100p	pm Ta2O5	from 153m	
							184	195	11	1.4	72	
							incl. 4	lm @ 2.2%	Li2O and 84	ppm Ta2O5	from 188m	
							199	201	2	0.8	93	
							203	212	9	1.2	77	
									Li2O and 138	1	5 from 210m	
KVRC0068	258779	6958265	525	-59	46	100	72	78	6	NSR	129	
							69	78	9	1.5	178	_
									Li2O and 17			_
KVRC0069	258689	6958169	529	-66	43	130	83	94	11	1.2	184	_
									Li2O and 24			Mt Mann
							96	100	4	0.6	110	-
							0	4	4	1.6	124	-
KVRC0070	258387	6958609	518	-59	55	80	39	42	3	1.5	118	_
							55	61	6	1.3	119	_
									Li2O and 10	1		_
K) (DC0071	250665	050200	520	C1	47	100	31	46	15 Li2O and 116	1.6	129	_
KVRC0071	258665	6958290	538	-61	47	100			Li2O and 116 Li2O and 140			-
							46	56	10	1.5	81	-
							-		Li2O and 86		-	
							64	66	2	1.5	92	-
							97	98	1	1.5	259	
KVRC0072	258/07	6958564	519	-60	49	180	106	107	1	1.3	994	-
KVNC0072	230407	0550504	515	-00	45	100	100	107	3	1.3	146	-
									-		5 from 126m	-
							161	169	8	1.8	130	-
									_		5 from 162m	-
							72	90	18	1.4	145	-
									Li2O and 15		-	-
									Li2O and 15			-
KVRC0073	258635	6958263	541	-65	45	140	104	118	14	1.3	176	-
							-		i2O and 189	-	-	-
								_	i2O and 226p	•		1
							88	99	11	1.4	97	1
									Li2O and 96		-	1
									Li2O and 10			-
KVRC0074	25835/	6958560	518	-65	45	140	112	119	7	1.8		-
AVAC0074	20004	3330303	210	05		140					150 5 from 114m	-
							129	131	2 2	1.4	264	-
											204 5 from 129m	-
L			L	I	l	l					5 110111 12,5/11	L

						-	Signifi	cant Li20	(>0.4%) and	Ta205 (>50	ppm) results	
Hole_ID	East	North	RL	Dip	Azimuth	Depth (m)	From(m)				Ta2O5 (ppm)	Prospect
			1				79	87	8	1	228	
KVRC0075	258686	6958371	539	-65	47	100	-		Li2O and 34	_		
	200000	0000071	000	00		100		-	Li2O and 14			
							89	90	1	1.8	147	
							98	105	7	1.6	281	
KVRC0076	258450	6958610	518	-65	45	130			Li2O and 25			
							113	119	6	0.4	42	Mt Mann
							109	137	28	1.4	108	
							incl. 14	lm @ 2.2%	Li2O and 14	7ppm Ta2O	5 from 109m	
KVRC0077	258573	6958267	545	-65	44	180	149	152	3	1.1	103	
							incl. 1	m @ 2.1%	Li2O and 115	ippm Ta2O	5 from 150m	
							169	171	2	1	169	
							73	91	18	1.5	207	
							incl. 6	6m @ 2.3%	Li2O and 21	4ppm Ta2O	5 from 80m	
							and 1	.m @ 2.6%	Li2O and 18	6ppm Ta2O	5 from 89m	
KVRC0078	258505	6959106	520	-69	230	190	114	120	6	2.1	171	Kathleens
KVIIC0078	236393	0939100	520	-09	230	150	incl. 5	m @ 2.4%	Li2O and 172	2ppm Ta2O	5 from 114m	Corner
							127	147	20	1.5	147	
							incl. 1	.1m @ 2%	Li2O and 134	ppm Ta2O	5 from 134m	
							178	179	1	1.9	175	
							24	36	12	1.9	132	
								′m @ 2.3%	Li2O and 13	5ppm Ta2O		
KVRC0079	258535	6958448	530	-65	45	120	55	62	7	1.5	96	Mt Mann
							75	76	1	2.8	47	
							103	104	1	0.9	132	
							40	41	1	1.5	213	Kathlassa
KVRC0080	258632	6958999	524	-65	225	120	75	90	15	1.5	204	Kathleens
									Li2O and 28			Corner
							88	103	15 i 2O and 148	1.9	162	
										_	202 D5 from 92m	
KVRC0081	258503	6958408	529	-65	45	125	121	125	4	1.4	161	
											5 from 123m	
							41	50	9	1.8	150	Mt Mann
									Li2O and 13	-		
KVRC0082	258477	6958503	523	-60	50	100	58	63	5	1.4	110	
									Li2O and 10		-	
							13	14	1	1	325	
							28	29	1	0.9	298	
							 94	106	12	1.9	298	
KVRC0083	25871/	6958927	522	-65	227	136			Li2O and 20		-	Kathleens
KVIIC0005	230714	0550527	522	-05	227	150	116	117	1	0.6	132	Corner
							110	117	5	2.1	80	
									Li2O and 92			
							71	80	9	1.1	115	
									Li2O and 13			
KVRC0084	258451	6958481	522	-64	47	130	98	105	7	1.1	156	Mt Mann
	230431	0000-01	522	04	· ·	130	110	105	6	1.1	194	
									. <u> </u>	-	5 from 111m	
								-	6	· ·		
KVRC0085	258225	6959344	508	-70	49	120	94	100 m@18%	Li2O and 11	1.4	127 5 from 95m	
KVINCUU03	230223	0505544	200	-70	43	120		-	Li2O and 11			Kathleens
							92	100	8	1.2	128	Corner
KVRC0086	258153	6959419	509	-70	49	120			8 Li2O and 15			
	L	ated as fol		I			mu. s	1.1%	LIZO dilu 15	эрріп та20		I

* True widths estimated as follows:

Holes drilled towards NE (~045) at Kathleen's Corner, true widths 85-95%

Holes drilled towards NE (~045) at Mt Mann, true widths 80-90% of

Holes drilled towards SW (~225) at Kathleen's Corner, true widths 65-75%

Holes drilled towards SW (~225) at Mt Mann, true widths 30-50% of

KVRC0015 true widths ~20% of downhole width

Appendix 2 – Kathleen Valley PROJECT - JORC Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	Sub surface chip samples have been collected by reverse circulation (RC) drilling techniques (see below).
	investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Drill holes are oriented perpendicular to the interpreted strike of the mineralised trend except in rare occasions where limited access necessitates otherwise.
		Liontown rock chips - representative 1-3kg chip samples collected across zone being sampled.
		Historic sampling techniques not well documented.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	
	Aspects of the determination of mineralisation that are Material to the Public Report.	RC samples are collected by the metre from the drill rig cyclone as two 1m split samples in calico bags and a bulk sample in a plastic mining bags.
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3	The 1m samples from the cyclone are retained for check assaying.
	kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Only samples of pegmatite and adjacent wall rock (~4m) are collected for assay.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling techniques used at Kathleen Valley comprise Reverse Circulation (RC/5.5") with a face sampling hammer
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries are visually estimated and recorded for each metre. To date sample recoveries have averaged >95%.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Drill collars are sealed to prevent sample loss and holes are normally drilled dry to prevent poor recoveries and contamination caused by water ingress. Wet intervals are noted in case of unusual results.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	None noted as yet.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to	All drill holes are logged on 1 m intervals and the following observations recorded:
	support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Recovery, quality (i.e. degree of contamination), wet/dry, hardness, colour, grainsize, texture, mineralogy, lithology, structure type and intensity, pegmatite and vein type and %, lithium mineralogy and %, alteration assemblage and magnetic susceptibility.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging is quantitative, based on visual field estimates.

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	Holes are logged from start to finish.
Sub-sampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling completed.
sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples are collected as rotary split samples. Samples are typically dry.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories; i.e.
		Oven drying, jaw crushing and pulverising so that 85% passes -75microns.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Duplicates and blanks submitted approximately every 25 samples.
		Standards are submitted every 25 samples or at leas once per hole.
	Measures taken to ensure that the sampling is	Measures taken include:
	representative of the in situ material collected, including for instance results for field	• regular cleaning of cyclones and sampling
	duplicate/second-half sampling.	equipment to prevent contamination;
		 statistical comparison of duplicates, blanks and standards.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample size is considered appropriate for the stage of exploration
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Initial assaying (2017) completed by ALS Perth. Subsequent assaying (2018) completed by NAGROM Laboratories Perth. Both labs use industry standard procedures for rare metals such as Li and Ta. Analytical techniques are total.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None used
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established	See above.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Internal review by alternate company personnel.
assaying	The use of twinned holes.	None undertaken
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Drill data entered directly into excel spreadsheets onsite while drilling is ongoing. Data then entered into Access Database and validated before being processed by industry standard software packages such as MapInfo and Micromine.
		Representative chip samples are collected for later reference.
	Discuss any adjustment to assay data.	Li% converted to Li ₂ O% by multiplying by 2.15, Ta ppm converted to Ta ₂ O ₅ ppm by multiplying by 1.22
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource	All drill holes and geochemical samples are located using a hand held GPS.
	estimation.	All RC holes have been surveyed by a digital down hole camera provided by drill contractor.

Criteria	JORC Code explanation	Commentary
	Specification of the grid system used	GDA 94 Zone 51
	Quality and adequacy of topographic control.	Nominal RLs based on regional topographic dataset and GPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Varies due to initial drill programs largely designed to test down dip potential of mineralised outcrops.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not yet.
	Whether sample compositing has been applied.	None undertaken.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling is typically oriented perpendicular to the interpreted strike of mineralisation. KVRC0015 was oriented at 45° to strike due to access issues and the need to test the main outcrop zone.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No bias observed; however, estimates of true width provided in attached drill hole statistic appendix.
Sample security	The measures taken to ensure sample security.	Company geologist supervises all sampling and subsequent storage in field. Same geologist arranges delivery of samples to NAGROM Perth via courier.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Kathleen Valley Project is located ~680km NE of Perth and ~45km NNW of Leinster in Western Australia. The Project comprises 4 granted mining leases MLs 36/264, 265, 459, 460 and 1 Exploration License E36/879.
		The mining leases (MLs) and rights to pegmatite hosted rare-metal mineralisation were acquired from Ramelius Resources Limited via a Sales Agreement completed in 2016. The MLs have been transferred to LRL (Aust) Pty Ltd a wholly owned subsidiary of Liontown Resources Limited (LTR).
		Ramelius acquired 100% of the Kathleen Valley Project MLs in June 2014 from Xstrata Nickel Operations Pty Ltd (Xstrata). Xstrata retains rights to any nickel discovered over the land package via an Offtake and Clawback Agreement.
		Ramelius retains the rights to gold on the MLs.
		LRL (Aust) Pty Ltd has assumed the following Agreement:
		 Bullion and Non-Bullion Royalty Agreement of a 2% Gross Production Royalty affecting M36/264-265 and 459- 460.

Criteria	JORC Code explanation	Commentary
		The EL is in the name of Liontown Resources Limited (LTR) with no third party obligations apart from statutory requirements.
		The tenements are covered by the Tjiwarl Determined Native Title Claim (WC11/7). LTR has signed an Access Agreement with the NT group which largely applies to E36/879.
		LRL (Aust) Pty Ltd has received Section 18 consent to drill on certain areas with M36/459 and M36/460.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Multiple phases of exploration completed for gold and nickel. This has not been reviewed in detail due to other companies retaining the rights to these commodities and Liontown's focus on rare metal pegmatites.
		There has been limited sporadic prospecting for Li, Ta and Sn, principally by Jubilee Mines (subsequently taken over by Xstrata). Work comprised geological mapping, broad spaced soil sample lines and rock chip sampling of the pegmatites. Details of the methods and procedures used have not been documented.
		There has been no previous drill testing of the Li and Ta prospective pegmatites prior to LTR acquiring the Project.
Geology	Deposit type, geological setting and style of mineralisation.	The Kathleen Valley Project contains a series of quartz feldspar-muscovite-spodumene pegmatites hosted in mafic rocks related to the Kathleen Valley Gabbro or M Goode Basalts. The Project is located on the western edge of the Norseman- Wiluna Belt within the Archaean Yilgarn Craton.
		The pegmatites are LCT type lithium bearing pegmatites.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See Appendix attached to ASX release.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	See Appendix attached to ASX release.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	See Appendix attached to ASX release.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None calculated.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	See Appendix attached to ASX release.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See Figures in body of report
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All recent exploration results reported and tabulated.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material data reported
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Resource definition drilling on 50x50m pattern to provided sufficient data to estimate a JORC compliant resource down to approximately 100m vertical.
		Diamond core drilling to provide:
		 geological data on mineralisation style and controls;
		• samples for metallurgical test work; and
		geotechnical data